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Introduction

This year marks the 19th edition of the Workshop on Innovative Use of NLP for Building Educational
Applications. As in previous years, we are happy to welcome a plethora of work on various aspects and
types of educational applications — from some of the traditionally popular tasks around language learning
including automated essay scoring, grammatical error detection and correction, readability assessment,
and vocabulary acquisition, among others, to topics related to math and programming education, que-
stions around empathy in teachers’ responses and evaluation of teacher encouragement, fairness and
explainability, bias alleviation, and ethics in AI models applied to the educational domain and many
other exciting developments.

In total, we received 88 submissions, and from these, we have accepted 4 papers as talks and 34 as poster
and demo presentations, for an overall acceptance rate of 43 percent. Like the rest of the NLP communi-
ty, we are observing a paradigm shift, with more and more researchers applying Large Language Models
(LLMs) in the context of educational applications for a variety of purposes including implementation
and evaluation. A large number of papers that we have received and accepted this year investigate the
topics around the integration of LL.Ms into educational applications. With research excellence being one
of the main factors considered when making paper acceptance decisions, we hope we have also brought
together a diverse program. As before, we also put a particular emphasis on multilingualism of the work
included in our program, and this year BEA features work done not only on English, but also on other
languages including Catalan, Danish, Dutch, Filipino, French, German, Japanese, Italian, Portuguese,
Romanian, Russian, Sinhala, Spanish, and Swedish.

In addition to the diverse oral, poster, and demo presentations, this year, Alla Rozovskaya, an Assistant
Professor in the Department of Computer Science at Queens College, City University of New York, will
give a keynote on Multilingual Low-Resource Natural Language Processing for Language Learning.
Furthermore, BEA 2024 has hosted two shared tasks — on Automated Prediction of Item Difficulty and
Item Response Time (APIDIRT) and on Multilingual Lexical Simplification Pipeline (MLSP). Both tasks
have attracted a large number of participants, and the program includes oral presentations on the shared
task descriptions from the organizers as well as extended poster sessions for shared task participants pre-
senting their systems.

Last but not least, we would like to thank everyone who has been involved in organizing the BEA wo-
rkshop this year. We are particularly grateful to our sponsors who keep supporting BEA: this year, our
sponsors include British Council, Cambridge University Press & Assessment, CATALPA, Duolingo En-
glish Test, Educational Testing Service, and the National Board of Medical Examiners. We would like to
also thank all the authors who showed interest and submitted a paper this year.

Due to the record number of submissions received, we had to extend our invitation to become part of
the Program Committee to all the authors of submitted papers, and many have helped us and provided
their valuable feedback and thoughtful reviews. Without this help from the community, it would not be
possible to spread the reviewing load reasonably, and we are very grateful to our regular reviewers as
well as to emergency reviewers and all the authors who joined our PC this year and who, we hope, may
become our regular PC members. In particular, we would like to extend our gratitude to the following
emergency and outstanding reviewers: Michael Gringo Angelo Bayona, Jeanette Bewersdorff, Jie Cao,
Scott Crossley, Sam Davidson, Kordula De Kuthy, Jasper Degracuwe, Rujun Gao, Handoko Handoko,
Michael Holcomb, Helen Jin, John Sie Yuen Lee, Hunter McNichols, Arun Balajiee Lekshmi Narayanan,
Huy Viet Nguyen, Adam Nohejl, Eda Okur, Udita Patel, Marti Quixal, Manav Rathod, Alla Rozovskaya,
Abhijit Suresh, Chee Wei Tan, Gladys Tyen, Justin Vasselli, Elena Volodina, ManFai Wong, Kevin Yan-
cey, Roman Yangarber, Torsten Zesch.

Y


https://www.britishcouncil.org
https://www.cambridge.org/
https://www.fernuni-hagen.de/english/research/clusters/catalpa/
https://englishtest.duolingo.com/
https://englishtest.duolingo.com/
https://www.ets.org/
https://nbme.org/

Ekaterina Kochmar, MBZUAI

Marie Bexte, FernUniversitit in Hagen

Jill Burstein, Duolingo

Andrea Horbach, Hildesheim University and CATALPA, FernUniversitit in Hagen
Ronja Laarmann-Quante, Ruhr University Bochum

Anais Tack, KU Leuven, imec

Victoria Yaneva, National Board of Medical Examiners

Zheng Yuan, King’s College London



Organizing Committee

General Chair

Ekaterina Kochmar, MBZUAI

Program Chairs

Andrea Horbach, Universitit Hildesheim and CATALPA, FernUniversitit in Hagen
Ronja Laarmann-Quante, Ruhr University Bochum
Marie Bexte, FernUniversitit in Hagen

Publication Chair

Anais Tack, KU Leuven, imec

Shared Tasks Chairs

Victoria Yaneva, National Board of Medical Examiners
Jill Burstein, Duolingo

Sponsorship Chair
Zheng Yuan, King’s College London

vi



Program Committee

Chairs

Ekaterina Kochmar, MBZUAI

Marie Bexte, FernUniversitit in Hagen

Jill Burstein, Duolingo

Andrea Horbach, Universitit Hildesheim

Ronja Laarmann-Quante, Ruhr University Bochum
Anais Tack, KU Leuven; imec; UCLouvain

Victoria Yaneva, National Board of Medical Examiners
Zheng Yuan, King’s College London

Program Committee

Tazin Afrin, Educational Testing Service

Prabhat Agarwal, Pinterest

Erfan Al-Hossami, University of North Carolina at Charlotte

Desislava Aleksandrova, CBC/Radio-Canada

Giora Alexandron, Weizmann Institute of Science

David Alfter, UCLouvain

Fernando Alva-Manchego, Cardiff University

Jatin Ambasana, Unitedworld Institute of Technology, Karnavati University
Nico Andersen, DIPF | Leibniz Institute for Research and Information in Education
Alejandro Andrade, Pearson

Tesfa Tegegne Asfaw, Bahir Dar University

Nischal Ashok Kumar, University of Massachusetts Amherst

Berk Atil, Pennsylvania State University

Shiva Baghel, Extramarks

Rabin Banjade, University of Mempbhis

Stefano Banno, University of Cambridge

Michael Gringo Angelo Bayona, Trinity College Dublin

Lee Becker, Pearson

Beata Beigman Klebanov, Educational Testing Service

Lisa Beinborn, Vrije Universiteit Amsterdam

Enrico Benedetti, University of Bologna

Luca Benedetto, University of Cambridge

Jeanette Bewersdorff, FernUniversitit in Hagen

Ummugul Bezirhan, Boston College, TIMSS and PIRLS International Study Center
Smita Bhattacharya, Saarland University

Abhidip Bhattacharyya, University of Massachusetts, Amherst

Serge Bibauw, UCLouvain

Robert-Mihai Botarleanu, National University of Science and Technology POLITEHNICA Bucha-
rest

Allison Bradford, University of California, Berkeley

Ted Briscoe, MBZUAI

Jie Cao, University of Colorado

Dan Carpenter, North Carolina State University

Dumitru-Clementin Cercel, University Politehnica of Bucharest

Imran Chamieh, Hochschule Ruhr West

vii



Jeevan Chapagain, UniversityofMemphis

Mei-Hua Chen, Department of Foreign Languages and Literature, Tunghai University
Luis Chiruzzo, Universidad de la Republica

Yan Cong, Purdue University

Mark Core, University of Southern California

Steven Coyne, Tohoku University / RIKEN

Scott Crossley, Georgia State University

Sam Davidson, University of California, Davis

Orphee De Clercq, LT3, Ghent University

Kordula De Kuthy, Universitit Tiibingen

Michiel De Vrindt, KU Leuven

Jasper Degraeuwe, Ghent University

Dorottya Demszky, Stanford University

Yang Deng, The Chinese University of Hong Kong
Aniket Deroy, IIT Kharagpur

Chris Develder, Ghent University

Yuning Ding, FernUniversitit in Hagen

Rahul Divekar, Educational Testing Service

George Duenas, Universidad Pedagogica Nacional
Matthew Durward, University of Canterbury

Yo Ehara, Tokyo Gakugei University

Yao-Chung Fan, National Chung Hsing University
Effat Farhana, VanderbiltUniversity

Mariano Felice, University of Cambridge

Nigel Fernandez, University of Massachusetts Amherst
Michael Flor, Educational Testing Service
Jennifer-Carmen Frey, EURAC Research

Kotaro Funakoshi, Tokyo Institute of Technology
Thomas Gaillat, Rennes 2 university

Diana Galvan-Sosa, University of Cambridge
Ashwinkumar Ganesan, Amazon Alexa Al
Achyutarama Ganti, Oakland University

Rujun Gao, Texas A&M University

Ritik Garg, Extramarks Education Pvt. Ltd.

Dominik Glandorf, University of Tiibingen, Yale University
Christian Gold, Fernuniversitaet Hagen

Sebastian Gombert, DIPF | Leibniz Institute for Research and Information in Education
Kiel Gonzales, University of the Philippines Diliman
Cyril Goutte, National Research Council Canada
Prasoon Goyal, The University of Texas at Austin
Pranav Gupta, Cornell University

Abigail Gurin Schleifer, Weizmann Institute of Science
Handoko Handoko, Universitas Andalas

Ching Nam Hang, Department of Computer Science, City University of Hong Kong
Jiangang Hao, Educational Testing Service

Ahatsham Hayat, University of Nebraska-Lincoln
Nicolas Hernandez, Nantes University

Nils Hjortnaes, Indiana University Bloomington
Michael Holcomb, University of Texas Southwestern Medical Center
Heiko Holz, Ludwigsburg University of Education
Sukhyun Hong, Hyperconnect, Matchgroup

viii



Chung-Chi Huang, Frostburg State University
Chieh-Yang Huang, MetaMetrics Inc

Anna Huelsing, University of Hildesheim

Syed-Amad Hussain, Ohio State University

Catherine Ikae, Applied Machine Intelligence, Bern University of Applied Sciences, Switzerland
Joseph Marvin Imperial, University of Bath

Radu Tudor Ionescu, University of Bucharest

Suriya Prakash Jambunathan, New York University
Qinjin Jia, North Carolina State University

Helen Jin, University of Pennsylvania

Ioana Jivet, FernUniversitit in Hagen

Léane Jourdan, Nantes University

Anisia Katinskaia, University of Helsinki

Elma Kerz, RWTH Aachen University

Fazel Keshtkar, St. John’s University

Mamoru Komachi, Hitotsubashi University

Charles Koutcheme, Aalto University

Roland Kuhn, National Research Council of Canada
Alexander Kwako, University of California, Los Angeles
Kristopher Kyle, University of Oregon

Antonio Laverghetta Jr., Pennsylvania State University
Celine Lee, Cornell University

John Lee, City University of Hong Kong

Seolhwa Lee, Technical University of Darmstadt
Jaewook Lee, UMass Amherst

Arun Balajiee Lekshmi Narayanan, University of Pittsburgh
Yayun Li, City University of Hong Kong

Yudong Liu, Western Washington University

Zhexiong Liu, University of Pittsburgh

Naiming Liu, Rice University

Julian Lohmann, Christian Albrechts Universitit Kiel
Anastassia Loukina, Grammarly Inc

Jiaying Lu, Emory University

Crisron Rudolf Lucas, UniversityCollegeDublin

Collin Lynch, NCSU

Sarah Lober, University of Tiibingen

Jakub Macina, ETH Zurich

Nitin Madnani, Educational Testing Service

Jazzmin Maranan, University of the Philippines Diliman
Arianna Masciolini, University of Gothenburg

Sandeep Mathias, Presidency University

Hunter McNichols, University of Massachusetts Amherst
Jose Marie Mendoza, University of the Philippines Diliman
Amit Mishra, AmityUniversityMadhyaPradesh

Masato Mita, CyberAgent Inc.

Daniel Mora Melanchthon, Pontificia Universidad Catélica de Valparaiso
Phoebe Mulcaire, Duolingo

Laura Musto, Universidad de la Republica

Ricardo Mufioz Sanchez, Sprakbanken Text, Goteborgs Universitet
Farah Nadeem, LUMS

Sungjin Nam, ACT, Inc

iX



Diane Napolitano, The Washington Post

Tanya Nazaretsky, EPFL

Kamel Nebhi, Education First

Seyed Parsa Neshaei, EPFL

Huy Nguyen, Amazon

Gebregziabihier Nigusie, Mizan-Tepi University

Christina Niklaus, University of St. Gallen

S Jaya Nirmala, National Institute of Technology Tiruchirappalli
Adam Nohejl, Nara Institute of Science and Technology

Kai North, George Mason University

Eda Okur, Intel Labs

Kostiantyn Omelianchuk, Grammarly

Amin Omidvar, PhD student at the Department of Electrical Engineering and Computer Science,
York University

Benjamin Paddags, Department of Computer Science, University of Copenhagen
Ulrike Pado, HFT Stuttgart

Jeiyoon Park, Korea University

Chanjun Park, Upstage

Udita Patel, Amazon.com

Long Qin, Alibaba

Mengyang Qiu, University at Buffalo

Marti Quixal, University of Tiibingen

Vatsal Raina, University of Cambridge

Manav Rathod, University of California, Berkeley

Hanumant Redkar, Goa University, Goa

Edsel Jedd Renovalles, University of the Philippines Diliman
Robert Reynolds, Brigham Young University

Saed Rezayi, National Board of Medical Examiners

Luisa Ribeiro-Flucht, University of Tuebingen

Frankie Robertson, University of Jyviskylad

Donya Rooein, Bocconi University

Aiala Rosa, Instituto de Computacion, Facultad de Ingenieria, Universidad de la Reptiblica
Allen Roush, University of Oregon

Alla Rozovskaya, Queens College, City University of New York
Josef Ruppenhofer, Fernuniviersitit in Hagen

Horacio Saggion, Universitat Pompeu Fabra

Omer Salem, Cairo University

Nicy Scaria, Indian Institute of Science

Nils-Jonathan Schaller, Leibniz Institute for Science and Mathematics Education
Martha Shaka, University College Cork

Ashwath Shankarnarayan, New York University

Matthew Shardlow, Manchester Metropolitan University
Gyu-Ho Shin, University of Illinois Chicago

Li Siyan, Columbia University

Yixiao Song, University of Massachusetts Amherst

Mayank Soni, ADAPT Centre, Trinity College Dublin

Maja Stahl, Leibniz University Hannover

Felix Stahlberg, Google Research

Katherine Stasaski, Salesforce Research

Kevin Stowe, Educational Testing Services (ETS)

Helmer Strik, Centre for Language and Speech Technology (CLST), Centre for Language Studies



(CLS), Radboud University Nijmegen

David Strohmaier, University of Cambridge

Katsuhito Sudoh, Nara Women’s University

Hakyung Sung, University of Oregon

Abhijit Suresh, Graduate Student

CheeWei Tan, NanyangTechnologicalUniversity

Zhongwei Teng, Vanderbilt University

Xiaoyi Tian, University of Florida

Gladys Tyen, University of Cambridge

Shriyash Upadhyay, University of Pennsylvania

Felipe Urrutia, Center for Advanced Research in Education
Masaki Uto, The University of Electro-Communications
Sowmya Vajjala, National Research Council

Justin Vasselli, Nara Institute of Science and Technology
Giulia Venturi, Institute of Computational Linguistics Antonio Zampolli"(ILC-CNR)
Anthony Verardi, Duolingo

Elena Volodina, University of Gothenburg

Jiani Wang, East China Normal University

Taro Watanabe, Nara Institute of Science and Technology
Michael White, The Ohio State University

Alistair Willis, The Open University

Anna Winklerova, Faculty of Informatics Masaryk University
Man Fai Wong, City University of Hong Kong

Simon Woodhead, Eedi

Changrong Xiao, Tsinghua University

Kevin P. Yancey, Duolingo

Roman Yangarber, University of Helsinki

Su-Youn Yoon, EduLab

Marcos Zampieri, George Mason University

Fabian Zehner, DIPF | Leibniz Institute for Research and Information in Education
Kamyar Zeinalipour, University of Siena

Torsten Zesch, Computational Linguistics, FernUniversitit in Hagen
Jing Zhang, Emory University

Yang Zhong, University of Pittsburgh

Yiyun Zhou, NBME

Jessica Zipf, University of Konstanz

Michael Zock, CNRS-LIS

Bowei Zou, Institute for Infocomm Research

X1



Keynote Talk
Multilingual Low-Resource Natural Language Processing for
Language Learning

Alla Rozovskaya
Queens College, City University of New York

Abstract: Recent studies on a wide range of NLP tasks have demonstrated the effectiveness of training
paradigms that integrate large language models. However, such methods require large amounts of labe-
led and unlabeled data, limiting their success to a small set of well-resourced languages. This talk will
discuss low-resource approaches for two language learning applications. We will begin with work on
generating vocabulary exercises. We will describe an approach that does not require labeled training data
and can be used to adapt the exercises to the linguistic profile of the learner. Next, we will discuss our
recent work on multilingual grammatical error correction (GEC), addressing the issue of training GEC
models for languages with little labeled training data, and the issue of evaluating system performance
when high-quality benchmarks are lacking.

Bio: Alla Rozovskaya is an Assistant Professor in the Department of Computer Science at Queens Col-
lege, City University of New York (CUNY), and a member of the Doctoral Faculty of the Computer
Science and Linguistics programs at the CUNY Graduate Center. She earned her Ph.D. in Computatio-
nal Linguistics at the University of Illinois at Urbana-Champaign, under the supervision of Prof. Dan
Roth. Her research interests lie broadly in the area of low-resource and multilingual NLP and educational
applications.
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How Good are Modern LLMs in Generating Relevant and High-Quality
Questions at Different Bloom’s Skill Levels for Indian High School Social
Science Curriculum?

Nicy Scaria!, Suma Dharani Chenna'?, Deepak Subramani’
1Computational and Data Sciences, Indian Institute of Science, India
2School of Computer Science and Engineering, VIT-AP University, India
{nicyscaria,deepakns}@iisc.ac.in
sumadharanichenna@gmail.com

Abstract

The creation of pedagogically effective ques-
tions is a challenge for teachers and requires
significant time and meticulous planning, espe-
cially in resource-constrained economies. For
example, in India, assessments for social sci-
ence in high schools are characterized by rote
memorization without regard to higher-order
skill levels. Automated educational question
generation (AEQG) using large language mod-
els (LLMs) has the potential to help teachers
develop assessments at scale. However, it is im-
portant to evaluate the quality and relevance of
these questions. In this study, we examine the
ability of different LLMs (Falcon 40B, Llama2
70B, Palm 2, GPT 3.5, and GPT 4) to generate
relevant and high-quality questions of different
cognitive levels, as defined by Bloom’s taxon-
omy. We prompt each model with the same
instructions and different contexts to generate
510 questions in the social science curriculum
of a state educational board in India. Two hu-
man experts used a nine-item rubric to assess
linguistic correctness, pedagogical relevance
and quality, and adherence to Bloom’s skill
levels. Our results showed that 91.56% of the
LLM-generated questions were relevant and
of high quality. This suggests that LLMs can
generate relevant and high-quality questions at
different cognitive levels, making them useful
for creating assessments for scaling education
in resource-constrained economies.

1 Introduction

In recent years, large language models (LLMs)
have seen significant advances. They undergo train-
ing on extensive text datasets sourced from the
internet and are utilized for a variety of natural lan-
guage processing tasks. The introduction of Ope-
nAD’s ChatGPT and Google’s Bard has made LLMs
more accessible to a wider audience, enabling indi-
viduals without expertise in natural language pro-
cessing (NLP) to leverage them for their everyday

1

needs. These models are characterized by their sub-
stantial size and their ability to comprehend and
produce intricate text. Through instruction fine-
tuning, language models are calibrated to adhere
to user directives (Zhang et al., 2022). In contrast
to conventional language models, these LLMs pos-
sess zero-shot capabilities, allowing them to handle
various tasks without specific training by simply
interpreting the given instructions (Kojima et al.,
2022). The educational applications of LLMs are
varied and promising, covering personalized con-
tent generation, assessments, and feedback (Kas-
neci et al., 2023).

According to World Bank data, the teacher-pupil
ratio in India’s high schools is 1:29', compared to
middle and high-income countries with an average
of 1:18 and 1:13, respectively. This increases the
workload on teachers and the quality of the instruc-
tion and assessment decreases. In India, subjects
such as history are taught and evaluated, focusing
on rote memorization (Sreekanth, 2007) with min-
imal emphasis on higher-order thinking skills or
inquiry. Inquiry-based learning with high-quality
questions fosters deep engagement and real-world
connections for learners (Grant et al., 2022). As-
sessments aligned with Bloom’s taxonomy levels
(Anderson and Krathwohl, 2001), as detailed in
Table 1, help educators identify learning gaps and
personalize instruction, but require significant time
and effort to create (Kurdi et al., 2020). Auto-
mated Educational Question Generation Systems
(AEQG) have the potential to reduce this burden
(Mulla and Gharpure, 2023), allowing teachers to
personalize instruction and enhance student par-
ticipation. This study investigates the capabilities
of open source and proprietary LLMs to generate
high-quality, context-aligned questions with differ-
ent cognitive skills for effective assessments.

Although LLMs are capable of Natural Lan-

"https://data.worldbank.org
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Table 1: Revised Bloom’s taxonomy (Anderson and Krathwohl, 2001) in ascending order in the cognitive dimension

Bloom’s level Description

Remember Retrieve relevant knowledge from long-term memory.

Understand Construct meaning from instructional messages, including oral, written, and graphic
communication.

Apply Carry out or use a procedure in a given situation.

Analyze Break material into foundational parts and determine how parts relate to one another
and the overall structure or purpose.

Evaluate Make judgments based on criteria and standards.

Create

structure.

Put elements together to form a coherent whole; reorganize into a new pattern or

guage Generation (NLG) tasks, their output can
have errors and inconsistencies for specific con-
texts. These models are also prone to hallucina-
tions (Ji et al., 2023). These issues directly im-
pact the quality of educational questions generated,
which can vary significantly across LLMs. For this
reason, evaluating the quality of these questions
is important. Despite the existence of automated
techniques focusing on readability and linguistic
aspects, these methods do not address pedagogi-
cal aspects and question appropriateness for the
given context (Amidei et al., 2018a). Therefore,
expert evaluation remains essential to guarantee
the quality of LLM-generated questions.

In this study, we followed a zero-shot prompting
approach for question generation. We prompted
LLMs to generate questions at different cognitive
levels, as defined in Bloom’s taxonomy, on topics
covering events of the Indian independence strug-
gle from 1857 to 1947. Using five different LLMs,
we generated 510 questions in total. Two subject
matter experts evaluated the generated questions
based on a nine-item rubric to consider both the
linguistic and pedagogical aspects of the questions
(Horbach et al., 2020).

This work investigates the following research
questions. (i) Can modern LLMs generate relevant
and high-quality educational questions of different
cognitive levels and follow the instructions pro-
vided in the prompt?; (ii) Which LLM performs
the best in question generation?

Our experiments and evaluations demonstrate
that the questions generated by LLMs are relevant
and of good quality. These LLMs can be used for
AEQG with minimal effort of the educator. Our
dataset ‘HistoryQ’? containing 510 questions eval-

2https ://github.com/nicyscaria/
AEQG-SocialSciences-BloomsSkills

uated by two experts and annotated with Bloom’s
taxonomy levels will be made available for research
in the development and evaluation of AEQG sys-
tems.

2 Related Work

Traditional automated question generation (AQG)
systems mainly relied on question-answering
datasets before the widespread adoption of LL.Ms.
The primary reading comprehension datasets used
for question generation tasks included SQUAD
(Rajpurkar et al., 2016), SQuAD 2.0 (Rajpurkar
et al., 2018) and NQ (Kwiatkowski et al., 2019).
One of the crowd-sourced educational datasets
used for question generation tasks is SciQ (Welbl
et al., 2017). LearningQ(Chen et al., 2018) and
EduQG(Hadifar et al., 2023) are the other two pop-
ular datasets available for AEQG. The lack of avail-
ability of these datasets for all subjects and the
human expert labor associated with creating high-
quality datasets restricted the ability to develop
effective AQG systems (Zhang et al., 2021). With
the advent of large transformer-based pre-trained
large language models, NLG tasks in recent years
have improved rapidly (Zhang et al., 2022). Pre-
trained and fine-tuned models such as the Text-to-
Text Transfer Transformer (T5) and GPT3 were
used for question generation (Nguyen et al., 2022).
Leaf (Vachev et al., 2022) is a question generation
developed using a pre-trained T5 model. A pre-
trained TS5 model (EduQG) was developed in edu-
cational text to improve the quality of the generated
question (Bulathwela et al., 2023). Most AEQG
systems are generic with a focus on reading com-
prehension or science and mathematics. AEQG re-
search for social sciences is minimal (Bechet et al.,
2022; Antoine et al., 2023). Subjects like science
and mathematics tend to seek precise, quantifiable,
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and objective answers. But for subjects like social
sciences, the questions can be more subjective, of-
ten do not have a single correct answer, and can be
interpreted differently by different people.

Many AQG systems, built by fine-tuning LLMs
on specific datasets such as the ones mentioned
above, often generate questions that focus on lower-
order cognitive skills or simply retrieve answers
directly from the context information provided
(Ushio et al., 2022; Bulathwela et al., 2023). Most
of the questions in EduQG(Hadifar et al., 2023)
are within the first three levels of Bloom’s tax-
onomy. These questions do not assess students’
higher-order thinking abilities. Bloom’s taxonomy
guides educators in generating learning objectives
and questions to teach and test different cognitive
skills. A recent work (Sridhar et al., 2023) uses
GPT4 to create course content based on Bloom’s
taxonomy. Although automated metrics exist to
evaluate machine-generated questions, they primar-
ily analyze linguistic aspects. In the case of educa-
tional question generation, pedagogical elements
play a crucial role. Expert evaluation is necessary
to understand the pedagogical aspects of machine-
generated questions (Horbach et al., 2020; Steuer
et al., 2021). Such evaluations are also used in
student-generated questions (Moore et al., 2022).

3 Methodology

3.1 Language models and content

We chose five recent open-source and proprietary
LLMs for the study. LLMs used in this study were
Falcon 40B (falcon-40b-instruct), Llama 2 70B
(Llama-2-7b-chat-hf), Palm 2 (chat-bison-001),
GPT-3.5 (gpt-3.5-turbo-0613), and GPT-4 (gpt-4-
0613). Among these, Falcon 40B is the smallest
LLM with 40 billion parameters and GPT 4 is the
largest (rumored, as the exact number of parame-
ters is unknown). The questions were generated for
the subject “History”, covering events of the Indian
independence struggle from 1857 to 1947. We used
content from two chapters of the tenth grade social
science textbook called Samacheer Kalvi (Tamil
Nadu Textbook and Educational Services Corpo-
ration. State Council of Educational Research and
Training, 2022) used in schools under the Indian
state of Tamil Nadu’s educational board. The text
is in English. This content served as the context for
LLMs based on the questions generated. The av-
erage length of the context was around 450 words,
making it equivalent to around 600 tokens. The

LLMs used had a sequence length of more than
1024 tokens to accommodate this context length
and instructions. We consider 17 such contexts, so
that overall nearly 500 (510, to be exact) questions
are generated.

3.2 Prompt design and question generation

Each prompt had a context and instructions asso-
ciated with it. The prompts were designed using
techniques of pattern reframing, itemizing refram-
ing, and assertions (instead of negations) (Mishra
et al., 2022). Most Indian students, even at the ter-
tiary level of education, are only within level B2
of the Common European Reference Framework
(CEFR) for English (Council of Europe. Council
for Cultural Co-operation. Education Committee.
Modern Languages Division, 2001; Ravindra Babu
and Shiela Mani, 2018). Therefore, additional in-
struction was provided in the prompt to use words
within the CEFR B2 level. This approach would
help students better understand the questions, thus
decreasing the chances of confusion or misunder-
standing arising from difficulties in comprehending
the language.

We gave the same prompt to all LLMs. Each
LLM had to generate six questions, one for each
level in Bloom’s taxonomy corresponding to the
17 contexts. Each model generated 102 questions,
resulting in a total of 510 questions. The sampling
temperature of an LLM typically varies between 0
and 1 in most implementations. A lower tempera-
ture results in a more deterministic output from the
LLM, giving preference to the most probable pre-
dictions, while a higher temperature increases the
randomness in the LLM output, resulting in less
probable predictions (Hinton et al., 2015; Wang
et al., 2020, 2023). A temperature value of 0.9
was used for AEQG with the LLMs to maximize
the variety and diversity of the generated questions.
The example of generation prompts is given in the
Appendix A.1.

3.3 Human evaluation

Two experts evaluated the relevance and quality of
the 510 questions based on a nine-item rubric (Ta-
ble 2), a modified version of the nine-item rubric
in Horbach et al.’s (2020). The two experts had
subject knowledge and experience in teaching the
subject social sciences and worked on question-
generation tasks for multiple organizations. The
experts were presented with the LLM questions
in random order with only context information.



Table 2: Hierarchical nine-item rubric used to evaluate questions generated by LLMs along with the percentage
agreement and Cohen’s « for each item

Rubric item Definition

Understandable Could you understand what the question is asking?
(100.00%, ~ = 1.00)

ContextRelated Is the question related to the context given?
(100.00%, ~ = 1.00)

Grammatical Is the question grammatically well-formed?

(100.00%, ~ = 1.00)

Clear
(99.61%, k =0.79)

Is it clear what the question asks for?

Answerable Can students answer the question?
(99.60%, x = 0.88)
InformationNeeded What kind of information is needed to answer the question?

(86.80%, k =0.73)

* Information presented directly and in one place only in the text

* Information presented in different parts of the text

* A combination of information from the text with external knowledge

* General knowledge about the topic, not from the text

* The reader’s feelings /judgements /... about the text

* The reader’s feelings/judgements/... about the text with external knowledge

Central Do you think being able to answer the question is important to work on the
(100.00%, k = 1.00) topic covered in the context?

WouldYouUselt If you were a teacher working with that text in class, do you think you would
(90.87%, k =0.84)  use this question?

Bloom’sLevel What is the Bloom’s skill associated with the question?

(89.41%, Kk = 0.95)

They were asked to respond to each question on
the rubric hierarchically from top to bottom. Seven
items in the rubric were a ‘yes’ or ‘no’ response.
The InformationNeeded item comprises six unique
options that indicate what information is needed
to answer the question. The questions in social
sciences can be subjective and sometimes do not
have a single correct answer. They can be open to
interpretation. Due to this, the InformationNeeded
contains options like “The reader’s feelings /judge-
ments /... about the text’ in addition to informa-
tion derived from both the text itself and external
sources. The Bloom’sLevel item consists of the
different skills defined in Bloom’s taxonomy cogni-
tive dimension, viz., remember, understand, apply,
analyze, evaluate, and create. The specifics regard-
ing the meaning of each level of Bloom’s Skill are
provided in Table 1. Along with ‘yes’ or ‘no’, the
option ‘maybe’ is also added in the WouldYouUselt
rubric item. In the evaluation metrics, WouldYouU-
selt is the most subjective one.

The rubric items are structured hierarchically
(Table 2), which means that if a criterion in bold

font is answered with a ‘no’, the subsequent items
in the rubric would not be considered for evalua-
tion. For instance, if Understandable, Clear, or
Answerable is marked ‘no’, the following items
are not evaluated for that question and are marked
as ‘not applicable’. This simplifies the evaluation
process.

A question is relevant and of high quality if ex-
perts say ‘yes’ for Understandable, ContextRelated,
Grammatical, Clear, Answerable, and Central and
mark ‘yes’ or ‘maybe’ for WouldYouUselt. Further-
more, we utilized the Bloom’sSkill and CEFRLevel
to understand whether the LLM adheres to the in-
structions provided in the prompt. Evaluators had
to select the Bloom’s level for Bloom sSkill metric.
We used ‘Text Inspector’® developed by Cambridge
as part of their English Profile Research (Alex-
opoulou, 2008) to understand the CEFR level of
vocabulary used in the question. The LLM adhered
to the instructions provided if the Bloom’sSkill la-
bel given by the evaluators matches the Bloom’s

3https://www.englishprofile.org/wordlists/
text-inspector
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skill level in the prompt to the LLM and if the
words are within B2 for CEFRLevel.

Since experts’ opinions on LLM-generated ques-
tions are influenced by their writing style prefer-
ences, personal beliefs, knowledge base, and focus
on detail (Amidei et al., 2018b), two inter-rater reli-
ability measures, namely, percentage agreement
and Cohen’s Kappa x (Cohen, 1960; McHugh,
2012) were used. The former is the proportion of
times experts agreed on a specific rating and the lat-
ter is a robust measure that accounts for the chance
agreement and provides a more accurate estimate
of the true agreement between experts. Cohen’s
k treats all disagreements as equal, but the dis-
agreements cannot be considered the same for the
ordinal metrics, WillYouUselt and Bloom’sLevel. In
this case, we used the quadratic weighted Cohen’s
k (Cohen, 1968) instead of the simple Cohen’s x
to penalize considerable disagreements more than
minor disagreements.

4 Results and analysis

The percentage agreements and Cohen’s  values
obtained between the two human evaluators for the
nine-item rubric are given in Table 2. The percent-
age agreements and Cohen’s x values are calcu-
lated only for questions not labeled ‘no’ for the
preceding rubric items in the hierarchy (marked in
bold). These values indicate substantial agreement
between experts on most of the metric items. Four
items, Understandable, ContextRelated, Grammat-
ical, and Central had perfect agreement.

4.1 Relevance and quality metrics

Both experts rated 100% of the generated questions
as Understandable, ContextRelated, and Grammat-
ical. Of these, 98.82% of the questions were rated
as Clear and 97.84% as Answerable. Among the
Answerable questions, evaluators chose one option
out of the six for InformationNeeded item. Ac-
cording to the evaluators, the knowledge needed to
answer 19.22% of the questions could be found in
one place in the context, 18.24% from a different
part of the context, and 23.33% questions needed a
combination of information from the context along
with external knowledge. Only 0.2% of the ques-
tions required general knowledge alone to answer,
with no necessary context information. 13.73%
and 10.39% of the questions required the reader’s
judgement about the text and the reader’s judge-
ment about the text along with external knowledge,

respectively, to provide an answer. Experts rated
95.88% of the questions as Central to the topics
covered in the respective contexts. The evaluators
responded either ‘yes’ or ‘maybe’ to WouldYouU-
selt rubric item for 91.56% of the questions. Thus,
we say that the experts rated 91.56% of generated
questions as relevant and high quality.

Table 3: Performance of all generated questions on
different evaluation metrics

Metric Questions (%)
Relevant & High quality 91.56%
Adherence

* Bloom’sLevel 76.53%

* CEFRLevel 87.64%

It is observed that in the Bloom’sLevel metric,
there is an adherence of 76.53% between the evalu-
ators and the LLM. In the CEFRLevel, the adher-
ence is 87.64% (Table 3). We are releasing our
dataset, ‘HistoryQ’ containing 510 LLM-generated
questions annotated with the nine-item metric by
experts along with CEFRLevel for further study and
analysis by the community. Examples of some rel-
evant and high-quality questions based on Bloom’s
taxonomy that adhered to the instructions in the
prompt are given in the Appendix A.2.

4.2 Performance of different LLMs
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Figure 1: Performance of different LLMs on the differ-
ent evaluation metrics.

The performance of the five LLMs in the AEQG
task according to different evaluation criteria is
summarized in Table 4. We observed that pro-
prietary models, Palm 2, GPT 3.5, and GPT 4,
which are believed to have 175 billion plus or even
trillions of parameters, outperformed open-source
models with 40 and 70 billion parameters in all
criteria except the CEFR level adherence metric, as



Table 4: Performance of different large language models on different evaluation metrics

Metric Falcon 40B Llama270B Palm2 GPT3.5 GPT4
Relevance & High quality 87.25% 88.24% 91.18% 96.08% 95.10%
Adherence
* Bloom’sLevel 60.00% 63.73% 85.10% 84.04% 88.04%
* CEFRLevel 88.23% 96.07% 94.11% 80.39% 79.41%

Table 5: Precision, recall and F1 score of different large language models on Bloom’s skill level compared with

expert opinion

Metric Falcon40B Llama270B Palm2 GPT3.5 GPT4
Precision 0.60 0.65 0.85 0.84 0.87
Recall 0.60 0.66 0.86 0.86 0.88
F1 score 0.57 0.62 0.85 0.84 0.87

indicated in Figure 1.

Aligning with Bloom’s taxonomy level was one
of the important criteria in this study. The skill
levels given by the LLM for the generated ques-
tions were compared with the ground-truth skill
level labels provided by the human raters. The
corresponding precision, recall, and F1 score for
this task are shown in Table 5. GPT 4 outperforms
other models, while Palm 2 and GPT 3.5 are in the
second and third positions.

5 Conclusion

We found that 91.56% of the questions generated
by different LLMs are relevant and of high quality.
This indicates that LLMs can be used for AEQG
with minimal effort of the educator. However, the
performance varies between different LLMs. GPT
3.5 and GPT 4 generated the highest proportion of
relevant and high-quality questions. In the metric
of adherence to Bloom’s level, GPT 4 outperformed
the other models, followed by Palm 2. In contrast,
the open source LLLMs, Falcon 40B and Llama 2
70B, performed poorly on all metrics, except adher-
ence to CEFR levels. This could be due to the large
size of these proprietary models, which results in
their ability to capture and represent complex pat-
terns in the text data. Another interesting observa-
tion in the study was the inability of most models
to generate high-quality questions at the ‘Apply’
and ‘Create’ levels of Bloom’s taxonomy. GPT
3.5 and GPT 4 showed comparable performance in
all criteria. Surprisingly, GPT 4 and GPT 3.5 had
poor alignment with the CEFR level requested in
the prompt. These models produced complex texts
compared to other models.

Our research suggests that educators can lever-

age Palm 2, GPT 3.5, and GPT 4 to create rele-
vant, high-quality questions of different cognitive
levels defined by Bloom’s taxonomy for scaling
social science research in India. The LLMs must
be prompted with the context in English obtained
from the relevant curriculum. This approach con-
siderably reduces the workload on teachers, espe-
cially in an under-resourced school setting where
the teacher-pupil ratio is low. In addition, students
can create practice tests for themselves and identify
learning gaps. Expert-evaluated ‘HistoryQ’ could
serve as a training and validation dataset for re-
search involving the development and evaluation
of AEQG models with a focus on higher-order cog-
nitive skills.

6 Limitations

Our study required considerable time and effort
from experts. Despite rigorous efforts to ensure ob-
jectivity in the evaluation through a detailed rubric
and a randomized presentation of LLM-generated
questions, it is important to recognize that expert
evaluations can still exhibit inherent subjectivity, in-
fluenced by individual perspectives and biases. An
automated system to assess the quality of machine-
generated questions for their pedagogical and lin-
guistic aspects can reduce this time and effort. This
paves the way for exploring and creating high-
quality automated evaluation systems. Further-
more, our study used the same prompt in different
contexts for all LLMs. We did not investigate the
performance of models on diverse prompts with ad-
ditional information or few-shot prompting. This
is another potential future direction for exploring
the performance of LLMs.
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A Appendix

A.1 Example prompt with a specific context

The example prompt for a specific context given
to the LLMs to generate the questions is given be-
low. All the instructions and other details remained
the same for other prompts except for the context
information.

Please read through the following context and in-
structions to create high quality questions based
on the context and as per the instructions.

Context:

In 1857, British rule witnessed the biggest chal-
lenge to its existence. Initially, it began as a mutiny
of Bengal presidency sepoys but later expanded
to the other parts of India involving a large num-
ber of civilians, especially peasants. The events of
1857-58 are significant for the following reasons:
1. This was the first major revolt of armed forces
accompanied by civilian rebellion. 2. The revolt
witnessed unprecedented violence, perpetrated by
both sides. 3. The revolt ended the role of the East
India Company and the governance of the Indian
subcontinent was taken over by the British Crown.

(a) Causes

1. Annexation Policy of British India
In the 1840s and 1850s, more territo-
ries were annexed through two major
policies: The Doctrine of Paramountcy.
British claimed themselves as paramount,
exercising supreme authority. New terri-
tories were annexed on the grounds that
the native rulers were inept, and the Doc-
trine of Lapse. If a native ruler did not
have male heir to the throne, the territory
was to ’lapse’ into British India upon the
death of the ruler. Satara, Sambalpur,
parts of the Punjab, Jhansi and Nagpur
were annexed by the British through the
Doctrine of Lapse.

2. Insensitivity to Indian Cultural Senti-
ments
In 1806 the sepoys at Vellore mutinied
against the new dress code, which pro-
hibited Indians from wearing religious
marks on their foreheads and having
whiskers on their chin, while proposing
to replace their turbans with a round hat.
It was feared that the dress code was part

of their effort to convert soldiers to Chris-
tianity. Similarly, in 1824, the sepoys at
Barrackpur near Calcutta refused to go
to Burma by sea, since crossing the sea
meant the loss of their caste. The se-
poys were also upset with discrimination
in salary and promotion. Indian sepoys
were paid much less than their European
counterparts. They felt humiliated and
racially abused by their seniors.

(b) The Revolt of 1857

The precursor to the revolt was the circula-
tion of rumors about the cartridges of the new
Enfield rifle. There was strong suspicion that
the new cartridges had been greased with cow
and pig fat. The cartridge had to be bitten
off before loading (pork is forbidden to the
Muslims and the cow is sacred to a large sec-
tion of Hindus). On 29 March a sepoy named
Mangal Pandey assaulted his European offi-
cer. His fellow soldiers refused to arrest him
when ordered to do so. Mangal Pandey along
with others were court-martialled and hanged.
This only fuelled the anger and in the follow-
ing days there were increasing incidents of
disobedience. Burning and arson were re-
ported from the army cantonments in Ambala,
Lucknow, and Meerut.

Instructions:

1. Create a question for each cognitive level in
Bloom’s taxonomy: remember, understand,
apply, analyze, evaluate, and create from the
context.

2. Ensure the questions use B2 level words or
below of the Common European Framework
of Reference for the English Language.

3. Make sure the questions relate to the students
in India.

4. Make sure to connect events within the context
while creating questions.

A.2 Examples of LLM generated questions

Some questions generated by LLMs that are rele-
vant, high-quality, and adhered to instructions are
given along with Bloom’s skill associated with the
question.

* Remember: Name the three leaders referred
to as Lal-Bal-Pal during the Swadeshi period.



¢ Understand: How did the Swadeshi move-

ment help to promote Indian industries?

Apply: How would you promote the concept
of Swadeshi today, especially given the glob-
alized world we live in?

Analyze: How did the development of
Swadeshi industries relate to the wider goals
of the Swadeshi Movement?

Evaluate: Considering the importance of self-
sufficiency, do you think the boycott of for-
eign goods was an effective method in pro-
moting Swadeshi industries? Provide reasons
for your answer.

Create: Compose a short speech or para-
graph encouraging fellow students to support
Swadeshi industries, drawing inspiration from
the historical events mentioned.
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Abstract

Tagged corruption models provide precise
control over the introduction of grammati-
cal errors into clean text. This capability
has made them a powerful tool for gener-
ating pre-training data for grammatical er-
ror correction (GEC) in English. In this
work, we demonstrate their application to four
languages with substantially fewer GEC re-
sources than English: German, Romanian,
Russian, and Spanish. We release a new
tagged-corruption dataset consisting of 2.5M
examples per language that was generated by
a fine-tuned PaLM 2 foundation model. Pre-
training on tagged corruptions yields consis-
tent gains across all four languages, especially
for small model sizes and languages with lim-
ited human-labelled data.

1 Introduction

Grammatical error correction (GEC) is the task
of correcting writing errors in text (see Bryant
et al. (2023) for an overview). Neural sequence-
to-sequence models, commonly used for GEC, are
hard to train due to limited human-labelled data.
A common strategy to mitigate data sparsity is to
generate synthetic training data, but most exist-
ing methods do not generate sufficiently diverse
errors. Modern GEC systems are expected to han-
dle a broad range of errors involving grammar,
spelling, word choice, punctuation and orthography.
However, many existing data generation methods
that employ rules or character- or word- level nois-
ing strategies, cover only a small subset of error
types (Grundkiewicz et al., 2019; Grundkiewicz
and Junczys-Dowmunt, 2019; Néplava and Straka,
2019; Lichtarge et al., 2019; Flachs et al., 2021).
Stahlberg and Kumar (2021) improved the diversity
of model-based data generation (Xie et al., 2018;
Kiyono et al., 2019) by introducing tagged corrup-
tion models. Tagged corruption models are trained
to generate an ungrammatical version of a clean
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sentence given a specific error type tag. For exam-
ple, the incorrect plural “sheeps” of “sheep” (i.e. a
noun inflection error — NOUN: INFL) would be rep-
resented in a sentence as follows (Stahlberg and
Kumar, 2021):

“NOUN: INFL There were a lot of sheep.”
— “There were a lot of sheeps.”

In this work, we adapt the tagged corruption ap-
proach of Stahlberg and Kumar (2021) to languages
with fewer GEC resources than English such as Ger-
man, Spanish, Romanian, and Russian. We faced
two major challenges: First, training tagged cor-
ruption models is more challenging due to training
data scarcity. We mitigated this issue by leverag-
ing the large language model PaLLM 2 (Anil et al.,
2023). Second, automatic error type annotation
tools such as ERRANT (Felice et al., 2016; Bryant
et al., 2017) for English are not available for most
other languages. Therefore, we developed a multi-
lingual annotation tool based on classification rules
that apply to multiple languages and writing sys-
tems. Using our framework, we generated a new
synthetic pre-training dataset with 2.5M examples
per language. We demonstrate consistent gains
from pre-training mT5 (Xue et al., 2021) models
on our new dataset and then fine-tuning them on
gold data. We achieve the largest improvements
(up to 30% relative) for smaller models and lan-
guages with limited gold data. We have released
the dataset and the error annotation tool to the sci-
entific community.

2 Multilingual rule-based error type
annotation

ERRANT (Felice et al., 2016; Bryant et al., 2017) is
a rule-based system for English that classifies writ-
ing errors into 25 different error categories. Some
ERRANT rules are specific to English and do not
apply to other languages. German (Boyd, 2018)
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Figure 1: Development set tag distributions for German, Spanish, Romanian, and Russian.

Tag Description 3 Synthetic data generation using a

adj, adp, adv, Error classified by SpaCy part- .

cconj, det, part, of-speech (POS) tag. tagged corr uptlon model

pron, propn, sconj .

morph Morphology error. Tagged corruption models are neural models that

noun Noun or noun phrase error. corrupt a clean sentence according to an error type

f-num Noun number error. tag. We adapt Stahlberg and Kumar’s (2021) recipe

num Number error. . .

orth Orthography error. for English data generation as follows: for each

other Unclassified error (no rule language:

matched).
punct Punctuation error. , 1. Annotate the gold development set with error
spell Spelling error according to . 1§ Sec. 2
GNU Aspell 0.60. type tags using our tool from Sec. 2.

verb Verb or verb phrase error. . o

V-tense Verb tense error. 2. Compute the unigram distribution of error tags

wo Word order error. on the gold development set.
Table 1': The error type tag set of our multilingual 3. Sample sentences from the large clean text
annotation tool. We use the same tag set for all.lan- corpus mC 4% (Xue et al., 2021).
guages. Rules are defined based on Aspell suggestions
and SpaCy POS tags. 4. Randomly assign an error tag to each sentence

according to the tag distribution.

and Romanian (Cotet et al., 2020) versions of ER- 5. Use the tagged corruption model with temper-
RANT have been developed, but they continue to ature sampling to generate corrupted versions
be language-specific. Since our goal is to develop of the sentences. Pair them with the original
a recipe for low-resource GEC that is applicable to sentences to build a parallel GEC dataset.
a large set of languages, we developed an annota- ) _ _ ) _
tion toolkit that implements a small set of general 6. Filter the dataset with language identification

rules relying on multi-lingual NLP toolkits such
as SpaCy’s! part-of-speech (POS) tagger or GNU
Aspell? for spelling correction. The error tag set
of our tool is shown in Table 1.> We intentionally
did not implement rules that rely on any language-
specific knowledge beyond SpaCy’s POS tags or
Aspell suggestions. Therefore, compared to ER-
RANT, our tag set is more coarse-grained and less
expressive. Despite the drawback, the tool’s mul-
tilingual nature makes it useful for synthetic data
generation across a range of languages.

1https://spacy. io/

2http: //aspell.net/

3 An open-source version of our tool is released on the
dataset Github page. Please see the source code for more
details about the implemented rules.
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and simple heuristics based on length offsets
and edit distances.

Fig. 1 shows the tag distributions on the devel-
opment set for German, Spanish, Romanian, and
Russian. Our corruption model is a PaLM 2 (Anil
et al., 2023) model’ that was jointly fine-tuned on
the gold training sets of all four languages. The
corruption model uses the following format:

“Corrupt (lang) (tag): (clean_sentence)” —
“(corrupted_sentence)”

Fig. 2 illustrates how a training example for the
corruption model is derived from the gold data. If a

4https ://www.tensorflow.org/datasets/catalog/
c4#tc4multilingual
>“Bison” model size available via the Google Cloud API.
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Falko-Merlin corpus:

Original: Ich besuch meine Oma.

Corrected: Ich besuche meine Oma.Ji

Edit extraction
(besuch, besuche)

SpaCy POS

Tagged corruption training data: y

Source: Corrupt German verb: Ich besuche meine Oma.
Target: Ich besuch meine Oma.

ASpell

SpaCy POS

A

Error type
classification

verb

=

Figure 2: Example training instance for the tagged cor-
ruption model with a German verb error.

de es ro ru
Number of examples 2.5M
Avg. sentence length (words) 18.9 22.0 20.8 19.1
Avg. edit distance (words) 2.8 19 23 1.5
Avg. sentence length (chars) 131.8 134.1 130.6 137.1
Avg. edit distance (chars) 5.6 52 3.6 4.1

Table 2: Average sentence lengths and source/target
edit distances in the PRE corpus.

Language Corpus Train Dev  Test
German (de) Falko-Merlin  19.2K 25K 2.3K
Spanish (es) COWS-L2H 10.1K 14K 1.1K
Romanian (ro) RONACC 71K 15K 1.5K
Russian (ru) RULEC 50K 25K 5.0K

Table 3: Number of training examples in the GOLD
datasets.

sentence has multiple errors, the training example
is repeated with each error tag.

Using the recipe (steps 1-6) we generated a large
synthetic dataset® consisting of 2.5M examples per
language. Table 2 lists some basic statistics of our
new dataset. We will refer to this dataset as PRE.

4 Experimental setting

4.1 Gold datasets

We use the following GOLD GEC datasets for
training the corruption model and for fine-tuning
our GEC models: the Falko-Merlin corpus (Boyd,
2018) for German (de), the COWS-L2H cor-
pus (Davidson et al., 2020) for Spanish (es), the
RONACC corpus (Cotet et al., 2020) for Romanian
(ro), and the RULEC-GEC corpus (Rozovskaya
and Roth, 2019) for Russian (ru). Table 3 lists the
dataset sizes.

®https://github.com/google-research-datasets/
C4_200M-synthetic-dataset-for-grammatical-error-
correction

4.2 Training setups

We train monolingual GEC models by fine-tuning
the publicly available mT5 (Xue et al., 2021) check-
points using the T5SX (Roberts et al., 2023) frame-
work on 4x4 TPUs (v3). We chose mT5 because
it is available for a wide range of languages and
model sizes. We use the default hyper-parameters,’
but tune the learning rate (0.0001-0.001) and the
number of training steps (1K-20K) on the respec-
tive development set. The model sizes range from
mT5-base (580M parameters) to mT5-xxI (13B
parameters). We compare four different training
pipelines:

* GoLD: Fine-tune on the gold dataset (Sec.
4.1).

* PRE: Fine-tune on the synthetic tagged cor-
ruption dataset (Sec. 3).

* PRE—GOLD: Fine-tune first on the synthetic
dataset, and then on the gold dataset.

* PRE+CLANG8—GOLD (only German and
Russian): Fine-tune first on a 1:1 mix of
the synthetic dataset and the CLANGS cor-
pus (Rothe et al., 2021), and then on the gold
dataset. The CLANGS corpus is a re-annotated
version of the the language learner corpus
Lang-8% (Mizumoto et al., 2011) available in
German (114K examples) and Russian (45K
examples).

5 Results

Like prior work we compute Fj 5-scores on the
German, Russian, and Spanish test sets with the
M2 scorer (Dahlmeier and Ng, 2012), and on the
Romanian test set with Cotet et al.’s (2020) version
of ERRANT.?

Table 4 contains the results for the three train-
ing setups for all four languages and model sizes.
Fp 5-scores after training on PRE do not always sur-
pass the GOLD baseline, which indicates that our
synthetic dataset is not a replacement for human-
labelled data. However, subsequent fine-tuning
on GOLD after PRE consistently outperforms fine-
tuning on GOLD alone, which shows the benefit of

7https://github.com/google—research/th/tree/
main/t5x/examples/t5/mt5

8https://lang—8.com/

9https://github.com/teodor—cotet/errant/tree/
Qcbof61af39ffb8c560ed6f92065f3b9e43e10dd
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Setup mT5-base mTS5-large mT5-x1 mT5-xxl

de es ro ru de es ro ru de es ro ru de es ro ru
GoLD 65.6 459 594 173 | 70.6 50.5 632 228 | 73.5 54.8 724 350 | 749 58.1 744 395
PRE 60.8 38.6 60.7 159 | 639 436 640 284 | 67.3 46.6 66.1 347 | 684 464 66.6 37.8
PRE—GoLD | 70.5 50.1 68.1 19.8 | 71.8 54.2 71.9 29.6 | 74.6 56.5 72.8 38.2 | 755 589 755 40.0

Table 4: Test set Fy 5-scores for all four languages and model sizes. The systems highlighted in green outperform

the GOLD baseline.

System German (de) Spanish (es) Romanian (ro) Russian (ru)
Grundkiewicz and Junczys-Dowmunt (2019) 70.24 34.46
Naplava and Straka (2019) 73.71 50.20
Katsumata and Komachi (2020) 68.86 44.36
Cotet et al. (2020) 53.80

Niculescu et al. (2021) 69.01

Flachs et al. (2021) 69.24 57.32 44.72
Rothe et al. (2021) 75.96 51.62
Naéplava et al. (2022) 73.71 50.20
Kementchedjhieva and Sggaard (2023) 73.60 55.20 68.60 49.20
This work (mT5-xxl)

PRE—GOLD 75.46 58.89 75.47 39.96
PRE+CLANG8—GOLD 76.08 4431

Table 5: Comparison of the test set Fy 5-scores of our best systems to other results from the literature.

de —— es 0 —*— ru —&—
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0% py
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Figure 3: Relative improvements of the PRE—GOLD
setup over GOLD-only.

adapting the model to the GEC domain before the
final fine-tuning stage.

Fig. 3 shows a log-log plot of the relative im-
provements between the GOLD baseline and the
PRE—GOLD setup across various model sizes. The
improvements range between 0.5% and 30% de-
pending on the language and model size. Our PRE
dataset is particularly useful for small training sets
(ru) and small models (left side of the plot). Gram-
matical error correction models deployed in prac-
tice are often small because a low latency is less
disruptive for writers.

To investigate if pre-training can be further im-
proved by adding external data, we performed ex-
periments using the CLANGS corpus (Rothe et al.,
2021). Table 6 shows that pre-training on a 1:1 mix
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Setup mT5-base mT5-xxI
de ru de ru
Rothe et al. (2021) 69.21 2624 | 7596 51.62
This work
CLANGS8 66.39 24.58 | 74.83 40.37
CLANG8—GOLD 70.59 26.24 | 75.65 43.62
PRE+CLANGS8 69.87 25.74 | 7447 44.48
PRE+CLANG8—GOLD 72.02 26.39 | 76.08 44.31

Table 6: Combining our PRE dataset with the CLANG8
corpus from Rothe et al. (2021). We report Fj 5-scores
on the German and Russian test sets.

of PRE and CLANGS outperforms pre-training on
only one of them.

Table 5 lists our best setups in relation to prior
work. We advance the state-of-the-art on Span-
ish and Romanian and match the best published
results on German despite using a relatively sim-
ple training setup (standard 2-stage fine-tuning of
off-the-shelf TS5 models with normal cross-entropy
loss).

6 Conclusion

We have introduced a new large synthetic dataset
for GEC that was generated by an LLM-based
tagged corruption model in German, Spanish, Ro-
manian, and Russian. Our dataset consists of 2.5M
examples per language. Pre-training GEC models
on this dataset yields consistent gains on all four
languages, especially for small gold training sets
and small model sizes.



7 Limitations

Even though we took into account the distribution
of the error tags on the development sets for syn-
thetic data generation, it is possible that the syn-
thetic dataset does not capture all its error character-
istics. First, our tag set is not sufficient to represent
more complex inter-dependencies between error
types. Second, our automated annotation tool op-
erates on the lexical level, so clausal, sentential,
or discourse level errors are not represented in the
error tag set. Third, the tagged corruption model
is not guaranteed to always synthesize the correct
error type. Fourth, error type tags are assigned to
sentences randomly, but it is sometimes not even
possible to enforce an error type in a particular
sentence (e.g. corrupting a sentence without a con-
junction with cconj). Despite these limitations, we
confirm Stahlberg and Kumar’s (2021) findings by
demonstrating the effectiveness of tagged corrup-
tion models to generate diverse synthetic training
data for GEC across a range of languages.
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Abstract may work surprisingly well. Combining single-

In this paper, we carry out experimental re-
search on Grammatical Error Correction, delv-
ing into the nuances of single-model systems,
comparing the efficiency of ensembling and
ranking methods, and exploring the application
of large language models to GEC as single-
model systems, as parts of ensembles, and
as ranking methods. We set new state-of-the-
art performance' with Fy 5 scores of 72.8 on
CoNLL-2014-test and 81.4 on BEA-test, re-
spectively. To support further advancements
in GEC and ensure the reproducibility of our
research, we make our code, trained models,
and systems’ outputs publicly available.?

1 Introduction

Grammatical Error Correction (GEC) is the task of
correcting human text for spelling and grammatical
errors. There is a wide variety of GEC approaches
and model architectures. In recent years, most sys-
tems have used Transformer-based architectures
(Bryant et al., 2023). A current trend involves writ-
ing prompts for Large Language Models (LLMs)
such as GPT-4 (OpenAl, 2023) that would gener-
ate grammatical corrections (Loem et al., 2023),
(Coyne et al., 2023), (Wu et al., 2023), (Fang et al.,
2023).

The varied approaches within GEC each pos-
sess unique strengths and limitations. Combining
several single-model GEC systems through ensem-
bling or ranking may smooth out their weaknesses
and lead to better overall performance (Susanto
et al., 2014). Even quite simple ensembling meth-
ods, such as majority voting (Tarnavskyi et al.,
2022) or logistic regression (Qorib et al., 2022),

* Corresponding author:
kostiantyn.omelianchuk @ grammarly.com.
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! https://nlpprogress.com/english/grammatical_
error_correction.html (Accessed 10 March 2024).
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model systems is also often straightforward from
an implementation perspective. Because only the
outputs of the models are required for many ensem-
bling algorithms, there is no need to retrain models
or perform inference passes iteratively. A further
review of related work is presented in the end and
near the descriptions of considered methods.

Our contributions are the following:

1. Comprehensive comparison of GEC meth-
ods. We reproduce, evaluate, and compare the most
promising existing methods in GEC, both single-
model systems and ensembles. We show that usage
of ensembling methods is crucial to obtain state-of-
the-art performance in GEC.

2. Establishing new state-of-the-art baselines.
We show that simple ensembling by majority vote
outperforms more complex approaches and signifi-
cantly boosts performance. We push the boundaries
of GEC quality and achieve new state-of-the-art re-
sults on the two most common GEC evaluation
datasets: Fp5 = 72.8 on CoNLL-2014-test and
Fiy5 = 81.4 on BEA-test.

3. Exploring the application of LLMs for
GEC. We thoroughly investigate different scenar-
ios for leveraging large language models (LLMs)
for GEC: 1) as single-model systems in a zero-shot
setting, 2) as fine-tuned single-model systems, 3)
as single-model systems within ensembles, and 4)
as a combining algorithm for ensembles. To the
best of our knowledge, we are the first to explore
using GPT-4 to rank GEC edits, which contributes
to a notable improvement in the Recall of ensemble
systems.

4. Commitment to open science. In a move
toward fostering transparency and encouraging fur-
ther research, we open-source all our models, their
outputs on evaluation datasets, and the accompany-
ing code.? This ensures the reproducibility of our
work and provides a foundation for future advance-
ments in the field.

Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 17-33
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2 Data for Training and Evaluation

We use the following GEC datasets for training
models (Table 1):

1. Lang-8, an annotated dataset from the Lang-8
Corpus of Learner English (Tajiri et al., 2012);

2. NUCLE, the National University of Singa-
pore Corpus of Learner English (Dahlmeier et al.,
2013);

3. FCE, the First Certificate in English dataset
(Yannakoudakis et al., 2011);

4. W&I, the Write & Improve Corpus (Bryant
et al., 2019) (also known as BEA-Train). We also
use a larger synthetic version of Lang-8 with target
sentences produced by the T5 model (Raffel et al.,
2020);

5. cLang-8 (Rothe et al., 2021), and synthetic
data based on two monolingual datasets;

6. Troy-1BW (Tarnavskyi et al., 2022), pro-
duced from the One Billion Word Benchmark
(Chelba et al., 2014);

7. Troy-Blogs (Tarnavskyi et al., 2022), pro-
duced from the Blog Authorship Corpus (Schler
et al., 2006).

# Dataset Part | #sent. | #tokens | % edits
1 Lang-8 Train | 1.04M | 11.86M 42
2 NUCLE Train | 57.0k 1.16M 62
Test 1.3k 30k 90
3 FCE Train | 28.0k 455k 62
Train | 34.3k 628.7k 67
4 L&%E;S Dev | 4.4k 85k 64
Test 4.5k 62.5k N/A
5 cLang-8 Train | 2.37M 28.0M 58
6 | Troy-1BW | Train | 1.2M 30.88M 100
7 | Troy-Blogs | Train | 1.2M 21.49M 100

Table 1: Statistics of GEC datasets used in this work for
training and evaluation.

For evaluation, we use current standard evalua-
tion sets for the GEC domain: the test set from
the CoNLL-2014 GEC Shared Task (Ng et al.,
2014), and the dev and test components of the W&I
+ LOCNESS Corpus from the BEA-2019 GEC
Shared Task (BEA-dev and BEA-test) (Bryant
etal., 2019). For BEA-test, submissions were made
through the current competition website.> For
each dataset, we report Precision, Recall, and Fp 5
scores. To ensure an apples-to-apples comparison
with previously reported GEC results, we evaluate
CONLL-2014-test with M2scorer (Dahlmeier and

Shttps://codalab.lisn.upsaclay.fr/
competitions/4057
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Ng, 2012), and BEA-dev with ERRANT (Bryant
et al., 2017).

3 Single-Model Systems
3.1 Large Language Models

We investigate the performance of open-source
models from the LLaMa-2 family (Touvron et al.,
2023), as well as two proprietary models: GPT-
3.5 (Chat-GPT) and GPT-4 (OpenAl, 2023). For
LLaMa, we work with four models: LLaMa-2-
7B, LLaMa-2-13B, Chat-LLaMa-2-7B, and Chat-
LLaMa-2-7B. We use two LLaMa-2 model sizes:
7B and 13B. If the model is pre-trained for instruc-
tion following (Ouyang et al., 2022), it is denoted
as "Chat-" in the model’s name.

Chat-GPT and GPT-4 are accessed through the
Microsoft Azure API. We use versions gpt-3.5-
turbo-0613 and gpt-4-0613, respectively.

We explore two scenarios for performing GEC
using LL.Ms: zero-shot prompting (denoted as
"ZS") and fine-tuning (denoted as "FT").

3.1.1 Zero-Shot Prompting

In recent studies dedicated to prompting LLMs
for GEC, it was shown that LLM models tend to
produce more fluent rewrites (Coyne et al., 2023).
At the same time, performance measured by au-
tomated metrics such as MaxMatch (Dahlmeier
and Ng, 2012) or ERRANT has been identified as
inferior. We frequently observed that these auto-
mated metrics do not always correlate well with
human scores. This makes LLMs used in zero-shot
prompting mode potentially attractive, especially
in conjunction with other systems in an ensemble.

For the Chat-LLaMa-2 models, we use a two-
tiered prompting approach that involves setting the
system prompt "You are a writing assistant. Please
ensure that your responses consist only of corrected
texts.” to provide the context to direct the model
focus toward GEC task. Then, we push the follow-
ing instruction prompt to direct the model’s focus
toward the GEC task:

Fix grammatical errors for the following text.

Temperature is set to 1. For Chat-GPT and GPT-
4 models, we employ a function-calling API with
the "required" parameter. This guides the LLM to
more accurately identify and correct any linguistic
errors within the text or replicate the input text if
it was already error-free, thus ensuring consistency
in the models’ responses. The instruction prompt
for GPT models is:
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CoNLL-2014-test BEA-dev BEA-test

# System Precision Recall Fg5 | Precision Recall Fg5 | Precision Recall Fgs
1 Chat-LLaMa-2-7B-ZS 429 473 43.7 19.1 34.1 21.0 - - -
2 | Chat-LLaMa-2-13B-ZS 49.1 56.1 50.4 30.6 45.0 32.7 - - -

3 GPT-3.5-ZS 56.2 57.7 56.5 37.4 50.6 394 - - -
4 GPT-3.5-CoT-ZS 56.0 58.7 56.5 36.4 50.8 38.5 - - -

5 GPT-4-ZS 59.0 55.4 58.2 42.5 45.0 43.0 - - -
6 Chat-LLaMa-2-7B-FT 75.5 46.8 67.2 58.3 46.0 55.3 72.3 67.4 71.2
7 | Chat-LLaMa-2-13B-FT 77.3 45.6 67.9 59.8 46.1 56.4 74.6 67.8 73.1
8 T5-11B 70.9 56.5 67.5 60.9 51.1 58.6 73.2 71.2 72.8
9 UL2-20B 73.8 50.4 67.5 60.5 48.6 57.7 75.2 70.0 74.1
10 GECToR-2024 75.0 44.7 66.0 64.6 37.2 56.3 77.7 59.0 73.1
11 CTC-Copy 72.6 47.0 65.5 58.3 38.0 52.7 71.7 59.9 69.0
12 EditScorer 78.5 394 65.5 67.3 36.1 574 81.0 56.1 74.4

Table 2: All single-model systems evaluated on CoNLL-2014-test, BEA-dev, and BEA-test datasets.

Fix all mistakes in the text (spelling, punctuation,
grammar, etc). If there are no errors, respond with
the original text.

Additionally, we employ a form of the chain-of-
thought (CoT) prompting (Wei et al., 2022), which
involves requesting reasoning from the model be-
fore it makes corrections by means of function
calling.

3.1.2 Fine-tuning the Large Language Models

Fine-tuning is a mainstream method for knowledge
transfer. Since we have several available annotated
GEC datasets, they may be used to fine-tune LLMs
(Zhang et al., 2023b; Kaneko and Okazaki, 2023).

We use three datasets for fine-tuning — NUCLE,
W&, and cLang-8 (Table 1) — as they are com-
monly used in recent GEC research (Zhang et al.,
2023b; Kaneko and Okazaki, 2023; Loem et al.,
2023). We varied the datasets and their shares to
find the best combination.

We use the Transformers library* to conduct
1000-1200 updates with 250 warm-up steps, a
batch size of 8, and a learning rate of 1le — 5. We
fine-tune only LLaMA-2 models on next token pre-
diction task, both autocomplete and instruction-
following pre-trained versions (denoted as "Chat-
"). For the Chat-LLaMA-2 models, we use the
following prompt:

Rewrite the following text to make it grammatically
correct.

[Input text]

Result:

[Output text]

Additionally, we perform an ablation study on
the models’ size and the usefulness of the instruc-
tions (Appendix D, Table 11). Not surprisingly,
our results indicate that instructions work better for
"Chat" versions of models.

4ht’cps ://github.com/huggingface/transformers
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3.2 Sequence-to-Sequence models

In a sequence-to-sequence approach, GEC is con-
sidered a machine translation task, where errorful
sentences correspond to the source language, and
error-free sentences correspond to the target lan-
guage (Grundkiewicz et al., 2019; Kiyono et al.,
2019). In this work, we investigate two power-
ful Transformer-based Seq2Seq models: the open-
sourced "T5-11B" (Rothe et al., 2021), and "UL2-
20B", the instruction-tuned version of FLAN (Tay
et al., 2022).

T5-11B is fine-tuned on W&I + LOCNESS train
data for 500 updates with batch size 256 and a
learning rate of 1e — 4. UL2-20B is fine-tuned on
W&I + LOCNESS train data for 300 updates with
batch size 16 and a learning rate of 5e — 5.

3.3 Edit-based Systems

Edit-based GEC systems produce explicit text
changes, restoring error-free language from the
errorful source text. Usually, such systems are
based on encoder-only architectures and are non-
autoregressive; therefore, they are less resource-
consuming and more attractive for productization.
In this work, we consider three publicly available
open-source edit-based systems for GEC: GECToR,
CTC-Copy, and EditScorer.

GECToR> (Omelianchuk et al., 2020), (Tar-
navskyi et al, 2022) is a family of non-
autoregressive sequence tagging GEC systems.
The concept revolves around training Transformer-
based, encoder-only models to generate corrective
edits.

CTC-Copy® (Zhang et al., 2023a) is another non-
autoregressive text editing approach. It uses Con-

5https://github.com/MaksTarnavskyi/
gector-large
6https://github.com/yzhangcs/ctc—copy
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CoNLL-2014-test BEA-test
System name Precision Recall Fg 5 | Precision Recall Fgs5
GECToR-RoBERTa™® (Tarnavskyi et al., 2022) 70.1 427 62.2 80.6 52.3 72.7
GECToR-FT-Stage-I 75.2 44.1 65.9 78.1 57.7 72.9
GECToR-FT-Stage-1I (GECToR-2024) 75.0 44.7 66.0 77.7 59.0 73.1

Table 3: GECToR fine-tuning experiments. We compare the performance of our fine-tuned model after stage I and

stage II to the initial off-the-shelf model as a baseline.

nectionist Temporal Classification (CTC) (Graves
et al., 2006) initially developed for automatic
speech recognition and introduces a novel text edit-
ing method by modeling the editing process with
latent CTC alignments. This allows more flexible
editing operations to be generated.

EditScorer’ (Sorokin, 2022) splits GEC into two
steps: generating and scoring edits. We consider it
a single-model system approach because all edits
are generated by a single-model system.

We also attempt to reproduce the Seq2Edit ap-
proach (Stahlberg and Kumar, 2020), (Kaneko and
Okazaki, 2023), but fail to achieve meaningful re-
sults. Please find more details in Appendix B.

For GECToR, we use the top-performing model,
GECToR-RoBERTa(%) (Tarnavskyi et al., 2022).
Since this model was not trained on cLang-8 data,
we additionally fine-tune it on a mix of cLang-
8, BEA, Troy-1BW, and Troy-Blogs data. We
leverage a multi-stage fine-tuning approach from
(Omelianchuk et al., 2020). In stage I, a mix of
cLang-8, W&I + LOCNESS train (BEA-train),
Troy-1BW, and Troy-Blogs datasets is used for
fine-tuning; in stage II, the high-quality W&I +
LOCNESS train dataset is used to finish the train-
ing. During stage I, we fine-tune the model for 5
epochs, early-stopping after 3 epochs, with each
epoch equal to 10000 updates and a batch size of
256. During stage II, we further fine-tune the model
for 4 epochs, with each epoch equal to 130 updates.
The full list of hyperparameters for fine-tuning can
be found in Appendix D, Table 7. We refer to this
new, improved GECToR model as GECToR-2024.

For CTC-Copy, we use the official code® with
the RoBERTa encoder to train the English GEC
model.

For EditScorer, we use the open-sourced code’
for GECToR-XLNet(%) option from (Tarnavskyi
et al., 2022) to sample possible edits and stagewise
decoding with the RoOBERTa-Large encoder to re-
score them.

7ht’cps ://github.com/AlexeySorokin/EditScorer
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3.4 Single-Model Systems Results

The performance of single-model GEC systems is
presented in Table 2.

We see that all zero-shot approaches considered
have F{y 5 scores lower than 60 on the CoNLL-
2014-test dataset, which we assume to be a lower
bound on satisfactory GEC quality. They all suffer
from an overcorrecting issue (Fang et al., 2023),
(Wu et al., 2023) that leads to poor Precision and
inferior Fy 5 scores. Notably, GPT models show
consistently better results compared to LLaMa. Im-
plementing the chain-of-thought approach doesn’t
improve the quality.

Among the remaining approaches — LLMs with
fine-tuning, sequence-to-sequence models, and
edit-based systems — we do not see a clear win-
ner. Not surprisingly, we observe that larger mod-
els (T5-11B, UL2-20B, Chat-LLaMA-2-7B-FT,
Chat-LLaMA-2-13B-FT) have slightly higher Re-
call compared to smaller models (GECToR-2024,
CTC-Copy, EditScorer). This is expressed in 1-2%
higher F{y 5 scores on CoNLLL-2014-test; however,
the values on BEA-dev and BEA-test don’t show
the same behavior.

Additionally, we observe that simply scaling the
model does not help achieve a breakthrough in
benchmark scores. For example, a relatively small
model such as GECToR-2024 (~ 300M parame-
ters) still performs well enough compared to much
larger models (=~ 7 — 208 parameters). We hypoth-
esize that the limiting factor for English GEC is
the amount of high-quality data rather than model
size. We have not been able to realize an F{y 5 score
of more than 68% / 59% / 75% on CoNLLL-2014-
test / BEA-dev / BEA-test, respectively, with any
single-model system approach, which is consistent
with previously published results.

For GECToR, after two stages of fine-tuning,
we were able to improve the Fj 5 score of the
top-performing single-model model by 3.8% on
CoNLL-2014 and by 0.4% on BEA-test, mostly
due to the increase in Recall (Table 3).

Interestingly, we see a trend where larger models
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Figure 1: Combining the single-model systems’ outputs. Left: In ensembling, candidates (system outputs) are
aggregated on an edit level. Right: In ranking, candidates (system outputs) are aggregated on a sentence level. We

consider ranking to be a special case of ensembling.

exhibit diminishing returns with multi-staged train-
ing approaches. Our exploration of various training
data setups reveals that a simple and straightfor-
ward approach, focusing exclusively on the W&I
+ LOCNESS train dataset, performs on par with
more complex configurations across both evalua-
tion datasets.

4 Ensembling and Ranking of
Single-Model Systems

Combining the outputs of single-model GEC sys-
tems can improve their quality. In this paper, we
explore two combining methods: ensembling and
ranking (Figure 1).

Ensembling combines outputs of single-model
systems on an edit level. The ensemble method
exploits the strengths of each model, potentially
leading to more robust and accurate corrections
than any single-model system could provide on its
own.

Ranking is a special case of ensembling that
combines individual outputs on a sentence level. In
this approach, the performance of each system’s
candidate is assessed against a set of predefined
criteria, and the most effective candidate is selected.
Ranking maintains the internal coherence of each
model’s output, potentially leading to more natural
and readable corrections.

4.1 Oracle-Ensembling and Oracle-Ranking
as Upper-Bound Baselines

To set the upper-bound baseline for our exper-
iments in combining single models, we intro-
duce two oracle systems: Oracle-Ensembling and
Oracle-Ranking.

Oracle-Ensembling approximates an optimal
combination of edits of available single-model sys-
tems. It is computationally challenging because
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the number of possible edit combinations grows
exponentially with the number of edits. We use a
heuristic to mitigate this; it optimizes Precision at
the cost of reducing Recall.

Using golden references from evaluation sets,
Oracle-Ensembling works as follows:

1. Aggregate the edits from all systems into a
single pool.

2. Identify and select edits that are present in
both the edit pool and the available annotation.

3. In the case of multiple annotations, we ob-
tain a set of edits for each annotation separately.
We then select the largest set of edits among the
multiple annotations.

Oracle-Ranking approximates an optimal out-
put selection for available single-model sys-
tems. Again using golden references from
evaluation sets, we use M2scorer® to obtain
(F0A57nco7'rect7nproposed) for each system’s out-
put candidate against the available annota-
tion. The output candidates are then sorted by
(+F0.57 +Ncorrect _nproposed) and the top one is
selected.

For our explorations into combining models’ out-
puts, we select the seven single-model systems that
show the best performance on CoNLL-2014-test
(Table 2): Chat-LLaMa-2-7B-FT, Chat-LLaMa-2-
13B-FT, T5-11B, UL2-20B, GECToR-2024, CTC-
Copy, and EditScorer. As our selection criteria, we
take i) systems of different types to maximize the
diversity and ii) systems that have an Fj 5 score of
at least 65 on CoNLL-2014-test. We refer to this
set of models as "best 7".

8https ://github.com/nusnlp/m2scorer
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4.2 Ensembling by Majority Votes on Edit
Spans (Unsupervised)

To experiment with ensembling different GEC sys-
tems, we needed a method that is tolerant to model
architecture and vocabulary size. Ensembling by
majority votes (Tarnavskyi et al., 2022) on span-
level edits satisfies this requirement, and it’s simple
to implement, so we decided to start with this ap-
proach. We use the same "best 7" set of models in
our experiments.

Our majority-vote ensembling implementation
consists of the following steps:

0. Initialization. a) Select the set of single-model
systems for the ensemble. We denote the number of
selected systems by Nyys. b) Set IV, the thresh-
old for the minimum number of edit suggestions to
be accepted, 0 < Nyin < Nyys.

1. Extract all edit suggestions from all single-
model systems of the ensemble.

2. For each edit suggestion 7, calculate the num-
ber of single-model systems n; that triggered it.

3. Leave only those edit suggestions that are
triggered more times than the N,,;, threshold: Vi :
1n; > Npin.

4. Iteratively apply the filtered edit suggestions,
beginning with the edit suggestions with the most
agreement across systems (greatest n;) and ending
with the edit suggestions where n; is lowest. Don’t
apply an edit suggestion if it overlaps with one of
the edits applied on a previous iteration.

4.3 Ensembling and Ranking by GRECO
Model (Supervised Quality Estimation)

The quality estimation approach for combining
single-model systems’ outputs achieved two recent
state-of-the-art results: logistic regression-based
ESC (Edit-based System Combination) (Qorib
et al., 2022), and its evolution, DeBERTA-based
GRECO (Grammaticality scorer for re-ranking cor-
rections) (Qorib and Ng, 2023). In this paper,
we experiment with GRECO because it is open
source and demonstrates state-of-the-art perfor-
mance on the GEC task to the best of our knowl-
edge'. GRECO was trained on the W&I + LOC-
NESS training set.

We experiment with applying the publicly avail-
able GRECO model® to the "best 7" set of models.
We explore three ways of combining systems’ out-
puts:

9https://github.com/nusnlp/greco
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GRECO-ens-beam. We reuse beam-search im-
plementation with beam size kK = 16 on the edit
span level.

GRECO-rank. We use GRECO to select the best
single-model system’s output by choosing the one
with the highest score.

GRECO-rank-w. We re-weight GRECO scores
for each system’s output 7 by multiplying it by a
weighting coefficient w;:
nj

)

Vk : w; max(ng)’

where the numerator n; is the number of systems
that produce this output j, and the denominator
max(ng) is the maximum number of systems for
all systems’ outputs. This way, we reduce the score
of less frequent systems because it’s not the system
that is being scored/popular but rather the system’s
specific output (the edit).

4.4 Ranking by GPT-4 (Zero-Shot)

Besides the direct application of LLLMs for GEC in
a zero-shot setting (we consider it in the Section
3.1.1), LLMs may be used as a combining method
for ensembles. We explore GPT-4 as a ranking tool
for single-model GEC systems’ outputs.

We use version gpt-4-0613 for GPT-4 with tem-
perature 1. We implement two prompts, "prompt-
a", and "prompt-b", with slightly different goals:
prompt-a aims to select the top single-model
system’s output among the systems’ candidates,
whereas prompt-b aims to perform the full ranking
of the systems’ candidates. They both have the
same task description. For the following example
of ranking three systems, it is:

ORIGINAL:

I likes turtles very much.
EDITED:

A: I like turtles very much.
B: I likes turtles very much.
C: I like turtles very much.

But they require a different output format:
prompt-a (top cand.): prompt-b (ranking):

OUTPUT:
C

OUTPUT:
CAB

To eliminate potential positional bias, we run
each prompt four times with a randomly shuffled
order of single-model systems’ outputs and average
the performance scores. To investigate the impact
of the number of systems to be ranked, we evaluate
the performance of GPT-4 on two sets of single
models: "best 7" and "clust 3".
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CoNLL-2014-test BEA-dev BEA-test
System Precision Recall Fg 5 Precision  Recall Fo.s Precision  Recall Fo.s
ESC (Qorib et al., 2022) 81.5 43.8 69.5 72.9 40.4 62.8 86.6 60.9 79.9
GRECO (Qorib and Ng, 2023), var0* 79.40 48.70 70.48 - - 63.4 86.5 63.1 80.5
GRECO (Qorib and Ng, 2023), varl* 79.60 49.90 71.12 - - - - - -
GRECO (Qorib and Ng, 2023), var2* - - - - - - 86.7 63.7 80.8
Chat-LLaMa-2-13B-FT (single-model system) 77.3 45.6 67.9 59.8 46.1 56.4 74.6 67.8 73.1
UL2-20B (single-model system) 73.8 50.4 67.5 60.5 48.6 577 75.2 70.0 74.1
Oracle-Ensembling(best 7), baseline 100.0 57.7 87.2 100.0 58.2 874 - - -
Oracle-Ranking(best 7), baseline 91.4 64.2 84.2 79.6 60.2 74.7 - - -
majority-voting(best 7) 83.7 45.7 71.8 71.7 422 62.9 87.3 64.1 814
majority-voting(best 3) 82.8 44.1 70.4 70.4 43.1 62.5 85.1 64.5 80.0
GRECO-ens-beam(best 7) 71.3 51.6 70.3 65.5 47.6 60.9 - - -
GRECO-rank(best 7) 74.4 54.2 69.2 63.2 50.0 60.0 - - -
GRECO-rank-w(best 7) 81.6 49.3 72.1 68.1 45.8 62.0 82.0 67.5 78.6
GPT-4-rank-prompt-a**(clust 3)** 72.4 58.3 69.1 59.7 52.3 58.1 - - -
MAJORITY-VOTING ¥| majority-voting(best 7),
GRECO-rank-w(best 7) ] 83.0 48.1 72.5 70.2 43.9 62.7 85.6 65.8 80.7
MAJORITY-VOTING ¥[ majority-voting(best 7),
GRECO-rank-w(best 7), GPT-4-rank-a(clust 3) ] 83.9 47.5 72.8 70.6 435 62.8 86.1 65.6 81.1

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.

"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.

*In the paper (Qorib and Ng, 2023), authors prepared different variants of GRECO, each of which is optimized for one test dataset.

**We show mean values across four GPT-4 runs with randomly shuffled single-model systems’ outputs.

* We denote 2nd order ensembling (ensembles of ensembles) by capital letters.

Table 4: All ensembles evaluated on CoNLL-2014-test, BEA-dev, and BEA-test datasets.

CoNLL-2014-test BEA-dev
Precision Recall Fos Precision Recall Fos
GPT-4-rank-prompt-a(best 7)  70.9+0.5 59.7+0.6 684+£0.5 56.8+03 534+08 56.1+£03
GPT-4-rank-prompt-b(best 7)  69.6+0.8 59.5+£0.2 67.3+£0.7 563+05 539+£0.6 55804
GPT-4-rank-prompt-a(clust 3) 72.4+0.3 583+0.6 69.1+£0.1 59.7+0.1 523+04 58.1+0.1
GPT-4-rank-prompt-b(clust 3) 71.9+04 58.1+£0.5 68.7+05 587+03 520+£0.5 572+03

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.

Table 5: LLM ranking results. We run each prompt four times with randomly shuffled outputs of single-model

systems’ candidates and report mean + 2std.

"clust 3" refers to 3 of the 7 best single-model
systems: Chat-LLaMa-2-13B-FT + T5-11B + Edit-
Scorer. This is the subset of single-model systems
from the "best 7" ensemble that provides the most
distinct corrections. To select this set, we perform
hierarchical clustering on TF-IDF vectors extracted
from the BEA-dev dataset using a cosine similar-
ity. The cosine similarity scores are averaged to
produce a single matrix that reflects the collective
performance of the single-model systems. The den-
drogram illustrating the relationships between the
systems based on distance is shown in Appendix D,
Fig. 2. Based on the threshold ¢ = 0.11, we select
the three clusters and choose Chat-LLaMa-2-13B-
FT, T5-11B, Edit-Scorer to represent each.

4.5 Ensembles of Ensembles

Ensembles may themselves be combined via en-
sembling or ranking methods to potentially im-
prove performance, and this is an approach we
explore as well. We experiment with combining
the outputs of three ensemble systems: majority-

voting(best 7), GRECO-rank(best 7), and GPT-4-
rank(clust 3). Here, majority-voting(best 7) was
selected because it achieves the highest Fj 5 score;
GRECO-rank(best 7) and GPT-4-rank(clust 3) have
higher Recall and, therefore, potential to add value
in an ensemble.

The MAJORITY-VOTING algorithm (we de-
note second-order ensembling by capital letters) is
identical to that described in 4.2.

4.6 Ensembles Results

Oracle ensembling & ranking. Oracle-
Ensembling shows Fj 5 scores of 87.2/87.4 on
CoNLL-2014-test/BEA-dev, while Oracle-Ranking
performs notably worse with Fpy s scores of
84.2/74.7 and Precision of 91.4/79.6 (Table 4).
This highlights the high potential for improvements
on existing candidate generation and ensembling
approaches, whereas ranking is more limited.
Majority-voting ensembling. The only hyper-
parameter for the method (the N, threshold) di-
rectly impacts the Precision/Recall balance: the
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higher it is set, the greater the Precision. We find
that the best N,,;, values for maximizing Fy 5
score are Npin = Ngys/2. With Npin = 3, we
achieve 71.8 on CoNLL-2014-test, outperform-
ing the previous state-of-the-art result by 0.7,
and 81.4 on BEA-test, setting a new state-of-the-
art result. (Table 4, "best 7" systems ensemble).

We perform an ablation study to measure the
impact of each system in the ensemble (Appendix
D, Table 12), where we remove systems one by
one in the decreasing direction of Fp 5 score on
the BEA-dev dataset. Our experiments show that
even an ensemble combined from just the "best 3"
systems (Chat-LLaMa-2-13B-FT, UL2-20B, and
Chat-LLaMa-2-7B-FT) significantly improves the
Fy 5 score over the UL2-20B single-model system
(by 2.9% on CoNLLL-2014-test, 4.8% on BEA-
dev, and 5.9% on BEA-test). These results rein-
force the significance of ensembling in achieving
state-of-the-art performance on the GEC task. We
hypothesize that majority-voting ensembling helps
in mitigating the influence of noise within the data.
By consolidating edits that are consistent across
multiple systems (the true signal), and concurrently
downplaying less prevalent and potentially inac-
curate edits (the noise), the ensembling approach
effectively enhances the overall quality and relia-
bility of the output. Our experiments on BEA-dev
can be found in Appendix D, Table 8.

Supervised ranking & ensembling. Overall,
leveraging GRECO (all variants) for combining
systems’ outputs leads to increased Recall at the
cost of Precision. It leads to an improvement
in Fp5 score on CoNLLL-2014-test, achieving
72.1% (+0.3% from our best unsupervised ensem-
ble, majority-voting(best 7)). However, results on
BEA-test regressed (-2.8% in Fp 5 score). GRECO-
ens-beam did not outperform GRECO-rank-w in
our experiments.

Zero-shot ranking. We observe that LLM-
based ranking works better for three distinct single-
model systems (clust 3) than for all seven best
systems (best 7). We hypothesize that this per-
formance disparity may be due to the increased
complexity of selecting the optimal choice from a
larger set of similar options. We also explain in this
way the better performance of prompt-a (selection
of the top candidate rewrite) than prompt-b (per-
forming full ranking among candidate rewrites).
Similar to GRECO-rank, we notice that GPT-4 fa-
vors Recall-oriented outputs, which leads to the
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highest Recall (58.4) on the CoNLLL-2014-test,
but a suboptimal Fj 5 score. More results are pre-
sented in Table 5 and in Appendix D, Table 9.
Ensembles of ensembles. Applying second-
order ensembles, more specifically MAJORITY-
VOTING[majority-voting(best 7), GRECO-rank-
w(best 7), GPT-4-rank-a(clust 3)], helps to even fur-
ther push the state-of-the-art record on CoNNL-
2014-test, achieving Fo5 = 72.8 : +1.7 com-
pared to the previously highest reported result
by GRECO, varl (Qorib and Ng, 2023) and +1.0
compared to our majority-voting(best 7) ensemble.

5 Related work

Large language models have demonstrated effi-
cacy across a variety of natural language process-
ing tasks, including GEC (Bryant et al., 2023).
The comparative analysis conducted by (Wu et al.,
2023) on the effectiveness of different models for
GEC — ChatGPT, Grammarly, and open-sourced
GECToR — reveals that ChatGPT possesses a dis-
tinctive capability to enhance textual content by
not only correcting errors on a one-by-one basis
but also by rephrasing original sentences, changing
their structure to maintain grammatical correctness.
The outcomes of human evaluations underscore
the limitations of exclusively relying on automatic
evaluation metrics for assessing GEC model per-
formance, thereby positioning ChatGPT as a poten-
tially invaluable resource for GEC applications.

Other research (Loem et al., 2023), (Fang et al.,
2023) suggests that although zero-shot and few-
shot chain-of-thought methodologies demonstrate
promise in terms of error detection capabilities and
the production of fluently corrected text, they gen-
erally underperform across the majority of error
categories, thus failing to achieve high-quality out-
comes in GEC. Moreover, (Zhang et al., 2023c)
delved into the customization of open-sourced
foundation LLMs including LLaMA (Touvron
et al., 2023) for writing assistant applications, with
GEC as one of the tasks. The experimental find-
ings indicate that instruction tuning for specific
scenarios such as GEC significantly boosts the
performance of LLMs and can be used to de-
velop smaller models that outperform their larger,
general-purpose counterparts.

Additionally, (Kaneko and Okazaki, 2023) intro-
duced a novel approach for predicting edit spans
within source texts, redefining instruction-based
fine-tuning as local sequence transduction tasks.



This method not only reduces the length of target
sequences but also diminishes the computational
demands associated with inference. The study em-
phasizes that even high-performance LLMs such as
ChatGPT struggle to generate accurate edit spans
in zero-shot and few-shot scenarios, particularly
in the correct generation of indexes, making this
approach unstable.

Recent advancements in GEC have largely been
attributed to the ensembling of outputs from in-
dividual models, as highlighted in studies by
(Omelianchuk et al., 2020; Tarnavskyi et al., 2022).
When integrating systems with significant dispari-
ties, a system combination model is preferred over
simple ensembles. This approach allows for effec-
tive integration of the strengths of various GEC
systems, yielding better results than ensembles, as
demonstrated in (Qorib et al., 2022). Model out-
puts can be re-ranked using majority vote, as well
as with the proposed GRECO model (Qorib and
Ng, 2023), a new state-of-the-art quality estimation
model correlating more closely with the F{ 5 score
of a corrected sentence, thus leading to a combined
GEC system with a higher Fj 5 score. Additionally,
this study proposes three methods for leveraging
GEC quality estimation models in system combina-
tion: model-agnostic, model-agnostic with voting
bias, and model-dependent methods.

Conclusions

We don’t find that any single-model system ap-
proach is dominant across all benchmarks. While
in general, fine-tuning the larger models leads to
higher Fj 5 scores, the 10-50x increase in model
size leads to rather small improvements (up to 1-2
Fp 5 points). We hypothesize that the main bot-
tleneck in improvement is high-quality data rather
than system’s architecture or model size.

To date, ensembling is crucial to overcome the
limitations of single-model system approaches.
Even a simple heuristic approach such as majority
voting with just three single-model systems sig-
nificantly boosts the quality (by 3—6 Fj 5 points).
While more complex approaches (supervised en-
sembling or LLM zero-shot ranking) may lead to
potentially better results (more specifically, show
higher Recall), they usually do not lead to the target
metric: Fp 5 improvement on GEC benchmarks.

Recent LLM-powered methods do not outper-
form other available approaches to date. However,
being properly set, they can perform on par with
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other methods and lead to more powerful ensem-
bles.

We’ve not yet reached the ceiling on the existing
GEC benchmarks. Our research shows that it’s
possible to improve previous records noticeably,
setting the new state-of-the-art performance on two
principal GEC benchmarks with Fj 5 scores of 72.8
on CoNLL-2014-test and 81.4 on BEA-test, which
are improvements of +1.7 and +0.6, respectively.

In future work, we plan to explore the generation
of high-quality synthetic GEC data powered by
a state-of-the-art ensemble. We hypothesize that
this could democratize the field by reducing the
necessity of expensive training of large models to
achieve a superior level of quality.
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Limitations

Firstly, our analysis was confined to the English
language, potentially limiting the generalizability
of our findings to other languages with potentially
different error correction challenges.

Next, our evaluation relied on two specific bench-
marks using automated metrics, without incorpo-
rating human evaluation to assess the quality of the
GEC. While automated metrics provide a scalable
and objective means of evaluation, they may not
fully capture the nuances of language that human
judgment can offer.

Additionally, as we focus on ensembles, our re-
search does not address the speed performance of
the proposed systems. Therefore our findings may
not provide a comprehensive view of the practical-
ity and scalability of the proposed methods.

Lastly, the use of closed-source proprietary
LLMs introduces a layer of uncertainty, as these
models may undergo changes over time that are not
publicly disclosed. Such changes could potentially
affect the reproducibility of our results.
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A Hierarchical clustering analysis for
single-model systems
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Figure 2: Dendrogram of hierarchical clustering analy-
sis for single-model systems. The y-axis represents the
distance metric used for clustering, with a red dashed
line indicating the selected threshold for cluster for-
mation (t = 0.11). The x-axis enumerates different
systems that were analyzed. The dendrogram branches
reflect the hierarchical grouping based on the proximity
of distance metrics.
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B Unsuccessful attempt to reproduce
Seq2Edit approach

The sequence-to-edit approach leverages the fact
that in GEC, the target sentence is usually very
similar to the source one. Instead of rewriting the
entire sentence, it’s possible to generate a list of
required edits, represented as tuples: (start position,
end position, replacement). (Stahlberg and Kumar,
2020). We tried to re-implement the most recent ap-
proach (Kaneko and Okazaki, 2023) that reported
a high score (Fy5 = 71.3%) on the CONLL-2014-
test. We attempted to fine-tune both T5-11B and
LLaMA-2-7B models using the same set of hy-
perparameters that we used in our other experi-
ments, on pairs of sentences and edits extracted
from the BEA-train dataset. We were unable to get
any meaningful results (our Fj 5 on CoNLL-2014-
test was about 30, which is around 40 points lower
than SOTA systems). Our models tended to corrupt
an original sentence more often than correct it. We
believe that our implementation most likely misses
some crucial details required to work properly, and
we encourage other researchers to reproduce and
open-source the sequence-to-edit approach.

C Second-order ensembling of
LLM-containing ensembles by
aggressiveness ranking

AGGR-RANK is a ranking method that takes as
input two ensembles: GPT-4-rank and an alterna-
tive ensemble. It selects GPT-4-rank under two
conditions: 1) it is less "aggressive" than the alter-
native (it suggests fewer edited spans), and 2) it is
non-trivial (edits do exist).

The results are presented in Table 10. The first
system (AGGR-RANK *[GPT-4-rank-a(clust 3),
majority-voting(best 7)]) tends to have a higher
Precision across all datasets. The second system
(AGGR-RANK *[GPT-4-rank-a(clust 3), GRECO-
rank-w(best 7)]), despite its lower Precision, man-
ages to achieve a slightly higher Fj 5 score on the
CoNLL-2014 test dataset, suggesting that its im-
proved Recall adequately compensates in this case.
Overall, the F(.5 score is generally higher for the
first system on CoNLL-2014 test and BEA-test,
indicating that second-order ensembling on top of
the GRECO approach is the most favorable.

D Ablation studies
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Model Datasets used for training CoNLL-2014-test BEA-dev
NUCLE W&I cLang-8 | Precision Recall Fgs5 | Precision Recall Fo s
LLaMA-2-7B-FT - ALL - 68.66 54.27 65.20 57.90 48.63  55.77
LLaMA-2-7B-FT - - ALL 67.25 50.44  63.05 57.99 42.11 5393
LLaMA-2-7B-FT ALL ALL - 72.45 46.98  65.37 58.00 45.82 55.07
Chat-LLaMa-2-7B-FT ALL - - 70.39 3631  59.42 50.72 2451  41.79
Chat-LLaMa-2-7B-FT - ALL - 70.45 52.59 6597 59.19 47.81  56.50
Chat-LLaMa-2-7B-FT - ALL 100k 68.94 5278  64.96 57.94 45.53 5494
Chat-LLaMa-2-7B-FT ALL ALL 48k 75.40 46.84  67.20 58.26 46.03 5532
Chat-LLaMa-2-7B-FT TP, 8k TP, 8k TP, 24k 68.01 5284 64.32 53.94 46.03  52.15
Chat-LLaMa-2-13B-FT ALL ALL 100k 77.34 45.57 67.87 59.79 46.08 56.43

Table 6: A search of the best dataset combination for fine-tuning large language models. For fine-tuned models,
different training dataset combinations were evaluated: Here, "ALL" denotes the usage of all available data for
training, specific numbers (e.g., "100k") define the specific number of samples used for training, and "TP" ("true
positives") denotes when only the dataset’s samples containing corrections are used.

Hyperparameter Values for stage I Values for stage I1
train data source cLang8, BEA-train, 20 Troy BEA-train
train data size 2,897,676 33,618
batch_size 8 16
accumulation_size 32 16

n_epoch 5 4

patience 3 3

max_len 50 50

LR 1e-05 le-05
cold_steps_count 0 0

tp_prob 1 1

tn_prob 1 1
updates_per_epoch 10000 0
special_tokens_fix 1 1
transformer_model Roberta-large Roberta-large
Pretrained model roberta-large_1_pie_lbw_st3 | roberta-stagel
Inference tweaks:

minimum error probability | 0.65 0.65
Inference tweaks:

confidence 0.1 0.1

Table 7: Hyperparameter values for the fine-tuning of GECToR-2024.
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BEA-dev

System name Nmin | Precision Recall cFos5
majority-voting(best 7) 3 71.7 42.2 62.9
majority-voting(best 7) w/o GECToR-2024 3 73.8 39.1 62.7
majority-voting(best 7) w/o CTC-copy 3 73.7 39.0 62.6
majority-voting(best 7) w/o EditScorer 3 72.8 39.5 62.3
majority-voting(best 7) w/o T5-11B 3 74.2 35.8 61.1
majority-voting(best 7) w/o UL2-20B 3 74.2 359 61.1
majority-voting(best 7) w/o LlaAMA-2-7B 3 74.3 36.2 61.4
majority-voting(best 7) w/o LlaAMA-2-13B 3 74.3 36.2 61.3
majority-voting(best 6) (best 7 w/o GECToR) 3 73.8 39.1 62.7
majority-voting(best 6) w/o CTC-copy 2 69.8 44.5 62.7
majority-voting(best 6) w/o EditScorer 2 69.0 453 62.5
majority-voting(best 6) w/o T5-11B 2 70.6 42.4 62.3
majority-voting(best 6) w/o UL2-20B 2 70.6 42.5 62.3
majority-voting(best 6) w/o Llama-2-7B 2 71.5 43.2 63.2
majority-voting(best 6) w/o Llama-2-13B 2 71.1 43.1 63.0
majority-voting(best 5) (best 6 w/o Llama-2-7B) 2 71.5 43.2 63.2
majority-voting(best 5) w/o CTC-copy 2 74.0 38.8 62.6
majority-voting(best 5) w/o EditScorer 2 72.6 39.2 62.0
majority-voting(best 5) w/o T5-11B 2 75.1 33.8 60.3
majority-voting(best 5) w/o UL2-20B 2 74.8 34.0 60.3
majority-voting(best 5) w/o LlaMA-2-13B 2 74.7 34.9 60.8
majority-voting(best 4) (best 5 w/o CTC-copy) 2 74.0 38.8 62.6
majority-voting(best 4) w/o EditScorer 1 66.2 479 61.5
majority-voting(best 4) w/o T5-11B 1 70.4 43.1 62.5
majority-voting(best 4) w/o UL2-20B 1 69.9 43.7 62.4
majority-voting(best 4) w/o LIaMA-2-13B 1 68.5 45.2 62.1
majority-voting(best 3) (best 4 w/o T5-11B) 1 70.4 43.1 62.5
majority-voting(best 3) w/o EditScorer 1 72.9 36.4 60.7
majority-voting(best 3) w/o UL2-20B 1 77.0 28.0 57.0
majority-voting(best 3) w/o LIaMA-2-13B 1 77.3 29.2 58.2

Table 8: Ablation study of removing single-model GEC systems from majority-based ensembles on BEA-dev.

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 6" (best 6 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy.

"best 5" (best 5 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B.

"best 4" (best 4 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer.

"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.
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CoNLL-2014-test BEA-dev

Precision Recall Fos Precision Recall Fos
ChatlLaMa s I3BET 773 750 7.0 30.8 6.1 364
T5-11B 70.9 56.5 67.5 60.9 51.1 58.6
W) 0.1 8.7 360 338 6.0
71.0 59.5 68.4 56.9 53.1 56.1
GPT-4-rank-a(best 7) 70.7 59.5 68.2 56.6 53.1 55.9
70.7 59.8 68.2 56.8 53.7 56.2

Hean ©7sd TG E05 59T 06 68 AL 05 568 L0355 AE08 5615073
W) 396 7.0 362 338 35,7
69.6 59.5 67.3 56.0 53.5 55.5
GPT-4-rank-b(best 7) 69.5 59.4 67.2 56.6 54.0 56.0
70.2 59.6 67.8 56.3 542 55.9

Fean ©7sid 6B L0 EIS L0 GTAE07 563 L0535 550506 558 04
733 384 5.0 30.8 ) 381
722 58.6 69.0 59.7 52.5 58.1
GPT-4-rank-a(clust 3) 72.6 57.9 69.1 59.7 52.1 58.0
72.4 58.4 69.1 59.7 52.5 58.1

Fean ©7sd TIAE0E TIEAE06 60T L0 TS0 00 S E 04 S8 E 0
% 578 584 387 % 372
71.8 58.2 68.6 58.5 51.8 57.0
GPT-4-rank-b(clust 3) 722 58.4 69.0 58.9 52.1 57.4
71.9 58.1 68.7 58.7 522 572

fean & 7std TTOE04 38T E 05 68 TE05 ETE03 50405 573403

Table 9: LLM ranking for "best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B+ Chat-
LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024) and "clust 3" (clustered 3 single-model
systems: Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer). We denote "prompt-a" (top candidate) as "GPT-4-rank-
a", and "prompt-b" (ranking candidates) as "GPT-4-rank-b". We run each prompt four times with randomly shuffled
outputs of single-model systems’ candidates.

CoNLL-2014-test BEA-dev BEA-test
System Precision Recall Fg 5 Precision  Recall Fo.s Precision  Recall Fo.s
AGGR-RANK ¥[GPT-4-rank-a(clust 3),
majority-voting(best 7)] 84.0 454 71.8 71.7 41.7 62.7 87.5 63.8 814
AGGR-RANK ¥[GPT-4-rank-a(clust 3),
GRECO-rank-w(best 7)] 81.9 49.0 72.2 68.3 45.1 61.9 82.4 67.0 78.8

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.

*In the paper (Qorib and Ng, 2023), authors prepared different variants of GRECO, each of which is optimized for one test dataset.

**We show mean values across four GPT-4 runs with randomly shuffled single-model systems’ outputs.

* We denote 2nd order ensembling (ensembles of ensembles) by capital letters.

Table 10: Second-order ensembling by aggressiveness ranking.

Model Instructions CoNLL-2014-test BEA-dev

are used Precision Recall Fo.5 Precision Recall Fgs5

LLaMA-2-7B-FT No 69.33 50.26 64.44 59.45 46.29 56.25
LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77
Chat-LLaMa-2-7B-FT No 67.53 53.59 64.19 58.00 47.37 55.51
Chat-LLaMa-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50
LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77
LLaMA-2-13B-FT Yes 71.49 55.67 67.65 60.28 49.26 57.69
Chat-LLaMa-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMa-2-13B-FT Yes 72.35 54.48 67.90 59.04 48.73 56.64

Table 11: Ablation study on instructions’ usage in fine-tuned on W&I dataset Large Language Models.
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CoNLL-2014-test BEA-dev BEA-test

System Precision  Recall Fo.s Precision  Recall Fg5 Precision Recall Fg 5
majority-voting(best 7), Ny, in = 3 83.7 457 71.8 71.7 422 62.9 87.3 64.1 814
majority-voting(best 6), Ny, in = 3 85.3 41.7 70.5 73.8 39.1 62.7 89.0 60.6 81.4
majority-voting(best 5), Ny in, = 2 83.0 46.3 71.7 71.5 432 63.2 86.4 64.7 81.0
majority-voting(best 4), Ny in, = 2 86.4 404 70.3 74.0 38.8 62.6 88.8 59.9 81.0
majority-voting(best 3), Nypin = 1 82.8 44.1 70.4 70.4 43.1 62.5 85.1 64.5 80.0
majority-voting(best 2), Ny, i = 1 86.9 36.3 67.9 72.9 36.4 60.7 86.9 57.8 78.9

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 6" (best 6 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy.

"best 5" (best 5 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B.

"best 4" (best 4 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer.

"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.

"best 2" (best 2 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B.

Table 12: Ablation study for majority-voting ensembles.
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Abstract

Existing English-teaching chatbots rarely in-
corporate empathy explicitly in their feedback,
but empathetic feedback could help keep stu-
dents engaged and reduce learner anxiety. To-
ward this end, we propose the task of nega-
tive emotion detection via audio, for recogniz-
ing empathetic feedback opportunities in lan-
guage learning. We then build the first spoken
English-teaching chatbot with adaptive, empa-
thetic feedback. This feedback is synthesized
through automatic prompt optimization of Chat-
GPT and is evaluated with English learners.
We demonstrate the effectiveness of our system
through a preliminary user study.

1 Introduction

Teacher empathy has been shown to improve the
learning experience, including increasing learner
engagement and reducing anxiety (Cooper, 2002;
Lam et al., 2011; Zhang, 2022b). Recently, Wu
et al. (2023) suggests that students’ perceived affec-
tive support (PAS) from teachers has a positive cor-
relation with L2 grit, defined as the passion and per-
severance for second-language learning (Teimouri
et al., 2022). PAS generally corresponds to the
perceived level of support for emotional needs. Its
definition includes caring, valuing responses, listen-
ing, and encouragement (Sakiz, 2007). We there-
fore expect empathy to correlate positively with
PAS. We aim to examine whether an empathetic,
English-teaching system with high PAS similarly
boosts L2 grit.

English-teaching systems have adopted affec-
tive components for various purposes (Zhai and
Wibowo, 2022). However, the systems that have
introduced empathetic components into pedagogy
are either situated in ubiquitous learning environ-
ments (Dai et al., 2014; Santos et al., 2016) or are
not naturalistic or seamless in their approaches to
accounting for student affect (Wu et al., 2022). An
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interactive system that effectively detects and al-
leviates ESL learner anxiety without sensors (e.g.
pulse rate monitors) or cameras has yet to be im-
plemented.

Detecting negative emotion from a learner’s au-
dio is a promising way to offer empathetic feed-
back. However, off-the-shelf English speech emo-
tion recognition models are often trained on data
collected with native speakers of English (Busso
et al., 2008; Lotfian and Busso, 2017). We hypoth-
esize that English spoken by non-native speakers
will have differences (Lin, 2014) that challenge
these off-the-shelf models. To address this, we
develop a preliminary pipeline for this task using
annotated audio data and incorporate it into a spo-
ken empathetic chatbot system.

Our spoken chatbot detects negative emotions
or prolonged pauses and then responds empatheti-
cally to encourage students. This negative-emotion-
responsive design is inspired by an automated
physics tutor that senses student frustration using
sensors and cameras (D’mello and Graesser, 2013).
We currently employ model-based and automatic
approaches for sensing negative affect in user audio.
The chatbot also provides grammar feedback. We
utilize a grammar correction model for grammati-
cal feedback and ChatGPT with optimized prompt-
ing for empathetic feedback. Positive preliminary
user study results indicate that users perceive af-
fective support from our system, paving the way
for future large-scale experiments to study our sys-
tem’s effect on learner L2 grit.

Our main contributions are: 1) We release a
dataset of Mandarin-accented English speech with
high-quality ASR transcripts and negative emotion
annotations, and 2) We propose the first sensor-free
educational English chatbot that detects negative
affect and intervenes by providing adaptive empa-
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2 Related Work

2.1 Emotion Recognition in English-Teaching
Systems

Past English-teaching systems often relied on fa-
cial emotion recognition for detecting user affective
states. Lin et al. (2015) features a teaching assis-
tant that recognizes the user’s emotional state from
facial expressions and then adjusts the material’s
difficulty. Zhang (2022a) proposes a convolutional
neural network-based approach to learner emotion
recognition to be used in future systems. We are
not considering the visual modality due to the con-
straints of the dialogue framework we build upon.
Mazur et al. (2011) creates a gamified scoring
system to adapt to different users. This system is
equipped with affect classification for Japanese tex-
tual input, yet the role of empathy here is unclear.
Other systems have employed less seamless ap-
proaches to detecting affect changes. Wu et al.
(2022) constructs an emotion recognition module
by recording the number of times a learner clicks
on positive and negative emoticons. Santos et al.
(2016) employs Arduino, an open-source electronic
prototyping platform to detect learner physiological
changes, such as pulses and skin conductivity. An-
other ubiquitous learning system, Dai et al. (2014),
uses speech signal and multi-agent behavioral data
for online learning and a neural mechanism model
for analyzing learners’ emotional characteristics.

2.2 Affective English-Teaching Chatbots

Chatbots are effective in increasing student con-
versational activity during discussions (Goda et al.,
2014), improving listening skills (Kim, 2018) and
grammar (Kim et al., 2019), and enhancing writing
abilities (Lin and Chang, 2020). Since ChatGPT
appeared, the quality of chatbot responses has im-
proved dramatically, eliminating concerns about
adverse effects on student outcomes due to low
response quality (Fryer et al., 2020).

Ayedoun et al. (2015) introduces a multimodal
agent that simulates a restaurant waiter to situate
participants in a social conversational context to im-
prove their willingness to communicate. Ayedoun
et al. (2020) further improves this system by in-
corporating communication strategies and affec-
tive backchannels to provide personalized scaffold-

'The dataset and code are in https://github.com/
siyan-sylvia-li/adaptive_empathetic_BEA2024
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ing. While the systems alleviate learner anxiety,
learner emotions are not directly accounted for or
addressed. Both systems also rely on pre-scripted
dialogue and are restricted in scenarios.

Shi et al. (2020) builds an empathetic spoken
chatbot into a WeChat program for English tutoring.
The GPT-2-based (Radford et al., 2019) chatbot uti-
lizes an ontology and a retrieval-based generation
approach similar to Xiaolce (Zhou et al., 2020).
Despite being empathetic, the bot only uses audio
for pronunciation correction.

2.3 Pauses and Anxiety in ESL Context

Foreign language anxiety can correlate with higher
pause rates and lower fluency. Pérez Castillejo
(2019) established that learners with higher lan-
guage anxiety tend to pause more frequently. In
a study by Wilang and Vo (2018) that monitors
ESL speakers speaking during an exam, pausing is
associated with heart rate spikes for some, indicat-
ing anxiety during pauses. ESL teachers have also
noted pauses and stammering as signs of students
struggling with language anxiety (Kasap, 2019).

3 System Design

3.1 Overview

Figure 1 shows a system overview: User audio is
sent to the Empathetic Feedback module to deter-
mine whether the user is distressed. If so, the bot
produces empathetic feedback using past user ut-
terances; otherwise, the system continues to the
Grammatical Feedback stage, where grammar cri-
tiques are given if applicable. If either feedback
mechanism is triggered, the system transitions back
to the original conversation through the User Query
Response stage if the user follows up with the feed-
back, then through the Connect Feedback & Con-
versation module. To avoid overwhelming users,
we ensure at least two turns between grammatical
feedback and four turns between empathetic feed-
back. We discussed our design with ESL students
and consulted teachers before finalizing our system.
See Appendix A for details.

We build on an existing dialogue framework (Li
et al., 2022) for speech and text dialogue system
development. The system allows users to con-
verse with the chatbot by recording their utterances
through a microphone. The utterance is then con-
verted to text using Whisper medium (Radford
et al., 2023) and the text and audio are sent to the
chatbot for further analyses and response synthesis.
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Figure 1: System Design Overview.

The chatbot response is spoken using SpeechT5
(Ao et al., 2022). For the specific speaker embed-
ding, we selected one of the slt clips from the
CMU Arctic speech databases(Kominek and Black,
2004) manually. When choosing the speaker em-
bedding, we aimed for a female voice that can
sufficiently induce perceived empathy.

3.2 Data Used

To create data for testing various modules, we uti-
lized audio clips of native Mandarin speakers con-
versing with a chatbot collected from an English
practice platform (Li et al., 2022). 3,200 audio clips
from 613 conversations and 163 users remained af-
ter filtering. The filtering process removes audio
clips containing only Mandarin, duplicates, and
a subset of self-introductions from the users. We
were not able to eliminate all identifying informa-
tion from this stage of filtering, but we will remove
all identifiable information before publicizing our
data. Each audio clip ranges from one second to
two minutes. We did not collect demographic in-
formation for user identity protection.

We transcribed all audio clips with Whisper
medium for training the text-based models in our
pipeline. Whisper is not always sufficiently robust
to handle heavily accented speech in our data; how-
ever, to realistically simulate the environment for
our models, we choose not to correct these tran-
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scriptions, although we will release the data after
manually correcting the transcripts to ensure qual-
ity. Realistically, our system should improve as
more accent-robust real-time ASR systems emerge.

3.3 Grammatical Feedback

Grammar Correction Model: Following the
framework in Liang et al. (2023), we train a gram-
mar correction model to modify user utterance tran-
scripts. We originally prompted ChatGPT for gram-
mar correction feedback. However, responses were
often hallucinated or malformed, including using
the original utterance as the correction despite cor-
rectly identifying grammatical mistakes. Therefore,
we train a Llama-2-7b (Touvron et al., 2023) model
on ErAConD (Yuan et al., 2022), which contains
high-quality error-correction pairs collected from
human-chatbot written dialogues. Since grammar
correction is a sequence-to-sequence task, we train
additional Flan-T5 models (Chung et al., 2022) on
the same data. We include more details about the
training process in Appendix D.

To evaluate the models, we compute the exact
match scores between model predictions and the
ground truth corrections in the ErAConD test set.
Llama occasionally extends its output (See Table 1),
so we include another criterion, substring match,
to indicate whether the ground truth is included in



Input Correction

Llama

I like to read book and study En-

I like to read books and study

I like to read books and study

glish. English English. I also like to spend time
with my friends.
Love story Love story. Love story. Maybe I will write a
book one of these days.
Table 1: Examples of the trained Llama model extending the original output.
Model EM SM Corr. dependency parse constituent containing the error
to avoid repeating the entire sentence when pos-
Flan-T5-base 0.56 0.65 N/A . . .
sible. Since the sentences are sentence-tokenized
Flan-T5-XL 0.6 0.68 0.53 . .
before being corrected, we ignore Llama correc-
Flan-T5-XXL 0.62 0.72 0.58 . .
tions longer than one sentence. This addresses the
Llama-2-chat-7b 0.30 0.68 0.58

Table 2: Exact match scores, substring match scores,
and GPT correction scores for different grammar cor-
rection models.

the prediction. We also evaluate grammar correc-
tion quality on transcribed spoken utterances for
Flan-T5-XL, XXL, and Llama. Our trained mod-
els correct 100 transcribed spoken utterances. Due
to the lack of ground truth grammar corrections,
we use Al feedback from GPT-4-Turbo to assess
if each prediction is grammatically correct. The
results of the evaluation are shown in Table 2.

We observe an increase from exact match to sub-
string match across the board because the ground
truth grammatical corrections do not always ap-
pend periods, while most trained models do. As
we transition to out-of-domain data (from written
to transcription), we see a decrease in correction
accuracy. However, this drop is the smallest for
Llama, suggesting higher generalizability to out-of-
domain data. We, therefore, choose Llama for our
grammar correction model for its relatively higher
robustness and smaller size than Flan-T5-XXL.

Grammatical Feedback Format: We would like
to present grammar model corrections to the stu-
dents. Upon considering our design survey results,
we choose conversational recasts (Lyster et al.,
2013). This involves reformulating student utter-
ances, often including confirmation checks (e.g.
"Did you mean [corrected sentence]?"). We im-
plement the recast by pre-pending the corrected
sentence with a random confirmation check phrase
(e.g. "I think you meant"). When the corrected sen-
tence is longer than 20 words, we instead identify a
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previous Llama extension issue.

In addition to a conversational recast, we want
to explain how the student’s utterance is incorrect.
We utilize the conversational grammar correction
feedback templates proposed in Liang et al. (2023)
and append the templated feedback to the utter-
ance. See examples of our grammatical feedback
in Appendix G.

3.4 Negative Emotion and Pause Detection

Data Labeling: Since no accented speech emotion
classification dataset exists, we labeled our audio
clips to create evaluation data for our pipeline. We
used four labels: Negative, Pauses, Neutral, and
Unusable. Two Mandarin native speakers with high
English proficiency annotated approximately 10%
of the data with a Kappa of 0.893. We only include
audio clips whose labels both annotators agreed
upon. Our audio dataset’s data distribution and la-
bel definitions are in Table 3. The label definitions
were presented to the annotators as the annotation
scheme. The annotators also labeled clips featuring
both negative affect and pauses as “Negative” to
promote better label balance, since students rarely
display negative emotions in our data.

Negative Emotion Detection: Because of the
shortage of emotion-labeled accented speech data,
we could not train new audio classification models
for our specific task. Instead, we manipulate a pop-
ular out-of-the-box speech emotion classification
model®. We test different configurations and set-
tings for this model on the small emotion-labeled
dataset from the previous segment. Specifically,
given the output probabilities for different emo-

Zhttps://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-
speech-emotion-recognition



Label Definition Counts

Unusable The audio is either completely silent, the speaker(s) are conversing in 8
Mandarin, or the utterance is completely unintelligible.

Negative  The speaker displays negative sentiments: e.g. anger, frustration, or sad- 39
ness. Include instances in which the speaker displays an unwillingness to
communicate. Include instances where the speaker asks for clarification,
as it is an implicit display of confusion.

Pauses The speaker makes many pauses during their utterance. These pauses 54
make it sound like the speaker is struggling to construct the sentences.

Neutral This includes all usable clips that are labeled neither negative nor pauses. 200

Table 3: Definitions for different labels in our data labeling process and their corresponding counts in our labeled
audio dataset. These label definitions were presented to the annotators.

Metric Clip Label Mean Diff
Ratio Pauses 041
Neutral 0.32 0.09
Pause Rate Pauses 0.60
Neutral 0.55 0.05
Pause Length Pauses 0.68
Neutral 0.49 0.19

Table 4: The three metrics for the clips labeled as
“Pauses” and “Neutral” in our audio data. We include
the average values for the metrics, as well as the differ-
ences between the different clip labels.

tions, we first combine a subset of them to form our
estimated probability of negative affect. Threshold-
ing is then applied to provide the final prediction.
Our results indicate that the optimal configuration
is the predicted probability for only “anger” and a
threshold of 0.4. Using this information, we reach
a weighted F1 score of 0.78 on our Negative and
Neutral audio clips. See Appendix C for details.

The current speech emotion recognition models
do not perform well on our task, as speculated.
Anecdotally, when directly running classification
on our audio clips using the model, many clips
classified by us as “Neutral” are often classified as
sad or disgusted.
Pause Detection: As established, prolonged
pauses indicate the presence of foreign language
anxiety and should be considered as a cue in our
framework. We aim to develop automated metrics
that identify user utterances with these pauses.

We devise three metrics for determining whether
an audio clip fulfills the criteria for “Pauses’:

1. Silence Ratio: The quotient of the total
amount of silence in a clip and the clip length.
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2. Pause Rate: The result of dividing the num-
ber of pauses by audio length.

3. Average Pause Length: The average length
of pauses.

For computing these metrics, we equip our sys-
tem with Silero-VAD (Silero, 2021), a fast and
enterprise-grade voice activity detection package.
Silero-VAD identifies and locates speech segments,
and it allows speech extraction from the original au-
dio such that the resulting clip is speech-only. We
can therefore compute the total lengths of silence
and pauses in an audio, as well as the number of
pauses in an audio clip.

Other features, such as pause location, can also
be used to indicate the level of anxiety. We leave
the exploration of these features to future work.

To compare the ability of these metrics to differ-
entiate between “Neutral” and “Pauses” clips, we
calculate the values of these three metrics on these
clips. We further measure the differences between
the metric values for the two categories (Table 4).
The “Average Pause Length” metric yields the high-
est difference, which suggests it effectively sepa-
rates “Neutral” and “Pauses” clips. In addition, we
experiment with various thresholds for differenti-
ating the two types of audio using “Average Pause
Length” (See Appendix B) and select a threshold
of 0.5.

3.5 Empathetic Response Generation

Data Construction: Given the ASR transcripts
of user utterances in a conversation, we added all
instances of three consecutive utterances to our
data (i.e., utterances 1+2+3, 2+3+4, etc). This cre-
ated 2014 segments for optimizing our ChatGPT
prompts. Due to cost constraints, we only used



625 conversation segments for prompt optimiza-
tion: 125 for optimization, 200 for evaluation and
iteration, and 300 for held-out testing.

Implementation: Our desiderata for the empa-
thetic response generation module include the fol-
lowing: 1. Tailored to the user; 2. Empathetic and
encouraging; 3. Including actionable feedback or
specific examples the user can learn from. Because
there are no sufficiently large datasets that precisely
fulfill these requirements, we rely on prompting
ChatGPT to generate such responses.

Unfortunately, large language models are sen-
sitive to how they are prompted. Simple trial-
and-error did not achieve consistently satisfac-
tory responses in our preliminary experiments
(ZEROSHOT stage).

We employed the DSPy framework (Khattab
et al., 2023) to optimize for prompts while satis-
fying our desiderata (OPTIMIZED stage). We first
tasked GPT-4 to check whether each requirement
is satisfied in a given response (e.g. is the utterance
empathetic and encouraging). This is a form of Al
feedback (Bai et al., 2022). GPT-4 appears suc-
cessful in this text annotation task, consistent with
results established in Gilardi et al. (2023). Using
the Al feedback as our metrics, we aimed to opti-
mize our prompts to maximize the metrics. DSPy
supplies the BayesianSignatureOptimizer, which
references simple descriptions of our desiderata to
suggest sample instructions and few-shot examples.
Using this Bayesian-model-powered optimization
process, we improved the metrics on a held-out
test set from 68.3 (at the ZEROSHOT stage) to 89.8.
We discuss whether the improvement aligns with
human intuition in Section 5.1.

We observe that the outputs of our optimized
prompt are often formal, while most of our design
survey participants prefer colloquial feedback. To
address this, we insert a final rewrite call to rewrite
the optimized prompt output to a more colloquial
version (REWRITE stage). GPT-4 evaluates this
stage’s outputs as 88.7.

During inference time, when we detect that the
user requires empathetic feedback, the user’s three
most recent utterances are concatenated and fed
into ChatGPT with the optimized prompt. The
output undergoes the REWRITE stage to produce
the final output. All ChatGPT prompts and GPT-4
feedback prompts used for this module are included
in Appendix I. See Appendix J for examples of
outputs at different stages.
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3.6 Connecting Feedback and Conversation

User Query Response: Our feedback modules
are currently intended for single-turn feedback (i.e.
the bot provides the feedback without anticipating
that the user will ask clarification questions), but in
preliminary user studies, we noticed that users do
inquire about the feedback. Therefore, we handle
this case by constructing a ChatGPT call with the
immediate conversation context and asking for a
response to the user’s query. We classify a user
response to feedback as a relevant query with a
rule-based approach. We use this rule-based ap-
proach instead of forwarding all post-feedback user
queries to ChatGPT because prior users would ask
about the bot’s creator and training data, resulting
in unintended behavior (e.g. the bot claiming it is
created by Google or OpenAl engineers).

Transition: We employ templates for a smooth
transition between feedback and the original con-
versation. Before entering the feedback stage, we
cache the original bot response to return to the con-
versation afterward. More details about templates
and ChatGPT prompts are provided in Appendix E.

3.7 Conversation

Unlike the other modules that only need to be ac-
tivated sporadically, the conversation module is
invoked for almost every turn. This poses addi-
tional needs for inference speed and costs, which
motivates using a locally stored model.

We selected a Vicuna model fine-tuned for
curriculum-driven conversations (Li et al., 2023).
The model allows for customization of topics, chat-
bot personas, and vocabulary to incorporate into the
conversation. Li et al. (2023) noticed that brevity
instructions are sometimes ignored by ChatGPT.
This further makes ChatGPT not ideal for our spo-
ken conversation use-case, as run-on utterances
may be difficult to comprehend in a speech setting.
Users found the Vicuna model more helpful for
developing conversational skills, providing natural
and realistic utterances, and aligning with users’
English proficiency levels.

The topic of “Name a movie that has had an
enduring impact on you” was chosen for relatabil-
ity. We randomly selected a vocabulary and one of
the female personas to match the TTS voice. Bot
feedback and user responses to feedback are not in-
cluded in the conversation history when prompting
the Vicuna model to keep the components modular
and prevent out-of-distribution behavior.



Quality Conf. Useful Enc. Listen Care Praise PAS
Average 3.75 3.33 3.83 3.16 3.58 3.08 3.25 3.27
Std 1.05 1.07 1.19 1.64 1.16 1.24 1.60 1.16

Table 5: Post-survey results. "Conf." stands for confidence, "Enc." stands for encourage, and "PAS" stands for

perceived affective support.

4 User Study

Fourteen native Mandarin speakers were recruited
from social media and the authors’ connections.
Each participant conversed with the chatbot for at
least 10 turns (a turn is one round of exchange be-
tween the chatbot and the user). A pre-survey for
participant English proficiency and a post-survey
for user experience were administered. In the pre-
survey, we obtain an approximate assessment of
the participants’ English proficiency including their
standardized test scores, self-reported proficiency,
and the frequency at which they speak English daily.
After the participants interacted with our system,
they were presented with a post-survey which in-
cludes a modified version of the teacher affective
support scale (the last four items below) (Sakiz,
2007) adapted for our context and general evalua-
tions of conversation quality.

Our Likert-scale post-survey includes:
Quality: How was the conversation quality?
Confidence: Do you feel that you are more confi-
dent after conversing with the chatbot?
Useful: Do you think the chatbot’s grammar feed-
back is useful?
Encourage: The chatbot encourages me when I
am having difficulties in the conversation.
Listen: The chatbot listens to me when I have
something to say.
Care: My opinion matters to the chatbot.
Praise: The chatbot recognizes and appreciates
when I am good at something.

Details for the surveys can be found in Ap-
pendix H. Example conversations between the par-
ticipants and the bot can be found in Appendix G.

5 Results and Discussion

5.1 Empathetic Generation Evaluation

We asked each participant to rank the different
stages of empathetic feedback (ZEROSHOT, OPTI-
MIZED, REWRITE). Participants ranked responses
generated in these three stages on the same seg-
ment for 30 randomly selected segments. At least
3 participants ranked each triple. We also asked the
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Stage vs. ZE- vs. OPTI- vs.
ROSHOT MIZED REWRITE
ZEROSHOT - 0.52 0.45
OPTIMIZED 0.47 - 0.45
REWRITE 0.54 0.54 -

Table 6: Win rates between each pair of empathetic
feedback generation stages.

participants how they would improve the utterance
they ranked at #1 for each conversation segment.

In Table 6, REWRITE wins more often against
both ZEROSHOT and OPTIMIZED, suggesting that
the REWRITE improves OPTIMIZED stage outputs.
OPTIMIZED outputs are often not preferred due
to their formality and length. Since REWRITE
rephrases OPTIMIZED outputs without modifying
core content, it appears that the participants are
ranking the content from OPTIMIZED relatively
higher than the content from ZEROSHOT. Another
result is that ZEROSHOT is often ranked as #1 or
#3, illustrating that ZEROSHOT outputs are less
consistent in quality. Despite being scored higher
by GPT-4, OPTIMIZED does not significantly out-
perform ZEROSHOT. This could be due to DSPy
optimization focusing on fulfilling metrics without
considering human preferences, or due to raters
having various standards.

As for improving the feedback, participants re-
ported that the best responses are still too verbose
(one wrote "the shorter the better") and requested
better feedback examples. They mentioned that
generic praises can sound disingenuous, detrimen-
tal to the intention to encourage. Some suggested
that praise may not be necessary for every piece of
feedback, especially when participants receive mul-
tiple feedback during a conversation. One future
direction would be to develop more context-aware
mechanisms for more naturalistic and long-term
empathetic feedback.



5.2 Conversation Statistics

Two participants did not receive empathetic feed-
back and were excluded from analyses. For the
other twelve participants, each conversed for an
average of 14.5 turns and received 1.9 grammatical
feedbacks and 1.3 empathetic feedbacks.

5.3 Survey Results

On average, our participants have approximately
14.25 years of experience learning English. They
all rated themselves above three out of five for self-
reported English proficiency (higher is more pro-
ficient) with an average of 3.92. The participants
who disclosed their IELTS and TOEFL scores had
7.3 and 109.3 averages respectively. For the ques-
tion on English usage frequency, the average was
3.41 (one being for English only, five being for
Mandarin only). Our participants have intermedi-
ate English proficiency but do not speak English
frequently.

The post-survey results are shown in Table 5. In
addition to the survey items, we include PAS as
an aggregate metric by averaging the four adapted
PAS survey items. The participants often consider
the conversation quality to be high. They reported
gaining moderate confidence after the conversation,
and consider the bot’s feedback useful. As for the
survey items involving PAS, the results contain
higher variance. While users believe that the bot
appears to listen to them fairly attentively (poten-
tially as an effect of the grammatical feedback),
they are more ambivalent about whether the bot
encourages them or praises them appropriately. We
suspect that the reason for lower “Encouragement”
ratings stems from our imperfect detection mecha-
nism; empathetic feedback might have been given
when the user was not exactly struggling. The par-
ticipants also could not have struggled at all during
the conversation. A potential reason for the high
variance in “Praise” ratings is the disingenuous-
sounding encouragement mentioned in Section 5.1.
Additionally, user motivation for using our system
can affect their self-reported results. Participants
who only intend to test the system rather than im-
prove their English might rate it poorly.

5.4 Dialogue Inspection and User Feedback

We inspect conversations with low PAS to identify
failure modes of our system. The conversation with
the lowest PAS includes both technical issues in
the system (the user was baffled by the frequent
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interruptions in the system) and the chatbot for-
getting the conversation history due to the limited
context length of our model. Another conversation
features significant ASR errors and the error prop-
agation led to nonsensical grammatical feedback
which confused the user. Due to current limita-
tions in user query processing after bot feedback,
some user queries were occasionally ignored, but
the presence of these does not dictate low PAS.

We requested feedback from our participants.
They praised the ASR accuracy and feedback qual-
ity, mentioning that they feel encouraged after re-
ceiving feedback. Some users stated that the goal
of spoken English is to keep the conversation go-
ing, and therefore only egregious grammar errors
should be corrected. Others would solicit gram-
mar feedback from the system and exhibit dismay
when it did not recognize their errors. One user
mentioned that they would stammer and have dis-
fluencies that would be recognized as grammat-
ical errors. Some users disliked the stiffness of
the feedback formats as they felt the conversation
flows were interrupted. A subset of responses are
presented in Appendix F.

These observations highlight limitations in our
current system. To improve user experience, we
will develop more seamless feedback mechanisms
and robust user query classification. Additionally,
we aim to create better grammar models suited for
transcribed utterances and resilient to disfluencies
and fillers. Additional goals include detecting tech-
nical difficulties so the chatbot can apologize for
any interruption, as well as conversation summariz-
ers to inform our model of previous discussions.

6 Conclusion and Future Work

In this work, we propose the negative emotion de-
tection task in the context of English learning to
capture learner frustration and anxiety. We also
introduce the first English-teaching chatbot that
provides adaptive, empathetic feedback to students
using our negative affect detection pipeline. Initial
trials with end users demonstrate the potential of
our system. For future work, we intend to scale up
our user evaluations and verify our hypothesis that
our system can effectively improve student L2 grit.

For future work, apart from addressing partic-
ipant feedback, we intend to expand our experi-
ments to include more thorough comparisons be-
tween the different experimental conditions to es-
tablish more robust results. Specifically, we want



to determine whether our adaptive empathetic feed-
back improves L2 grit more than no empathetic
feedback or fixed feedback upon multiple chatbot
interactions. Another interesting topic to examine
more closely would be whether humans behave and
react similarly when conversing with chatbots and
real-life English teachers. We intend to include
participants from an ESL course in our next study.

7 Limitations

Our current system serves as a proof-of-concept for
a chatbot system capable of adaptive empathetic
feedback, and it is by no means perfect. While our
modular design allows for more rigorous control
for future experiments, there can easily be error
propagation between modules, and none of the
modules are completely error-proof, as we have
illustrated in our paper. To begin with, our speech
emotion recognition pipeline does not successfully
capture all instances of negative affect in our la-
beled data. The Llama model used for grammar
correction still cannot correct all instances in the
ErAConD test set. Our user query detection mecha-
nism can miss relevant queries. All of these should
be improved in future iterations of the system.

The current user study results are preliminary
and do not offer sufficient statistical strength for
solid conclusions. In future, we will aim for larger
user studies by recruiting broadly on social media
and at our institution.

Our data is currently labeled only by two label-
ers, which renders our labels less valid. We will
aim to include more labelers to improve the validity
of our emotion-labeled data.

8 Ethical Considerations

Any applications interfacing with humans, espe-
cially students, need to consider accidental psy-
chological harm done to the students as a result of
generations. To address this, we performed rigor-
ous testing prior to our user study.

There is potentially self-identifying information
present in our audio data. We will filter out self-
identifying information before releasing the data to
protect user identity.
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A Chatbot Design Discussion

A total of 12 Mandarin native speakers were re-
cruited through the authors’ personal connections
to provide feedback on our chatbot design. We
provided a Google Form for them to complete. We
later released a version on social media that gained
many more responses, but since we do not utilize
the results from that survey directly in this work, we
reserve the discussion and incorporation of these
results for future work.

We translated a subset of relevant questions
and response options from Mandarin. We have
abridged preambles in the questionnaire for brevity.
The questions and responses of our survey are as
follows (the percentage in the parentheses corre-
sponds to the percentage of participants who se-
lected that option):

1. How would you like an English teacher to give
you feedback?

* Formal (25%)
* Colloquial (75%)

2. How long should the feedback be?

e 1 - 2 sentences (8.3%)
e 2 -3 sentences (41.7%)
* 3 -4 sentences (50%)
* 4+ sentences (0%)

3. If you have made a grammatical error, what
specific attributes should a teacher’s feedback
for you have? Please select all that are appli-
cable.

* Correct your mistakes directly (58.3%)

* Correct your mistakes interactively
through Q & A (33.3%)

* Give you examples so that you can
learn from the example and avoid mak-
ing the same mistakes again (75%)

4. What is your ideal form of encouraging and
empathetic feedback? Please select all that

apply.
* Give you encouragement (e.g. "You are
doing great!", "I am proud of you!")
(58.3%)

* Tell you what you are good at in terms
of your spoken English (75%)

* Tell you what you can improve in your
spoken English (58.3%)
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Threshold Neutral % Pauses % Threshold Neutral % Pauses %
0.1 100.0 3.5 0.1 98.1 21.5

0.2 98.1 22.5 0.2 98.1 24

0.3 72.2 53.0 0.3 96.3 34.5

0.4 44 4 72.5 04 88.9 54.4

0.5 26.0 85.5 0.5 70.4 73.0

0.6 74 92.0 0.6 61.1 81.5

0.7 3.7 97.0 0.7 38.9 89.5

Table 7: Classification accuracy for Neutral and Pauses
audio clips using the Silence Ratio pause detection met-
ric.

Threshold Neutral % Pauses %
0.1 100.0 0.0

0.2 98.1 1.5

0.3 96.3 9.5

0.4 88.9 18.5

0.5 74.1 39.5

0.6 50.0 61.0

0.7 29.6 85.0

Table 8: Classification accuracy for Neutral and Pauses
audio clips using the Pause Rate pause detection metric.

* Tell you how you can improve through
examples (75%)

* Provide you with plausible and action-
able advice for improving your English
(41.7%)

B Experiments for Pause Detection

After computing the pause length metric values
for all audio clips labeled as either “neutral” or
“pauses”, we compared the effect of varying pause
detection mechanisms and thresholds. We com-
puted the classification accuracy values when us-
ing different pause detection metrics and different
threshold values. We aim to obtain the highest pos-
sible classification accuracy values for our metric-
threshold combination.

We present the results for varying threshold val-
ues for Silence Ratio, Pause Rate, and Average
Pause Length in Tables 7, 8, and 9, respectively.

C Experiments for Negative Emotion
Detection

The wav2vec model we have selected outputs prob-
abilities for the following emotions given a speech
segment: angry, calm, disgust, fearful, happy, neu-
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Table 9: Classification accuracy for Neutral and Pauses
audio clips using the Average Pause Length pause de-
tection metric.

tral, sad, and surprised. This model is a fine-tuned
version of Grosman (2021), which is a widely popu-
lar automatic speech recognition model. The model
is then fine-tuned on the RAVDESS dataset (Liv-
ingstone and Russo, 2018) for the speech emotion
recognition downstream task.

We explored the following methods for combin-
ing the output probabilities from the model to pro-
duce the negative affect estimate. Here, we include
anger for each of our methods because frustration
and anger can manifest themselves in a similar
manner in speech.

1. Anger + Disgust + Fearful + Sad (ADFS) - 0

2. Anger + Disgust + Fearful (ADF) - 1

. Anger + Disgust (AD) - 4
Anger + Fearful (AF) - 5

5. Disgust + Fearful (DF) - 3

6. Anger (A) -2

For the values of the threshold, we experimented
with 0.1 through 0.9 with an increment of 0.1.

We evaluated the different setups on all audio
clips labeled as Neutral or Negative in our labeled
data subset. The weighted F1 score was computed
to account for class imbalance. We included the
best F1 scores achievable by each setup, along with
their corresponding thresholds for obtaining the
best F1 scores, in Table 10.

D Training Details for Llama and
Flan-TS Models

All models were trained on a single 40 GB GPU.
Models were trained for 10 epochs and the best
models were selected using validation set loss.



Setup Threshold Best F1
ADFS 0.9 0.57
ADF 0.8 0.76
AD 0.8 0.76
AF 04 0.76
DF 0.8 0.76
A 04 0.78

Table 10: The best achievable weighted F1 scores and
their corresponding threshold values for each of the
speech recognition model output aggregation methods.

Flan-T5-base was trained without any parameter-
efficient fine-tuning, but all other models were
trained using PEFT and Lora. We will release
model training and inference code if accepted.

E Details on the Connecting Feedback
and Conversation Component

E.1 Identifying Query

We utilized a simple rule-based approach to de-
termine whether an utterance provided by a user
after bot feedback is a question about the feedback
or the English learning process. Namely, we (1)
checked that a "?" is in the transcribed utterance;
(2) checked whether one of the words in this list
belongs in the utterance: "grammar", "grammat-
ical", "vocab", "English", "mistake", "example",
"sentence". If both conditions were fulfilled, we
then interfaced with ChatGPT to respond to user
queries.

E.2 Responding to Query

Since we anticipate that the user will only be re-

sponding to the bot feedback, we would not need

to include too much context in our ChatGPT call.

We supplied the following prompt to ChatGPT to

obtain a response to give to the user.

f"""Based on the following conversation

history:\n\n{convo}, answer the user's
following query: "{user_query}" Answer

in a spoken utterance. Provide specific
feedback, but be succinct.”""

E.3 Transitioning

If the user does not respond to the bot feedback
with a query, or when the bot has finished respond-
ing to the user query, the system would then return
to the original conversation flow. This transition
was obtained by prefixing the cached original bot
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response with one of the randomly selected phrases.
There are two general scenarios here:

1. The user expresses gratitude by including
"thank" in their utterance.

2. The user does not explicitly express gratitude.

The code for constructing the prefix to prepend
to the original bot response is as follows:

if "thank” in text.lower():
prefix = random.choice(["Of course!"”,
"No problem at all.”, "Yeah, no

problem!”, "No problem!"]) + " "
+ random.choice(["Back to the
conversation.”, "Back to our
convo."”, "Let's go back to
chatting.”, "Now we circle back

"D

else:
prefix = random.choice(

["Sounds great."”, "Alright, let's
continue our conversation.”,
"Great, let's get back to it
pn

"Okay let's go back to our
conversation.”, "Now back to

our conversation."”, "Okay!",

”

"Lets' go back to our chat.”,
Let's keep chatting.”])

F User Feedback

We asked participants to share their experience with
the chatbot, and received the following responses.
All responses have been paraphrased and translated
from Mandarin:

User A: I like the chatbot and I look forward to
the finished product... When the chatbot corrects
my grammar, the way it corrects me is very stiff
and clunky, and it can interfere with the immer-
sive experience... Additionally, when I use filler
words or discourse markers or perform self-repair
in the conversation, the bot would catch these as
grammatical errors even though they should not be
treated as such.

User B: Your chatbot has high ASR accuracy,
and the quality of the conversation is quite good!
However, it may be challenging to provide English
learners with sufficient help, because I asked for
more specific feedback after receiving a feedback
and it went back to talking about movies.

User C: One thing I really like about the chatbot
is that the feedback is very timely! When using
ChatGPT I don’t always get very prompt feedback.
We have a foreigner English teacher coming next
week and your bot is definitely a life-saver.



User D: I don’t think some trivial grammatical
errors, like mixing is and was when discussing
movie plots, should be corrected. I also asked for
the bot for word choice improvements but it didn’t
give me any.

User E: The conversation has high quality, and
although the feedback can lag behind one or two
sentences, the feedback is always correct and help-
ful. The bot clearly understands what you are try-
ing to convey and can continue the conversation
despite grammar errors. Sometimes it uses sen-
tences that can be too complex for beginners, but
providing Mandarin translations for bot utterances
can be helpful.

G Example Conversations

The following are conversation excerpts between
our bot and different users. Here, blue indicates
empathetic feedback, indicates a transition
between feedback stage and the conversation, and
red indicates a grammatical feedback.

We first examine a successful conversation exam-
ple. Note that the empathetic feedback is activated
when the user experiences hesitation:

User: Actually, I hardly ever watch movies, so
could I describe opera?

Bot: Sure! What’s the name of the opera that you’d
like to describe?

User: Okay, that’s Turandot, which describes a
love story between a Chinese princess and a foreign
prince.

Bot: I believe you wanted to say "Okay, that’s Tu-
randot, which is a story about a love between a
Chinese princess and a foreign prince.". In this sen-
tence you used the verb "describes", but it doesn’t
sound natural. I’d recommend using the word "is a
story about". Does that sound good?

User: you

Bot: Inter-
esting! I can’t say that I’'m familiar with it. Could
you tell me more about the story?

User: This Chinese princess whose grandma is...
Wait a minute.

Bot: You’ve got a good grasp of the topic and can
explain yourself clearly, which is awesome! Just
tweak your grammar and sentence structure for a
more natural flow. For instance, instead of saying
"I hardly ever watch movies, so could I describe
opera?", try "Since I rarely watch movies, can I
talk about opera instead?" Keep at it, and you’ll see
improvement in no time! Does that sound alright
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to you?

User: Yes, and now I will go to talk about the
context of the opera.

Bot: Yes, go on. What’s the story about?
User: This story is about the Chinese princess,
Truong Du, whose grandma was bullied by the for-
eigners. So Truong Du set a rule to the man who
want to marry him that he must answer three ques-
tions and then he can marry her or dad. The cover
of the, answered the three questions and finally
married with Torandu.

Bot: Perhaps what you meant to say was "who
wants " and not want In this sentence you made a
mistake on the verb "want". The correct verb form
here is "wants". Remember to make your verbs
agree with their subjects. How does that sound?
User: That sounds great, okay I understand.

Bot:

That’s certainly a unique story! What did you like
most about the opera?

Here we see a failure of recognizing user query
due to the rule-based nature of our query recogni-
tion mechanism.

Bot: I'm doing alright, thanks. Have you watched
any good movies lately?

User: No, not really. I don’t watch any movie.
Bot: Really? You don’t watch any movies? Not
even the classics?

User: then it won’t be lately. I do watch classics.
Which one you want to talk about?

Bot: Well, I was thinking about the movie "Citizen
Kane". What do you think about it?

User: That is a very very classical one. I had it
some time ago I couldn’t really remember the plot
could you rephrase it for me?

Bot: Sure, it’s about a journalist who becomes a
powerful newspaper publisher and his journey to
find the meaning of "rosebud" which holds the key
to his soul.

User: Yeah, I sort of like that idea. You know,
start being a nobody and then with one’s effort you
became a big shot in the industry.

Bot: Exactly, it’s a great story of how one’s perse-
verance and hard work can lead to success. I also
love the way the director used different narrative
techniques to tell the story.

User: I couldn’t remember exactly. Could you give
me an example?

Bot: Sure, one of the techniques used is the use of
different reporters telling the story of Kane’s life.
Each one provides a different perspective on who



he was as a person and the events that shaped his
life.

User: Yeah I would say that was quite innovative
at that time when the movie was first released. Any-
way what else you want to talk about?

Bot: You’re doing great with understanding and
expressing the topic clearly! Just brush up on gram-
mar and sentence structure, like saying "I can’t
remember exactly." Keep practicing to keep getting
better!

User: All right, anything else for me?

Bot: Well, I was also
thinking about "The Godfather". Have you seen it?
User: Oh yes, I really love the music. The Godfa-
ther theme in both 1 and 2. I didn’t really watch
Godfather, the third part.

Bot: I believe you wanted to say "I didn’t really
watch The Godfather, the third part.". You seem
to be missing a determiner in this sentence. You
should probably add "The" to make the sentence
sound more natural. Does that sound alright to
you?

H Pre Survey and Post Survey

The surveys have been translated from Mandarin.

H.1 Pre-Survey
1. How many years have you been learning En-
glish?

2. How would you rate your English proficiency
(1 star for beginner, 5 stars for proficient)?

3. What is your IELTS score?
4. What is your TOEFL score?

5. How much English do you speak every day
(1 star for English only, 5 stars for Mandarin
only)?

H.2 Post-Survey

1. How was the quality of your conversation on
ascale of 1 to 57

2. Do you feel that you are more confident after
conversing with the chatbot? Rate on a scale
of 1to5.

3. Do you think the chatbot’s grammar feedback
is useful? Rate on a scale of 1 to 5.

4. The chatbot encourages me when I am having
difficulties in the conversation (1-star for "Not
like me at all", 5-stars for "Very much like
me").

5. The chatbot listens to me when I have some-
thing to say (1-star for "Not like me at all",
5-stars for "Very much like me").

6. My opinion matters to the chatbot (1-star for
"Not like me at all", 5-stars for "Very much
like me").

7. The chatbot recognizes and appreciates when
I am good at something (1-star for "Not like
me at all", 5-stars for "Very much like me").

I Empathetic Feedback Generation
ChatGPT Prompts

I.1 Zero-shot Prompt

A student is learning English. You are assessing
a spoken utterance. In at most two
sentences, summarize (1) their specific
strengths in English skills and (2) things
they can work on to improve. Address the
student in the second person. Include
specific examples that the student can learn
from. Be colloquial, as if in spoken
conversation.

Follow the following format.

Convo: \$\{convo\}

Reasoning: Let's think step by step in order to
\${produce the output}. We ...

Output: Treat this as a spoken conversation, so
be succinct, colloquial, and empathetic.

Convo: - Yeah, I always talk to my parents about
the student. - Yeah, so the person that I
met, you know, that I've met, that I want to

study with is one of my classmates, Tom,
and how I met this, met Tom is when I was in
high school and he's in my next classroom
and he is one of the best students in the
other class and I really admire his
intelligence and I learn a lot from him and
I've known him since, you know, 2016 and he
is one of the best students in the other
class so that's why I want to study with him

Reasoning: Let's think step by step in order to
assess your spoken utterance. We can see
that you have a strong grasp of English
vocabulary and grammar, as evidenced by your

ability to express complex ideas and use a



variety of sentence structures. However, you
may want to work on your pronunciation and
intonation, as some of your words were not
clear and your speech lacked natural rhythm.
For example, you said "met" instead of "
meet” and "classroom” instead of "classmate
." Practicing with a native speaker or using
online resources can help you improve in
this area. Keep up the good work!
OQutput:

L.2 Optimized Prompt

Proposed Instruction: You're playing the role of
an encouraging English tutor for a student
who is actively learning and practicing
their English through conversation. Your
task is to listen attentively to their
spoken utterances and provide constructive
feedback. In your response, kindly highlight
(1) one specific strength they showed or an
aspect they did well in during the
conversation, complimenting their effort or
skill in English, and (2) offer one focused
suggestion on how they can improve further,
making it actionable and clear. Use
colloquial language to maintain the
conversational tone, directly addressing the
student with "you"”, and where possible,
reference specific examples from their
speech to illustrate your points. Your
feedback should feel like a supportive nudge
towards their language learning journey,
keeping it concise and personalized.

Follow the following format.

Convo: ${convo}

Reasoning: Let's think step by step in order to
${produce the output}. We ...

Feedback: Treat this as a spoken conversation,
so be succinct, colloquial, and empathetic.

Convo: - Sorry, I have not get some information
about the personal medical data sharing.
Well, I think it's maybe something related
to digital. Like, it's different from the
traditional medical system. Like, all
medical systems transfer from the
traditional one into the digital one. And
maybe the digital systems will help the
hospital to organize the patients and to
regulate some patient's information with
high efficiency and better orders. So it may

saves a lot of time for some... - Yeah,
maybe like if you go to one hospital and if
the doctor keeps a capital record on his on
the paper then you left this hospital go to
another hospital the new doctor have no idea
about your situation if all information of
patients can put on the website or in other
words those are online information that
whether we change the hospital the doctor
can get access to our information and we can
show our situation to to those doctors yeah

it's a good idea - Yeah, if we put some
information online, it means we lose our
Privacy or our information is easy to be
steered by some Bad person. Yeah, maybe some
people they have some Some disease which
they don't want to be known They want to
keep at a secret if we upload their disease
Their information about this disease some
people there will feel uncomfortable maybe
we can like set some System which only
allowed the The doctor can see all this
information Information something like the
bank so people cannot get a sex to the
system if they are not Permated permitted to
do these things

Reasoning: Let's think step by step in order to

assess your spoken utterance. You have a
strong understanding of the topic and are
able to explain it clearly. However, you can
work on your pronunciation and grammar to
improve your fluency. For example, you can
practice pronouncing words like "information
" and "permitted” more clearly and work on
using proper verb tenses. Keep practicing
and you will continue to improve!

Feedback: You have a good grasp of the topic and

can explain it well. However, you can work
on your pronunciation and grammar to improve
your fluency. For example, try practicing
words like "information” and "permitted” and
using proper verb tenses. Keep practicing
and you'll get even better!

Convo: - The people who influence me the most

was my primary teacher, Ms Wong. She made me
follow the English teaching class on the
road to the next level. She is so gentle, so
calm, so professional. And the method she
is teaching, she is interesting. So in her
English class, my attention is always
focused. She makes me feel that English is a
very interesting subject. And she always
shares with me the experience in English
that she is in the world, her life, her
study life and the normal life in the world.
And that made me think that English is a
necessary and important skill. And it played
an important role in our life. - Yes, I
told her, I always, when I chat with my
friends, I will always mention this teacher.
She, although she is the primary English
teacher for me, is nearly 17 years ago. Yeah
, it's a long time and we haven't had a long
time to say that. I still remember her and
always remember what she did for us. - I
think the childhood is the most... It's the
most pure and carefree days. In that time
happiness is the very easy. And we always do
what we like. We don't need to concern our
life, concern how to make money for living.

Reasoning: Let's think step by step in order to

assess your spoken English skills. You have
a strong foundation in English, as evidenced
by your ability to express yourself clearly
and fluently. However, you can work on your
pronunciation and intonation to make your
speech more natural and engaging. For
example, you can practice speaking with a



native speaker or listen to English podcasts
to improve your pronunciation and
intonation. Keep up the good work and
continue to practice, and you will see
improvement in no time!

Feedback: You have a great foundation in English,

and it's clear that you have a strong grasp
of the language. However, you can work on
your pronunciation and intonation to make
your speech sound more natural and engaging.
For example, you can try practicing with a
native speaker or listening to English
podcasts to improve your pronunciation and
intonation. Keep up the good work and keep
practicing, and you'll see improvement in no
time!

Convo: - Yes, of course. I usually focus on my

test work. - When I was reading books or I'm
doing some hard work. - I will find some
help, maybe from another people or from
folks.

Reasoning: Let's think step by step in order to

assess this spoken utterance. We can see
that you have a good grasp of basic English
skills, such as using the correct verb tense
and sentence structure. However, you may
want to work on your vocabulary and
pronunciation, as some words were
mispronounced and you used "folks"” instead
of "people” or "others.”

Feedback: You have a good understanding of basic

English skills, like using the right verb
tense and sentence structure. However, you
may want to focus on expanding your
vocabulary and improving your pronunciation.

For example, instead of saying "folks," you

can use "people” or "others." Keep
practicing and seeking help from others to
improve your skills.

Convo: - Well, as a way of recording things, I

think it's much simpler and easier for you
to take photos than writing a journal or
something like that. - No, not really,
because back then a few decades ago I think
going to cinema was really expensive and we
cannot afford it when I was a kid. - I
prefer go to cinema with my friends because
I don't have quite the same taste for movie
or films with my parents so our friends is
much better.

Reasoning: Let's think step by step in order to

assess your spoken English skills. We can
see that you have a good grasp of vocabulary
and can express your thoughts clearly.
However, you can work on your grammar and
sentence structure to make your speech more
fluent and natural. For example, instead of
saying "I prefer go to cinema”, you can say
"I prefer going to the cinema”. This will
make your sentence more grammatically
correct and sound more natural. Keep
practicing and you will improve in no time!

Feedback: You have a good grasp of vocabulary

and can express your thoughts clearly, which

is great! However, you can work on your
grammar and sentence structure to make your
speech more fluent and natural. For example,

instead of saying "I prefer go to cinema”,
you can say "I prefer going to the cinema”.
Keep practicing and you will improve in no
time!

Convo: - Small businesses like small pop and man

shops that people would open, small
restaurants. I think those are pretty, you
know, the go-to small business that one can
think of on top of their minds. - I think I
would prefer big companies because big
companies are more insured, the quality is
more controlled and if you have any issues
with the product you have easier time to get
a refund or replacement for small companies
. I do understand that they have higher
operation costs so sometimes they would try
not to have refunds and replacements and so
on. So it's understandable but as a consumer
I would prefer big companies with their
insurance policies so I think that is my
choice. - Well, I think it's better to live
it to work in a big company because in big
companies you have a bigger platform. You
have chances to learn from people who came
before you, who were also working in the
company. You have chances to work across
companies because you have a lot of business
dealing with them. And big companies often
give their staff training with something
that most small companies lack. So at least
at the beginning stage of your career, I
think working in a big company is definitely
a better way. They're the better choice for
most people.

Reasoning: Let's think step by step in order to

assess your spoken utterance. You have a
strong understanding of the differences
between small and big businesses, and you
provide specific examples to support your
points. However, you can work on your
pronunciation and intonation to make your
speech more clear and engaging. For example,
try to enunciate each word clearly and vary
your tone to emphasize important points.
This will help you communicate your ideas
more effectively.

Feedback: You have a good grasp of the

differences between small and big businesses
and you give good examples to support your
points. But you can work on your
pronunciation and intonation to make your
speech more clear and engaging. For example,
try to say each word clearly and change
your tone to emphasize important points.
This will help you communicate your ideas
more effectively.

Convo: - I like to listen to popular music. It

is easy to follow. It's easy to sing. I like
to share those favorite songs with my
friends together. And when I listen to some

music or some songs that sound so good, I



like to listen to it again and again. - My
favorite singer is Joe Shen. He is a male
singer. His voice is similar to a female
singer's voice. His songs are clean and
clear and he can sing all kinds of songs. He
can speak eight languages. It's amazing. I
really like his songs. - Yeah, I do like art
. I like to, I like those pictures,
paintings. I really want to draw some
pictures by myself but I'm not good at it. I
'd like to see them.

Reasoning: Let's think step by step in order to

LI.3 Rewrite Prompts

There are two stages to the rewrite process. In the

first stage, we employed the following prompt:

Shorten and rewrite this utterance to sound
simple, natural, and engaging; remove any

assessment of speech including pronunciation
and intonation:\n\n{empathetic_output}

Here, empathetic_output refers to the output
from the OPTIMIZED stage. We then continued
appending the following message to the current
session with ChatGPT:

Make your response different and casual, and
shorten to 3 - 4 sentences

The output from ChatGPT after this additional
prompting was used as the final output.

J Example Outputs at Different Stages

The following conversation segments are selected
at random and may contain ASR errors.

Conversation Segment:

1. To be honest, I don’t want to live on another
planet because I think the earth is comfortable
and it is suitable for us.

2. A little. I have some knowledge about the
moon and the moon.

3. When I was a student in primary school, I
went to... I often go to a picnic with my
friends.

Zeroshot: You have a good grasp of the topic and
can express your thoughts clearly. However, you
can work on your fluency and pronunciation to
make your speech more natural and easy to un-
derstand. For example, you can practice speaking
more slowly and enunciating your words clearly.
Also, try to listen to native speakers and imitate
their pronunciation to improve your own. Keep up
the good work!
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Optimized: You have a good understanding of the
topic and can express your thoughts clearly, which
is great! However, you can work on your gram-
mar and sentence structure to make your speech
more fluent and natural. For example, instead of
saying “I went to... I often go to a picnic”, you
can say “I used to go on picnics with my friends
when I was a student in primary school.” This will
make your sentence more grammatically correct
and sound more natural. Keep practicing and you
will improve in no time!

Rewrite: You’ve got a good handle on the topic
and express yourself clearly, which is awesome!
Just tweak your grammar and sentence structure
for a smoother and more natural flow. For example,
instead of saying “I went to... I often go to a picnic,”
try “I used to go on picnics with my friends back
in primary school.” Keep at it, and you’ll get even
better in no time!

Conversation Segment:

1. Well, probably like less diet, less fat tissues
would really be beneficial to your health and
to your general functions.

2. What’s the word again? I’ve never heard of it.
Could you explain the terminology to me?

3. Okay, that sounds... Well, I'm asking you
the word you’re talking about the triple action
capillates. Yeah, but what’s that?

Zeroshot: You have a good understanding of vo-
cabulary and sentence structure, but you may need
to work on your pronunciation and listening skills.
For example, when you didn’t understand the word
“capillates,” you asked for clarification, which is
great. To improve, try practicing speaking and
listening to English more often. Keep asking for
clarification when needed, and you’ll continue to
improve.

Optimized: You have a good understanding of the
topic and can express your thoughts clearly, which
is great! However, you can work on your vocab-
ulary and pronunciation to improve your fluency.
For example, instead of saying “less diet,” you can
say “a healthier diet” and instead of saying “capil-
lates,” you can say “capillaries.” Keep practicing
and expanding your vocabulary to improve your
skills.

Rewrite: You’ve got a good grasp of the topic
and can explain things clearly, which is awesome!



Just work on your vocab and pronunciation for
smoother conversation. Try swapping “less diet”

for “healthier diet” and “capillates” for “capillaries.”

Keep at it and keep expanding your vocab to get
even better!

Conversation Segment:

1. Hmm, actually it depends. If I'm concentrat-
ing on the things that I’'m interested in, [ won’t
feel bored. But if the things just go so embar-
rassed or so boring, I will distract by some-
thing else. And another situation is that I may
fall asleep.

2. Well, I actually do not have a memory of that.
Because I think sitting on the floors may be
the things that the boys do. And however, you
know, I’'m a girl who likes a tiny and quiet
place to sit.

Of course, while speaking of a person with
these strong impression, I would say that was
my Chinese teacher in my primary school.
I remember she taught us in my fifth grade.
At my first sight, she looked really irradible,
which made me have the feeling of this teacher
is the person you can’t get along well with. So
I always keep the distance with her. However,
what upset me the most was right there. These
schools always don’t allow the students to
bring any entertainment things. I was just a
kid, so I bought some comics to my friend as
well as some classmates and spread it. Well,
the comics are really interesting. After my
Chinese teacher, who is also my class class
teacher, knew that she just threw it out of my
classroom window in front of all my class-
mates. And that was really embarrassing. So
that memory kept kept a long time in my mind
and I don’t really like that teacher. Even now,
I can still remember her with not really good
memories.

Zeroshot: You're doing great in English, you can
express yourself well and your thoughts are clear.
But you can work on your pronunciation and into-
nation to make your speech more engaging and nat-
ural. Try practicing in front of a mirror or recording
yourself to identify areas for improvement. Keep it
up!

Optimized: You have a good understanding of the
topic and can express your thoughts clearly, which
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is great! However, you can work on your grammar
and sentence structure to make your speech more
fluent and natural. For example, instead of saying
"I remember she taught us in my fifth grade", you
can say "l remember she taught us when I was in
fifth grade." Also, try to use more descriptive words
to make your story more engaging. Keep practicing
and you will continue to improve!

Rewrite: You’'ve got a good grasp of the topic and
express yourself clearly, awesome! Just tweak your
grammar and sentence structure for a smoother
flow. For example, instead of saying "I remember
she taught us in my fifth grade," you could say "I
remember she taught us when I was in fifth grade."
Keep practicing, and you’ll keep improving!

Conversation Segment:

1. People are often willing to get to know new
people in various situations. Firstly, when
individuals join new social or professional en-
vironments, such as starting a new job or mov-
ing to a new city, they are more open to meet-
ing new people as they seek to establish social
connections and build a support network. Sec-
ondly,

People go to various places to meet new peo-
ple and expand their social circles. One com-
mon place is social events and gatherings such
as parties, social clubs and community events.
These provide opportunities for individuals to
interact with others who share similar interests
or are part of the same community.

. Studying a conversation can be approached
in various ways depending on the context and
the individuals involved. One common way
is through initiating a topic of mutual interest.
This could involve asking open-ended ques-
tions or making observations about the current
situation. For example, at a social gathering,
one might start a conversation by comment-
ing on the events, complimenting someone’s
attire, or discussing a shared hobby.

Zeroshot: You’'re great at starting conversations
and finding common interests with others, which is
a valuable skill in making new connections. How-
ever, you can work on being more confident and
assertive in your approach, as well as actively lis-
tening and asking follow-up questions to keep the
conversation going. For example, instead of just



commenting on the events, try asking others about
their experiences or opinions. This will show your
interest and help you build deeper connections with
people.

Optimized: You have a good understanding of the
topic and can explain it clearly. However, you can
work on your pronunciation and intonation to make
your speech more engaging and natural. For exam-
ple, try to vary your tone and emphasize important
words to make your speech more interesting. Keep
practicing and you will continue to improve!
Rewrite: You’ve got a good grip on the topic and
explain it well. To spice up your speech, try varying
your tone and emphasizing important words. Keep
practicing, and you’ll keep getting better!

Conversation Segment:

1. Well, ’'m afraid that I can’t give you the
straight answer. But in the city where I live
now, the weather is always raining because
it’s located in the southeastern part of China
and it’s also close to the sea. Sometimes I like
to stay in the sunny days because I really like
the moment when I read some books in the
afternoon in the sunny days.

2. Well, there are some different kinds of styles
in terms of weather situations in my home-
town. For instance, in spring, the air is mild
and fresh. In summer, the weather is so hot.
In autumn, the weather started to become a
little cold compared with the weather in sum-
mer. In winter, the weather in my hometown
is quite cold.

3. Well, I'm afraid that I can’t give you the
straight answer. This mainly depends on dif-
ferent situations. When the weather is so dry,
so when it’s raining, I really like the rainy
days. On the contrary, as I mentioned before,
I really like the time when I spent in the sunny
days like reading a book when I felt very tired.

Zeroshot: Hey there! Your pronunciation and in-
tonation are on point, making it easy for me to
understand you. But to make your speech more
interesting, try using different words and sentence
structures. For example, instead of saying "I re-
ally like", you can say "I’'m fond of" or "I'm a big
fan of". Also, use more descriptive adjectives like
"scorching" or "sweltering" to paint a clearer pic-
ture. Keep practicing and you’ll see improvement
in no time!
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Optimized: You have a good understanding of
different weather situations and can describe them
clearly, which is great! However, you can work
on your grammar and sentence structure to make
your speech more fluent and natural. For example,
instead of saying "I really like the time when I spent
in the sunny days", you can say "I really enjoy
spending time in the sunny days." Keep practicing
and you will continue to improve!

Rewrite: You’re good at understanding differ-
ent weather situations and describing them clearly,
that’s awesome! Just work on grammar and sen-
tence structure to make your speech flow better. For
example, say "I love spending time on sunny days"
instead of "I really like the time when I spent in
the sunny days." Keep practicing to improve even
more!
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Abstract

Using large language models (LLMs) for educa-
tional applications like dialogue-based teaching
is a hot topic. Effective teaching, however, re-
quires teachers to adapt the difficulty of content
and explanations to the education level of their
students. Even the best LLMs today struggle
to do this well. If we want to improve LLMs
on this adaptation task, we need to be able to
measure adaptation success reliably. However,
current STATIC metrics for text difficulty, like
the Flesch-Kincaid Reading Ease score, are
known to be crude and brittle. We, therefore,
introduce and evaluate a new set of PROMPT-
BASED metrics for text difficulty. Based on a
user study, we create PROMPT-BASED metrics
as inputs for LLMs. They leverage LLM’s gen-
eral language understanding capabilities to cap-
ture more abstract and complex features than
STATIC metrics. Regression experiments show
that adding our PROMPT-BASED metrics sig-
nificantly improves text difficulty classification
over STATIC metrics alone. Our results demon-
strate the promise of using LLMs to evaluate
text adaptation to different education levels.

1

Large language models (LLMs) today can answer
wide-ranging questions and explain complex con-
cepts with high accuracy (Chung et al., 2022; Ope-
nAl, 2023). This development has motivated ex-
plorations into their uses for education, ranging
from automated student assessment and person-
alised content to dialogue-based teaching (Upad-
hyay et al., 2023; Sallam, 2023; Yan et al., 2023;
Hosseini et al., 2023).

Effective teaching requires that the difficulty of
content and explanations is tailored to the education
level of the students. Human teachers are trained to
do this, and adjust their material and style without
much prompting. However, this adaptation is not
just the adjustment of one variable. It is a com-
plex undertaking, touching upon lexicon, syntax,

Introduction
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What educational level is appropriate for this text?

|

Gravity is the force by which a planet or other body
draws objects toward its center. The force of gravity
keeps all of the planets in orbit around the sun.
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Figure 1: Schematic overview of our approach to text
difficulty classification. We calculate relevant STATIC
and PROMPT-BASED metrics for a given input text. Ei-
ther or both metrics are then fed into a regression classi-
fier that makes a final classification.

pragmatics, and semantics. Improving the ability
of LLMs to adapt their outputs to different levels
of education is therefore crucial to unlocking their
usefulness for education. One of the most basic re-
quirements to achieve this goal is a way to measure
adaptation success.

Measuring whether a given output is appropriate
for a given level of education, however, is a very
difficult task. Existing STATIC metrics, like the
Flesch-Kincaid Reading Ease score (Flesch, 1948),
are based on simple formulas, heuristics, and word
counts. They share the brittleness of all heuristic
approaches and are known to be noisy measures
of text difficulty at best. Also, these metrics were
developed for longer-form explanations, like those
found in textbooks, rather than dialogue-style teach-
ing. Due to their reliance on counts, their estimates
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are unreliable in shorter formats. We need better
metrics to make improvements on the adaptabil-
ity of LLMs to education levels measurable. Only
when we can measure improvements can we make
tangible progress in leveraging LLMs for educa-
tional applications.

As an alternative to STATIC metrics, we can use
classifiers to predict the educational level of a given
text. They generalize better and can be applied to
texts of varying lengths. However, these classifiers
are expensive to train and require more training
data than we usually have for a niche domain like
educational purposes. Similarly, human assessment
of difficulty may provide a gold standard, but it is
expensive to collect and, like all annotation tasks,
suffers from disagreement.

In this paper, we introduce and evaluate a new
set of PROMPT-BASED metrics for text difficulty as
complements to existing STATIC metrics. PROMPT-
BASED metrics are LLM prompts that exploit
the general language understanding capabilities
of LLMs to capture more abstract features of ed-
ucational texts than STATIC metrics. For exam-
ple, LLMs can flexibly classify the topic of a text,
which is one adaptation technique used by teachers
to adjust the content which called curriculum com-
pacting in pedagogy (Stamps, 2004). This would
be difficult to do with STATIC approaches.

We develop our selection of PROMPT-BASED
metrics based on a user study, where we ask a
group of university students to 1) assess the dif-
ficulty of educational texts and explain their rea-
soning, and 2) come up with prompts for an LLM
to change the difficulty of a given text. We then
translate the qualitative findings from both parts of
the study into concrete LLM prompts that serve as
PROMPT-BASED metrics. We incorporate prompts
from other studies to manage text readability with
LLMs (Imperial and Madabushi, 2023; Gobara
et al., 2024). We evaluate the ability of our new
PROMPT-BASED metrics to measure text appropri-
ateness for different education levels with a series
of regression experiments.

While PROMPT-BASED metrics perform on par
or better than zero-shot and few-shot LLM classi-
fiers, they are less useful for text difficulty classifi-
cation by themselves than STATIC metrics. How-

'Similarly, metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BLANC (Recasens and Hovy, 2011),
among others, kickstarted and sustained the development of
automated approaches to machine translation, summarization,
and coreference resolution, respectively.
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ever, combining PROMPT-BASED and STATIC met-
rics significantly improves performance. This sug-
gests that PROMPT-BASED metrics capture relevant
signals beyond those captured by the large number
of STATIC metrics.

A combination of STATIC and PROMPT-BASED
metrics also provides a deeper understanding of
the key metrics or features that influence complex-
ity than classifiers could. Additionally, the fac-
tors that contribute to complexity in a scientific
text differ from those in a medical or a legal doc-
ument. By considering a range of metrics, we can
develop more accurate domain-specific measures.
Our multifaceted approach allows us to break down
complexity into its basic components, such as its
appropriateness for different education levels, lex-
ical or syntactic complexity, thematic topics, and
text readability.

Overall, PROMPT-BASED metrics empower edu-
cators to develop more effective content develop-
ment strategies with LLMs to engage learners of
all levels and backgrounds. We could have directly
trained classifiers; however, this approach would
not have enabled us to identify the most relevant
metrics.

Contributions

1. We conduct a user study to motivate the cre-
ation of novel PROMPT-BASED metrics of text
difficulty for educational texts (§2).

2. We show in a series of regression experiments
that these PROMPT-BASED metrics hold addi-
tional value for text difficulty classification be-
yond what STATIC metrics can capture (§4.3).

. By leveraging the interpretability of our re-
gressions, we highlight the relative impor-
tance of individual STATIC and PROMPT-
BASED metrics (§4.5).

2 User Study

Our PROMPT-BASED mietrics for text difficulty are
prompts based on the results of a one-day user
study we ran with a group of university students in
November 2023.

2.1 Study Design

The user study consisted of two main parts.

In the first part of our study, we asked partici-
pants to review 60 educational texts randomly sam-
pled from the ScienceQA dataset (Lu et al., 2022).
Each text consists of a question (e.g., “What is



the mass of a dinner fork?””) with answer choices
(““70 grams or 70 kilograms™) and a longer-form
explanation of the solution. All texts we select here
are authentic educational materials from the social,
natural, or language sciences in schools. Partici-
pants were tasked with a) labeling the education
level of each text as appropriate for either elemen-
tary school, middle school, or high school and b)
explaining the reasoning behind their choice in a
short, free-text answer.

In the second part of our study, we asked partic-
ipants to rewrite scientific text explanations, also
sampled from ScienceQA, to be appropriate for
different education levels, with the help of an LLM
—in this case, ChatGPT. For example, participants
were asked to rewrite a middle school explanation
of thermal energy at the elementary and high school
levels with the help of prompts. We recorded
the prompts they used to get ChatGPT to accom-
plish the adaptation for them. Thus, we collected
prompts that are used both for text simplification
and for text complexification.

2.2 Study Participants

We ran our study as part of a hackathon at the Uni-
versity of Zurich. There were seven participants
aged between 21 and 31 years. Four participants
were female, three male. All participants were
students at Department of Computational Linguis-
tics from University of Zurich, enrolled at the time
in programs specializing in computational linguis-
tics, computer science, and Al. Five were study-
ing for a bachelor’s degree and two for a master’s
degree. The participants held prior educational
degrees from school systems across five different
countries. Their native languages include English,
Italian, German, Greek, and Ukrainian. They self-
reported their English language proficiency at C1
and C2 levels. Participants were compensated in
study credits that could be counted towards com-
pleting their program.

2.3 Study Results

The first task of our study yielded 276 classification
labels together with their corresponding descriptive
justifications. These include 120 label-explanation
pairs for middle school texts, 89 for high school,
and 67 for elementary school texts. In the second
task of our study, we collected 103 prompts for text
simplification and complexification. We share il-
lustrative examples of classifications, explanations,
and prompts in Appendix A.

In the next section, we use the qualitative results
from our study to motivate the construction of novel
PROMPT-BASED metrics for text appropriateness
for various education levels.

3 Metrics for Text Difficulty
3.1 Prompt-based Metrics

Since the metrics we introduce are based on the
prompts of language models rather than discrete
heuristics, we refer to them as ‘PROMPT-BASED’ to
distinguish them. The goal of the PROMPT-BASED
metrics we develop is to capture more abstract fea-
tures of educational texts than would be possible
with STATIC metrics, which typically focus on in-
dividual words and their statistics.

Question: Which figure of speech is used in this text?
I've heard that Kinsley & Co. is downsizing, so I'm
happy to see that their store in downtown Greenville
will remain open for now.

Solution: The text uses a euphemism, a polite or
indirect expression that is used to de-emphasize an
unpleasant topic. Downsizing is an indirect way of
saying that the company is planning on firing
employees.

Explanation: very specific and hard-to-understand
topic. The text uses more advanced vocabulary, and it

Label: High school
seems technical.

- Is this text easy to understand for [educational level]
students?
- Does this text contain technical jargon?

Prompt-based metrics:

Figure 2: An illustrative example of the PROMPT-
BASED metric process. The green box contains the
education text from the ScienceQA dataset. The blue
box shows the predicted educational level and the ex-
planation. The red box contains the PROMPT-BASED
metrics based on the sample.

We derive our PROMPT-BASED metrics from the
results of our user study. Figure 2 shows an il-
lustrative example of our derivation process. We

label="Elementary’

unigrams | ‘simple’ @
2 8
= 3
g bigrams ‘basic concept’ é
% 3
L z

trigrams ‘example simple language’ —

Figure 3: High-level view of the derivation process for
the PROMPT-BASED metrics using n-gram frequencies.
Function words are excluded.



consider users’ explanations for why they consider
a specific educational text to be of elementary, mid-
dle, or high school level difficulty. Then, we iden-
tify recurring attributes and other explanation fea-
tures that several users mention to reflect them in
PROMPT-BASED metrics. We examine the distribu-
tions of unigrams, bigrams, and trigrams across all
three labels, excluding function words (see Figure
3). Some of the most frequent unigrams for the
elementary level include simple, basic, elementary;
for the high school level, high, complex, concepts;
and for the middle school level, explicit, explana-
tion, middle.

We qualitatively assessed the n-gram distribu-
tions, considering both frequencies and topic appro-
priateness, before finalizing the query construction.
Each PROMPT-BASED metric is a simple yes-no
question, which we use to prompt the LLMs. These
metrics encompass the most frequent unigrams and
less common bigrams and trigrams derived from
the findings of our study.

While, Gobara et al. (2024) demonstrate a
correlation between readability scores of LLM-
generated texts in education and human assess-
ments, Imperial and Madabushi (2023) indicate
challenges in LLMs effectively adjusting the read-
ability of text. We construct 63 PROMPT-BASED
metrics using this process. Each PROMPT-BASED
metric relates to either education level (30 metrics),
lexical or syntactic complexity (8 metrics), and
the topic of the text at hand (10 metrics). In addi-
tion, we include metrics about the text’s readability
score (15 metrics) based on the work by Imperial
and Madabushi (2023). The complete list of all our
PROMPT-BASED metrics is in Appendix C.

3.2 Existing Static Metrics

STATIC metrics are the baseline we want to im-
prove on. All STATIC metrics are based on simple
formulas, heuristics, or counts of words and other
textual features. These properties make them sim-
ple to apply but limit the conceptual complexity of
what they can reasonably measure. In total, we in-
clude 46 STATIC metrics, selected from those com-
piled in prior work (Flekova et al., 2016; Yaneva
et al., 2019; Xue et al., 2020; Baldwin et al., 2021).

These metrics encompass a variety of linguistic
characteristics, spanning from basic text-level mea-
sures like vocabulary size and word frequency to
sentence-level attributes such as sentence length
and syntactic complexity. Additionally, they
take into account the question-answering structure
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within the input text. In the ScienceQA dataset,
each question is paired with its respective solution
and corresponding lecture. This segmentation of
information across educational levels facilitates the
computation of STATIC features for each section of
the question-answer solution and lecture indepen-
dently. For the complete list of 46 STATIC metrics,
see Appendix C.

4 Experiments

We conduct a series of classification experiments
to evaluate the usefulness of our novel PROMPT-
BASED metrics for measuring text difficulty. We
use a subset of the ScienceQA dataset, which con-
tains question-answer pairs across several topics
and education levels. Specifically, we run multino-
mial logistic regressions based on STATIC metrics,
PROMPT-BASED metrics, and the combination of
the two to evaluate the marginal benefits of our
new PROMPT-BASED metrics. We also compare
these regression approaches to using an LLLM for
zero-shot and few-shot classification.

4.1 Dataset

All our experiments are based on the ScienceQA
dataset (Lu et al., 2022). There are 21,208 texts in
ScienceQA. Each text consists of a question with
answer choices, and a longer-form explanation of
the solution. Texts in ScienceQA are classified ac-
cording to their grade level using the K12 system
from the US education system. We simplify this
classification by collapsing the 12-grade levels into
just three: elementary school (grades 1 to 5), mid-
dle school (grades 6 to 8), and high school (grades
9 to 12).2 From the 21,208 texts in ScienceQA,
we sample only those that do not use images in
questions or explanations. We then deduplicate
and sample 1,516 texts for each education level to
create a balanced dataset of 4,548 texts. Of these
4,548 texts, we use 3,638 (80%) for training and
910 (20%) for evaluation. To our knowledge, ours
is the first use of the ScienceQA dataset for training
and evaluating text difficulty classifiers.

4.2 LLMs for Prompt-based Metrics

We use LLMs to compute the 63 PROMPT-BASED
metrics described in Section 3.1. In principle, any
LLM can serve this purpose. With 63 metrics for
4,548 texts, we get 286,524 prompts from each
LLM. This amount is prohibitively expensive for

2https://usahello.org/education/children/
grade-levels/
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paid services like GPT4. Hence, we concentrate
on state-of-the-art open LL.Ms, which we can exe-
cute at a low cost: Llama2 (Touvron et al., 2023),
Mistral (Jiang et al., 2023), and Gemma (Google,
2024). Llama2, launched in July 2023, comprises
both pre-trained and fine-tuned LLMs, ranging in
size from 7 billion to 70 billion parameters. It
has been reported to outperform other open-access
LLMs and exhibits capabilities comparable to Chat-
GPT across various tasks. In this paper, we use
Llama2-7b and Llama2-13b. The next model is
Mistral-7B, released in September 2023, another
open LLM surpassing similar-sized open LLMs.
We use Mistral-7b-Instruct-v0.2, which was pub-
lished in December 2023.

The last model we use is Gemma7b-it, based on
the Gemma base model and trained on open-source
mathematics datasets.

We set the model temperature to zero to make
responses deterministic. The maximum response
length is 256 tokens. Otherwise, we use stan-
dard generation parameters from the Hugging Face
transformers library. We collected all responses in
February 2024.

4.3 Multinomial Logistic Regression

We use simple multinomial logistic regression to
classify the difficulty level of texts. The task is
to predict the difficulty level C; of a given edu-
cational text S;. C; can take three ordinal values:
elementary, middle, or high school difficulty. In-
stead of including S; directly, we include sets of
STATIC and PROMPT-BASED metrics M; that are
computed based on .S;. We regress M; on C; on the
3,638 training texts and then evaluate on the 910
test education texts.

We vary which metrics we include across exper-
imental setups to evaluate the marginal benefits of
different metrics. There are three main setups of in-
terest: 1) PROMPT-BASED metrics only, 2) STATIC
metrics only, 3) the combination of the two, which
we refer to as COMBO.

4.4 Baseline: Zero- and Few-Shot
Classification

We exploit the general language capabilities of
LLMs to compute PROMPT-BASED metrics, which
we then use as inputs to a logistic classifier for text
difficulty. A natural follow-up question is whether
LLMSs could directly predict text difficulty related
to education levels. Therefore, we incorporate a
baseline for zero-shot and few-shot text classifica-
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tion. We test zero-shot and few-shot classification
with the same LLMs that we use for calculating our
PROMPT-BASED metrics. As an additional compar-
ison point, we test GPT-4 Turbo.

Note that while the logistic classifier is fitted
to our training data, the zero-shot LLM has not
seen any examples at inference time. In the few-
shot setting, we provide two examples for each
education level and prompt the model to assign one
of the desired labels without explanations.

To investigate the effect of different prompting
styles, we test five distinct prompt templates in our
zero-shot setup, each consisting of 25-30 words.
Additionally, each prompt contains a textual seg-
ment describing the text of the science question
answering for educational-level classification. We
compare performance across the five prompt tem-
plates to determine the most effective prompt, i.e.,
the strongest baseline for our experiments. We
evaluate the models’ responses on a subset of ran-
domly selected samples (n=100). The lowest per-
formance stands at 29%, while the highest achieve-
ment reaches 42%. We proceed with our experi-
ments under zero-shot and few-shot setups, using
the best performance style as our baselines. The se-
lected prompt for zero-shot experiments is: “Your
task is to predict the education level corresponding
to a given text. You are provided with three labels
to choose from: 1) elementary school 2) middle
school 3) high school. Text: [text] Educational
level:

We instructed LLMs to return one of the edu-
cation levels. Due to the difficulty of LLMs in
directly predicting the levels and complexity of the
text, we have responses without the desired edu-
cational level. In this case, we assigned a default
level to this invalid response, which is the “elemen-
tary level”. For example, Llama2-13b has 2.86%
invalid in zero-shot and 4.07% in few-shot. The
most-predicted class is elementary school level,
with 75.93% in zero-shot and 80% in few-shot.
The number of invalid responses for other models
is available in the Appendix D.

4.5 Results

Overall Performance Table 1 reports the over-
all results of our different logistic classifier se-
tups along with the ZERO-SHOT and FEW-SHOT
LLM classification baselines. We use Gemma-7b,
Mistral-7b, Llama2-7b, and Llama2-13b across all
referenced classification methods. GPT-4 is exclu-
sively used in the baseline due to the high cost of



experiments.

The findings highlight the consistent superior-
ity of the COMBO approach in achieving the high-
est macro-F1 score, surpassing all other models.
Specifically, while the Llama2-7b model exhibits
comparatively lower performance when employing
the Prompt-based method, the Llama2-13b model
demonstrates the best performance across PROMPT-
BASED metrics. Notably, the Gemma-7b model
stands out as the best-performing model when us-
ing the COMBO metric. In terms of Prompt-based
regression, the average macro-F1 score across all
models stands at 0.62, with all PROMPT-BASED
metrics obtained directly through LLMs’ binary
classification prompts. The best performance over-
all is achieved by COMBO, which combines both
sets of metrics, resulting in a macro-F1 score of
0.86.

Nearly all models encounter difficulty in predict-
ing the educational level across both ZERO-SHOT
and FEW-SHOT methodologies. However, in these
experiments, the FEW-SHOT approach notably en-
hances the macro-F1 score. Additionally, Table 1
highlights that the best performance among base-
line approaches is achieved by GPT-4, attaining a
macro-F1 score of 0.63 in the FEW-SHOT setting.

Performance by Education Level To delve into
the performance more comprehensively, we split
out the results for each regression setup by label,
i.e., education level, in Table 2. Here, we dis-
play only the top-performing model based on the
PROMPT-BASED metric and provide the details of
the other models in Appendix D.

The overall picture of PROMPT-BASED regres-
sion shows that it faces difficulty in the classifica-
tion of educational level, while STATIC performs
much better, and COMBO performs best, which
indicates that there is an additional benefit to in-
cluding the PROMPT-BASED metrics.

We collect 1,000 bootstrap samples to train and
test the logistic regression models for each ap-
proach. This method helps in understanding the
variability and reliability of the model performance.
We use t-tests to determine if the observed differ-
ences in accuracies are statistically significant over
COMBO vs. STATIC. Results in Table 2 indicate a
statistically significant improvement.

Feature Importance One big benefit of our re-
gression approach over, for example, classification
with an LLM, is that we can easily measure the
feature importance of each metric that goes into
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the classification result. For this purpose, we calcu-
late univariate F-tests between each metric and the
difficulty level variable. Table 3 shows the top-five
most important features, each among the PROMPT-
BASED and the STATIC metrics, based on these
F-tests for Llama2-13b model.

Most notably, the PROMPT-BASED metrics are
generally less important than the STATIC metrics.
On average, the top five most important STATIC
metrics are at least twice as significant as the top
five PROMPT-BASED metrics. The STATIC metrics
mainly focus on readability and lexical diversity,
while PROMPT-BASED metrics capture topic rele-
vancy and the inclusion of simple examples. Al-
though they may not carry the same weight, all of
the top metrics are highly statistically significant.

5 Discussion

5.1 The Value of Prompt-based Metrics

PROMPT-BASED metrics by themselves may not be
a good-enough basis for classifying text difficulty
(Table 1). STATIC metrics are much more effective
by comparison. However, our results also show that
PROMPT-BASED metrics do indeed capture relevant
features of the text that are not captured by STATIC
metrics since models that combine both kinds of
metrics clearly perform best overall. This is despite
the fact that the STATIC metrics we include are
many and highly diverse.

The practical usefulness of the particular
PROMPT-BASED metrics outlined in this paper
is evident. Moreover, the broader application of
PROMPT-BASED metrics holds promise for evaluat-
ing text complexity. Our experiments indicate that
the COMBO approach outperforms other models
consistently. Notably, most models exhibit supe-
rior macro-F1 scores in predicting elementary-level
texts, suggesting that distinguishing science ques-
tions at the elementary level is more discernible
compared to other educational levels.

Furthermore, we present the feature importance
of PROMPT-BASED metrics, noting that the primary
PROMPT-BASED metrics pertain to readability, un-
derstandability, and suitability of text for particular
educational levels. Additionally, topic relevance
(e.g., math or natural science) emerges as a sig-
nificant feature. In top 5 best features of STATIC
metrics are summarized through readability scores
ranging from the Gunning Fog Index to the Flesch-
Kincaid Index, along with a metric evaluating the
lexical diversity of the text.



Method Gemma-7b Mistral-7b Llama2-7b Llama2-13b GPT-4
PROMPT-BASED Reg. 0.73 0.54 0.45 0.77 -
STATIC Reg. 0.81 0.81 0.81 0.81 -
COMBO Reg. 0.95 0.82 0.81 0.88 -
ZERO-SHOT LLM 0.35 0.34 0.35 0.35 0.51
FEw-sHOT LLM 0.37 0.37 0.45 0.47 0.65

Table 1: Macro-F1 for difficulty classification on test. PROMPT-BASED metrics, zero-shot, and few-shot (two
examples) performance are specific to each LLM. STATIC metrics are the same across models. Zero-shot and
few-shot classification use GPT4. Best performance per model in bold.

Level Precision Recall F1-Score
£ Elem. 0.84 0.82 0.83
Z  Middle 0.84 0.64 0.73
& High 0.68 0.84 0.75
O  Elem. 0.86 0.85 0.86
E Middle  0.75 0.71 0.73
“2  High 0.84 0.88 0.84
2 Elem. 0.95% 0.93* 0.94*
Z Middle  0.89* 0.77* 0.83*
O High 0.82 0.93* 0.87*

Table 2: Difficulty classification performance on test.
* = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Llama2-13b. Best performance per level in
bold.

Better PROMPT-BASED metrics identified in fu-
ture work may be even more effective complements
to Static metrics.

5.2 Limitations

Limited Scope of User Study The user study we
conducted provides a clear empirical motivation for
the PROMPT-BASED metrics we selected. This in
itself is a core contribution of our work. However,
due to resource and time constraints, the sample of
participants in the study is fairly small and of lim-
ited diversity. Future work could improve on our
approach by conducting larger studies or recruiting
participants from even more relevant professions
(e.g. teachers) to motivate the selection of even
better PROMPT-BASED metrics.

Limited Availability of Relevant Data Our ex-
periments are mostly constrained by the availabil-
ity of relevant data for text difficulty classification.
The ScienceQA dataset that we use is, to our knowl-
edge, the only dataset that fits our experimental
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setup in terms of size and detail on education level.
Therefore, we cannot make any strong claims about
the generalisability of our results. Future work
could invest into building new datasets and test-
ing cross-domain performance of both Static and
PROMPT-BASED metrics, which would give useful
insights into which text features are most generally
indicate of text difficulty.

6 Related Work

6.1 Question Answering Datasets in
Education

The review study by AlKhuzaey et al. (2023) about
the literature on item difficulty classification re-
veals a significant shortage of publicly accessi-
ble datasets with items that are labeled according
to their difficulty levels. For example, Hsu et al.
(2018) gathered their dataset from national stan-
dardized entrance tests that often concentrate on
the medical and language fields, annotated with
the performance data of 270,000 examinees. This
study includes the necessity for a publicly accessi-
ble collection of standardized datasets and the need
for further exploration into alternative methods for
feature elicitation and classification modeling. The
lack of publicly available datasets for measuring
difficulty has led researchers toward the domain of
Automatic Question Generation (AQG) in recent
years. Typically, questions generated by AQG tend
to be more straightforward in structure and cogni-
tive demand than questions written by humans.

Most of these automatically generated questions
are basic, primarily addressing only the first level
of Bloom’s taxonomy, which is focused on re-
call (Leo et al., 2019). Another source of edu-
cational datasets is retrieved from online learning
platforms or websites specific to the study’s do-
main. An example includes the collection of 1,657



Rank Metric F
s 1 Based on the ARI, is this text suitable for ES readers? 251.77*
Z 2 Is this text relevant to curriculum topics for ES students? 249.07*
= 3 Is this text about math? 248.17%
% 4 Is this text about natural science? 240.07*
E 5 Does this text contain simple examples? 235.96*
s 1 Gunning Fog (measures readability) 817.86*
g 2 Coleman-Liau index (measures readability) 785.60*
% 3 Flesch-Kincaid Reading Ease (measures readability) 725.15%
s 4 Automated Readability Index (measures Readability) 686.87*
ZI Number of unique Words (measures lexical diversity) 613.89%*

Table 3: Five most important features for PROMPT-BASED and STATIC metrics in Llama2-13b. Feature importance
is measured using univariate F-tests. Larger F indicates higher feature importance. (ES: Elementary School, ARI:
Automated Readability Index) * indicates significance at >99.999% confidence.

programming problems from LeetCode’, labeled
with the number of solutions submitted and the pass
rate for each problem. Additionally, fewer datasets
are from domain-specific textbooks and preparation
books, particularly prevalent in the language do-
main for their role in training students for language
proficiency exams. Domain experts developed the
remaining sources to meet specific study goals, and
according to AlKhuzaey et al. (2023), only 7%
from school or university-level assessments.

The Stanford Question Answering Dataset
(SQuAD), developed by Rajpurkar et al. (2016),
features 150,000 questions in the form of
paragraph-answer pairs sourced from Wikipedia ar-
ticles. This dataset was utilized by Bi et al. (2021)
to develop and test their models for predicting the
difficulty of reading comprehension questions. Lu
et al. (2022) created a multimodal science question-
answering datasets, which includes 21,000 English
passages from school reading exams, each accom-
panied by four multiple-choice questions. The Sci-
enceQA dataset provides metadata fields for each
question, including extensive solutions and gen-
eral explanations which made it suitable for this
study (Lu et al., 2022).

6.2 Automatic Evaluation of Educational
Content

The difficulty level classification of questions pre-
sented to students is crucial for facilitating more
effective and efficient learning. Pérez et al. (2012)
shows teachers usually fail to identify the correct
difficulty level of the questions according to their

Shttps://leetcode. com
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students’ answers and final scores. The student’s
perception of the difficulty also changes across
grades and subjects. AlKhuzaey et al. (2023) dis-
covers that linguistic features significantly influ-
ence the determination of question difficulty levels
in educational assessments. They have explored
various syntactic and semantic aspects to under-
stand the complexity of these questions. Crossley
et al. (2019) shows the value of using crowdsourc-
ing methods to gather human assessments of text
comprehension, coupled with linguistic attributes
derived from advanced readability metrics. This
approach aids in creating models that explain how
humans understand and process text, as well as
factors influencing reading speed. Crossley et al.
(2023) examined the effectiveness of new readabil-
ity formulas developed on the CommonLit Ease of
Readability (CLEAR) corpus using more efficient
sentence-embedding models and comparing them
to traditional readability formulas. They did not tru
LLMs directly for difficulty classification task. In
their respective studies, Imperial and Madabushi
(2023), Rooein et al. (2023), and Gobara et al.
(2024) leverage Large Language Models (LLMs)
for content generation, focusing specifically on
controlling readability scores. Their research il-
luminates the inherent challenges and limitations
encountered when attempting to effectively adapt
LLMs for this purpose.

7 Conclusion

Good teachers succeed in making the material un-
derstandable for their respective audiences. This
adaptation is a complex process that goes well be-
yond replacing individual words and phrases. How-
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ever, existing STATIC metrics for text difficulty,
like the Flesch-Kincaid Reading Ease score, still
focus on precisely those elements. As a result,
these metrics are crude and brittle, failing to adapt
to new domains and working mainly on long-form
documents.

Our experiments reveal the promising poten-
tial of LLMs in predicting educational difficulty
through using the PROMPT-BASED metrics rather
than prompting the model directly. These met-
rics were derived from a small-scale user study
involving students. Empirically, we demonstrate
that when combined with traditional static metrics,
these PROMPT-BASED metrics enhance text diffi-
culty classification.

Our study paves the way for novel applications
of LLMs in educational contexts. By involving
more educational stakeholders, such as teachers,
we can gather more representative PROMPT-BASED
metrics, facilitating future advancements in diffi-
culty classification.

Ethical Considerations

The participants in the user study we used in our pa-
per were student volunteers for a course on related
topics. They could leave the study at any point and
were compensated in course credits that could be
counted towards their study program. The study
was conducted in accordance with the rules of the
host university and passed its ethics assessment.
The risk for harm to the participants in this setting
was assessed as minimal.
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A Selected Prompts from the User Study

We collect the top prompts of the students from
the chat history with analytical, manual, and Al
Assistant (ChatGPT).

A.1 Elementary School:

- Simplify a text for elementary school, using sim-
ple language for 6-12 years olds. - Create an el-
ementary version of a high school lecture text. -
Simplify a high school text for elementary school.
- Explain in a way an 8-year-old would understand.
- This is a text meant for high school students. Can
you help me make an appropriate version for ele-
mentary school students with very simple language
and comprehensive, easy-to-understand examples?

A.2 Middle School:

- Give examples from middle school lectures. -
Adapt a high school text for middle school, using
less advanced language. - Be more textbook-like
and more to the point for the level of middle school.
- Adapt content for a student in middle school. -
Simplify a lecture text for middle school using
illustrative examples.
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A.3 High School:

- Enhance scientific accuracy and add comprehen-
sive examples for the high school level. - Adapt a
middle school text for high school, using advanced
language. - Increase difficulty for high school, with
advanced vocabulary and scientific concepts. - Can
you make it more scientific and less story-telling-
like? - Increase the difficulty level with compre-
hensive examples.

B Parameter settings

The Static metrics are collected by Python pack-
ages such as nltk(3.8.1), pandas(2.2.0),

textstat(0.7.3, spacy(3.7.4). We
use nltk.download to get data for ‘stop-
words’, ‘cmudict’, ‘wordnet’, and ‘aver-

aged_perceptron_tagger’.

We performed 8-bit quantization for collecting
prompt-based metrics and baselines, with a maxi-
mum input length of 2048 tokens and a maximum
output length of 256 tokens. This process was re-
stricted to a single run due to our utilization of
pre-trained models readily accessible in Hugging-
Face Transformers.

For Regression model, we use scikit-learn pack-
age and SelectKBest with f_classif score func-
tion.

C List of Metrics

C.1 Static Metrics

Table 4 shows all static metrics.
C.2 Prompt-based Metrics

Is this text readable for an elementary school stu-
dent?, Is this text suitable for an elementary school
student?, Is this text easy to understand for ele-
mentary school students?, Is this text relevant to
curriculum topics for elementary school students?,
Is this text relevant to the knowledge and experi-
ences of elementary school students?, Could an
average elementary school student engage with the
content of this task?, Could most elementary school
students complete this task without significant dif-
ficulty?, Is this text appropriate for the skills and
knowledges of elementary school students?, Is the
length of this text suitable for elementary school
students?, Would the vocabulary in this text be com-
prehensible to elementary school students?, Is this
text readable for a middle school student?, Is this
text suitable for a middle school student?, Is this
text easy to understand for middle school students?,
Is this text relevant to curriculum topics for middle
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school students?, Is this text relevant to the knowl-
edge and experiences of middle school students?,
Could an average middle school student engage
with the content of this task?, Could most middle
school students complete this task without signif-
icant difficulty?, Is this text appropriate for the
skills and knowledges of middle school students?,
Is the length of this text suitable for middle school
students?, Would the vocabulary in this text be
comprehensible to middle school students?, Is this
text readable for a high school student?, Is this text
suitable for a high school student?, Is this text easy
to understand for high school students?, Is this text
relevant to curriculum topics for high school stu-
dents?, Is this text relevant to the knowledge and ex-
periences of high school students?, Could an aver-
age high school school student engage with the con-
tent of this task?, Could most high school students
complete this task without significant difficulty?, Is
this text appropriate for the skills and knowledges
of high school students?, Is the length of this text
suitable for high school students?, Would the vocab-
ulary in this text be comprehensible to high school
students?, Does this text contain metaphors and/or
figurative language?, Does this text use complex
language?, Does this text use simple language?,
Does this text contain technical jargon?, Is this
text about science?, Is this text about language sci-
ence?, Is this text about natural science?, Is this
text about social science?, Is this text about math?,
Is this text about physics?, Is this text about chem-
istry?, Is this text about earth science?, Is this text
about world history?, Is this text about geography?,
Based on the Flesch-Kincaid reading-ease score,
is this text suitable for elementary school readers?,
Based on the Flesch-Kincaid reading-ease score, is
this text suitable for middle school readers?, Based
on the Flesch-Kincaid reading-ease score, is this
text suitable for high school readers?, Based on
the Gunning Fog Index, is this text suitable for el-
ementary school readers?, Based on the Gunning
Fog Index, is this text suitable for middle school
readers?, Based on the Gunning Fog Index, is this
text suitable for high school readers?, Based on
the Coleman-Liau Index, is this text suitable for
elementary school readers?, Based on the Coleman-
Liau Index, is this text suitable for middle school
readers?, Based on the Coleman-Liau Index, is this
text suitable for high school readers?, Based on
the Automated Readability Index (ARI), is this text
suitable for elementary school readers?, Based on
the Automated Readability Index (ARI), is this text



Table 4: List of Static metrics

Feature

Description

n_words_q

n_words_a_solution
n_words_a_lecture

Text_Length

Word_Count

Nouns

Verbs

Adjectives

Adverbs

Num_Numbers

Num_Commas

Num_Complex_Words
Num_Unique_Words
Num_Content_Words
Num_Content_Words_No_Stopwords
Word_Length_Syllables
Avg_Sentence_Length
Num_Prepositional_Phrases
Num_Negated_Words_Stem
Num_Negated_Words_Lead_In
Num_Main_Noun_Phrases
Avg_Main_NP_Length
Num_Verb_Phrases
Prop_Active_Voice_Verbs
Prop_Passive_Voice_Verbs
Ratio_Active_to_Passive_Verbs
Num_Words_Before_Main_Verb
Num_Agentless_Passive_Constructions
Word_Length_Std_Dev
Num_Polysemic_Words
Num_Word_Senses
Num_Word_Senses_For_Content_Words
Num_Word_Senses_For_Nouns
Num_Word_Senses_For_Verbs
Num_Word_Senses_For_Non_Auxiliary_Verbs
Num_Word_Senses_For_Adjectives
Num_Word_Senses_For_Adverbs
Distance_To_Root_Nouns
Distance_To_Root_Verbs
flesch_kincaid_grade
flesch_kincaid_ease
coleman_liau_index
automated_readability_index
smog_index

gunning_fog
traenkle_bailer_index

Number of words in the question
Number of words in the solution of an answer
Number of words in the lecture
Length of the text

Total word count

Number of nouns

Number of verbs

Number of adjectives

Number of adverbs

Number of numeric characters

Number of commas

Number of complex words

Number of unique words

Number of content words

Number of content words excluding stopwords
Average word length in syllables

Average sentence length

Number of prepositional phrases

Number of negated words stemmed
Number of negated words leading in
Number of main noun phrases

Average length of main noun phrases
Number of verb phrases

Proportion of active voice verbs
Proportion of passive voice verbs

Ratio of active to passive voice verbs
Number of words before the main verb
Number of agentless passive constructions
Standard deviation of word lengths
Number of polysemic words

Number of word senses

Number of word senses for content words
Number of word senses for nouns
Number of word senses for verbs
Number of word senses for non-auxiliary verbs
Number of word senses for adjectives
Number of word senses for adverbs
Distance to root for nouns

Distance to root for verbs

Flesch-Kincaid grade level
Flesch-Kincaid ease score

Coleman-Liau index

Automated Readability Index

SMOG index

Gunning Fog index

Traenkle-Bailer index
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suitable for middle school readers?, Based on the
Automated Readability Index (ARI), is this text
suitable for high school readers?, Based on the
SMOG Index, is this text suitable for elementary
school readers?, Based on the SMOG Index, is
this text suitable for middle school readers?, Based
on the SMOG Index, is this text suitable for high
school readers?, Does this text contain basic con-
cepts that are easy to comprehend?, Does this text
cover multiple concepts?, Does this text provide a
very explicit explanation?, Does this text contain
simple examples?

D Details over Gemma-7B, Mistral-7B,
and Llama2-7B

We describe the performance of these models in
detail. Gemma7b has 10.33% invalid response in
zero-shot and 9.56% over few-shot. The majority
of the predicted class is high school level 73.41%
in zero-shot and 72.75% in few-shot. Mistral7b has
15.49% invalid response in zero-shot and 6.37%
invalid in few-shot and with majority of classifi-
cation for high school level with 66.04% in zero-
shot and 42.31% for elemetary school in few-shot.
Llama2-7b has 13.08% invalid in zero-shot and
5.49% in few-shot and the majority of elementary
school classification with 66.26% in zero-shot and
also 76.04% in few-shot. Gpt-4 has only 5.93%
invalid in zero-shot and 0.77% in few-shot. Gpt-4
predicted also the high school level as the highest
classification with 41.54% in zero-shot and 40.22%
in few-shot.

Level Precision Recall F1-Score
2 Elem. 0.83 0.81 0.82
% Middle 0.75 0.57 0.65
= High 0.66 0.81 0.65
2 Elem. 0.86 0.85 0.86
@% Middle 0.75 0.71 0.73
“2  High 0.84 0.88 0.86
2 Elem. 0.98 0.98* 0.98*
Z Middle  0.98* 0.91* 0.95%
O High 0.91+ 0.97* 0.94+

Table 5: Difficulty classification performance on test.
* = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Gemma-7b. Best performance per level in
bold.
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Level Precision Recall F1-Score
£ Elem. 0.46 0.86 0.60
Z Middle  0.92 0.83 0.88
& High 0.34 0.10 0.16
O Elem. 0.86 0.85 0.86
E Middle  0.75 0.71 0.73
“  High 0.84 0.88 0.86
2  Elem. 0.76 0.95* 0.84*
§ Middle 0.85 0.90* 0.88*
O High 0.89 * 0.64 0.75

Table 6: Difficulty classification performance on test.
x = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Mistral-7b. Best performance per level in
bold.

Level Precision Recall F1-Score
£ Elem. 0.44 0.47 0.45
Z Middle  0.62 0.61 0.62
& High 0.29 0.28 0.28
U Elem. 0.86 0.85 0.86
E Middle  0.75 0.71 0.73
“  High 0.84 0.88 0.86
2  Elem. 0.88* 0.97* 0.93*
= Middle 0.72 0.74%* 0.73*
O High 0.83 0.73 0.78

Table 7: Difficulty classification performance on test.
* = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Llama2-7b. Best performance per level in
bold.



Rank Metric F

1 Based on the Coleman-Liau Index, is the text suitable for MS readers? 105.09%*
e 2 Is this text readable for a MS student? 104.42%
g 3 Based on the SMOG Index, is this text suitable for MS readers? 103.53*
~ 4 Is this text suitable for a MS student? 94.21%*

5 Based on the Gunning Fog Index, is this text suitable for MS readers?  92.35*
s 1 Gunning Fog (measures text readability) 817.86*
2 2 Coleman-Liau index (measures text readability) 785.60*
% 3 Flesch-Kincaid Reading Ease (measures readability) 725.15%
= 4 Automated Readability Index (measures lexical diversity) 686.87*
2R Number of unique Words (measures lexical diversity) 613.89%

Table 8: Top five most important features among the PROMPT-BASED and STATIC metrics. Feature importance is
measured using univariate F-tests. Larger F indicates higher feature importance. (MS: Middle School) PROMPT-
BASED metrics use the Gemma-7B model. * indicates significance at >99.999% confidence.

Rank Metric F

1 Based on the Gunning Fog Index, is this text suitable for ES readers? 209.84*
e 2 Is this text easy to understand for ES students?? 193.22*
g 3 Is this text Suitable for ES students 190.61*
~ 4 Is this text about math? 175.72%

5 Is this text relevant to curriculum topics for ES students? 175.08*
s 1 Gunning Fog (measures text readability) 817.86*
) Coleman-Liau index (measures text readability) 785.60%*
% 3 Flesch-Kincaid Reading Ease (measures readability) 725.15*
= 4 Automated Readability Index (measures Readability) 686.87%
ZI Number of unique Words (measures lexical diversity) 613.89*

Table 9: Top five most important features among the PROMPT-BASED and STATIC metrics. Feature importance
is measured using univariate F-tests. Larger F indicates higher feature importance. (ES: Elementary School)
PROMPT-BASED metrics use the Mistral-7B model. * indicates significance at >99.999% confidence.

Rank Metric F
S 1 Is this text relevant to curriculum topics for ES students? 139.66*
3 2 Is this text suitable for an ES student? 136.97*
E 3 Is this text readable for an ES student 132.89*
% 4 Based on the Gunning Fog Index, is this text suitable for MS readers?" 125.51%*
< 5 Is this text about natural science? 124.52*
=
g 1 Gunning Fog (measures text readability) 817.86*
g 2 Coleman-Liau index (measures text readability) 785.60%*
% 3 Flesch-Kincaid Reading Ease (measures readability) 725.15%
= 4 Automated Readability Index (measures Readability) 686.87*
ZI Number of unique Words (measures lexical diversity) 613.89*

Table 10: Top five most important features among the PROMPT-BASED and STATIC metrics. Feature importance is
measured using univariate F-tests. Larger F indicates higher feature importance.(ES: Elementary School, MS: Middle
School) PROMPT-BASED metrics use the LlammaZ2-7B model. * indicates significance at >99.999% confidence.
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Abstract

Large Language Models (LLMs) have been re-
ported to outperform existing automatic evalu-
ation metrics in some tasks, such as text sum-
marization and machine translation. However,
there has been a lack of research on LLMs
as evaluators in grammatical error correction
(GEC). In this study, we investigate the per-
formance of LLMs in English GEC evaluation
by employing prompts designed to incorporate
various evaluation criteria inspired by previous
research. Our extensive experimental results
demonstrate that GPT-4 achieved Kendall’s
rank correlation of 0.662 with human evalu-
ations, surpassing all existing methods. Fur-
thermore, in recent GEC evaluations, we have
underscored the significance of the LLMs scale
and particularly emphasized the importance of
fluency among evaluation criteria.

1 Introduction

Large Language Models (LLMs) have surpassed
existing systems in various NLP tasks, showcas-
ing their high capabilities of language understand-
ing and generation (Ye et al., 2023; Bubeck et al.,
2023). These LLMs, which have had a significant
impact on recent NLP research, also demonstrate
the ability to produce high-quality corrections in
grammatical error correction (GEC) (Schick et al.,
2022; Dwivedi-Yu et al., 2022; Fang et al., 2023;
Loem et al., 2023; Coyne et al., 2023).

In recent years, several studies have been con-
ducted on the use of LLMs as an evaluator. In
text summarization, dialogue generation, and ma-
chine translation, GPT-4 has demonstrated superior
performance compared to existing automatic eval-
uation metrics (Liu et al., 2023b; Kocmi and Fed-
ermann, 2023). While there is very little research
on GEC evaluation, considering GPT-4’s ability
to explain grammatical errors with 90% accuracy
in human evaluations (Song et al., 2023), it holds
potential for evaluating corrections. Sottana et al.
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Figure 1: Evaluation framework using LLMs.

(2023) conducted meta-evaluation using a limited
number of systems, but there has been no com-
prehensive analysis using dozens of systems like
traditional approaches such as Grundkiewicz et al.
(2015) and Kobayashi et al. (2024).

Therefore, we aim to explore the extent to which
LLMs operate as evaluation models in English
GEC. Specifically, we conduct GEC evaluations
using LLMs with prompts at different evaluation
granularities to investigate how evaluation capabil-
ities change with the presence of evaluation crite-
ria and the scale of LLMs, as shown in Figure 1.
Kobayashi et al. (2024)’s work on the evaluation
of metrics (i.e., meta-evaluation) has revealed that
conventional metrics lack the resolution to cap-
ture performance differences in high-performing
GEC systems. Given this current state, to facilitate
proper GEC evaluation moving forward, we inves-
tigate the potential of LLMs by comparing them
with conventional metrics through meta-evaluation.

Our contributions are summarized as follows. (1)
We conducted a comprehensive investigation into
the performance of LLMs as evaluators in GEC,
and the results showed that GPT-4 achieved state-
of-the-art performance, indicating the usefulness
of considering evaluation criteria in prompts (espe-
cially fluency). (2) It was suggested that as LLM
scales decrease, the correlation with human evalua-
tions decreases, and the ability to capture fluency
in corrected sentences diminishes. Smaller LLMs
tend to avoid extreme scores, while larger LLMs

Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 68—77
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tend to assign higher scores.

2 [Experiment setup

In this section, we explain the considered GEC
metrics (§2.1) and meta-evaluation methods (§2.2).

2.1 Considered metrics

GEC metrics: We use two types of evaluation
metrics: Edit-Based Metrics (EBMs), which as-
sess only the edits made in the corrected text, and
Sentence-Based Metric (SBMs), which evaluate
the overall quality of the corrected sentences.

For EBMs, we employ four metrics.

+ M? (Dahlmeier and Ng, 2012) dynamically
extracts edits using Levenshtein algorithm to
maximize overlap with gold annotations from
the hypothesis sentences and calculates the
F-score.

ERRANT (Bryant et al., 2017) is similar to
M?, but it differs in that it uses a linguistically
extended Damerau-Levenshtein algorithm for
edit extraction to enhance the alignment of
tokens with similar linguistic properties.

GoToScorer (Gotou et al., 2020) calculates
an F-score taking into account the difficulty
of corrections. The difficulty is defined based
on the number of systems that could correctly
correct errors per total number of systems.

PT-M? (Gong et al., 2022) combines M?
with BERTScore (Zhang et al., 2019), en-
abling the measurement of semantic similarity
in addition to simply comparing edits.

For SBMs, we utilize four metrics.

* GLEU (Napoles et al., 2015) rewards n-
grams in the hypothesis sentence that match
the reference but are not in the source sentence
while penalizing n-grams in the source that
do not match the reference. We use GLEU
without tuning (Napoles et al., 2016).

Scribendi Score (Islam and Magnani, 2021)
evaluates based on GPT-2 perplexity, token
sort ratio, and Levenshtein distance ratio.

SOME (Yoshimura et al., 2020) fine-tunes
BERT (Devlin et al., 2019) using human eval-
uation scores based on three criteria: gram-
maticality, fluency, and meaning preservation.
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* IMPARA (Maeda et al., 2022) utilizes a qual-
ity estimation model and a similarity model
based on BERT to consider the impact of ed-
its.

LLMs: We consider three LLMs: LLaMa 2 (Tou-
vron et al., 2023) (13B for chat), GPT-3.5 (Ouyang
et al., 2022) (gpt-3.5-turbo-1106), and GPT-
4 (OpenAl, 2023) (gpt-4-1106-preview), con-
ducting evaluations using prompts to assess both ed-
its and sentences separately. LL.Ms for edit-based
evaluation are denoted with “-E” at the end, while
ones for sentence-based evaluation have “-S” at
the end. Furthermore, we created prompts focus-
ing on GEC evaluation criteria to investigate the
impact of prompts on evaluation performance, com-
paring them with the base prompt. For simplicity,
this experiment uses only GPT-4 as the base LLM
architecture. GPT-4-E, which evaluates edits, fo-
cuses on the difficulty of corrections (Gotou et al.,
2020) and the impact of edits (Maeda et al., 2022).
GPT-4-S, which evaluates sentences, uses prompts
focusing on grammaticality, fluency, and meaning
preservation (Asano et al., 2017; Yoshimura et al.,
2020). Detailed information on each prompt is
provided in Appendix A.

2.2 Meta-evaluation methods

We conduct system-level and sentence-level meta-
evaluations using SEEDA dataset (Kobayashi
et al., 2024). SEEDA consists of human evalu-
ations at two different granularities: edit-based
and sentence-based, for 12 outputs from neural-
based GEC systems and 3 human-authored sen-
tences. The dataset comprises two components:
SEEDA-E based on edit-based evaluation and
SEEDA-S based on sentence-based evaluation. In
SEEDA, for correction pairs (A, B) sampled from
these corrected sentence collections, three anno-
tators provide 5-point scores for each granularity,
resulting in 5347 pairwise judgments (A>B, A=B,
A<B). Subsequently, human rankings (from 1st
to 15th place) of systems are obtained from pair-
wise judgments using rating algorithms such as
Trueskill (Sakaguchi et al., 2014) and Expected
Wins (Bojar et al., 2013). We conduct two varia-
tions of meta-evaluation: “Base’, which uses the
12 systems excluding outliers, and “+ Fluent corr.”,
which adds two fluent corrected sentences' addi-
tionally.

'In GEC, there are two types of edits: minimal edits, which

make the minimum necessary corrections, and fluency edits,
which aim to make the sentence more fluent.



System-level Sentence-level

Metric SEEDA-E SEEDA-S SEEDA-E SEEDA-S

Base + Fluent corr. Base + Fluent corr. Base + Fluent corr. Base + Fluent corr.

r P T P T P r P Acc T Acc T Acc T Acc T

M? 0.791 0.764 | -0.239 0.161 | 0.658 0.487 | -0.336 -0.013 | 0.582 0.328 | 0.527 0.216 | 0.512 0.200 | 0.496 0.170
ERRANT 0.697 0.671 | -0.502 0.051 | 0.557 0.406 | -0.587 -0.116 | 0.573 0.310 | 0.511 0.188 | 0.498 0.189 | 0.471 0.129
GoToScorer 0.901 0937 | 0.667 0916 | 0.929 0.881 | 0.627 0.881 | 0.521 0.042 | 0.505 0.009 | 0.477 -0.046 | 0.504 0.009
PT-M? 0.896 0.909 | -0.083 0.442 | 0.845 0.769 | -0.162 0.336 | 0.587 0.293 | 0.542 0.200 | 0.527 0.204 | 0.528 0.180
GLEU 0911 0.897 | 0.053 0.482 | 0.847 0.886 | -0.039 0.475 | 0.695 0.404 | 0.630 0.266 | 0.673 0.351 | 0.611 0.227
Scribendi Score 0.830 0.848 | 0.721 0.847 | 0.631 0.641 | 0.611 0.717 | 0.377 -0.196 | 0.359 -0.240 | 0.354 -0.238 | 0.345 -0.264
SOME 0.901 0951 | 0.943 0.969 | 0.892 0.867 | 0.931 0916 | 0.747 0.512 | 0.743 0.494 | 0.768 0.555 | 0.760  0.531
IMPARA 0.889 0.944 | 0935 0.965 | 0911 0.874 | 0932 0.921 | 0.742 0.502 | 0.725 0.455 | 0.761 0.540 | 0.742 0.496
GPT-3.5-E -0.059 0.182 | -0.844 -0.257 | -0.270 -0.245 | -0.900 -0.525 | 0.463 -0.073 | 0.428 -0.143 | 0.487 -0.026 | 0.437 -0.126
GPT-4-E 0911 0965 | 0.845 0.974 | 0.839 0.846 | 0.786  0.899 | 0.728 0.455 | 0.702 0.404 | 0.698 0.395 | 0.687 0.374
+ Difficulty 0941 0972 | 0.909 0.978 | 0.885 0.860 | 0.863 0.908 | 0.719 0.437 | 0.708 0.417 | 0.717 0.434 | 0.703  0.406
+ Impact 0.905 0.986 | 0.848 0.987 | 0.844 0.860 | 0.793 0.908 | 0.730 0.460 | 0.710 0.420 | 0.717 0.434 | 0.696 0.392
Llama 2-S 0.534 0427 | 0.161 0.349 | 0482 0273 | 0.090 0.235 | 0.521 0.042 | 0.527 0.054 | 0.534 0.068 | 0.526 0.052
GPT-3.5-S 0.878 0916 | 0.302 0.648 | 0.770 0.636 | 0.199 0.433 | 0.633 0.265 | 0.597 0.195 | 0.631 0.263 | 0.608 0.216
GPT-4-S 0.960 0.958 | 0.967 0.969 | 0.887 0.860 | 0.931 0.908 | 0.798 0.595 | 0.783 0.565 | 0.784 0.567 | 0.770  0.540
+ Grammaticality 0961 0.937 | 0.981 0.956 | 0.888 0.867 | 0.953 0912 | 0.807 0.615 | 0.804 0.607 | 0.796 0.592 | 0.788 0.577
+ Fluency 0974 0979 | 0.981 0.982 | 0913 0874 | 0952 0916 | 0.831 0.662 | 0.812 0.624 | 0.819 0.637 | 0.797 0.594
+ Meaning Preservation | 0.911 0.960 | 0.976 0974 | 0.958 0.881 | 0.952 0.925 | 0.813 0.626 | 0.793 0.587 | 0.810 0.620 | 0.792 0.584

Table 1: Results of system-level and sentence-level meta-evaluations. GPT-4-S demonstrated higher performance
compared to existing GEC metrics, showing the most improvement in correlation when focusing on fluency.

System-level meta-evaluation: In the system-
level meta-evaluation, we utilize the system scores
derived from human rankings of systems using
TrueSkill (Sakaguchi et al., 2014). For metrics
like SOME, where system-level scores cannot be
directly calculated, we use the average of sentence-
level scores as a substitute. Additionally, for LLMs,
we employ system scores derived from LLMs rank-
ings (Appendix B) similar to human rankings. To
measure the correlation between human evalua-
tions and metric scores, we use Pearson correlation
(r) and Spearman rank correlation (p). To ensure
proper correlation calculation, we use the set of
sentences that humans evaluated to compute the
metric scores.

Sentence-level  meta-evaluation: In  the
sentence-level meta-evaluation, we use pairwise
judgments from SEEDA. To investigate the
proximity between human evaluations and metric
scores, we employ Accuracy (Acc) and Kendall’s
rank correlation (7). Kendall (7) is valuable for
assessing performance in common use cases where
corrections are compared to each other.

3 Results

In this section, we analyze the performance of
LLMs as GEC evaluators in system-level (§3.1)
and sentence-level meta-evaluations (§3.2). Addi-
tionally, we conduct further analysis by changing
the system set to investigate the impact of the con-
sidered systems in the meta-evaluation(§3.3).

3.1 System-level analysis

In Table 1,> GPT-4 tends to achieve high correla-
tions compared to existing metrics, highlighting
their utility in GEC evaluations. These prompts
that focus on criteria tend to enhance correlation
compared to base prompts, implying that GPT-4
can derive valuable insights from evaluation crite-
ria. This observation aligns with recent studies that
report performance improvements by incorporating
additional sentences into the prompt (Barham et al.,
2022; Kojima et al., 2023; Li et al., 2023).

The decrease in correlation as the LLM scale
decreases, such as with Llama 2 and GPT-3.5, sug-
gests the importance of the LLM scale. Especially,
the decrease in correlation when adding fluent cor-
rected sentences (“+ Fluent corr.””) compared to
“Base” implies that smaller-scale LLMs may not
adequately consider the fluency of sentences. Pos-
sible reasons for this include issues such as LLM’s
tendency to produce the same scores (Appendix C)
and the inability to interpret the context of prompts
as expected by users. However, GPT-4 consistently
demonstrated a high correlation and provided more
stable evaluations compared to traditional metrics.

The fact that most system-level correlations for
GPT-4 exceed 0.9 suggests that the conventional
meta-evaluation using a dozen systems may have
reached a performance saturation point for the task.
This poses a significant concern as it could lead to
an underestimation of high-performing metrics in
future meta-evaluations. One possible solution is
to utilize sentence-level correlations with a larger

Llama 2-E was excluded from this experiment because
its output scores were not stable.
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Figure 2: Window analysis was performed by selecting any consecutive four systems from the human rankings of
the 12 systems (“Base”). For instance, x=4 involves calculating the Pearson correlation (r) using the systems ranked
from 1st to 4th in the human rankings. In contrast to conventional GEC metrics, which exhibit unstable correlations,
GPT-4 demonstrates relatively stable correlations.

sample size or explore correlations between sys-  ency beyond grammaticality when evaluating high-
tems with similar performance levels, increasing  quality corrections. Paradoxically, it implies that

the difficulty of the task. humans also prioritize fluency when comparing
high-quality corrected sentences. Furthermore, the
3.2 Sentence-level analysis moderate fluctuations in correlation resulting from

changing a single word in the prompt (GPT-4-S +
Grammaticality vs. GPT-4-S + Fluency) highlight
the impact of prompt engineering on performance.
In other aspects, the results were generally consis-
tent with those in the system-level meta-evaluation.

In the sentence-level meta-evaluation, we ob-
served differences in correlations between metrics
that were not apparent in the system-level meta-
evaluation. In particular, while GPT-4-E and GPT-
4-S showed similar correlations in system-level
meta-evaluation, it was revealed that there was
a notable difference between them. Additionally,
considering fluent corrected sentences (‘“+ Fluent
corr.’) led to a slight decrease in overall corre-
lation, but GPT-4 still maintained a considerably
high correlation compared to traditional metrics.
This suggests that GPT-4 exhibits strong correla-
tions with human evaluations and that examining
sentence-level correlations is beneficial for compar-
ing high-performance metrics.

3.3 Further analysis

To increase the difficulty of the meta-evaluation
task, we computed correlations using a set of sys-
tems with similar performance. Specifically, we
conduct system-level meta-evaluation using only
subsets of consecutive four systems in the human
rankings of systems, and show the transitions of
correlation at positions from 4th to 12th as window
analysis in Figure 23. For example, the point at x=4
represents the Pearson correlation value calculated
using only the outputs of the four systems ranked
from 1st to 4th.

According to the window analysis, GPT-4 main-
tains relatively high and stable correlations, making

Most prompts focused on criteria significantly
improved sentence-level correlations compared to
the base prompt. Notably, GPT-4-S + Fluency
demonstrated the ability to greatly enhance per-
formance, surpassing existing GEC metrics and

achieving State'Of'the'art‘performar_lce" This sug- 3For simplicity, we exclude the results of Llama 2 and
gests the need for a detailed examination of flu-  GPT-3.5, which showed low performance.
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them suitable for evaluating modern neural systems
in recent years. In SEEDA-E, the notably high cor-
relations of GPT-4-S + Fluency across almost all
data points emphasize the importance of fluency. In
SEEDA-S, while overall correlations are high, the
significant decrease in correlation at x=10, suggests
the presence of GEC systems that are challenging
to evaluate for the metrics. On the other hand,
conventional metrics frequently exhibit either no
correlation or negative correlation, indicating their
low robustness in GEC evaluation.

4 Related Work

Several studies have investigated the evaluation
performance of LLMs. Chiang and Lee (2023)
conducted the first investigation into LLM eval-
uation performance, demonstrating that GPT-3.5
can achieve expert-level evaluation in tasks such
as open-ended story generation and adversarial at-
tacks. In the summarization task, Liu et al. (2023a)
revealed that GPT-4 has state-of-the-art evaluation
performance by leveraging their proposed methods
like auto-CoT (Chain-of-Thought) and weighted
scores. In the machine translation task, Kocmi and
Federmann (2023) demonstrated that only larger
models exceeding GPT-3.5 can perform translation
quality evaluation, with GPT-4 slightly inferior to
existing metrics at the segment level. Yancey et al.
(2023) utilized LLMs to evaluate second language
writing proficiency through essay grading, discov-
ering that GPT-4 exhibits performance equivalent
to modern automated writing evaluation methods.

5 Conclusion

In this work, we investigated the capability of
LLMs as evaluators in English GEC, and GPT-4
demonstrated significantly higher correlations com-
pared to traditional metrics. Future work should
delve into the impact of few-shot learning and opti-
mize prompt engineering for enhanced evaluation
performance. Furthermore, we plan to explore the
possibility of document-level evaluation, consid-
ering the expansion of the GPT’s context window,
which is not currently focused on by existing met-
rics.

6 Limitations

Some of the LLMs (such as GPT-4) used in this
study are not freely available and may require spe-
cial access or payment to use. This could limit
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the applicability of our evaluation method. Addi-
tionally, since many LLMs are constantly updated,
there is a possibility of inconsistent evaluation re-
sults across different versions. To address this issue,
we also conducted evaluations using reproducible
LLMs (such as Llama 2).
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A Prompts for GEC evaluation

The prompts used for edit-based evaluation and
sentence-based evaluation by LLMs are illustrated
in Figures 3a and 3b, respectively. In the # con-
text, [SOURCE] represents the source, and [PRE-
VIOUS] and [FOLLOWING] are the preceding and
succeeding sentences in the essay, respectively. In
the # targets, [CORRECTION N WITH EDITS]
denotes a corrected sentence with explicitly indi-
cated edits, while [CORRECTION N] represents
a regular corrected sentence. Here, N takes val-
ues from 1 to 5. Additionally, the prompts output
scores in JSON format to maintain a consistent
output format. For prompts focused on evaluation
criteria, the following sentence is added to the end
of the first paragraph of the prompt.

* Difficulty: “Please evaluate each edit in the
target with a focus on the difficulty of correc-
tions.”

* Impact: “Please evaluate each edit in the tar-
get with a focus on its impact on the sentence.”

» Grammaticality: “Please evaluate each target
with a focus on the grammaticality of the sen-
tence.”

* Fluency: “Please evaluate each target with a
focus on the fluency of the sentence.”

¢ Meaning Preservation: “Please evaluate each
target with a focus on preserving the meaning
between each target and the source, which is
the middle sentence in the context.”

An example of a prompt for evaluation using
GPT-4-S + Fluency is provided below:

The goal of this task is to rank the presented targets
based on the quality of the sentences.

The context consists of three sentences from an
essay written by an English learner.

After reading the context to understand the flow,
please assign a score from a minimum of 1 point to
a maximum of 5 points to each target based on the
quality of the sentence (note that you can assign
the same score multiple times).

Please evaluate each target with a focus on the
fluency of the sentence.

# context
These are the advantages that save works most of
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the time .

In conclude , socia media benefits people in several
ways but in the same time harms people .

People should avoid the misuse of socia media and
use it in the proper way .

# targets

In conclude , socia media benefits people in several
ways but in the same time harms people .

In conclusion , social media benefits people in
several ways but at the same time harms people .
In conclusion , social media benefits people in
several ways but , at the same time , harms people .
In conclude , social media benefits people in
several ways but at the same time harms people .
In conclusion , socia media benefits people in
several ways but, at the same time , harms people .

# output format ...

B LLM rankings of GEC systems

The LLM rankings based on pairwise judgments
(A>B, A=B, A<B) of corrections (A, B) con-
ducted by LLMs and generated using Trueskill are
shown in Table 2. It can be observed that LLMs
with relatively smaller scales, such as GPT-3.5 and
Llama2, have difficulty in ranking fluent correc-
tions (REF-F and GPT-3.5) higher. Furthermore,
these LLMs tend to assign similar scores to many
systems, suggesting that they may not effectively
differentiate between the quality of corrections. In
contrast, GPT-4 can rank fluent corrections highly,
resulting in rankings that closely resemble human
evaluations.

C Tendency of LLM scoring

The distribution of scores assigned by LLMs to
corrected sentences is shown in Figure 4. As the
LLM scale increases, there is a tendency to assign
higher scores (4 or 5 points). Based on our meta-
evaluation results, which suggest that higher LLM
scales are associated with higher correlations with
human evaluations, smaller LLMs may underes-
timate corrections judged to be good by humans.
Llama 2-S tends to avoid extreme scores such as 1
or 5 points and shows a high degree of score over-
lap, making it difficult to compare more detailed
corrected sentences.



ﬁhe goal of this task is to rank the presented targets based on the quam
of each edit.

The context consists of three sentences from an essay written by an
English learner.
After reading the context to understand the flow, please assign a score
from a minimum of 1 point to a maximum of 5 points to each target . . .
based on the quality of the edit alone (note that you can assign the same The goal of this task is to rank the presented targets based on the quality
score multiple times). of the sentences.' i
For targets without any edits, if the sentence is correct, they will be The context consists of three sentences from an essay written by an
awarded 5 points; if there is an error, they will receive 1 point. English learner.
The edits in each target are indicated as follows: After reading the context to understand the flow, please assign a score
Insert "the": [—the] from a minimum of 1 point to a maximum of 5 points to each target
Delete "the": [the—] based on the quality of the sentence (note that you can assign the same
Replace "the" with "a": [the—a] score multiple times).
# context # context
[PREVIOUS] [PREVIOUS]
[SOURCE] [SOURCE]
[FOLLOWING] [FOLLOWING]
# targets # targets
[CORRECTION 1 WITH EDITS] [CORRECTION 1]
[CORRECTION N WITH EDITS] [CORRECTION N]
# output format # output format ) ;
The output should be a markdown code snippet formatted in the The output should be a markdown code snippet formatted in the
following schema, including the leading and trailing " * “json" and "* " *": following schema, including the leading and trailing "* * "json" and """ "":
°% ** json
"target1_score": int // assigned score for target 1 "targetl_score": int // assigned score for target 1
k"targetN_score": int // assigned score for target N ) "targetN_score": int // assigned score for target N
(a) Edit-based evaluation (b) Sentence-based evaluation

Figure 3: Prompts used for edit-based evaluation and sentence-based evaluation by LLMs
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Figure 4: The distribution of scores assigned by LLMs on a 5-point scale. It can be observed that as the LLM scale
increases, there is a tendency to assign higher scores (4 or 5 points). Based on our meta-evaluation results indicating
better correlation with human judgments as the scale increases, it is suggested that smaller LLMs may underestimate
corrections judged to be good by humans.
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# Score Range System
1 0440 1 GPT-3.5
2 0304 2 REF-F
3 0.18  3-5 TransGEC
0.169 35 TS5
0.134 47  BERT-fuse
0.102 5-8 Riken-Tohoku
0.095 5-8 REF-M
0.054 79  UEDIN-MS
0.021 8-10 PIE
-0.007 9-10 GECToR-BERT
4 -0.138 11-13 LM-Critic
-0.145 11-13  GECToR-ens
-0.179 11-14 TemplateGEC
-0.227 13-14 BART
5 -0.809 15 INPUT
(c) GPT-4-E + Difficulty
# Score Range System
1 0236 1 TransGEC
2 0170 2-5 TS5
0.143  2-6 UEDIN-MS
0.141 2-6  REF-M
0.116 27  GPT-3.5
0.095 4-7 Riken-Tohoku
0.048 6-9  GECToR-BERT
0.038 6-9 BERT-fuse
-0.004 8-10 PIE
-0.044 9-11 GECToR-ens
-0.080 10-13 REF-F
-0.093 10-13 LM-Critic
-0.141 12-14 BART
-0.165 13-14 TemplateGEC
3 -0.458 15 INPUT
(f) GPT-3.5-S
# Score Range System
1 0.721 1 GPT-3.5
2 0.648 2 REF-F
3 0.230 3-4  TransGEC
0.178 35 T5
0.122  4-6 BERT-fuse
0.115 57 REF-M
0.063 6-7 Riken-Tohoku
4 -0.007 89  UEDIN-MS
-0.058 8-11 PIE
-0.066  9-11 GECToR-BERT
-0.102  9-11 LM-Critic
5 -0.264 12-14 GECToR-ens
-0.271 12-14 TemplateGEC
-0.308 12-14 BART
6 -1.002 15 INPUT

# Score Range System Score Range System
1 0481 1 INPUT 0.409 1 GPT-3.5
2 0.287 2 UEDIN-MS 0.210 2-4 REF-F
3 0215 3-3 GECToR-ens 0.182 24  TransGEC
4 0.110 4-6 Riken-Tohoku 0.148 3-6 TS5
0.089 4-8  GECToR-BERT 0.127 3-7 REF-M
0.078 4-8 TransGEC 0.105 4-8 BERT-fuse
0.066 49 PIE 0.075 6-9  UEDIN-MS
0.032 6-12 REF-M 0.071 6-9  Riken-Tohoku
0.025 7-12 BERT-fuse 0.064 69  GECToR-BERT
0.017  7-13  LM-Critic 0.003 9-11 PIE
-0.005 8-13 BART -0.06 10-11 LM-Critic
-0.008 8-13 TS5 -0.147 12-13  TemplateGEC
-0.011  9-13  TemplateGEC -0.150 12-13 GECToR-ens
5 -0.460 14 GPT-3.5 -0.266 14 BART
6 -0916 15 REF-F -0.770 15 INPUT
(a) GPT-3.5-E (b) GPT-4-E
# Score Range System Score Range System
1 0429 1 GPT-3.5 0.104 1-4 PIE
2 0237 2-4  REF-F 0.094 1-5 REF-M
0.198  2-4  TransGEC 0.084 1-7  GPT-3.5
0.167 35 TS5 0.058 2-7  BERT-fuse
0.118 48 REF-M 0.052 2-8  GECToR-ens
0.107  4-8  BERT-fuse 0.042 3-8  TransGEC
0.093  5-9  Riken-Tohoku 0.019 4-10 UEDIN-MS
0.075  6-10  UEDIN-MS 0.010 5-11  Riken-Tohoku
0.064  6-10 GECToR-BERT -0.017  7-11  GECToR-BERT
0.026 8-10 PIE -0.019 7-11 T5
3 -0.129 11-13 LM-Critic -0.034  8-12 INPUT
-0.130 11-13 GECToR-ens -0.087 10-15 REF-F
-0.163 11-13  TemplateGEC -0.099 12-15 BART
4 -0.293 14 BART -0.102  12-15 TemplateGEC
5 -0.798 15 INPUT -0.104 12-15 LM-Critic
(d) GPT-4-E + Impact (e) Llama 2-S
# Score Range System Score Range System
1 0.658 1 GPT-3.5 0.673 1-2  GPT-3.5
2 0542 2 REF-F 0.636 1-2  REF-F
3 0203 3-4  TransGEC 0.194  3-4  TransGEC
0.187 35 TS5 0.18¢ 34 TS
0.145 4-6 BERT-fuse 0.121 5-7 BERT-fuse
0.091 6-7 Riken-Tohoku 0.090 5-7 Riken-Tohoku
0.074  6-7 REF-M 0.082 5-7 REF-M
4 0.009 89 UEDIN-MS 0.022 7-8 UEDIN-MS
-0.032  8-10 GECToR-BERT -0.074  9-11 LM-Critic
-0.085 9-11 PIE -0.076  9-11 GECToR-BERT
-0.102  10-11  LM-Critic -0.118 9-11 PIE
5 -0.238 12-14 TemplateGEC -0.213  12-13  TemplateGEC
-0.258 12-14 GECToR-ens -0.238 12-13 GECToR-ens
-0.293 13-14 BART -0.309 14 BART
6 -0.901 15 INPUT -0.974 15 INPUT
(g) GPT-4-S (h) GPT-4-S + Grammaticality

Score Range System
0.653 1-2  REF-F
0.601 12 GPT-3.5
0242 34 TS
0.209 3-4  TransGEC
0.135 56 REF-M
0.106  5-7  BERT-fuse
0.071 6-7 Riken-Tohoku
0.011 8 UEDIN-MS
-0.067 9-10 GECToR-BERT
-0.106  9-11  LM-Critic
-0.123  10-11 PIE
-0.225 12-13  TemplateGEC
-0.255 12-13 GECToR-ens
-0.317 14 BART
-0.935 15 INPUT

(j) GPT-4-S + Meaning Preservation

(i) GPT-4-S + Fluency

Table 2: LLM rankings generated using Trueskill based on pairwise judgments made by LLMs. GPT-4 ranks fluent
corrections (REF-F, GPT-3.5) highly, resulting in these r&fikings that closely resemble human ranking.
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Abstract

Large language models (LLMs) are increas-
ingly used for automated scoring of student
essays. However, these models may perpetuate
societal biases if not carefully monitored. This
study analyzes potential biases in an LLM (XL-
Net) trained to score persuasive student essays,
based on data from the PERSUADE corpus.
XLNet achieved strong performance based on
quadratic weighted kappa, standardized mean
difference, and exact agreement with human
scores. Using available metadata, we per-
formed analyses of scoring differences across
gender, race/ethnicity, English language learn-
ing status, socioeconomic status, and disability
status. Automated scores exhibited small mag-
nifications of marginal differences in human
scoring, favoring female students over males
and White students over Black students. To
further probe potential biases, we found that
separate XLNet classifiers and XLNet hidden
states weakly predicted demographic member-
ship. Overall, results reinforce the need for
continued fairness analyses as use of LLMs
expands in education.

1 Introduction

As Large Language Models (LLM)s are increas-
ingly used for Automated Essay Scoring (AES),
it is crucial that we thoroughly analyze these sys-
tems for biases (Rodriguez et al., 2019). Given
that LLMs are pretrained on large corpora, they
have the potential to inherit biases embedded in the
functions that predict word probabilities (Bhard-
waj et al., 2021). If the potential biases are not
monitored carefully with fairness in mind, they
risk perpetuating and amplifying existing societal
biases against vulnerable populations. Rigorous
demographic analysis of AES systems help ensure
they live up to principles of equity and fairness.
The Persuasive Essays for Rating, Selecting, and
Understanding Argumentative and Discourse Ele-
ments (PERSUADE) corpus provides a valuable re-
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source for analyzing bias in AES system (Crossley
et al., 2022). PERSUADE contains over twenty-
five thousand persuasive student essays that were
annotated for argumentative elements in addition
to holistic grades assigned by human raters. What
makes this corpus ideal for the analysis of bias
is the rich metadata about the students including
gender, race, and other demographic indicators.
This allows for in-depth analysis of an automated
scoring system’s performance on essays written by
students of diverse demographic affiliations.

Our goal is to investigate potential biases in
LLMs trained using conventional techniques that
aim to replicate human-assigned holistic scores.
After training the LLM scoring model, we evaluate
whether or not automated scores introduce (or ex-
acerbate) biases relative to human-assigned scores
(Ormerod et al., 2022). After evaluating bias, we
determine whether the set of features that the LLM
uses for scoring also contains information relevant
to demographic membership. In other words, can
the LLM guess certain demographic characteristics
based on the scoring model? Linear modeling us-
ing these features was recently used as evidence of
model validity in AES (Ormerod, 2022). The nov-
elty of this study lies in applying these techniques
and showing their relevance to the analyses of bias
in LLMs.

Broadly, our research aims are as follows:

1. Fine-tune an LLM to score students’ essays
and assess model performance.

2. Evaluate the fine-tuned LLM for biases rela-
tive to human-assigned scores, based on stu-
dents’ demographic affiliations.

. Determine whether demographic affiliation
can be predicted by the (hidden layer of the)
fine-tuned LLM. As a helpful reference point,
assess whether separate LLMs can be fine-
tuned to predict demographic affiliation.

Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 78—86
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These aims help us determine if LLMs are able
to score students’ essays fairly, and if demographic
affiliations are an implicit feature of the scoring
model.

2 Methods

2.1 Data

The PERSUADE dataset consists of a 25,488 essay
responses to 15 prompts written by students from
Grades 6 to 12.! Each essay was assigned a holistic
essay score according to a rubric available with the
dataset.

The prompts were administered to students
within specific grades or grade-bands. For com-
parability with other studies, we used the same
train-test split as was used in the original Kaggle
competition; we created a development dataset (or
dev set) from a random subset of the training data,
for use in model selection, early stopping, and hy-
perparameter optimization. Table 1 shows sample
sizes of train-dev-test splits, along with the average
word count, for each prompt.

Demographic data was included for all prompts,
but not all prompts included every demographic
characteristic. For most prompts, however, we ana-
lyzed potential biases of the following demographic
affiliations:

¢ Gender: M = Male and F = Female

* Race/ethnicity: W White, L His-
panic/Latino, B = Black/African American,

A = Asian/Pacific Islander

* English Language Learners: ELL = Identified
as an English language learner.

* Economically Disadvantaged: SES = Iden-
tified as economically disadvantaged, based
on eligibility for K-12 federal assistance pro-
grams.

* Disability Status: DS = Identified as having a
disability. Type of disability unspecified.

2.2 Scoring Model

One of the problems in the application of conven-
tional pretrained LLLMs, such as BERT (Devlin
et al., 2019), is that the transformer architecture im-
poses a fixed context length (Vaswani et al., 2017;
Mayfield and Black, 2020). There is an extensive

"The PERSUADE corpus is publicly available online at
https://github.com/scrosseye/persuade_corpus_2.0.
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body of literature that has addressed this length
limitation, e.g. Longformer (Beltagy et al., 2020),
Transformer-XL (Dai et al., 2019), and XLNet
(Yang et al., 2019). These innovations are particu-
larly suited for AES systems, which require longer
context lengths.

Among the longer-context models, XLNet per-
forms particularly well on AES and argumentation
annotation (Ormerod et al., 2023). The key feature
of XLNet is its recurrent form of attention (Dai
et al., 2019).

Automated scoring generally benefits from us-
ing a regression head (with MSE loss) as opposed
to a classification head (with cross-entropy loss)
since regression parsimoniously retains the ordinal
nature of score points (Ormerod et al., 2021).

We used the Adam optimizer with a weight de-
cay mechanism (Loshchilov and Hutter, 2019). The
learning rate was set to 5 x 106 with a linear learn-
ing rate scheduler, in batches of 8. Models were
trained over 20 epochs, with early stopping deter-
mined by best performance on the dev set. To
prevent out of memory errors, max token length
was set to 2,048.

2.3 Performance Metrics

We assess the system’s performance using the three
standard metrics proposed by Williamson et al.
(2012) for the evaluation of automated scoring sys-
tems. These include Cohen’s quadratic weighted
kappa (QWK, Cohen, 1960), standardized mean
difference (SMD), and exact agreement.

These agreement statistics quantify the proxim-
ity of automated scores to human-assigned scores.
Most operational standards consider model perfor-
mance relative to human-human levels of agree-
ment; however, only final score was included in the
corpus. Nevertheless, Crossley et al. (2022) report
that all essays were scored independently by two
human raters and, across all PERSUADE items, the
QWK was .745. Item-specific QWKs were not re-
ported. SMD was also not reported. In the absence
of double-scored data, a QWK of at least 0.7 and
an SMD of at most 0.15 are commonly-accepted
guidelines for adequate performance.

2.4 Analytic Approach Toward Bias

There are marginal (i.e. first-order) differences in
score point distributions and in expected scores
between demographic groups (Appendix A). For
instance, female students generally score higher
than male students on persuasive writing. It is pos-



Prompt Prompt Name Grade Nyrin  Npev Nrest
1  Phones and driving N/A 558 140 464
2 Exploring Venus 10 740 185 923
3 Community service 8 608 153 773
4  Seeking multiple opinions 8 1232 309 7
5 Facial action coding system 10 880 221 1062
6 Distance learning 9-12 1192 299 656
7  Summer projects 9-12 696 175 872
8 Cell phones at school 8 663 166 824
9 Car-free cities 10 784 197 973
10 Grades for extracurricular activities 8 648 163 808
11 The face on Mars 8 654 164 764
12 Does the electoral college work? 9 1448 362 228
13 Driverless cars 10 1098 275 496
14 Mandatory extracurricular activities 8 668 167 824
15 "A Cowboy Who Rode the Waves" 6 546 137 682
Overall 6-12 12422 3106 10356

Table 1: A summary of how the data was split for training purposes.

sible that these group differences reflect biases in
human-assigned scores; however, it is also possi-
ble that these group differences reflect legitimate
differences in writing proficiency. Without addi-
tional information (e.g. a set of "unbiased" items,
as would be used in an analysis of differential item
functioning), the source of these differences cannot
be determined.

The ambiguity of interpreting group differences
extends to interpreting differences between auto-
mated and human-assigned scores. In absolute
terms, for instance, differences could indicate that
LLMs are introducing biases or, on the contrary,
eliminating biases. As such, we limit ourselves
to making claims in relative terms, i.e., do LLMs
introduce biases relative to human scores?

2.5 Matching

On average, some groups scored higher or lower
than others (e.g. female students scored higher than
males, on average). To adjust for these marginal dif-
ferences, we compared male and female students
who received 1s to each other, male and female
students who received 2s, etc., which is known as
exact matching (Ho et al., 2011). Exact matching is
ideal in this research context given that our sample
is large, leaving very few students unmatched, even
within specific prompts. As opposed to literally
matching one student with another, we employ ex-
act matching to produce a set of sample weights
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which, when taken as a whole, eliminate marginal
group differences. These sample weights are used
in subsequent analyses.

2.6 Group Difference Estimation

To compute human-XLNet scoring differences (i.e.,
relative bias), we estimated pairwise group differ-
ences. Regression estimates were produced using
cluster-robust standard errors (Bell and McCaftrey,
2002; Pustejovsky and Tipton, 2018), as imple-
mented by Blair et al. (2024) in R 4.3.1 (R Core
Team, 2023). We used exact matching weights,
described above, in these analyses.

2.7 Controlling False Discovery Rate

To avoid making spurious claims that are a prod-
uct of random chance, we controlled the false dis-
covery rate using the Benjamini-Hochberg (B-H)
technique (Benjamini and Hochberg, 1995). We
use the term statistically significant when an esti-
mated p-value is below the B-H adjusted p-value.
In practical terms, B-H adjusted p-values place an
upper bound of .025 on "the probability of being
erroneously confident about the direction of the
population comparison” (Williams et al., 1999, p.
49).

2.8 Predicting Demographic Affiliation

We predict demographic affiliation using two com-
plementary methods. The first, more conventional



method, is to train separate XLNet models to clas-
sify students’ demographic affiliation based on
their text responses. For example, we trained one
model to predict gender, another model to predict
race / ethnicity, etc.

The second method of predicting demographic
affiliation was to use the hidden state from the scor-
ing model for predictions. That is, for each demo-
graphic characteristic, linear models were trained
using the hidden state as features.> More techni-
cally, the XLNet model used for scoring, M, is a
function of the input text, =, and can be broken into
five distinct components:

=(0oL)o(SoTo&)(x)
—_—
Classifier feature

model

ey

where £ is the embedding, 7 is the function for the
layers of (recurrent) transformers, S is a summary
layer that extracts the information for classifica-
tion, £ is a linear layer, and o is the activation
function. Conceptually, these five components can
be grouped into a feature model and a classifier.
The feature model maps text to a vector space of
features that are subsequently used by the linear
classifier to determine the score.

In predicting demographic characteristics, we
used the following model:

M(z)=(c0L)o(SoTo&)(x) (2)

Here, the feature model is frozen and £ is op-
timized to predict demographic affiliation. If M
can accurately distinguish demographic affiliation,
using the language of Ormerod (2022), we say that
the feature is implicit in the model. For example,
in the ASAP dataset (Shermis, 2014), Ormerod
(2022) demonstrated that essay length was an im-
plicit feature of the model because it was a linear
combination of the scoring features.

3 Results

We organize our findings around three foci. First,
we evaluate the performance of XLNet to ensure
it meets operational standards. Second, we assess
the fairness of XLNet’s automated scores by de-
termining if there are any discrepancies, based on

’To clarify, XLNet (with a regression head) was first fine-
tuned to predict score; after fine-tuning, we replaced the regres-
sion head with a classification head, froze all other layers, and
fine-tuned again (using the same hyperparameters) to predict
demographic characteristics.
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students’ demographic affiliations, as compared to
human-assigned scores. Finally, we determine the
extent to which the scoring model has demographic
features embedded within it.

31

We determined model performance on a prompt-
by-prompt basis, as well as aggregated over all
prompts. Table 2 summarizes the performance of
the model in terms of three common agreement
statistics: quadratic weighted kappa (QWK), stan-
dardized mean difference (SMD), and accuracy (all
of which are described in greater detail in section
2.3).

Model Performance

Prompt ‘ QWK SMD  Acc N
1] 0.781 -0.066 0.683 464

2| 0.856 0.003 0.677 923

3| 0.800 -0.109 0.693 773

4| 0.674 -0312 0.429 7

5] 0865 -0.116 0.696 1062

6| 0.875 0.042 0.697 656

7| 0.813 -0.051 0.634 872

8| 0.800 -0.021 0.717 824

9| 0796 -0.087 0.616 973

10 | 0.779 -0.025 0.699 808

11 | 0.818 0.063 0.658 764

12 | 0.863 -0.011 0.649 228

13| 0.774 0215 0.621 496

14| 0.815 0.163 0.659 824

15| 0.755 -0.040 0.691 682
Overall ‘ 0.864 -0.010 0.672 10356

Table 2: The performance of the model trained to the
holistic scores in terms of the agreement with the human
assigned scores.

Based on commonly-accepted operational stan-
dards, three items are in violation of these stan-
dards. More specifically, Prompts 4, 13, and 14
have high SMDs. Results for one of these items
(Prompt 4), however, is unreliable due to the small
test set sample size. Overall, however, XLNet per-
forms well; indeed, in terms of overall QWK, XL-
Net exceeds human-human reliability.

3.2 Automated Scoring Biases

To measure automated scoring biases, we estimated
pairwise differences between reference and focal
groups. Table 3 displays the results of our auto-
mated scoring bias analysis, with standard errors in



Prompt | F-M B-W L-W A-W SES ELL DS
1] 0.07(0.06) 0.03(0.04) 0.09(0.05) 0.31(0.22)
2| 0.10(0.05) 0.00(0.04) -0.01(0.05) -0.06(0.07) -0.04(0.05) -0.10(0.07) -0.19 (0.02)
3| 0.09(0.04) -0.15(0.09 -0.17(0.03) 0.19(0.09) -0.11(0.04) -0.15(0.07) -0.35(0.05)
5] 0.07(0.03) -0.12(0.02) -0.12(0.04) 0.01(0.09) -0.06(0.01) -0.09 (0.04) -0.08 (0.03)
6 | 0.05(0.02) 0.03(0.10) -0.08(0.07) 0.07(0.13) -0.15(0.08) -0.28 (0.10) -0.07 (0.08)
7 | 0.04(0.04) -029(0.06) -0.12(0.04) 0.10(0.04) -0.06(0.02) -0.13(0.09) -0.12 (0.06)
8 | 0.09(0.04) -0.19(0.07) -0.11(0.02) 0.14(0.16) -0.12(0.03) -0.19(0.03) -0.18 (0.10)
9 | 0.12(0.02) -0.13(0.05) -0.06(0.05) 0.16 (0.17) -0.16 (0.08)
10 | 0.13(0.03) -0.20(0.09) -0.14 (0.06) -0.04 (0.06) -0.19 (0.05) -0.26 (0.11)  0.03 (0.11)
11 | 0.09 (0.06) -0.08 (0.04) -0.02(0.01) -0.06(0.05) -0.12(0.07) -0.33(0.09) -0.11 (0.06)
12 | 0.07 (0.08)
13 | 0.14 (0.04) -0.08(0.03) -0.02(0.04) 0.05(0.17) -0.27(0.05) -0.37(0.33)  0.04 (0.19)
14 | 0.12(0.06) -0.12(0.06) -0.09 (0.02) 0.04 (0.01) -0.17 (0.03) -0.15(0.05) -0.09 (0.05)
15 | 0.04 (0.03) -0.08(0.07) 0.00(0.08) 0.11(0.10) -0.13(0.07) -0.31(0.09)  0.08 (0.14)
Overall | 0.06 (0.01) -0.07 (0.01) -0.06 (0.02)  0.07(0.02) -0.10(0.02) -0.10(0.04) -0.07 (0.02)

Table 3: Biases in XLNet scores, relative to human-assigned scores. Pairwise group differences are presented as
z-scores. Bold font indicates statistically significant differences.

parentheses. Score differences were normalized so
that units are in standard deviations (i.e. they may
be interpreted as z scores). More specifically, a dif-
ference of O indicates that there was no difference
between focal and reference groups; a negative dif-
ference indicates that the focal group received a
lower score, on average, compared to the reference
group; and a positive difference indicates that the
focal group received a higher score. Differences
that were statistically significant are presented in
bold.

Group differences varied across prompts, but
trends were generally consistent. We found no
statistically significant group differences within
specifics prompts.

Overall, however, we found that XLNet gave
higher scores to female students compared to male
students (z = 0.06, SE = 0.01, p = .0012), and
lower scores to Black students compared to White
students (z —0.07, SE = 0.01, p = .0023).
These differences are consistent with marginal dif-
ferences observed between these groups, based on
human-rater scores (Table 5). That is, XLLNet mag-
nified marginal between-group differences; the ef-
fect size, however, was small. Students with low
SES status and English Language Learner status
also scored lower than their respective reference
groups; these differences, however, were not statis-
tically significant.

3.3 Model-Embedded Demographics

To determine if demographic information was em-
bedded within the scoring model, we predicted de-
mographic affiliation from the hidden state of the
model. The right side of Table 4 ("Score Features")
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presents the results of these analyses, with QWK
(or k) as the effect size.

According to McHugh (2012), a s value within
the range of 0 < xk < 0.2 is considered to have "no
agreement," 0.2 < xk < 0.4 is considered "mini-
mal," 0.4 < x < 0.6 is "moderate," 0.6 < k < 0.8
is "substantial," and anything above 0.8 is "almost
perfect.”

For nearly all prompts, effect sizes range from
"no agreement” to "minimal agreement." The one
exception is predicting ELL status in Prompt 6
(k = 0.75), which is a substantial effect size. This
suggests that XLLNet was able to distinguish ELL
status quite well based on students’ essay responses
for this prompt.

In interpreting these results, it is important to
bear in mind that we have not controlled for
marginal differences in students’ scores or factors
associated with students’ scores. Some of these
additional factors are listed in Appendix A. For
example, length is associated with students’ scores
and it is well-documented that female students tend
to write more than males. When essay length is
used to predict gender, the strength of the relation-
ship is k = 0.058. Note that this effect size is only
slightly better than randomly guessing the gender
of the student. Using the average word count, word-
length, number of sentences, and Flesch—Kincaid
as features to determine gender, we obtained a x
statistic of 0.106, and x < 0.06 for all races / eth-
nicities, disability status, and ELL status.

We not only predicted demographic affiliation
from the scoring model, but also trained separate
XLNet models to predict demographic affiliation



directly from students’ essays. The left side of Ta-
ble 4 ("Text") presents these results. These results
serve as a useful comparison, since they serve as
an upper-bound of how well XLNet can predict
student groups based on essay responses. x values
seem particularly high for SES and ELL.

4 Discussion

4.1 Conclusions

This study makes an important contribution to the
growing body of research on bias in AES sys-
tems based on LLMs. Although XLNet gener-
ally demonstrated strong performance on key met-
rics compared to human raters, it also magnified
marginal differences between groups, relative to
human-assigned scores. In particular, relative to
human-assigned scores, XLNet was found to be
more generous to female students compared to
male students and White students compared to
Black students. Additionally, we found evidence
that these group differences were embedded in the
hidden layer of the model.

Although effect sizes of biases were small, in
large-scale assessments even small differences can
affect many students. Furthermore, in high stake
settings (e.g. high-school exit exams), such dif-
ferences can result in failure to meet graduation
requirements. XLNet magnified marginal differ-
ences, a finding consistent with other research
(Kwako et al., 2023); this indicates that marginal-
ized populations may be particularly at risk of un-
fair scoring.

Overall, this study demonstrates the importance
and feasibility of comprehensive bias evaluations
when deploying Al scoring in high-stakes educa-
tional settings. Responsible use of automated sys-
tems requires evidence that they do not create or
worsen inequities for marginalized student popula-
tions. With careful design and monitoring, LLMs
should help make writing assessment more consis-
tent, reliable, and constructive for all students.

4.2 Limitations

As stated above (Section 2.4), our claims are lim-
ited to evaluating biases relative to human scores.
Yet human scores themselves are often biased (e.g.
Zechner, 2019). Thus, it is possible that XI.Net is
more fair than human raters, in spite of it magnify-
ing marginal group differences relative to human
raters. Differential item functioning (DIF, Angoff,
1993) accounts for these potential biases by rely-
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ing on an "unbiased" set of anchor items. The
PERSUADE corpus does not include such data,
however, and there is no public dataset currently
available that would permit DIF analyses.

Results showed that demographic affiliations
were embedded in the hidden layer of the XLNet
scoring model. Yet, without further investigation,
we are unable to determine if this information is
used (e.g. as an implicit feature) in generating stu-
dents’ essay scores.

Lastly, we recognize that this study was limited
to analyzing biases within a single LLM model
and dataset. Further research could evaluate other
state-of-the-art models and diverse essay sets to
determine the extent to which findings generalize.

4.3 Further Research

The limitations of this study, noted above, reveal
several promising paths forward. There is room,
for instance, to explore additional LLM models (be-
yond XLNet) and additional datasets. It would also
be valuable to investigate sources of group differ-
ences (e.g. language differences between groups),
and to determine if these group differences are con-
struct relevant or not. Construct (ir)relevance is
important to consider, as it affects which debiasing
strategies would be viable (Kwako, 2023).

Along the lines of debiasing, it would be help-
ful to explore bias mitigation techniques at both
the training and scoring stages. For example, if
demographic affiliation is an implicit feature (i.e.
L(z) = ax + B, and L(z) = ax + f), then we
could potentially use orthogonal projection to op-
timize « on the vector-subspace orthogonal to a.
This might mitigate the effect of any features the
model is using to distinguish demographic infor-
mation. This may, however, come at some cost to
model performance.
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A Differences across student groups

This appendix reports descriptive statistics of es-
says written by students, disaggregated by demo-
graphic affiliations. In addition to known discrep-
ancies between the lengths of essays between cer-
tain groups (notably male and female students), we
present the average word length, number of sen-
tences, and the Flesch-Kincaid grade, which is a
common readability measure defined by

o - o)
total sentences
8 (total syllables

where « 0.39, 5 = 11.8, and v 15.59.
These statistical differences in essay texts, by de-
mographic affiliations, are presented in Table 5.

total words

total words
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Averages
Category Subgroup Rep. | Score  Words Word Len. Sent. FEK.
Gender Male 49.5% 3.20 404 440 193 932
Female 50.5% 3.43 432 445 219 8.70
Race/ White 44.5% 3.42 427 441 214 8.60
Ethnicity Hispanic/Latino 252 % 3.08 398 440 19.0 9.50
Black/African American 19.1% 3.12 393 443 193 9.26
Asian/Pacific Islander 6.7% 3.37 504 459 251 922
Two or More 3.9% 3.45 429 446 21.1 8.87
Native American 0.5% 3.02 369 435 19.3 8.31
ELL Identified 8.6 % 2.69 374 442 165 10.7
Not Identified 86.4% 3.35 421 442 209 8.87
Economic Identified 37.1 % 2.98 367 436 18.0 9.19
Disadvantage Not Identified 42.8% | 3.65 446 444 220 89
Disability Identified 10.3% 2.72 360 436 170 9.6
Status Not Identified 69.8% 3.33 416 441 20.6 895

Table 5: Some key statistical differences between the nature of the scores and essays, disaggregated by demographic
affiliation.
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Abstract

Scoring clinical patient notes (PNs) written by
medical students is a necessary but resource-
intensive task in medical education. This pa-
per describes the organization and key lessons
from a Kaggle competition on automated scor-
ing of such notes. 1,471 teams took part in
the competition and developed an extensive,
publicly available code repository of varying
solutions evaluated over the first public dataset
for this task. The most successful approaches
from this community effort are described and
utilized in the development of a PN scoring sys-
tem. We discuss the choice of models and sys-
tem architecture with a view to operational use
and scalability, and evaluate its performance
on both the public Kaggle data (10 clinical
cases, 43,985 PNs) and an extended internal
dataset (178 clinical cases, 6,940 PNs). The
results show that the system significantly out-
performs a state-of-the-art existing tool for PN
scoring and that task-adaptive pretraining using
masked language modeling can be an effective
approach even for small training samples.

1 Introduction

A core practice in assessing the clinical skills of
medical students is the use of Objective Structured
Clinical Examinations (OSCEs) — a type of exam,
where test-takers interact with standardized pa-
tients, who are trained to portray a set of clini-
cal symptoms. After examining the patients, the
test-takers are asked to describe their findings in a
clinical patient note (PN), similar to those found
in electronic health records (see an example PN in
Appendix A). The PN serves as a documentation
of the encounter and is used to assess examinee
ability to gather information, record physical ex-
aminations, and interpret clinical data. OSCEs are
widely used in medical schools in various coun-
tries, with around 90% of US schools requiring
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their students to pass such exams (Barzansky and
Etzel, 2016).

A major bottleneck for scaling OSCE assess-
ment is the time, cost, and effort associated with
the expert grading of large amounts of PNs, es-
pecially given limited faculty time. For exam-
ple, in the former United States Medical Licensing
Examination® (USMLE®) Step 2 Clinical Skills
exam (discontinued in 2020), more than 100 li-
censed physician raters were needed every year
to grade =~ 330,000 PNs from ~ 35,000 US and
international test-takers (Sarker et al., 2019).

While there is interest among medical educators
to address the above limitations using automated
grading methods, the exploration of such methods
has been slow and fragmented due to exam secu-
rity concerns, which limit data sharing. This has
resulted in small-scale, predominantly internal ex-
plorations of automated scoring, with no shared
datasets or code to foster collaborative research.

To address this gap, we organized a Kaggle com-
petition on clinical PN scoring' as a community
effort to move this field forward. We then used the
most successful approaches for the development of
an interpretable and transparent PN scoring system.
The contributions of this paper are as follows:

* Description of the Kaggle competition on clin-
ical PN scoring, for which we released a pub-
lic dataset and which resulted in a large repos-
itory of publicly available code.

* Analysis of the most successful approaches.

* Description of an Amazon Web Services
(AWS) proof-of-concept for PN scoring based
on the successful solutions; Choice of mod-
els and system architecture are discussed with
a view to operational scalability. Models are

"https://www.kaggle.com/c/
nbme-score-clinical-patient—-notes/
overview
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'FEATURE PN History Text

mrs Moore
45-years
weeks afte
Female . .
ant, same severity since started, no allev, aggrev sunday
evning and monday morning, no previous episodes.

anxious-CR—nervous

No-depressed-mood wmm—
- reported g

present cho

ervousness and iety started couple
Job, that where sudden ,

she also
; go to bed at 10pm , sleeps llpm , and

Insomniae—
Decreased-appetite

m*
- =
day ohe

regularly 3 times ‘wk , during the
K .

Weight-stable «——
Lack-of-other-thyroid-symptoms
Stress-dus-to-caring-for-elderly-
parents

Heavy-caffeine-use

alpitation

drugs,

gat intolerance ,
weaknessROS neg excpet as above PMH\meds none.
NEDAPSHVhosphtraumaltravel noneSH english professor,
family, sexually active w husband, dont smoke or take illicit
drink ETCH occ

headache, SOB, fever, dizziness,

live with

Figure 1: Example of rubric features and their annotated expressions within a patient note excerpt

trained in a real-world scenario of limited PNs
for newly developed cases.

* Baseline comparison to an already opera-
tionalized scoring system with a mean F1
score improvement from .76 to .95. Perfor-
mance is evaluated on both the Kaggle data
and an extended internal dataset.

* Evaluation of a scenario when training is per-
formed using limited annotation.

* Discussion of ethical considerations and im-
plications for fairness, reliability, and validity.

2 Context

The data used in this study originated from the
United States Medical Licensing Examination®
(USMLE®) — a series of examinations used to
support medical licensure decisions in the United
States. Until 2020, the USMLE Step 2 Clinical
Skills examination was a part of the USMLE step
sequence and involved interactions with standard-
ized patients portraying different clinical scenarios.
The resulting PNs were graded using rubrics spe-
cific to each clinical case, which contain a set of
features — important concepts, which should ap-
pear in an appropriately documented PN (Figure
1). For example, for a clinical case about a patient
with anxiety, it may be important that the examinee
discovers that the patient has insomnia, in which
case insomnia would be listed as a rubric feature.
PN that do not mention that symptom or some ex-
pression of it such as difficulty falling asleep would
receive a lower rater score.

Key challenge for automated scoring is the vari-
ety of ways features are expressed (e.g., evaluation
for coronary risk factors expressed as father with
MI at age 50, or denies depressed mood expressed
as (-) anhedonia). There are cases of ambiguous
negation as in denies nausea, vomiting for the fea-
ture no nausea and or vomiting or temporal aspects
such as recent URI for uri one week ago. To be
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operationally usable, a PN scoring system needs
to provide interpretable evidence and be highly ac-
curate. These requirements are crucial to ensure
exam fairness and protect the health of the public.

3 Related Work

The vast majority of work on automated scoring
has been done in the field of writing evaluation (see
Klebanov and Madnani (2020) for an overview).
Studies on scoring clinical text include Latifi et al.
(2016), who use a feature-based system for scoring
short responses to clinical decision-making ques-
tions, Ha et al. (2020) who predict examinee pro-
ficiency from responses to clinical short-answer
questions, and Suen et al. (2023) who use trans-
former models for scoring short answers to clinical
questions. For PN scoring specifically, Yim et al.
(2019) use features and BERT embeddings for scor-
ing a corpus of 338 PNs and Zhou et al. (2022) use
weakly supervised approaches and transfer learning
for scoring two clinical cases of 30 PNs each.

The work most relevant to ours is the INCITE
system (Sarker et al., 2019; Harik et al., 2023),
which was developed for operational scoring of
PNs from the USMLE Step 2 CS exam and which
we use as a baseline. The system is a modular
pipeline which outputs a binary score of "found"
or "not found" for each rubric feature, utilizing
custom-built lexicons and annotations. The first
two modules perform direct and fuzzy matching be-
tween a feature or a lexicon variant and the PN text
using a fixed or dynamic Levenshtein ratio thresh-
old. Any features whose expressions are found
using this method are removed from the pipeline
to optimize running time. Next, matching is per-
formed against combinations of lexicon variants
and annotations, which "often leads to an explosion
of the number of eventual entries" (Sarker et al.,
2019) as terms in the annotations are replaced with



variants from the lexicons. To limit this search
space, there is a cap of 10,000 randomly sampled
combinations per feature. Matching is then done us-
ing these phrases as sequences and as bag-of-words
to cope with fragmented entries 2.

Advantages of the INCITE system include its
high performance, ability to be tuned for precision
and recall by varying the thresholds, as well as
its speed — it is capable of processing over 50,000
PNs per day on a desktop computer. However, the
rule-based nature of the system limits improvement
from more training data, especially because more
annotations would greatly increase the search space
for supervised concept detection.

4 Task description and evaluation

The task of developing an interpretable system for
automated scoring of PNs is one where features
from the rubric are mapped to expressions from the
PN. If an expression of the feature is identified in
the PN then the feature is considered "found", else
it is "not found". The more features are found, the
higher the score for that PN. We perform two types
of model evaluation, as described below.

Token-level evaluation: This type of evaluation
answers the question "What phrase spans in the
PN correspond to a given rubric feature?". This
evaluation is identical to the one used in the Kaggle
competition and comparable to its leaderboard.

For each instance, the system predicts a set of
character spans that it considers to correspond to
that feature, where a character span is a pair of
indexes representing a range of characters within a
text. These predicted spans are then compared to
ground-truth spans from the annotation and scored
as: a character is considered true positive if it is
within both a ground-truth and a prediction; false
negative if it is within a ground-truth but not a
prediction; and false positive if it is within a predic-
tion but not a ground truth. An overall F1 score is
computed from the TPs, FNs, and FPs aggregated
across all instances?.

Binary evaluation: This type of evaluation an-
swers the question "Was an expression of a feature

2E.g., "Antibiotics taken in recent times for his symptoms
—negative". As Sarker et al. (2019) note, window-based fuzzy
matching would fail to include the negation and the rest of the
description in one window.

3For specific examples, see
//www.kaggle.com/competitions/
nbme-score-clinical-patient-notes/
overview/evaluation

https:
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found (1) or not found (0) in the PN?". This eval-
uation corresponds to the way PNs are scored in
practice.* If at least one span is identified as corre-
sponding to the feature, the feature is considered
"found". For the neural models, binary scores are
obtained by applying a function over the token-
level predictions using a threshold of 0.5.

5 Data

Training and evaluation are performed in two
datasets of PN history portions® — public and pro-
prietary — from the USMLE Step 2 CS exam.
Public dataset: This dataset was used in the
Kaggle competition (so henceforth referred to as
"the Kaggle dataset") and contains the history por-
tions of 43,985 PNs from 10 clinical cases and the
corresponding features for each case. Data were
collected between 2017 and 2020 from 35,156 US
or international test-takers who took the exam un-
der standardized conditions in one of five testing
locations in the US. The average number of PNs
per case is 4,398 (min = 992, max = 9,936), to-
tal number of tokens is 5,958,464, and the aver-
age length of each history portion is 135.47 tokens
(SD =24.27). The average number of features per
history portion is 14.3 (SD = 3.34). Of these, a
total of 2,840 PNs (284 per case) were annotated
by 10 experienced US medical practitioners who
were asked to identify the spans of each phrase
that is an expression of a rubric feature and link
it to that feature. The annotators were divided in
pairs of two and 20% of the PNs from each case
were double-rated (see detailed annotation guide-
lines and procedure in Appendix B). F1 agreement
scores were computed using the token-level evalua-
tion procedure described above and showed a sub-
stantial agreement across all cases (F1 = .84 (SD
=(.075); Cohen’s x of 0.89 (SD = 0.057)). Binary
F1 denoting whether an expression of a given fea-
ture was found in a PN was F1 =0.97 (SD = 0.014).
Detailed information about the corpus can be found
in Yaneva et al. (2022). The data is available via a
data sharing agreement at ht tps: //www.nbme.
org/services/data-sharing.
Proprietary dataset: This dataset consists of a
much larger number of clinical cases — 178 — with

#Raters are not typically required to mark the exact expres-
sions that correspond to a feature. As a result, human scores
are not explicitly traceable to specific evidence in the PN, un-
less this is specifically required (e.g., if a score is contested).

>The history portion is where all relevant clinical informa-
tion obtained from an interview with the patient is described.
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https://www.kaggle.com/competitions/nbme-score-clinical-patient-notes/overview/evaluation
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fewer PN history portions per case (1 = 39; min
= 32; max = 43). Total number of PNs in the set
is 6,940, and total number of tokens is 1,121,236.
Average document length is 161.56 tokens (SD =
29.42), and the average number of features is 13.92
(SD = 4.84). All PNs were annotated following
the same procedure as above, resulting in binary
inter-annotator agreement of F1 = .95 (SD = 0.09),
computed over 10% double-rated notes per case.

6 Kaggle competition: Key lessons

The Kaggle competition on scoring clinical PNs
resulted in a total of 28,049 code entries from
1,471 participating teams. After the end of the
competition, many teams posted their notebooks in
the competition’s code repository, making them
publicly available. In this section, we analyze
the top 15 publicly shared solutions © (the teams
ranking from 1st to 11th place, and those that
ranked #13, #14, #18, #19, and #20), as well as in-
sights from other notebooks and key forum discus-
sions. The final leaderboard rankings can be seen at
https://tinyurl.com/p9mwfu8c and cor-
responding code contributions can be accessed at
https://tinyurl.com/3h8p5a67.

Results Many of the top-performing teams
reached a token-level F1 score of .89, with mi-
nor differences between solutions (e.g., #1 F1 =
.89456, #2 F1 = .89432, and #3 F1 = .89384), in-
dicating that there are different, equally success-
ful ways of addressing this task. This result also
suggests potential ceiling effects arising from anno-
tation inconsistencies such as not capturing every
instance of a phrase that can be mapped to a fea-
ture’ or not identifying the correct character span
of a phrase (average inter-annotator agreement F1
=.84). Such inconsistencies resulting from human
error are inevitable in spite of rigorous training and
data cleaning efforts, further showcasing the need
for improved reliability in scoring.

Key approaches Most high-performing solu-
tions used some version of DeBERTa (He et al.,
2021) as the backbone and performed task-
adaptive pretraining (Gururangan et al., 2020) by
using masked language modeling (MLM) over the

®Detailed solution descriptions for first place: https:
//tinyurl.com/2p8afa94, second place: https://
tinyurl.com/yc77s4rk, and third place https://
tinyurl.com/3yf4ubhr.

"The 2" place winner hypothesised that annotators were
more likely to miss repeated annotations than first occurrence

and noted that the use of recursive neural networks (RNNs)
could be useful to capture such sequence dependencies.
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unannotated portion of the data. One solution (#2)
additionally pretrained on the SQuAD 2.0 question
answering dataset (Rajpurkar et al., 2018), drawing
a parallel between the two tasks: the feature text
in PN scoring corresponds to the question in the
SQuAD data, the patient history is the context, and
the annotations are all answers to the question.

Another approach shared by almost all of the
analyzed solutions was the use of pseudo labeling
(Arazo et al., 2020) to create more training data
from the unannotated notes. One team (ranking #3)
also utilized meta pseudo labeling (Pham et al.,
2021). Some teams reported that hard labels work
better than soft labels [solutions ranking #8, #70],
while others reported the opposite [#1].

While these techniques were used in most high-
performing solutions, one approach that distin-
guished the Top 3 winners was the use use of multi-
task learning. In this case, the main task of token
classification is combined with an auxiliary task
of predicting annotation span boundaries, putting
more weight on tokens that are the beginning or
end of a phrase. In the model architecture, this
is expressed as a primary head for token classifi-
cation and two auxiliary heads for span boundary
detection (one for starts and one for ends).

A focal point for most successful solutions
was the prevention of overfitting. This was done
through careful ensembling and detailed experi-
mentation with various dropout rates, as well as
extensive use of cross validation.

7 Models

Two key differences between real-world applica-
tions and the competition are that: i) newly de-
veloped cases do not come with large amounts of
unannotated PNs (which makes pseudo-labeling
not suitable), and ii) the trade-off between per-
formance gain and resource requirements such as
speed and compute power is an important aspect of
model selection (making the ensembling of a large
number of models impractical). With these pre-
requisites in mind, the following approaches were
trained and evaluated.

INCITE baseline: The INCITE system is an op-
erationally used benchmark. The case-specific data
in its lexicons is from the training set for each case.

DeBERTa baseline: The pretrained DeBERTa
v3 (He et al., 2021) was used as the backbone
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Token-level results for the public (Kaggle) dataset

Public test set Private test set

P R F1 P R F1
DB 846 882 864 | .85 885  .867
DB+ MTL | .844 882 .862 | .849 887 .868
DB+MLM | 845 .889 .866 | .849 .89 .869

Token-level results for the proprietary data (178 cases)

Training set (80%) Test set (20%)
P R F1 P R F1
DB 836 782 .808 | .681 .768 .722
DB+ MTL | 845 808 .826 | .773 .7 745
DB + MLM | .94 95 945 | 856 .834 .845

Table 1: Token-level results. DB = DeBERTa; MTL =
multi-task learning; MLM = masked language model-
ing; P = precision, R = recall. Note that INCITE does
not output token-level information.

model®, where each token was assigned a label
of 1 if inside the annotation span and O otherwise.
The output of the model was the probability of each
token being inside the annotation span. After ex-
perimentation with various probability thresholds
in both datasets, a threshold of 0.5 was determined
sufficient (i.e., a token with a probability greater
than 0.5 was considered to be inside the span). The
model was trained with cross-entropy loss.

DeBERTa + Masked Language Modeling
(MLM): 15% of the tokens in the input sentences
were randomly masked and ran through the model,
where the model’s objective was to predict the
masked tokens. For the Kaggle dataset, the pretrain-
ing was performed on the unlabeled data. For the
proprietary dataset, there were no unlabeled data,
so the pretraining was performed on the labeled
data from the training set. The MLM model was
pretrained for one epoch. The pretrained model was
then trained the same way as the baseline model.

DeBERTa + Multi-task Learning (MTL): Two
auxiliary tasks were trained jointly with the model,
predicting whether the token was at the beginning
(Task 1) or the end (Task 2) of the annotation span.

8 Results

Token-level results: Table 1 presents the results
from the token-level evaluation. For the Kaggle
data, we kept the exact training, private test, and

8Learning rate: le-4; Optimizer: AdamW; Weight decay:
0.01; Learning rate scheduler: Linear (warmup for 10% of the
training steps); Training epochs: 5; Training batch size: 4 per
device x 2 GPUs = 8; Gradient accumulation steps: 4.
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public test sets,” so the results are directly compa-
rable to the competition leaderboard. As shown in
the table, the best-performing model is DeBERTa +
MLM, with a private test set F1 score of .869 (P =
.849, R = .89). This compares to F1 = .89456 for
the #1 Kaggle solution. A drop in performance of
only .03 points shows that the exclusion of pseudo-
labeling and the use of a single model instead of
an ensemble of multiple models did not lead to a
loss that has a practical significance (although such
difference is important in a competition context).

For the internal dataset the results are consistent
with Kaggle — the best model is again DeBERTa +
MLM (F1 = .845, P = .856, R = .834). The model
generalizes over a much larger set of cases and is
robust when trained on fewer notes (as a reminder,
the internal dataset contains 32 to 49 annotated
notes per case (80% used for training), compared
to 100 training notes per case in Kaggle). Impor-
tantly, this result shows that MLM pretraining can
be fruitfully applied to small training sets, leading
to an increase over the DeBERTa baseline (.845
vs. .722). The DeBERTa and DeBERTa + MTL
results did not generalize as well, exemplifying the
importance of task-adaptive pretraining.

Note that token-level evaluation was only per-
formed with the neural models. INCITE cannot
output specific phrases if the matching was done
by some of its more advanced modules (e.g., bag
of words from lexicon variants + fuzzy matching).
This is an important distinction between INCITE
and the neural approaches that has implications
for both interpretability and intended use (e.g., in
providing feedback to learners).

Binary evaluation results and comparison to
INCITE: The binary evaluation results are pre-
sented in Table 2. For Kaggle, the neural models
outperform INCITE (F1 of .958 for DeBERTa +
MLM; .888 for INCITE on the public test set). This
difference is more pronounced for the proprietary
dataset, where DeBERTa + MLM’s robust F1 of
.952 compares to an F1 of .761 for INCITE and
.946 for inter-annotator agreement. As shown, the
main difference with INCITE is that DeBERTa +
MLM has a much higher recall (e.g., R =.954 vs.
R = .642 for INCITE). Precision is high for both
DeBERTa + MLM (.95) and INCITE (.953).

The binary evaluation results on the internal

°In Kaggle, the public test set serves as a validation set
for the development of the approaches. The final leaderboard
is determined after the end of the competition by the perfor-
mance of the submitted models on the private test set.



Binary evaluation for the public (Kaggle) dataset

Public test set Private test set

P R F1 P R F1
INCITE 962 818 .883 | 961 .828 .888
DB 95 962 956 | 951 .963 957
DB +MTL | 947 961 954 | 953 .963 .958
DB+MLM | 952 961 957 | 961 956 .958

Binary evaluation for the proprietary data (178 cases)

Training set (80%) Test set (20%)
P R F1 P R F1
INCITE 966 085 902 | 953 .642 .761
DB 927 933 .93 896 .862 .879
DB +MTL | 933 947 94 .898 .877 .888
DB+MLM | 979 979 979 | 95 954 952

Table 2: Binary evaluation results. DB = DeBERTa;
MTL = multi-task learning; MLM = masked language
modeling, P =precision, R = recall.

dataset for DeBERTa + MLLM (F1 = .952) are com-
parable to human-rater performance as computed
on the set of double-rated PNs per case (inter-rater
agreement F1 = .946).

Out of the total of 19,465 instances, INCITE
and DeBERTa + MLM agreed in 14,532 or 75%
of the instances (x = 0.51, indicating moderate
agreement); INCITE vs Annotation agreement was
k = 0.52; Finally, DeBERTa + MLM vs Annotation
agreement was « = 0.89.

Limited annotation setting: For the internal
dataset we also experiment with a limited annota-
tion setting, since the question of how much an-
notation is required before a model can be trained
has strong practical implications. For a limited an-
notation scenario where we train on 30% of the
data (i.e., = 12 PNs per case) and evaluate on 70%
held-out data, the F1 score for DeBERTa + MLM
is .836 (binary F1 = .94) compared to .69 (binary
F1 = .83) for DeBERTa + MTL and .64 (binary
F1 = .86 ) for DeBERTa baseline. These results
show that task-adaptive pretraining leads to robust
models even in a limited annotation scenario.

9 Error Analysis

For DeBERTa + MLM, there were 990 errors (594
FNs and 396 FPs), distributed across all 178 clin-
ical cases'?. However, the errors were only dis-
tributed across 36% of the 1815 features. We hy-

0The average number of errors per case was 10.5 (SD =
9.15), with 4 cases scored without any errors, 16 cases with
one, and 22 cases with two errors; highest number of errors
in a case was 18 (1 case), followed by 17 (1 case), and 15 (3
cases). The number of errors per case (1 = 10.5 (SD = 9.15))
was best explained by the number of features in a case, where
cases with higher number of features had more errors.
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pothesize that this may be due to differences in
annotation length for different features. Indeed, the
mean annotation length differs between the correct
predictions and the errors: it is p = 19.6 (SD =
20.7) for correct and p = 13.2 (SD = 17.2) for the
errors (Mann-Whitney U = 7183226, p < 0.001).
This is somewhat counter-intuitive, as it suggests
that the shorter features and shorter annotations are
more difficult to detect. Further content-specific
analysis is needed to illuminate the potential causes
for this phenomenon. Annotation length affected
INCITE inversely and to a much greater extent,
where the annotations for the correct class (u =
15.9, SD = 19.8) are on average twice as short as
the errors (1 =29.12, SD =19.9), (U = 19231079.5,
p = 0.0), potentially due to limitations from its
window-based approach. Spearman correlation be-
tween annotation length and correct/incorrect pre-
dictions further supports this finding: r = 0.08 for
DeBERTa + MLM model and r = -0.36 for IN-
CITE. A likely explanation for this result is that
INCITE’s window-based approach is challenged
by long phrases, while DeBERTa’s multi-head self-
attention layers, where the encoder reads the entire
sequence bidirectionally, enables it to cope well
with these. In addition, since the objective of the
neural models was to decide whether a given char-
acter belongs to a relevant phrase, the higher char-
acter count of longer phrases increases the avail-
able information for making a prediction. Further
analysis of the differences between correct and er-
roneous predictions did not reveal a specific pattern.
This extended analysis is presented in Appendix D
together with examples of specific features.

10 Deployment

A system based on the DeBERTa + MLM model
was deployed on the Amazon Web Services (AWS)
platform. A graph depicting the AWS architecture
can be seen in Appendix C. Figure 2 provides a
visualization of the system output. Speed, resource
efficiency, and scalability are ensured by the use of
SageMaker and eliminating the need for human in-
terference via event triggers: placing incoming data
in an initial S3 bucket triggers a series of Lambda
functions, which initiate preprocessing, training,
and scoring.

11 Discussion

The results presented above showed that the best
model, DeBERTa + MLM, led to significant im-



| Concept Identification > Log Out

Patient Notes

Patient Note | History Section | ID 6789

Pt 20 y/o F with CC of headache HPI: work up yesterday morning with HA. 2/10
onset, progressed to 8/10. Constant. Describes as dull/aching, b/l and diffuse. Also
endorses radiation to neck. No relief from ibuprofen, Tylenol or sleeping.
Exacerbated by walking, bright lights. Denies halos. Has vomited 3x, bilious, no
blood. Endorses cough, sore throat, diffuse achiness. No influenza vaccine this year.
Denies sick contacts. ROS: as above, also "feels warm®". No changes in appetite, no
changes in vision/hearing, no changes in memory/speech, denies palpitations, chest
pain, denies SOB, abdominal pain, changes in bowel habits, changes in urinary
frequency. PMH: none. PSH: none. Meds: OCP. Allergy: none. FH: dad has high

cholesterol, mom migraines. SH: takes online classes and works at sporting goods

Clear Patient Note

Key Essentials
20 years
Female
Global headache or diffuse headache
1 day duration or 2 days duration
Nausea
Vomiting
Photophobia

No known illness contacts

store, denies cigs, 4-5 marijuana joints/week, 2-3 drinks every weekend, sexually

active with boyfriend, always uses condoms."

Subjective fever

Neck pain

Viral symptoms or rhinorrhea or scratchy throat
No relief with Motrin or no relief with Tylenol
Meningococcal vaceine status unknown

No rash

Family history of migraines

Myalgias

Char

Figure 2: System output for an example PN

provements over INCITE for a diverse set of 178
clinical cases (binary F1 = .95 for DeBERTa +
MLM compared to .76 for INCITE), as well as
the Kaggle data (.96 vs .89). INCITE was signifi-
cantly more challenged by lengthy phrases and the
smaller number of training instances in the propri-
etary dataset. By contrast, as shown when evaluat-
ing in the limited annotation scenario, DeBERTa
+ MLM continues to yield meaningful gains when
trained on as few as 12 PNs. These experiments
add evidence that task-adaptive pretraining can be
beneficial even for small training samples, making
the approach applicable to a wide range of practical
scenarios.

While the INCITE system struggled to identify
lengthy expressions (i.e., the annotations of the er-
rors were twice as long as those of the correctly
identified instances), the DeBERTa + MLM model
coped well with long sequences. This is likely due
to the multi-head self attention layers of DeBERTa,
where the encoder reads the entire sequence in a
bidirectional manner. In addition, since the task
was to decide whether a given character belongs
to a relevant phrase or not, the higher character
count of longer phrases increases the available in-
formation for making a prediction. At the same
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time, INCITE’s window-based approach limits the
length of the text spans being considered at a time,
making the capturing of long dependencies less
feasible.

The ability of the neural approaches to output
the relevant PN phrases that correspond to each
feature greatly improves the interpretability of the
scoring process by making explicit the relation-
ship between the assigned score and its supporting
evidence. Importantly, this is an improvement not
only upon INCITE but also upon human scoring, as
raters rarely have the time capacity to mark specific
expressions. As each human rater scores hundreds
of patient notes, it is not practically feasible for
them to link specific phrases to rubric features for
a large volume of data. In addition to improving
interpretability, outputting the phrases enables ap-
plications of these tools that go beyond summative
assessment. Such information can serve to pro-
vide pointed learner feedback in OSCE assessment,
especially in cases where students are still learn-
ing how to document their clinical findings in an
appropriately detailed and organized manner.

When discussing the development of this system,
it is important to mention community competitions
as an important source of innovation. The benefits



from sharing data for such purposes are not limited
to the organization or the data science community,
but extend to improving transparency — a crucial
prerequisite for building stakeholder trust. When
applying these creative approaches to a real-world
scenario, important considerations such as speed
and scalability limit the use of large model ensem-
bles that are typically widely used in competitions.
Other practical considerations include data avail-
ability for training (e.g., newly developed cases
rarely have large numbers of PNs associated with
them) and the need for weak supervision.

12 Limitations and ethical considerations

Some of the limitations of this research relate to
the small within-case sample size of the annotated
notes (which is somewhat mitigated by the large
number of clinical cases) and the fact that not all
notes could be double-rated due to resource con-
straints. While the scoring method is interpretable
in that it can be traced to specific phrases within the
PN, the neural algorithms that identify the phrase
boundaries are black-box models which needs to be
carefully scrutinized for bias. In addition, it is still
not fully apparent why certain features are easier
to detect than others. Future work includes devel-
opment of scoring approaches for other segments
from the PNs such as the Physical Examination and
Data Interpretation sections, deeper exploration of
challenges related to specific features, experimen-
tation with adversarial training, as well as further
investigation of the operational use of the system.

Like many other products, automated scoring
tools are socio-technical systems, whose impact is
determined not solely by their technical capabili-
ties but also by their use and output interpretation.
Misuse and incorrect interpretation of the model
outputs can lead to unethical practices of serious
consequence. In a summative setting, the models
described here are intended to be used as hybrid
systems, where borderline cases and the notes from
examinees below the passing standard are always
reviewed by human raters. In a formative setting, it
is paramount to carefully examine the relationship
between use of the system and learning outcomes
as necessary validity evidence.

Another ethical consideration for this study is
the transparency of the approaches when develop-
ing technology for highly consequential decisions.
As Spadafore and Monrad (2019) write: “decision-
ing software with the potential to profoundly affect
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the career of a medical student should be exam-
ined closely. Transparency of implementation is
critical for such a high-stakes application". This is
particularly important in automated scoring, where
the scores only have value if all stakeholders (e.g.,
faculty, students, and residency selection programs,
to name a few) trust that they are fair, reliable, and
valid. Having public datasets and code such as the
ones shared in the Kaggle competition go a long
way in building trust by increasing transparency
and accountability. As per the rules of the Kaggle
competition!!, all code shared publicly is licensed
under an Open Source Initiative-approved license.
It is important to note that the benefits of system
transparency go hand-in-hand with risks associated
with using that knowledge to "game" the system.
These include reverse-engineering a strategy that
would result in a higher score, as well as the oc-
currence of negative “washback" (Green, 2013) —
over-focus on developing only those skills that are
currently covered by the scoring tool. Limiting
these negative consequences while also building
trust through transparency requires a delicate bal-
ance. In the case of this study, we foster trans-
parency via organizing the competition, describing
the main approaches, and evaluating our system on
a dataset we made public. At the same time, we
do not publish the code behind the system, limiting
potential efforts reverse-engineer it or "game" it.

The data used in the Kaggle competition was
released following strict adherence to ethical prac-
tice. It contains PNs only from examinees who
explicitly indicated that they agreed to have their
data used in research as part of the official exam
registration process; Use of the anonymized data
was considered “exempt” following an IRB review.
The PNs were assigned a new set of IDs that cannot
be linked to operational IDs used in scoring. None
of the PNs include names, affiliations or personal
descriptions (note that the names and clinical data
associated with the standardized patients do not
belong to real people; they are part of carefully
constructed clinical cases that aim to resemble real-
world clinical practice). In addition, the dataset
does not feature complete PNs (only history por-
tions are included), and no identifying information
is given on which PNs were written by an individ-
ual examinee. According to Kaggle’s terms and
conditions, data can only be accessed for partici-

"https://www.kaggle.com/competitions/nbme-score-
clinical-patient-notes/rules



pating in the competition. For purposes unrelated
to the competition, access to the data is subject to
an application process and a data use agreement as
a way to ensure ethical use.

A few important aspects remain to be examined
before the system can be used in practice. This
includes analyses related to differential functioning
of the system for users with different backgrounds,
e.g., ensuring that non-native English speakers are
not disproportionally penalized due to differences
in language proficiency, as well as continuous mon-
itoring for issues such as drift or latency.
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A Example of a patient note

See Table 3 below.

B Annotation Guidelines

For each case, two of the notes were annotated
jointly by a pair of annotators as part of an ini-
tial discussion to resolve discrepancies in the ap-
proach, with the next 5 notes annotated indepen-
dently and discussed in a follow-up meeting. After
that each annotator would proceed to independent
work, where a subset of the notes were double-rated
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History: Describe the history you just obtained from this patient. Include only information (pertinent positives
and negatives) relevant to this patient’s problem(s).

Karin Moore is a 45 yo F here for nervousness. She recently noticed that she was feeling more nervous than usual
and that this feeling has been progressively worsening. Nothing seems to help her nervousness. It is exacerbated by
family and work. She feels especially nervous on Sunday night and Monday morning when as she is planning for the
week. Unable to fall asleep and doesn’t have appetite, though she does makes sure to eat. She denies significant
changes in appetite, weight loss, or overall wellbeing. No fevers, chills, nausea, constipation, diarrhea, skin changes,
racing heart, shortness of breath, dizziness, headaches or rashes.

ROS: otherwise negative

PMH: None; PSH: None

Meds: Tylenol for occasional HA

FHX: Father died at 65yo, had an MI

Allergies: NKDA

SH: Lives at home with husband, mother, and youngest son. Teaches literature at a local college.

Has 2 drinks/mo, no tobacco or drug use.

Physical Examination: Describe any positive and negative findings relevant to this patient’s problem(s).

Be careful to include only those parts of examination you performed in this encounter.

VS: Blood Pressure: 130/85 mm Hg

Heart Rate: 96/min

Gen: No acute distress, conversational, thin

Neck: No thyromegaly, no lymphadeopathy

Heart: RRR, no murmurs, rubs or gallops. Radial pulses +2 bilaterally

Lungs: Clear to ascultation bilaterally, no wheezes

Psych: Well-groomed. Non-pressured speech, linear though process.

Data Interpretation: Based on what you have learned from the history and physical examination, list up to
3 diagnoses that might explain this patient’s complaint(s). (...)

General anxiety disorder
Panic disorder
Hyperthyroidism

Table 3: Illustration of a PN. The dataset features only the history portions of the PNs.

for measuring agreement ( 10% for the proprietary
data and 20% for the public data).

The annotators were given the following instruc-
tion:

of the following excerpt should be annotated:
No blood or mucus in stool).

* Annotations should include quantifiers (e.g.,
twice, four times, some), intensifiers (e.g.,
mild, severe), and temporal modifiers (e.g.,
two weeks, several years) that are specified
in the corresponding entry in the feature, as
well as the object that is being described (e.g.,
pain, cough).

* Identify all phrases that are expressions of a
feature from the History portion of the PNs
and link them to their corresponding feature.

Include fragmented annotations by excluding
the text that is not relevant to the feature (e.g.,
if the feature is No relief with Imodium or
Cipro, only the underlined text of the follow-
ing excerpt should be annotated: Has tried
Immodium (aggrevated condition), and Cipro
250mg BID (has taken 9 tablets) from prior
episode of diarrhea in Kenya of lesser severity

(no effect))

Annotations should not include articles (e.g.,
a, the) or references to the patient (e.g., her,
he) that occur at the beginning of note entries,
or end punctuation (e.g., periods); however,
it is not necessary to fragment annotations
if words or characters, such as these, occur
within relevant text and do not modify the
meaning of the feature entry.

arate annotation, and the annotation should
include all, but not more than, the text that
captures the meaning of the corresponding en-
try in the feature (e.g., if the key essential is
No blood in stool, only the underlined text
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Each feature should be marked up as a sep- .

Annotations may overlap; that is, they may
share text with other annotations. For exam-
ple, negations (e.g., negative for, no, denies)
frequently will be shared among several anno-
tations. In the phrase Negative for fever, chills,
nausea, vomiting, hematochezia, the negated



nouns refer to different features and should be
annotated as Negative for fever, Negative for
chills, Negative for nausea, etc.

Mark up every instance of the feature whether
it is identical to an existing annotation or not.
For example, if the feature is NSAID-use and
the examinee wrote Uses NSAIDs as well as
took ibuprofen, both snippets of text should be
annotated. If the exact snippet Uses NSAIDs
appeared more than once in a note, it should
be annotated every time it appears in the note.

Gender is a special case of a feature and
should only be annotated once for the first
mention. Subsequent phrases that may be
linked to gender such as she or his should
not be annotated.

C AWS System Architecture

See Figure 3 below for a visualization of the system
architecture.

D Extended Error Analysis

Examples of features that were always correctly
identified include ‘no previous uti’, ‘occasional
morning headaches’, ‘no temperature intolerance
or no weight change or no bowel changes or
no hair changes or no skin changes’, ‘on depo
provera’, and ‘decreased energy or fatigue’. The
top 5 features with most FPs were getting worse (7),
hand stiffness (5), subjective fever (5), chest pain
with cough (5), and overdue for colonoscopy (5).
The top 5 features that were most difficult to detect
automatically with highest numbers of FNs were /
day urinary frequency (4), radiating down back of
neck (3), constipation x 4 5 months (3), acute onset
(3), nausea (3). There was no apparent pattern as
to what made certain features easy or challenging
to detect, with both groups containing negation,
temporal aspects, and features with varying length
in characters.

The case with the highest number of errors (n =
18) contained 31 features to look for. Out of the
18 errors, 10 were FPs, and out of these, 4 features
looked for negated terms (no change in diet, no
oral contraceptives, no abdominal surgeries and
no radiation). Interestingly, some negated expres-
sions from the PNs were erroneously mapped to
these negated features such as denies eating under
cokked [sic] foods being mapped to no change in
diet, showing that the model is aware that it needs
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to look for negation but processing it incorrectly.
The remaining eight FNs did not reveal a pattern.

Of all errors, 594 were false positives (FPs)
across 166 cases and 396 were false negatives (FNs)
across 151 cases. The highest number of FPs per
case was 12 (2 cases), with the majority of cases
containing one or two FPs per case (34 and 35
cases, respectively). For FNs, the highest number
of FNs per case was 9 (1 case), with the majority
of cases also containing one or two FNs (48 and 37
cases, respectively).
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Abstract

This paper introduces the Common Lit
Augmented Student Summary Evaluation
(CLASSE) corpus. The corpus comprises
11,213 summaries written over six prompts
by students in grades 3-12 while using the
CommonLit website. Each summary was
scored by expert human raters on analytic
features related to main points, details,
organization, voice, paraphrasing, and
language beyond the source text. The
human scores were aggregated into two
component scores related to content and
wording. The final corpus was the focus of
a Kaggle competition hosted in late 2022
and completed in 2023 in which over 2,000
teams participated. The paper includes a
baseline scoring model for the corpus based
on a Large Language Model (Longformer
model). The paper also provides an
overview of the winning models from the
Kaggle competition.

1 Introduction

Many educational applications are interested in
assessing student-generated knowledge to assess
learning and development. In terms of assessing
student comprehension of text, generation effects
(Slamecka & Graft, 1978) that result from students
writing about what they have read have been shown
to substantially improve learning (Bertsch et al.,
2007; McCurdy et al., 2020). A number of
educational applications have taken advantage of
generation effects to enhance students’ reading
comprehension skills, including Summary Street
(Wade-Stein & Kintsch, 2004), the Interactive
Strategy Training for Active Reading and Thinking
(iISTART) tool (McNamara et al. 2004), the
CommonLit online reading program
(commonlit.org), and the intelligent Textbooks for
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Enhanced Lifelong Learning iTELL) framework
(Morris et al., in press).

The most common approach to assessing
students’ reading comprehension through text
generation is likely through text summarization.
Text summarization is a valuable tool to build and
assess student knowledge (Graham & Harris, 2015;
Head et al, 1989) because the process of
summarization helps students build and
consolidate their knowledge about reading
materials (Silva & Limongi, 2019). Text
summarization has also been shown to lead to
stronger learning gains than other forms of
comprehension assessment, including constructed
responses (Carroll, 2008), long-form essays (Gil et
al., 2010), and traditional assessments like
multiple-choice and fill-in-the-blank questions
(Mok & Chan, 2016).

While effective, many teachers hesitate to
integrate summary assessments of reading in the
classroom because manually grading summaries is
resource-intensive (Lagakis & Demetriadis, 2021;
Li et al, 2018). However, student text
summarization can also be assessed automatically
through the use of Natural Language Processing
(NLP) techniques such as semantic similarity
metrics (Crossley et al., 2019; Li et al., 2018;
Wade-Stein & Kintsch, 2004) or contextualized
word embeddings like those found in Transformer-
based language models (Botarleanu et al., 2022;
Morris et al., 2023).

To assess student summarization strength
automatically, NLP models depend on the
availability of large corpora of summaries that have
been scored for quality. Unfortunately, previous
research has depended on closed-source collections
of summaries that are not available to the broader
research community (Botarleanu et al., 2022;
Crossley et al., 2019; Li et al., 2018; Wade-Stein &
Kintsch, 2004), which limits the strength,
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replication, and generalizability of summarization
models. Additionally, many of the corpora used in
previous research have included summaries written
by crowdsourced workers and not students
(Botarleanu et al., 2022; Crossley et al., 2019; Li et
al., 2018)

The goal of this study is to introduce the
Common Lit Augmented Student Summary
Evaluation (CLASSE) corpus. The corpus
comprises 11,213 summaries written over six
prompts by students in grades 3-12. All summaries
were written on the CommonLit website. Each
summary was scored by expert human raters on
analytic features related to summarization content
and wording. The study also introduces a baseline
NLP summary scoring model for the corpus as well
as the winning models developed in a large-scale
data science competition hosted for the corpus.

1.1  Summary writing

Summarizing a reading involves two cognitive
processes: comprehension and content production
(Li et al., 2018). The reading process leads to the
reader’s comprehension of the source material.
This process generally consists of readers
identifying the text's main themes, the ideas that
support these themes, and the structures and
organization of the text (Spirgel & Delaney, 2016).
After reading, summarization allows the student to
reproduce the content of the source text that they
read and involves the reader (now the writer)
generalizing the main ideas contained in the text,
synthesizing those ideas, organizing those ideas
coherently within the summary, and selecting the
proper words and sentence structures to represent
the ideas (Brown & Day, 1983; van Dijk &
Kintsch, 1983; Galbraith & Baaijen, 2018; Leon et
al. 2006; Nelson & King, 2022). The cognitive
demands entailed in summarizing help consolidate
the knowledge gained from reading into long-term
memory (Silva & Limongi, 2019).

Research indicates that reading to writing tasks
like summarization can increase learning outcomes
in various content domains (Graham et al., 2020;
Silva & Limongi, 2019) and for different types of
learners (Rogevich & Perin, 2008; Trabasso &
Bouchard, 2002; Shokrpour et al., 2013). A meta-
analysis of 56 experiments on the effect of reading
on writing tasks found an average weighted effect
size of Hedges’s g = 0.3 (p < .005) between pre-
and post-tests for students (Silva & Limongi,
2019). Additionally, compared to other methods to

assess reading comprehension and knowledge
development, like constructed responses, essays,
and multiple-choice questions, research has found
that summarizations are more effective (Carroll,
2008; Gil et al., 2010; Mok & Chan, 2016).

1.2 Automatic summary evaluation

Despite the effectiveness of having students
summarize what they have read, providing
feedback to students about the quality of
summaries 1is time-consuming for educators
(Gamage et al., 2021; Lagakis & Demetriadis,
2021; Li et al., 2018), thus making human-driven
summary assessments difficult to scale.

Noting the importance of summarization in
educational settings and the challenges of
integrating it into the classroom, researchers have
investigated the potential for automatic summary
evaluation (ASE) to provide students with
computational-derived feedback.

Initial methods for ASE predominantly involved
assessing a student’s summarization work by
comparing it with model summaries crafted by
experts. These methods have the advantage of
relying on a single expert-derived summary to
establish a benchmark for quality. Metrics like
ROUGE (Lin & Hovy, 2003) were utilized to
assign scores to summaries by examining the
frequency of shared words and phrases between the
student and expert summaries. Although ROUGE
metrics align with the quality ratings given by
experts and have been widely adopted in
developing summarization tools (Ganesan, 2018;
Scialom et al., 2019), the metrics tend to favor basic
lexical attributes. This shortcoming can be
overcome by employing more sophisticated NLP
techniques, such as those involving word
embeddings (Ng & Abrecht, 2015).

The earliest attempt at using a word embedding
approach to score summaries was likely with the
educational application Summary Street. Summary
Street allowed students to produce multiple
summary drafts and provided feedback to students
based on Latent Semantic Analysis (LSA), an early
word embedding model. Summary Street used
LSA to uncover typical sentences in each section of
atext. These sentences were then combined to form
a typical summary. Semantic similarity between a
student’s summary and the typical summary was
used to provide feedback to the student about the
quality of their summary (Wade-Stein & Kintsch,
2004).
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Li et al. (2018) also used LSA to provide scores
for summaries written by crowdsourced workers
on Mechanical Turk. The crowdsourced summaries
were scored by graduate students on four criteria:
thesis statement, content, mechanics and grammar,
and signal words. Li et al. found that crowdsourced
summaries were scored as well as summaries
produced by experts using LSA. Li et al. argued
that crowdsourced workers could produce a model
summary similar to the model summaries produced
by experts, which could make it easier to develop
model summaries for automated scoring.

Other summarization scoring models have
combined more advanced word embedding models
and other NLP features to predict quality. For
instance, Crossley et al. (2019) developed a
summarization model to predict ratings of main
idea integration in summaries collected on
Mechanical Turk using lexical diversity features, a
word frequency metric, and Word2vec semantic
similarity scores between summaries and the
corresponding source material. The model
explained 53% of the variance in ratings.

With the rise of Transformer-based language
models, new methods of automated summary
evaluation have been evaluated. For instance,
Botarleanu et al. (2022) used the summaries of
Crossley et al. (2019) to train a Longformer model
(Beltagy et al., 2020) to predict overall
summarization scores derived from an analytic
rubric; their model explained ~55% of the score
variance. Morris et al. (in press) used an extended
dataset of the one used by Crossley et al. (2019). In
addition to crowdsourced summaries, the extended
dataset also included summaries written by high
school and university students. Morris et al. used
the dataset to predict two aspects of summarization
quality: content and wording. Using a Longformer,
they explained .82 of the variance in the content
scores and .70 of the variance in the wording
scores.

2 The CLASSE Corpus

While research ASE has gained traction and shown
improvements over the last 20 years, the work is
somewhat fragmented. A major reason for this is
that researchers do not have a large-scale open-
source summarization corpus to develop, test, and
validate ASE models. Other reasons include the use
of different NLP approaches to model
summarization quality, the sampling of different
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populations of writers, and the use of different
scoring metrics.

The Common Lit Augmented Student Summary
Evaluation (CLASSE) corpus is meant to help
address this fragmentation by providing
researchers with a gold-standard corpus of open-
source summaries written by students. The corpus
is freely available in the following repository:
https://github.com/scrosseye/CLASSE.

2.1 Summaries

The corpus of summaries found in CLASSE was
provided by CommonLit, an online content library
and writing platform. The initial corpus comprised
11,353 summaries. Within the CommonLit
interface, students read texts and write summaries
on those texts. Students also have the opportunity
to write essay responses, complete vocabulary
quizzes, and answer multiple-choice questions
about the text. The final CLASSE corpus after
pruning (see section 2.2) comprises 11,213
summaries written over six prompts by students in
grades 3-12.

Grade N Length (M) Length (SD)
3 2 172.00 49.50
4 12 77.92 49.19
5] 248 87.51 70.17
6| 1072 82.58 57.61
71 1177 78.92 58.66
8 | 1844 76.30 46.06
9] 2531 71.62 43.82
10 | 2247 75.92 50.73
11| 1942 73.61 51.15
12 138 80.86 57.22
Table 1: Grade Level
Length  Length
Prompt N M) (SD)
Third-Wave 1103 73.88 47.31
Tragedies 2057 63.87 44.93
Jungle 1996 80.52 56.16
Greek 2021 73.72 38.31
Egyptian 2009 85.71 62.58
Nature Nurture | 2027 77.10 48.67

Table 2: Prompt Information

The majority of the summaries were written by
students in the 6™ to 11" grade, with smaller
numbers of 3", 4™, 5™ and 12" grade students (see



Table 1 for details). English language learning
(ELL) status is also available for the students (n =
661). The six prompts were related to the topics of
the third wave, poetic tragedies, the novel The
Jungle, Greek society, Egyptian Society, and the
nature/nurture debate (see Table 2 for details). The
mean length of the summaries was 75.90
(SD =50.94, min = 22, max = 651). Text length by
grade and prompt is reported in Tables 1 and 2. No
demographic information beyond grade and ELL
status is available for the students.

2.2 Summary scoring

Summaries were scored by expert raters using a
standardized scoring rubric and procedure. An
outside agency specialized in providing
performance assessment scoring services was hired
to score the summaries and initial selection of
summaries. Two expert raters scored each
summary using a 0-4 scaled analytic rubric to score
six criteria important in understanding the quality
of summarizations. The rubric was developed
based on research into language elements related to
essay quality reported by Taylor (2013) and Westby
et al. (2010). The initial rubric was revised based
on feedback from a panel of teachers and a panel of
researchers who specialize in the teaching of
summaries. The finalized rubric included analytic
ratings for main point/gist (did the summary
contain the ideas of the source text), details (did the
summary contain all the main ideas of the source
text), organization (were the ideas logically
presented and linked to each other to support
comprehension), voice (was language impartial
and objective in the summary), word/paraphrasing
(did the summary appropriately paraphrase the
source text), and language beyond the source text
(did the summary show a range of lexical and
syntactic features). The scoring rubric is available
at this link. Raters also flagged any summaries that
included offensive or emotionally charged
language or personally identifiable information
(PII). While no PII was reported, 127 summaries
were removed for language use.

Raters were provided with ground truth example
summaries that had been previously scored. As
well, raters went through extensive norming prior
to independent rating. After norming, each
summary was read by at least two raters and, in
some cases, three raters (if there was substantial
disagreement). Ratings were conducted by prompt,

and rater final scores were averaged such that
scores of 3 and 2 were averaged to 2.5.

Score distributions were generally normal
except for the details, organization, and wording
items, which were positively skewed, indicating a
greater number of 1s than 1.5s. Strong correlations
were reported among the analytic items, with the
highest correlation between organization and voice
and the lowest correlation between detail and word
(see Figure 1 for a correlation heat map). The exact
agreement among analytic items hovered around
70% (see Table 3 for details). Quadratic weighted
kappa (QWK) scores for inter-rater reliability were
substantial (QWK < .60) for all items except
wording, which reported a moderate QWK = .532
(see Table 4).

Significant differences were noted between ELL
students and non-ELL students for both content
scores (¢ = 3.993, p < .001) and wording scores
(t=5.684, p < .001). Descriptive statistics for
content and wording scores by ELL and non-ELL
students are reported in Table 5. No significant
correlations were reported between grade level and
content score (» = -0.036, p > .050) and wording
scores (r =-0.049, p > .050). Descriptive statistics
for content and wording scores by grade are
reported in Table 6.
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Figure 1: Heatmap for correlations among analytic
item scores

Item Adl_j;::mt Exact A(g?gcﬁnt
Main Idea 13.2 73.0 13.2
Details 13.9 72.0 13.9
Organization 15.1 69.0 15.1
Voice 15.4 69.0 15.4
Wording 16.9 65.0 16.9
Language 11.8 76.0 11.8

Table 3: Exact and adjacent percentages

102



Item QWK
Main Idea 0.617
Details 0.673
Organization 0.694
Voice 0.683
Wording 0.532
Language 0.653

Table 4: Quadratic Weighted Kappa (QWK) for
inter-rater reliability

Group | Content M (SD)  Wording M (SD)
Non-

ELL 0.016 (1.002) 0.023 (0.999)
ELL -0.136 (0.950) -0.186 (0.910)

Table 5: Descriptive statistics for content and
wording scores for ELL and non-ELL students

Grade Content M (SD) | Wording M (SD)
3 1.593 (2.015) 1.041 (1.419)
4 -0.201 (1.131) -0.359 (0.759)
5 -0.056 (1.115) -0.14 (0.964)
6 0.036 (1.067) -0.039 (0.939)
7 -0.063 (1.054) -0.071 (0.953)
8 0.008 (0.985) 0.076 (0.963)
9 0.025 (0.923) 0.098 (0.955)
10 0.081 (1.01) 0.084 (1.057)
11 -0.061 (1.002) -0.142 (1.04)
12 -0.073 (1.008) -0.146 (0.967)

Table 6: Descriptive statistics for content and
wording scores by grade

2.3 Dimensionality reduction

Since the rubric consisted of six criteria, many of
which were related, we conducted a Principal
Component Analysis (PCA) to assess the potential
to reduce the dimensionality of the six analytic
scores into a smaller number of related constructs.
Before conducting the PCA, the human scores
were standardized using z-score normalization. An
initial PCA was performed with all possible factors
(n = 6). A Kaiser-Meyer-Olkin (KMO) measure of
sampling adequacy indicated that no variables need
to be removed (i.e., all KMO values were above .5),
and the overall KMO score =.918 indicated a
“meritorious” sample (Kaiser & Rice, 1974). The
PCA reported a Bartlett’s test of sphericity,
¥ =61,533.87, p<.001, indicating that
correlations between the analytic scores were
sufficiently large for the PCA. Within the
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components, there was a break in the cumulative
variance explained between the second and the
third components. Considering this break, we
decided on a 2-component solution when
developing the PCA. These 2 components
explained approximately 86% of the shared
variance in the data from the initial PCA.

The first component was related to content (i.e.,
Component 1), and the analytic items details, main
point, voice, and organization were combined into
a weighted score. The analytic items
wording/paraphrasing and language beyond the
source were combined into a weighted score
designated as wording (i.e., Component 2). The
component scores were z-score normalized and
rescaled such that zero represents the mean for each
principal component, and one unit represents one
standard deviation.

2.4 Final dataset

The final dataset comprises 11,213 summaries and
metadata in tabular format and is available at this
link. The dataset contains student ID numbers
(anonymous), the prompt ID for each summary, the
text of the summary, the average content and
wording scores for the summary, the student grade
level, and ELL classification, along with the data
split that was used in the Kaggle competition (see
section 4 for details). The data was split into a
training set (n = 7,165), a validation set used as a
test set for the public leaderboard on Kaggle (n =
2,021), and a test set used for the private
leaderboard on Kaggle (n =2,027). The splits were
selected so that the difference in scores across the
splits was similar to demographic information
(grade and ELL classification). The training set
comprised four prompts (Third Wave, Tragedies,
The Jungle, and Egyptian Society). The validation
set included a single prompt (Greek Society), as did
the test set (Nature versus Nurture).

3 Baseline prediction model for CLASSE
corpus

We developed a simple baseline model for the
CLASSE by finetuning a Longformer model
(Beltagy et al., 2020) to predict the content and
wording scores, given the original text and the
summary. The baseline model is not meant to
extend the technical boundaries of summary
classification models but rather provide a simple
metric from which to measure scoring gains.



3.1 Model description

An encoder architecture was chosen for the
baseline model over a decoder model because the
prediction task is a regression that involves
continuous values. Since a decoder model is used
to generate text, the output values would have to be
expressed in words. This does not imply that a
decoder cannot be used for this task, but an encoder
model seemed a better fit for the data.

The input for the model consisted of both the
summary and the source text, separated by the
“sep” token. Given the length of the input
exceeding 512 tokens, a Longformer model was
chosen as a baseline encoder.

Several options were tested for the final
summary embedding: pooled output, average of all
tokens, and average of summary tokens. Adding a
hidden layer between the embedding and the
decision layer was also considered. The best
configuration used the average of the summary
tokens followed by a dropout layer of 20%, no
hidden layer or output activation, and a learning
rate of le-5 using the Adam optimizer. The mean
squared error sum for the two tasks was used as a
loss function. The lowest validation loss was
obtained after three epochs, and the corresponding
model was used for evaluation. The model was
trained on the training set, validated on the
validation set, and tested on the test set used in the
Kaggle competition.

3.2 Prediction performance

The metric used for the Kaggle competition was
Mean Columnwise Root Mean Squared Error
(MCRMSE), which is the average of the RMSE for
the two scoring components (content and wording).
RMSE is a general error metric used for numerical
predictions that punishes large errors in
predictions. An RMSE score of zero represents a
perfect fit between the model and the outcome
variables (in this case, content and wording scores).
Thus, a lower RMSE represents a better model.
The results for the baseline model for each
partition, each component, and the average scores
are presented in Table 6. The model performed well
on the training and validation sets for content, but
it performed less accurately on the wording scores.
Model performance dipped for the content scores
in the test set and fell for the wording scores. The
overall scores for MCRMSE were strong for the
training set but fell in the validation and test sets.

The final MCRMSE reported for the test set was
0.582.

Partition Content Wording | MCRMSE
RMSE RMSE

Train 0.375 0.427 0.401

Validation 0.415 0.614 0.515

Test 0.480 0.683 0.582

Table 6: Baseline model performance

4 Kaggle Competition

The CLASSE dataset was the subject of a
recently  completed  Kaggle  competition
(CommonlLit - Evaluate Student Summaries). The
goal of the competition was for data scientists to
assess the quality of summaries in the CLASSE
corpus in terms of content and wording. The
winning models provide state-of-the-art techniques
for modeling summary scoring in student data and
demonstrate the potential for the CLASSE corpus
to inform student learning and interventions.

The competition started in July of 2023 and
ended in October of 2023. Over 2,000 teams
comprising ~2,500 competitors entered the
competition, creating over 40,000 summary
scoring models. All winning models are freely
available for use through an MIT license and
provided on the Kaggle website. The Kaggle
website also provides the training and validation
data used in the competition.

5 Kaggle competition results

As mentioned earlier, success in the Kaggle
competition was demonstrated through a model’s
mean column-wise root mean squared error
(MCRMSE), which represented the average Root
Mean Squared Error (RMSE) across the content
and wording scores.

The top 17 teams reported an MCRMSE below
46, with the first-place team reporting an
MCRMSE of .452. These models thus
outperformed our baseline model
(MCRMSE = 0.582). Within the top five entrants,
the most common approach used when modeling
the summary scores was an ensemble model using
the DeBERTa encoder. This approach was used
with the second through fifth place teams, with all
teams except the fifth place team using only
DeBERTa models (the fifth place team used
DeBERTa v3 large and a LightGBM ensemble
model). The first-place team used a single
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DeBERTa model (v3 large), but critically, they
augmented the training set by creating 1000 new
prompts with associated sources using generative
Al. For each prompt, they also created 21
summaries and pseudo-labeled those summaries.
Other common approaches used to improve the
models included using a head mask for only the
student summaries instead of a normal attention
mask, using generative Al models to generate
varieties of the existing prompts, hyperparameter
searches, extending the inference max length, and
using all of the input (summary, prompt, source,
and title) in the training models.

6 Discussion and conclusion

This paper has introduced the CLASSE corpus, the
scoring metrics for the corpus, and a baseline
model for summary scoring based on a DeBERTa
Transformer-based encoder. The paper also
introduced the winning summarization models
from the Kaggle competition held in support of the
CLASSE corpus.

The CLASSE comprises 11,213 summaries
written over six prompts by students in grades 3-12
while using the CommonLit website. Each
summary was scored by expert human raters on
analytic features related to summarization content
and wording.

Reliability metrics for the human scoring
indicated substantial reliability in all items except
paraphrasing/wording, which reported moderate
reliability. Paraphrasing is the restatement of a
passage such that the propositional meaning is
similar, but the words and structures differ.
Recognizing when words differ between passages
is relatively easy, but recognizing the alteration of
clauses is a difficult task (Barzilay & Lee, 2003),
which may explain the moderate reliability
reported by human raters.

The analytic scores were aggregated into
components using a principal component analysis
(PCA) to better represent the underlying structure
of the human ratings. The PCA reported two
components related to content and wording.
Content included features related to main ideas,
details for those ideas, the organization of those
ideas, and the objectivity of how those ideas were
presented. The content component provides an
overall assessment of how the ideas in the source
text are distilled into a coherent and objective
framework in the student summaries. Wording
includes features related to paraphrasing and the

use of language beyond the source. This
component was concerned with the manner in
which the summary presented the ideas from the
source text, specifically, did the summary use
original wording (paraphrasing) and whether this
wording was lexically and syntactically complex.

The baseline model introduced in this paper used
a Longformer model that used both the summary
and the source text as input for model predictions.
The Longformer performed well on the training
data but reported drops in the validation and test
data. This is the result of the Longformer model
learning the patterns of successful summarization
specific to the four prompts in the training set but
not learning how to extend scoring beyond those
prompts to the two unique prompts in the validation
and test sets.

The results of the subsequent Kaggle
competition showed a number of innovations that
helped competitors produce winning models, many
of which addressed the limitations of the baseline
model. The winning model used a single
Transformer encoder (DeBERTa v3 large), but,
importantly, they augmented their training data to
include a much larger number of prompts and
summaries written on those prompts. Extending the
number of prompts and summaries allowed the
model to generalize better to the unique prompts
found in the validation and test set. Other
innovations in summary scoring that resulted from
the Kaggle competition included pseudo-labeling
of Al generated summaries for content and wording
scores, the use of head masks, and extending the
inference max length.

6.1 Limitations

While the CLASSE corpus is the largest corpus of
student summaries, with individual human scores
assigned to each summary, there are limitations to
the corpus. An important limitation is that there are
only six source texts and prompts for the corpus. As
noted, the first-place solution on Kaggle
augmented the CLASSE dataset by creating 1,000
new prompts and source text along with pseudo-
labeling these summaries, all of which are available
in the winning model. However, augmenting data
is different from collecting real data, and future
developments of CLASSE or  newer
summarization datasets should include a greater
number of prompts.

Another limitation of the CLASSE corpus is
that certain grades (i.e., 6™-11" grades) were over-
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represented in the corpus. Greater representation of
lower and upper grades, including college-level
students, is warranted. Finally, while the CLASSE
corpus includes some individual difference
metrics, little information is known about the
writers in terms of gender, race/ethnicity, or socio-
economic status, all of which are important
student-oriented variables that may influence
human ratings.

6.2 Future directions

The goals of the Kaggle competition were to
publicize and make freely available a large-scale
corpus of student-written summaries and advanced
models of assessing summarization quality. Future
directions include integrating the models
developed in the Kaggle competition into
educational applications to help students receive
feedback on summaries written within these
applications. Knowing the strength of generation
effects on learning (Bertsch et al., 2007; McCurdy
et al., 2020) and the strengths of summarization
tasks in general (Carroll, 2008; Gil et al., 2010;
Mok & Chan, 2016), the integration of CLASSE

corpus scoring models into  educational
applications will ensure students quickly receive
formative feedback about their summaries,

allowing for deliberative practice during the
revision process and increased learning.
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Abstract

The Socratic method is a way of guiding stu-
dents toward solving a problem independently
without directly revealing the solution to the
problem by asking incremental questions. Al-
though this method has been shown to signif-
icantly improve student learning outcomes, it
remains a complex labor-intensive task for in-
structors. Large language models (LLMs) can
be used to augment human effort by automati-
cally generating Socratic questions for students.
However, existing methods that involve prompt-
ing these LLMs sometimes produce invalid out-
puts, e.g., those that directly reveal the solu-
tion to the problem or provide irrelevant or
premature questions. To alleviate this prob-
lem, inspired by reinforcement learning with
Al feedback (RLAIF), we first propose a data
augmentation method to enrich existing So-
cratic questioning datasets with questions that
are invalid in specific ways. Also, we propose
a method to optimize open-source LLMs such
as LLama 2 to prefer ground-truth questions
over generated invalid ones, using direct pref-
erence optimization (DPO). Our experiments
on a Socratic questions dataset for student code
debugging show that a DPO-optimized LLama
2-7B model can effectively avoid generating
invalid questions, and as a result, outperforms
existing state-of-the-art prompting methods!.

1 Introduction

Learning based on a conversation that consists of
questions and answers, where the student responds
to questions posed by a more knowledgeable in-
structor, has been proven to be effective in teaching
students about a particular concept (Wood et al.,
1976). In particular, Socratic questioning, which
refers to a way for the instructor to guide a student
to solve a problem (within their zone of proximal
development) by asking them questions that pro-

'The code for our paper can be found at: https://github.
com/umass-ml4ed/socratic-quest-gen

mote thinking while not directly revealing the so-
lution (Quintana et al., 2018), is a very effective
pedagogical method in conversation-based learning
and tutoring.

Recent advances in large language models
(LLMs) (Bubeck et al., 2023) have led to the rapid
development of chatbots that promote student learn-
ing by automatically generating the instructor’s
utterances (Dan et al., 2023; Kazemitabaar et al.,
2024; Tanwar et al., 2024). One key area of interest
in the development of such chatbots is question gen-
eration, which can help students solve logical prob-
lems in the mathematics and programming domains
(Al-Hossami et al., 2023; Shridhar et al., 2022).
Typically, question generation in educational appli-
cations has focused on generating practice or as-
sessment questions, in biology exams (Wang et al.,
2018), reading comprehension (Ashok Kumar et al.,
2023), math practice (Wang et al., 2021), and pro-
gramming exercises (Sarsa et al., 2022). As a spe-
cific form of question generation, Socratic question
generation has gained attention, owing to its effec-
tiveness in improving student learning outcomes by
eliciting critical thinking and self-discovery during
problem-solving (Paul and Elder, 2007).

Socratic questions generation is a complex
task because it involves mapping out the step-by-
step thought process of students during problem-
solving, locating the cause of their error, and pro-
viding effective questions without revealing the so-
lution. Manually generating Socratic questions can
be a cognitively demanding and time-consuming
task for instructors. Several recent works proposed
to automatically generate Socratic questions using
LLMs: In math education, (Shridhar et al., 2022)
shows that generating a sequence of Socratic sub-
questions and prompting students to answer helps
them solve math word problems more successfully.
In computer science education, (Al-Hossami et al.,
2024, 2023) releases a dataset on Socratic questions
for student code debugging and provides baselines
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based on LLM prompting and finetuning. In partic-
ular, the authors prompt GPT-3.5-turbo and GPT-4
(Bubeck et al., 2023) in a chain-of-thought man-
ner (Wei et al., 2022) to generate Socratic ques-
tions. A human study by the authors shows that
the generated questions can sometimes be invalid
in several different ways, including being irrele-
vant to the problem, repetitive of earlier dialogue
turns, or too direct and revealing the solution pre-
maturely, which may hamper students’ learning
processes. Since GPT models are proprietary and
expensive, the authors also attempt to fine-tune the
open-source Flan-T5 model (Chung et al., 2022);
however, doing so proves to be ineffective due to
its insufficient scale and the pretraining procedure
used.

In this paper, we propose a method to improve
the validity of automatically generated Socratic
questions using open-source LLMs. Our method is
inspired by recent developments in reinforcement
learning with Al feedback (RLAIF) (Lee et al.,
2023); our method consists of two phases, data
augmentation and preference optimization. Specifi-
cally, our contributions are as follows:

* To the best of our knowledge, this work is the
first to introduce a data augmentation method
to create negative samples, i.e., invalid ques-
tions, to help us train LLM-based Socratic
question generation methods.

* We use the preference information in the
dataset, i.e., pairs of valid and invalid Socratic
questions, to optimize Llama 2 (Touvron et al.,
2023), an open-source LLM, using direct pref-
erence optimization (DPO). (Rafailov et al.,
2023).

* We show that our method using the Llama
2-7B model outperforms existing state-of-the-
art methods that rely on larger, proprietary
models such as GPT-3.5 and GPT-4 on the
Rouge-L metric and are comparable in terms
of BERTScore. We also use a series of case
studies to illustrate the quality of Socratic
questions we generate and that DPO con-
sistently outperforms supervised fine-tuning
(SFT).

2 Related Work

2.1 Question Generation in Education

In education, question-generation systems are used
to create learning materials and problem sets for

quizzes and exams. (Wang et al., 2021) introduces a
framework for generating math word problems that
incorporates a module for checking the consistency
of the word problem generated in terms of the un-
derlying equations that it solves. Our idea of check-
ing the consistency of the synthetically generated
samples in data augmentation is inspired by theirs.
(Ashok Kumar et al., 2023) proposes a data aug-
mentation and an over-generate and rank method to
fine-tune a language model Flan-T5 (Chung et al.,
2022) to generate questions for reading comprehen-
sion. Their data augmentation method prompts a
larger LLM to augment the dataset with valid ques-
tions (positive examples) corresponding to a pas-
sage in the reading comprehension and then uses
this augmented dataset for standard fine-tuning of
a smaller open-source LLM. Unlike their work, our
data augmentation method involves prompting a
larger LLM to generate invalid questions (nega-
tive examples) to create a preference dataset that
we use for performing preference optimization on
a smaller open-source LLM. In computer science
education, recent works show the effectiveness of
LLMs like OpenAl Codex and GPT-4 (Sarsa et al.,
2022; Kumar and Lan, 2024) on generating pro-
gramming exercise questions, code explanations,
and test cases. (Al-Hossami et al., 2024, 2023)
introduce a Socratic code debugging dataset, to
help a student debug their code along with max-
imizing the students’ learning outcomes. Their
experiments with prompting models like GPT-3.5-
turbo, and GPT-4 show that these models tend to
hallucinate and produce invalid questions. To ad-
dress this issue, our work builds upon theirs to
fine-tune language models to align the generated
questions towards ground-truth human preferences
and discourage the models from generating invalid
questions.

2.2 Reward/ Preference Optimization

Fine-tuning language models to align with human
preferences has proven to be beneficial in various
natural language processing tasks (Kreutzer et al.,
2018; Stiennon et al., 2020; Ziegler et al., 2019;
Ouyang et al., 2022). Traditional methods first
learn a reward model using a dataset of human pref-
erences and optimize the language model for the
downstream task using the rewards obtained from
the reward model with reinforcement learning (RL)
algorithms such as PPO (Schulman et al., 2017).
There are two drawbacks to this method. First, it
is hard to obtain a dataset of human preferences
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as it is an expensive and sometimes cognitively
demanding task. To address this issue, RLAIF pro-
cures rewards from an Al system, such as an LLM,
and has become a scalable and cheaper alternative
(Lee et al., 2023). Second, although preference
optimization of LLMs using RL algorithms like
PPO is effective, it is significantly more challeng-
ing and time-consuming than traditional supervised
learning as it involves tuning multiple LLMs and
sampling rewards in real time. To address this issue,
the DPO method (Rafailov et al., 2023) optimizes
a language model to a preference dataset in an RL-
free manner by formulating the problem as a binary
classification task.

In the domain of education, (Shridhar et al.,
2022) proposes a reward-based method to generate
Socratic sub-questions to solve math word prob-
lems. Similar to our method they define reward
characteristics like fluency, granularity, and an-
swerability to prefer sub-questions that have these
desired characteristics. They use REINFORCE
(Williams, 1992) a popular RL algorithm to op-
timize their model by sampling rewards from ex-
ternal systems in real time. Our method is dif-
ferent from theirs as we first prompt an LLM to
generate invalid Socratic questions (negative exam-
ples) to construct a preference dataset. We then use
this fixed dataset to tune an open-source LLM in
an RL-free method, i.e., using DPO which makes
the training more stable and less complex. (Hicke
et al., 2023) proposes a DPO-based method for
fine-tuning LLama 2 (Touvron et al., 2023) for
question-answering on a dataset of Piazza posts for
an introductory programming course. They create a
proxy preference dataset by using the edit history of
Piazza posts by preferring the final versions of an-
swers as opposed to the earlier versions. However,
the setting of their work is different from ours as we
focus on Socratic question generation and propose
a method to create the preference dataset using data
augmentation. (Scarlatos et al., 2024) propose a
method to perform DPO on LLama 2 for the task
of feedback generation to help students solve math-
ematics word problems. To create preference pairs
they prompt LLMs like Codex (Chen et al., 2021)
and GPT-3.5 turbo to generate bad feedback and
rate the feedback based on a pre-defined rubric us-
ing GPT-4. Our problem setting is different from
theirs as we focus on the programming education
domain and for our task the LLM needs to provide
a series of step-by-step feedback in the form of a
dialogue-based interaction through Socratic ques-

tions instead of just providing the feedback once
for a given problem.

3 Problem Definition and Dataset

We study the problem of Socratic question gener-
ation in conversations between a Student and an
Instructor, where the Instructor’s goal is to guide
the Student through the process of solving a prob-
lem. Concretely, our goal is to generate Socratic
questions at a particular dialogue turn for the in-
structor during the conversation, given the dialogue
history and contextual information about the prob-
lem the Student is trying to solve and their solution.

In this work, we use the dataset for code debug-
ging introduced in (Al-Hossami et al., 2024, 2023).
The dataset is based on didactic conversations be-
tween a Student and an Instructor, where the Stu-
dent is a novice programmer tasked with writing
a program for a given problem. The dataset con-
sists of the Student’s buggy code submissions along
with a dialogue between the Instructor and the Stu-
dent, where the Instructor asks Socratic questions
in the form of a conversation to help the Student
debug their code. The conversation consists of di-
alogue turns with each Instructor utterance being
a collection of several possible “ground-truth” So-
cratic questions at that dialogue turn. The dataset
also contains metadata including the problem state-
ment, the test cases, the bug description, and code
fixes to resolve the bug. In total, there are 38 prob-
lems with more than 50 different bugs in student
solutions, and conversations centered around these
buggy codes containing more than 1900 dialogue
turns. The dataset is split into two subsets, a train
set and a test set which contain 135 and 16 dia-
logues, respectively, spread across different prob-
lems.

4 Proposed method

In this section, we describe our method for the task
of Socratic question generation. Our method in-
volves two phases: First, data augmentation, and
second, preference optimization, as shown in Fig-
ure 1.

4.1 Data Augmentation

Inspired by methods in RLAIF (Lee et al., 2023),
we augment the dataset with invalid Socratic ques-
tions constructed by prompting GPT-4 (Bubeck
et al., 2023), which provides realistic negative
samples for LLM-based question generation meth-
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Figure 1: Illustration of our method for LLM-based Socratic question generation, which consists of two phases,

data augmentation, and preference optimization.

ods to train on. We follow the method described
in (Ashok Kumar et al., 2023) to prompt an
LLM to generate synthetic data and employ an-
other instance of the LLLM for checking the qual-
ity/consistency of the generated synthetic data. Fol-
lowing the definition mentioned in (Al-Hossami
et al., 2024), invalid Socratic questions fall into the
four following categories:

* Irrelevant questions that are not useful for
the student, as they shift focus from the actual
bug, which may confuse the student.

* Repeated questions that have already been
asked in previous dialogue turns, which are
meaningless to the student.

* Direct questions that directly reveal the bug to
the student, which do not prompt students to
think and may hinder their learning process.

* Premature questions which prompt the stu-
dent to make code fixes before identifying the
bug, which may confuse the student.

To generate invalid questions via an LLM, we
construct a few-shot prompt that consists of 1) the
definition of the categories as mentioned above and
2) an in-context example for each of the invalid
question categories detailed above. Our prompt
encourages the model to reason using a chain-of-
thought method, by first generating the “reasoning
process/logic” behind an invalid question, followed
by the question (Wei et al., 2022). We generate in-
valid questions corresponding to all four categories
at every dialogue turn where the ground truth is
provided.

Following (Ashok Kumar et al., 2023; Wang
et al., 2021), we use a consistency checking step
where we prompt GPT-4 to check the consistency
of the generated questions to filter out inconsistent
questions from the augmented dataset. Inconsistent
questions are those that do not belong to any of the

invalid categories listed above. We pose the consis-
tency checking step as a classification task where
GPT-4 predicts a label for each generated ques-
tion over six categories, including the four invalid
categories and two additional categories: “good”
and “incorrect”. Good questions are acceptable
Socratic questions at that particular dialogue turn
and cannot be used as negative samples. Incorrect
questions are unrelated to the problem and the di-
alogue itself and are often erroneous due to LLM
hallucination, which provides little value as easy-
to-tell negative samples. To maintain high data
quality of our preference dataset, we discard all
samples that are predicted as “good” or “incorrect”,
to get the final set of synthetically generated invalid
questions.

Finally, we construct a preference dataset con-
sisting of 2500 tuples of valid and invalid Socratic
questions. In the preference pairs, valid questions
are taken from the ground truth questions in the
original dataset, while the invalid questions are
generated synthetically as described above. Each
valid question from the original dataset is paired
with every synthetically generated invalid question
of all categories to form the augmented dataset.

4.2 Preference Optimization

In this step, we fine-tune an open-source LLM,
Llama 2 (Touvron et al., 2023) for Socratic ques-
tion generation using DPO (Rafailov et al., 2023).
The first step is to perform SFT, i.e., we use the
original dataset, D, as is to fine-tune LLama 2 for
Socratic question generation. For a given conversa-
tion in the train set, we first split the dialogue into
constituent dialogue turns. The input to LLama 2 is
a prompt (p) that consists of a systems message that
instructs the LLM to generate a Socratic question,
the problem metadata, and the current dialogue
history (between the Student and the Instructor).
The output is the valid Socratic question (gy) cor-
responding to that dialogue turn in the dataset. In
the cases where multiple Socratic questions were
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given for a dialogue turn, we treat each one as a
different output associated with the same input for
fine-tuning LLama 2. As shown in Equation 1,
the simple SFT step learns a reference policy myer
by minimizing the loss L£g 7, which serves as the
starting point for preference optimization.

The second step is to perform preference opti-
mization where we fine-tune Llama 2 on the pref-
erence dataset, Dp, that we obtain from the data
augmentation phase, using the same prompt, p, as
input that was used for SFT, but with two outputs:
the valid question g, and the invalid question gy,
for that dialogue turn. As shown in Equation 2,
this preference optimization step learns a human
preference-aligned policy 7y, given the reference
policy 7t obtained from Equation 1, by formulat-
ing the task as a binary classification task, minimiz-
ing the negative log-likelihood loss £ppo, where
o is the Sigmoid function. This minimization leads
to learning 7y, by increasing the likelihood of the
valid question and decreasing the likelihood of the
invalid question while remaining close to the ref-
erence policy 7 Which is governed by the hy-
perparameter 5. Here 6 is the parameters of the
preference-aligned policy which is simply the pa-
rameters of the neural network, in our case LLama
2.

ﬁSFT(Wref) = _E(qv,p)wD[log ﬂref(QV|p)} (1

Lppo(me; Tret) =

79(qv|p)
7Tref(QV|p)

79 (qiv|P)
—_— 2
7"'rezf((]iv|]7)) @

= E(q,q0,p)~Dp log o(B log
— Blog

S Experimental Settings

In this section, we detail the implementation setup,
methods compared, and metrics used to evaluate
our Socratic question generation method.

Implementation details. In the data augmentation
phase, we query OpenAl’s> GPT-4 using a rate-
based API. We set the temperature of the GPT-4
model to 0.5 to encourage moderate randomness in
the outputs. For the consistency checking GPT-4
model, we use a temperate of 0 to maintain deter-
minism. In the preference optimization phase, we

2https://openai.com/

use Code-Llama (7B) (Roziere et al., 2023) pre-
trained for instruction following tasks, particularly
on code data®>. We load our Code-Llama model
in an 8-bit configuration and train using QLora
(Dettmers et al., 2023) with the peft* HuggingFace
library to facilitate efficient fine-tuning. For the
SFT step, we fine-tune the model for 5 epochs with
a learning rate of 3e-5, and a batch size of 2 by
accumulating gradients for creating a virtual batch
size of 64 which takes about 10 hours to train on a
single Nvidia A6000 GPU. For the DPO step, we
fine-tune the model for 1 epoch with a learning rate
of 3e-5 and a 8 (which denotes the KL-loss (Joyce,
2011) between the preference policy learned and
the reference SFT policy) of 0.1, with a batch size
of 2, which takes about 6 hours to train. For the
DPO experiments, we carry out a grid search using
hyperparameters learning rate as le-5, and 3e-5,
of 0.1, and 0.5 and number of epochs as 1 and 2 to
arrive at the best-performing hyperparameters as
mentioned above.

Methods. As baselines, we perform zero-shot
prompting of the LLama 2 Chat model® (Touvron
et al., 2023), denoted by LLama, to generate all
possible Socratic questions for the current conver-
sation turn. We also prompt LLama 2 in a chain-of-
thought (Wei et al., 2022) manner to first generate
the current student misconceptions and then gen-
erate the Socratic questions, denoted by LLama
(CoT).

To decode our trained (SFT and DPO) LLM, we
use two decoding techniques, greedy and nucleus
sampling, with a p value of 0.9 temperature of
1, and a number of return sequences of 5. We
refer to these methods coupled with the trained
SFT method as SFT Greedy, SFT Sample-5, and
similarly for the DPO methods. Greedy decoding
takes 30 minutes to complete, whereas Sample-5
takes an hour.

Metrics. To measure the similarity between the
generated Socratic questions and the ground truth
questions, we use two commonly used evalua-
tion metrics in natural language generation tasks:
BERTScore (Zhang* et al., 2020) based on the
DeBERTa language model (He et al., 2021), which
measures the semantic similarity, and Rouge-L
(Lin, 2004), which measures n-gram overlap based

3https: //huggingface.co/codellama/
CodelLLama-7b-hf

*https://huggingface.co/docs/peft

5https: //huggingface.co/meta-1lama/
Llama-2-7b-chat-hf
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Table 1: Performance comparison across different meth-
ods. All GPT baseline results are reported in (Al-
Hossami et al., 2024). Boldface represents the highest
value/s for that column.

Method Rouge-L BERTScore
P R Fl P R FI

GPT-3.5 21.0 143 17.0 | 56.0 435 489
GPT-3.5 (CoT)| 203 9.7 120 | 61.7 358 41.6
GPT-4 141 233 176 | 354 626 452
GPT-4 (CoT) | 52 266 81 | 126 648 195
LLama 128 18.6 132 | 36.0 483 359
LLama (CoT)| 13.7 155 132 | 423 49.0 41.0
SFT Greedy | 29.7 134 172 | 61.8 293 36.8
DPO Greedy | 30.6 133 17.1 | 659 327 403
SFT Sample-5| 14.1 26.0 17.1 | 32.1 629 41.1
DPO Sample-5| 15.1 279 183 | 348 643 420

on the longest common subsequence (LCS). In ad-
dition, the dataset we use (Al-Hossami et al., 2024,
2023) provides multiple ground truth Socratic ques-
tions at each dialogue turn. To measure the similar-
ity between a set of m LLM-generated questions
with a set of n ground truth questions, we adopt the
process used in (Al-Hossami et al., 2024), which
uses Edmond Blossom algorithm (Galil, 1986) to
find the maximum matching in a complete bipar-
tite graph between the two sets with a total of mn
edges, where the weight of each edge is computed
using one of the metrics mentioned above. This
step guarantees that every ground-truth question
corresponds to, at most, one LLM-generated ques-
tion, inhibiting semantically equivalent LLM gen-
erations from artificially inflating the metric scores.
The number of True Positives (TP) is the total sum
of the weights of all edges in the optimal matching.
False Positives (FP) are calculated by summing the
difference between every weight of an edge in the
matching with 1. Any unmatched LLM-generated
question counts 1 towards False Positive. Similarly,
any unmatched ground truth question counts 1 to-
wards False Negative (FN). The TP, FP, and FN
values are used to compute the precision, recall,
and F1 score for a particular metric. The metric pe-
nalizes over-generated LLM questions that do not
match with any ground truth questions by classify-
ing them as an FP, thus decreasing the precision.

6 Results and Discussions

In the consistency checking step of the data aug-
mentation phase, we see that 72% of the generated
questions are considered for the preference dataset
creation as 27% of the generated questions are clas-
sified as “good” and 1% as “incorrect”. This result
shows that GPT-4 is more prone to generate “good”

questions for particular dialogue turns than incor-
rect questions that do not relate to the problem and
the dialogue.

For the task of Socratic question generation, Ta-
ble 1 shows the comparison between different meth-
ods on the metrics defined for our task. All the
GPT-3.5 and GPT-4 results are taken from prior
work (Al-Hossami et al., 2024). We observe that
GPT-4 (CoT) has the highest recall and yet the low-
est F1 score. This observation is because, GPT-4
generates a large number of Socratic questions a
few of which are similar to the ground truth ques-
tions, however, a significant fraction of the gen-
erated questions do not correspond to any ground
truth questions, hence being labeled as false pos-
itive, thus decreasing the precision. (Al-Hossami
et al., 2024) also carry out manual analysis to show
that GPT (CoT) outputs are the best despite having
low F1 scores. This observation can be attributed
to the fact that GPT (CoT) has the highest recall
among all other GPT methods and hence better
corresponds to the ground truth questions.

For the baseline methods that use zero-shot
LLama prompting, we observe that LLama (CoT)
is the best, which shows that chain-of-thought
prompting to first generate the students’ current
misconceptions followed by the Socratic questions
is effective. Among the preference optimization
experiments, we see that DPO consistently out-
performs SFT. We also observe that the LLama
(CoT) performs as well as DPO Greedy in terms of
BERTScore F1 as LLama (CoT) generates a higher
number of Socratic questions whereas the DPO
Greedy method just generates one. Hence, the re-
call of the DPO Greedy method is lower than that
of LLama (CoT). Among decoding variants, we see
that the Sample-5 method is better than the Greedy
method highlighting the importance of sampling
multiple possible Socratic questions instead of just
one.

Overall, we see that our preference-optimized
models with DPO give the best Rouge-L scores
for all precision, recall, and F1 scores with DPO
Greedy having the highest precision and DPO
Sample-5 having the highest recall and F1 score
among all the methods. DPO Greedy has the high-
est BERTScore precision, whereas DPO Sample-5
has a recall comparable to the best GPT method,
GPT-4 (CoT). These results suggest that the DPO-
optimized LLama 2-7B model is better than (or as
effective as) much larger models like GPT-4 (25
times larger) for Socratic question generation.
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Table 2: An example of invalid Socratic questions generated from GPT-4 for a given conversation, which we use to

augment the dataset.

Problem

Write a function “top_k(Ist: List[int], k: int) -> List[int]” that returns the top k largest
elements in the list. You can assume that k is always smaller than the length of the list.
Example Case: top_k([1, 2, 3, 4, 5], 3) => [5, 4, 3]; top_k([-1, -2, -3, -4, -5], 3) => [-1,
-2,-3]

Bug Description

The function removes the element at index ‘max(lIst)’ instead of removing an element
equal to ‘max(Ist)’. Consequently, the function throws an IndexError on line 5 when a
removed value in ‘Ist’ is greater than the length of ‘Ist’.

Bug Fixes

On line 5, replace ‘Ist.pop(max(lst))” with ‘Ist.remove(max(lst))’

Conversation

Student: Hi. I am confused. My code doesn’t seem to work. Can you help?
Instructor: Hello. Sure, let’s see. Do you know what might be the issue?

Student: I think the problem is with the ‘.pop()’ method. It seems to have issues with
indexing.

Ground Truth

1. Ok, no worries. Let’s review your code line by line. Could you please explain it to
me?
2. Let’s start with a simple example. What is the output of the following code snippet:

‘top_k([1,2, 3, 4,5],3)"?

3. Could you please explain what line 5 in your code does?
4. Let’s look into the Python documentation. Can you describe what the ‘.pop()’ method

does?

Invalid Generated
Questions

Irrelevant: What happens if you enter an empty list as the input?
Repeated: Do you know what might be the issue?

Direct: Are you sure you should be using the pop() method to remove the maximum

element from the list?

Premature: Have you considered using the remove() method instead of pop()?

7 Case Study

We now use a case study to illustrate why our
method leads to better Socratic question generation.
First, we show an example of invalid Socratic ques-
tions generated by our data augmentation phase.
Second, we compare different methods for Socratic
question generation.

Table 2 shows an example of the augmented data,
i.e., invalid questions generated by GPT-4 for an ex-
ample problem, which asks students to write code
to return the largest k elements in a list. The stu-
dent’s code (Table 4 Code 1) incorrectly removes
elements at index max(1st) as opposed to remov-
ing elements equal to max(1lst), thereby causing
an IndexError. The potential fix to the code is to
replace the .pop() function with .remove(). In
the conversation, we see that the student knows the
problem lies in their use of .pop(). The ground
truth Socratic questions for this dialogue turn are
highly generic, asking the student to review the
code line by line, apply an example test case, or do
further reading on Python documentation. We see
that the four types of invalid questions generated by
GPT-4 are: the irrelevant question is out of context
and does not help the student understand the bug in
their code. The repeated question has already been
mentioned by the instructor. The direct questions
reveal the problematic function . pop() and do not
give room for the students to discover the prob-
lem themselves. The premature question directly

suggests a code change to replace the . pop() with
.remove () function even before the student has
realized the actual bug. These diverse examples of
invalid questions serve as good training data to let
an LLM know what kinds of invalid questions it
should avoid generating.

Table 3 shows the questions generated by dif-
ferent methods for an example problem that asks
students to write code that returns the factorial of
a number. The student’s code (Table 4 Code 2)
has some indexing errors with the range function,
resulting in the fact variable being multiplied by 0
when the loop starts, hence resulting in the output
of 0 no matter what the input is. In the conversation,
we see that the ground truth questions encourage
the student to debug the code by printing the value
of lines 5 and 6 to examine the variables fact and
i along with the role of range(n). The LLama
output is very verbose and directly reveals that the
problem is in the updation of the ‘fact’ variable.
The LLama (CoT) output is very vague as it does
not refer to the exact line of the code. The SFT
Greedy output correctly asks the student the value
of i but does not provide more details, such as the
value of n. The DPO Greedy method is more help-
ful since it asks the student to check the value of
fact specifically for n=1. The first and fifth ques-
tions by SFT Sample-5 are invalid and directly ask
the value of fact when i is 0, which directly re-
veals the problem that fact is always 0. The third

114



Table 3: Socratic questions generated by different methods.

Problem

Write a function ‘factorial(n:int) -> int’ that computes the factorial n! of a natural number n, which is

defined mathematically as: 0! = 1 and n! = n x (n — 1)!. Additionally, if the input integer n is negative

the function should return 0.

Example Cases: factorial(-1) => 0; factorial(0) => 1; factorial(1) => 1; factorial(5) => 120

Bug Descrip-
tion and Fix
‘range(1, n + 1) in line 5.

On line 6, ‘fact’ is first multiplied with O in the first iteration of the for loop and hence remains 0
throughout the loop. To fix the bug, replace ‘i’ with ‘(i + 1)’ in line 6 and replace ‘range(n)’ with

Conversation
help?

Student: Hi! I implemented the factorial function but it doesn’t work and I do not know why. Can you

Instructor: Sure. Can you tell me for what values of n it fails and what values it returns in those cases?
Student: For n = 1 or larger it returns the same value, 0.

Ground Truth

1. Let’s see what happens when ‘n’ is 1. What is the first value that is assigned to variable ‘i’ in line 57

2. Let’s see what happens when ‘n’ is 1. Before line 6 is evaluated in the first iteration of the for loop,
what are the values of the variables ‘fact’ and ‘i’?
3. Let’s see what happens when ‘n’ is 1. Can you insert a new line between lines 5 and 6 that prints the

values of the variables ‘fact’ and ‘i’?

LLama

So, it seems that the issue is that the value of ‘fact’ is not being updated correctly in the loop. Can you

tell me why do you think ‘fact® is not being updated?

LLama (CoT)

Can you explain why you think the bug is in that specific line?

SFT Greedy

What is the value of ‘i’ in the first iteration of the for loop?

DPO Greedy

Okay. Let’s start with ‘n = 1’. What do you think ‘fact’ is on line 6?

SFT Sample-5

1. What is the value of ‘fact’ at line 6 when ‘i’ is 0?

2. Let’s take a closer look at the line where ‘fact’ is multiplied. Could you explain the steps you take to

compute that multiplication?

3. 0 is not a factorial, right? What do you think the first step should be?
4. What does this tell us about the implementation?
5. Are you multiplying the initial ‘fact’ value of 1 by ‘i’ at each step?

DPO Sample-5

1. Alright, so for any value of ‘n’ that we pass to the function, what is the output of line 6?

2. Can you tell me what value of ‘i’ is returned in line 6 when ‘n=1"?
3. Okay. Let’s look at ‘factorial(1)’ and ‘factorial(2)’. What are the values of ‘i’ and ‘fact’ when it goes

into the for loop in those cases?

4. Okay, let’s go line by line. Let’s start from line 5. What do we see?
5. Okay. Can you tell me the steps for computing ‘factorial(n)’ where ‘n” equals 1?

Table 4: Buggy codes corresponding to the case studies

Code 1: Code 2:

def top_k(lst, k): def factorial(n):
result = [] if n < 0:

for i in range(k): return 0
result.append(max(lst)) fact =1

1st.pop(max(lst))
return result

for i in range(n):
fact = fact * i
return fact

and fourth outputs are either irrelevant or repeated.
The second question, which asks the student to ex-
amine the value of fact is valid since it does not
directly reveal the bug. In contrast, most of the
DPO Sample-5 questions are valid, since they urge
the student to examine the value of i and fact on
lines 5 and 6 with specific values of n, without di-
rectly revealing the bug that i is always 0. Through
these comparisons, we see that DPO improves So-
cratic question generation compared to SFT and
that DPO Sample-5 is highly capable of generating
valid yet diverse questions.

8 Conclusions and Future Work

In this work, we propose a method for Socratic
question generation in programming problem feed-
back scenarios. Our method consists of a data
augmentation phase to create a preference dataset
by synthetically generating invalid questions ac-
cording to four possible categories. We then
use this preference dataset to fine-tune an open-
source LLM, LLama 2-7B, using direct prefer-
ence optimization (DPO). Our results show that
the preference-optimized LLama 2-7B model of-
ten outperforms existing state-of-the-art prompting
methods (on common text similarity metrics) that
rely on much larger GPT models (25 times larger),
by avoiding invalid questions after training on the
augmented dataset. Our method paves the way to-
ward an open-source, accessible, cheaper, privacy-
preserving, yet effective alternative to generating
Socratic questions which can improve students’
learning outcomes without having to rely on propri-
etary rate-based API-accessed models like GPT-4.
There are several avenues for future work. First,
we can develop a technique to differentiate types
of invalid Socratic questions and not treat them
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equally while performing preference optimization.
This technique would require us to modify the in-
herent objective function of DPO to incorporate
more than one unpreferred question for a single
preferred question, which may give us fine-grained
control over the LLM generations. Second, we
can experiment with open-source LLMs that are
larger than 7B to see whether DPO provides more
significant gains over SFT on larger models on the
Socratic question generation task. Third, we can
perform a systematic human evaluation to compare
the performance of our proposed method with other
baselines. Also, we can focus on designing an auto-
matic metric (based on LLM prompting (Liu et al.,
2023)) other than Rouge and BERTScore which
captures the helpfulness of the Socratic questions
without heavily relying on assigning higher scores
only to questions that have high lexical overlap
with the ground-truth questions. Fourth, we can ex-
periment with alternative preference optimization
methods, such as KTO (Ethayarajh et al., 2024)
which do not need explicit preference data in the
form of pairs of valid and invalid questions. Fifth,
we can also explore if Socratic question genera-
tion helps in improving other tasks in computer
science education like test case generation (Kumar
and Lan, 2024) by posing the problem as answer-
ing several Socratic sub-questions (Shridhar et al.,
2022). Finally, we can also explore how to make
Socratic question generation knowledge-aware, i.e.,
generating different questions for students with dif-
ferent knowledge states, which can be estimated
using the open-ended knowledge tracing method
for computer science education (Liu et al., 2022).

9 Limitations

Our work proposes a method for preference opti-
mizing open-source LLMs like LLama 2 for the
task of Socratic question generation for student
code debugging. We use only LLama 2 as the
base model for carrying out preference optimiza-
tion, and not other open-source models like Mistral
(Jiang et al., 2023). Since our main contribution
is the data augmentation and preference optimiza-
tion method, we use only one of the best models
open-source models (LLama 2) to show that our
method outperforms state-of-the-art models like
GPT-4. Future work can also explore the perfor-
mance of different open-source models using a va-
riety of optimization methods including our data
augmentation and preference optimization method

for Socratic question generation. Also, we do not
formally analyze any biases that exist in the gen-
erated augmenting data or the generated Socratic
questions. Future work can focus on measuring
such biases to make our methods that use these
LLMs more inclusive for all students belonging to
different demographics.

10 Ethics Policy

Since our invalid questions are generated using an
LLM potential linguistic or cultural bias related
to the pre-training of the LLLM might be reflected.
However, we hypothesize that this bias would be
minimal as Socratic questions are goal-driven, con-
cise, and framed in the second-person perspective
directed toward the student. Our work focuses
on open-source LLMs like LLama for Socratic
question generation as compared to rate-based API-
accessed models like GPT-4 (which is used only
once during data augmentation) which implies that
our methods are privacy-preserving and there is
minimal chance of leakage of students’ confiden-
tial data. However, training LLMs like LLama on
GPUs like A100 for 10 hours results in the emis-
sion of CO2 which might not be environmentally
friendly.
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Abstract

A possible way to save manual grading effort in
short answer scoring is to automatically score
answers for which the classifier is highly con-
fident. We explore the feasibility of this ap-
proach in a high-stakes exam setting, evalu-
ating three different similarity-based scoring
methods, where the similarity score is a direct
proxy for model confidence. The decision on
an appropriate level of confidence should ide-
ally be made before scoring a new prompt. We
thus probe to what extent confidence thresh-
olds are consistent across different datasets and
prompts. We find that high-confidence thresh-
olds vary on a prompt-to-prompt basis, and that
the overall potential of increased performance
at a reasonable cost of additional manual effort
is limited.

1 Introduction

Whenever a (semi-)automatic process is used to
assist humans in scoring free-text answers, there is
a trade-off between the human workload required
and the resulting scoring accuracy. Without any
human input, the accuracy of the automated rating
is usually quite low (Egaiia et al., 2023), however,
already little human input might go a long way
in improving the automation quality. Suen et al.
(2023) score answers in a setting that uses refer-
ence answers and operationalize the confidence of
the model as the similarity to the closest reference
answer. This concept is visualized in Figure 1.
They find that setting a threshold on model confi-
dence, deferring to manual evaluation what falls
short of it, leads to reasonable manual effort and
high scoring accuracy.

We test the applicability of this method in a high-
stakes classroom setting, where items are usually
not re-used. This sharply limits the amount of man-
ual scoring effort that can be spent before automa-
tion becomes uneconomical. We thus use a small
volume of reference answers and examine to what
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Figure 1: Confidence-based scoring

extent a sensible pre-set confidence threshold can
be established. As we cannot make the high-stakes
student answers publicly available, we additionally
replicate our results on four widely used datasets.

Our study makes the important step of linking
state-of-the-art natural language processing for rat-
ing free-text items with the practical questions of
start-up costs for building the models.

2 Related Work

The idea to automatically score only parts of all
answers or to defer answers with a particularly low
confidence of the algorithm to human scoring has
been explored before (Funayama et al., 2020, 2022).
The approach that is closest to ours is Suen et al.
(2023), where answers to medical exam questions
are scored using a similarity-based scoring method
(Bexte et al., 2022, 2023) and the confidence of the
classifier is operationalized through the similarity
to the closest reference answer. This method could
be taken further to iteratively improve a classifier
through those human-labeled low-confidence an-
swers, i.e. using Active Learning (Settles, 2009), as
in the scoring domain done by Horbach and Palmer
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Answer averages across prompts

Dataset | #Prompts # Labels # % Unique Length Language
UniversityExams 7 2 544 34 18 German
ASAP 10 3ord 2227 100 239 English
Beetle 56 2 93 100 49 English
SEB 140 2 42 97 64 English
Powergrading 10 2 678 35 25 English

Table 1: Answer and label statistics of the datasets used in our experiments.

(2016) and Kishaan et al. (2020). Such a procedure
does however have the disadvantage that human an-
notators have to annotate small batches of answers
over a longer period of time.

Other studies rely on the idea that similar an-
swers should receive the same score. Such a group-
ing of answers could be reached through surface-
level normalization (cf. Zehner et al. (2016)), which
reduces orthographic variance, or unsupervised
clustering methods operating on the surface level
(Horbach et al., 2014; Zesch et al., 2015; Horbach
and Pinkal, 2018; Weegar and Idestam-Almquist,
2023), on the semantic level using, e.g. LSA ap-
proaches (Zehner et al., 2016; Andersen et al.,
2023), or a combination of the two (Basu et al.,
2013).

3 Data

We conduct experiments on five datasets (see Ta-
ble 1). Our high-stakes exam dataset consists of
German answers collected from university students
as part of their final exam in a statistics class. We
refer to this dataset as UniversityExams. It con-
tains 7 prompts that each require a short answer.
An exemplary question (translated from German)
is Name the method that is used to estimate the
required sample size before an experiment, where a
satisfactory answer would be a-priori power analy-
sis. Answers are labeled on a binary scale as either
correct or incorrect. Due to the sensitiveness of this
data, we can unfortunately not publish it.

We thus also run experiments on four existing,
publicly available English datasets, that we use
to put results on the exam data into context: The
ASAP! dataset consists of answers to ten prompts
from the domains of Biology, Science, and English
Language Arts. Powergrading (Basu et al., 2013)
has answers to ten United States Citizenship Exam
questions that were collected from Amazon Me-
chanical Turk. The Student Response Analysis
(SRA) dataset (Dzikovska et al., 2013) is split into

lhttps ://www.kaggle.com/c/asap-sas/overview

two subsets: Beetle and SciEntsBank (SEB). Bee-
tle has answers to 56 questions about electricity
and electronics, while SciEntsBank contains an-
swers to 150% prompts that are from a mix of 15
different science domains. We use the two-way
labeled version of the SRA dataset, where answers
are classified as correct or incorrect.

4 Experimental Setup

Data Split We split the answers to each prompt
into reference and test answers. Our reference an-
swers aim to simulate a teacher manually providing
exemplary answers for the different outcome labels.
In practice, this would mean a rather small volume
of unique examples per label. For each prompt, we
thus randomly sample 5 answers per label as refer-
ences, ensuring that there are no duplicates in this
sample. Whenever a similarity metric is fine-tuned
on the reference answers, we split them into four
answers per label to train and one answer per label
to validate.

Classifiers We compare three methods of
similarity-based classification that differ with re-
spect to the employed similarity metric. All use a
set of reference answers to label the test answers:
Based on the respective similarity metric, we pre-
dict the label of the most similar reference answer.
We compare the following metrics: (i) Edit dis-
tance’ and two variants of cosine similarity based
on (ii) pretrained or (iii) fine-tuned SBERT embed-
dings (Reimers and Gurevych, 2019).# For the En-
glish datasets, we use the all-MiniLM-L6-v2 base
model, and for the German data the paraphrase-
multilingual-MiniLM-L12-v2 one, both taken from
HuggingFace.

2We combine answers from fraining and unseen questions.
Since our experiments require at least five answers for each
label, we can only use 140 prompts.

3Determined using the python Levenshtein module: https:
//github.com/rapidfuzz/Levenshtein

*We transform edit distance into a noralized similarity for

better comparability by computing /-edit distance and scaling
by length of the longest answer to the respective prompt.
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Dataset | Edit SBERT target
| pretrained finetuned
UniversityExams .86 .86 91 .95
ASAP 46 43 .50 .60
Beetle .65 .65 .68 .80
SEB .68 .65 71 .80
Powergrading .87 92 93 1.00

Table 2: Weighted F1 results when all test answers are
scored fully automated.

To fine-tune SBERT, we follow the approach by
Bexte et al. (2022): We train with pairs of answers
that are labeled with a similarity label of 1 if both
answers have the same score and 0 otherwise. To
form these training examples, we pair each training
answer with each other training answer. To validate,
we pair each validation answer with each training
answer. At inference, each test answer is compared
to each training and each validation answer, i.e. all
reference answers. We train for 30 epochs with a
batch size of 8, using an OnlineContrastiveLoss
and an EmbeddingSimilarityEvaluator.

Evaluation We evaluate using weighted F1, re-
porting averages across all prompts of a dataset.

5 Experiments

First, we report results of a fully automatic base-
line. In this approach, all test answers are scored au-
tomatically, i.e. assigned the label of the most simi-
lar reference answer. We then explore confidence-
based scoring, only scoring instances where simi-
larity exceeds a given threshold automatically. The
remaining answers are referred to a human for man-
ual scoring. The fully automatic baseline can be
seen as an extreme case of this threshold-based
scoring, where the confidence threshold is set so
that all classifier decisions are accepted. We speak
of a baseline, as introducing a confidence threshold
should discard misclassifications and thus increase
scoring performance.

5.1 Fully-automated Baseline

Table 2 shows performance of our three scoring
methods on the fully-automated baseline, i.e. when
all test answers are labeled automatically. It is ap-
parent that some datasets are easier to score than
others, with a rather consistent pattern across scor-
ing methods. Particularly the UniversityExams and
Powergrading answers are easier to score, which
is in part due to the lower percentage of unique

answers in these datasets. Overall, there is a slight
advantage of the fine-tuned SBERT over the other
methods.

5.2 Confidence-based Scoring

Using a similarity-based approach to score answers
brings about the benefit of being able to take the
similarity on which the classification hinges as a
confidence estimate. Suen et al. (2023) were able to
increase performance by deferring answers where
the model is not confident enough to manual la-
beling. This requires a predefined threshold that
dictates whether to take the predicted label or seek
manual labeling. In a practical setting, there should
not be a requirement of having to determine this
threshold for each new prompt, as this would re-
quire substantial amounts of labeled data for the
new prompt, thereby diminishing the advantage of
automatic evaluation. To assess whether there is
such a threshold that is reasonable to assume for
new prompts, we analyze how much well-suited
thresholds vary between datasets and prompts.

Data-driven Threshold Selection To decide on
a suitable threshold for each prompt, we define
a target performance for each dataset. These val-
ues are listed in Table 2 (under column ‘target’)
and were chosen to push performance around .10
weighted F1 above the fully-automated baseline.
Figure 4 in the Appendix shows that performance
of the individual prompts in a dataset varies: For
some prompts, the target performance was already
reached (or surpassed), while others lie beneath it,
at times substantially. For these, we calculate the
lowest possible threshold value that reaches the tar-
get performance®. Weighted F1 is then calculated
on all answers for which the model’s confidence
exceeds this threshold, i.e. calculated only on those
answers for which the machine-predicted label is
taken. Answers that are deferred to manual label-
ing are excluded from the performance calculation,
as they are by definition assumed to be scored cor-
rectly.

Figure 2 (blue bars) shows the determined opti-
mal thresholds, with each bar corresponding to a
prompt of the respective dataset. The only dataset
where thresholds are somewhat close together is
edit distance-based scoring of Powergrading, where
they range from .92 to .99. Otherwise, thresholds
vary widely, indicating that it is difficult to prede-
fine a threshold to apply to a new prompt. On top

SPrompts already at target level have a threshold of 0.
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Figure 3: Weighted F1 and amount of answers that
requires manual scoring averaged over all prompts of
the respective dataset.

of the rather wide span of optimal thresholds, the
red bars depict how much of the test data would
be deferred to manual labeling. We see that for
many of the threshold values, this would make up
a substantial amount of answers, often over half
of them. Thus, even if there is a threshold found,
reaching the target performance level comes at the
cost of a large volume of manual annotation effort.

Predefining Threshold Values Instead of a data-
driven search for an optimal threshold value, one
could also make a top-down decision on a reason-
ably seeming threshold. Our next analysis inspects
how threshold values are related to performance
and manual correction effort. Figure 3 shows the
relation between threshold value, performance and
manual effort averaged over all prompts of a dataset.
In general, performance tends to be stable for a
rather wide range of thresholds, and only starts to
increase when substantial manual effort is required.
There is thus no general potential of increasing per-
formance at a reasonable cost of additional manual
labeling.

6 Conclusion

While previous work showed that confidence-based
scoring can be successful (Suen et al., 2023), we
do not find this to hold in our experiments. This
may in part be due to the lower volume of reference
answers and the higher overall scoring difficulty
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of some of the datasets we use. On some prompts,
there may be thresholds that lead to a desirable
tradeoff between manual effort and performance
increase, but we did not find a general range of
threshold values that would be promising to apply
to unseen prompts.

Limitations

Due to the sensitive nature of the exam data, we
can unfortunately not publish it. This limits the
reproducibility of our results.

When we set thresholds on the similarity, we cal-
culate performance based on only those examples
that exceed the confidence threshold. One could
also argue to include the answers that are deferred
to manual labeling as correctly classified examples.
This would increase performance, but it would also
mean that a certain volume of answers might be
scored with substantially inferior performance, as
it would enable for manually labeled answers to
even out misclassifications by a model. In practice
we want to guarantee a certain level of performance
for all students, and hence calculate performance
solely on those answers that are classified by a
model.

Ethical Considerations

The motivation for this work was to assess the use-
fulness of automated confidence-based scoring in a
high-stakes setting. The performance levels on the
SRA and ASAP datasets are however a long way
off from being reliable enough for employment in
an actual classroom. Even on the better-performing
Powergrading and UniversityExams data, the local
legal situation is likely to put significant conditions
on the use of automated decisions, or even prohibit
this entirely.
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A Detailed Results of Fully-automated
Baseline
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Figure 4: Prompt-wise results for the fully automated
baseline and target performance for the respective
datasets.
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Predicting Initial Essay Quality Scores to Increase the Efficiency of
Comparative Judgment Assessments

Michiel De Vrindt '2¢
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Abstract

Comparative judgment (CJ) is a method that
can be used to assess the writing quality of
student essays based on repeated pairwise com-
parisons by multiple assessors. Although the
assessment method is known to have high valid-
ity and reliability, it can be particularly ineffi-
cient, as assessors must make many judgments
before the scores become reliable. Prior re-
search has investigated methods to improve the
efficiency of CJ, yet these methods introduce
additional challenges, notably stemming from
the initial lack of information at the start of
the assessment, which is known as a cold-start
problem. This paper reports on a study in which
we predict the initial quality scores of essays to
establish a warm start for CJ. To achieve this,
we construct informative prior distributions for
the quality scores based on the predicted initial
quality scores. Through simulation studies, we
demonstrate that our approach increases the ef-
ficiency of CJ: On average, assessors need to
make 30% fewer judgments for each essay to
reach an overall reliability level of 0.70.

1 Introduction

The Comparative Judgment (CJ) method is utilized
in diverse educational assessments, and specifically,
some educational institutions employ it for the as-
sessment of student essays. As shown in Figure 1,
this approach involves presenting two essays in a
web-based tool, where assessors compare them to
determine the best one. After a sufficient number
of judgments, all pairwise comparisons are used to
calculate a quality score for each essay. In contrast
to rubric marking, CJ provides distinctive advan-
tages. Assessors can apply their expertise and expe-
rience flexibly, without strict adherence to rubrics
(Bloxham, 2009; Laming, 2003). Additionally, CJ
enhances the reliability and validity of scores by
incorporating multiple judgments from various as-
sessors (Lesterhuis et al., 2022; Verhavert et al.,
2019).
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Despite the advantages of CJ, it still requires
many judgments from assessors before quality
scores become reliable enough, typically requiring
between 10 and 14 judgments per essay to achieve
a reliability level of 0.70 (Verhavert et al., 2019),
rendering the assessment method rather inefficient
(McMahon and Jones, 2015). A cause of its ineffi-
ciency is that, at the start of the assessment, there
is no information about the quality scores, as no
judgments have been made yet. In adaptive learn-
ing systems, this problem is commonly referred to
as cold-start problem (Sun et al., 2022a; Pliakos
et al., 2019).

A solution to alleviating this cold-start problem,
and subsequently increasing the efficiency of CJ,
would be to introduce a ‘warm start’ in the as-
sessment by automatically predicting initial quality
scores for essays. Although the prediction of es-
say quality has already been extensively explored
in automated essay scoring (AES) (see a review
by Klebanov and Madnani, 2022), these studies
have mostly focused on what could be defined as
non-comparative, or absolute (Bouwer et al., 2023),
essay scoring, where each essay is scored as a stan-
dalone piece without comparison to other essays.
To the best of our knowledge, there have been few
to no studies that explored the automatic predic-
tion of essay quality scores obtained through CJ
assessments.

To address this research gap, we studied the ex-
tent to which essay quality scores, resulting from a
CJ assessment, can be automatically predicted and
used to alleviate the cold start of CJ with the goal of
increasing the efficiency of CJ for assessing essay
quality. We focused on Dutch essays written for ar-
gumentative assignments. Firstly, we conducted a
machine learning experiment in which deep learn-
ing models were trained on data collected from
CJ assessments to predict quality scores of essays.
Secondly, we ran simulations where we used the
predicted quality scores as initial quality scores to
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Kinderen krijgen, ja of nee?

Het is natuurlijk wel al wat vroeg om ons hier al zorgen over te maken maar helemaal
overbodig om hier eens aan te denken is het niet!

De dag van vandaag hebben mensen veel meer werk en veel minder tijd dan bv in de jaren
50, ons leven draait om werk, succes en geld. Vroeger was het zo dat meestal alleen mannen
gingen werken en vrouwen zorgen voor het huishouden. Tegenwoordig is dit een zeer
moeilijke combinatie, door ons nogal duure leventje is het niet evident om slechts 1persoon
in het gezin te laten werken. Stel je voor, dat er dan nog eens kindjes bijkomen?

Kinderen zijn een grote 'investering' zoals men zegt. Als je de uitgaven van een kind bekijkt
doorgaans je leven kon je er een mooi huis mee gekocht hebben! Maar er was geen andere
uitweg, de baby was er en moest geboren worden. Voor vele mensen is een kindje als een
geschenk, ze zullen het met liefde opvoeden en vertroetelen. Anderzijds heb je ook ouders
die dit eerder als 'last’ ondervinden: opstaan 's nachts, eten geven, oppassen, grote
uitgaven, een kinderkamer inrichten en noem maar op. Het grootste deel van deze mensen
zijn ofwel drukke werkmensen of mensen met een minder hoog inkomen. Toch kan een
kindje wonderen doen voor een relatie.

De komst van een kind voegt ook iets bijzonders toe aan je relatie. Voor 68% van de vaders is
deze zelfs beter geworden. " De baby heeft ons dichter bij elkaar gebracht' we doen nu meer
dingen samen.” Met andere woorden, het kan wonderen doen voor een relatie! Maar let op,

vele koppels zien dit als een noodzaak om gelukkig te zijn, maar ouders worden niet per

fo) ] o

Kinderen krijgen, ja of nee?

Het doel van elk wezen op aarde is zich voortplanten en de kennis die zij vergaren door te geven aan
hun kinderen. Dus ook mensen.

kinderen krijgen is voor mij vanzelf sprekend. ik zou later 2 kinderen willen. Kinderen geven je
plezier, ze geven je liefde terug. ik snap wel dat mensen kiezen om geen kinderen te maken omdat
een kind in onze maatschappij een dure bedoeling is maar je kit alles dubbel terug i liefde en
daarom moet je het doen. als je geen kinderen wilt omdat je geen kind lief hebber bent ook goed
niemand die jou verplicht om een kind te maken.

€en kind is ook goed voor de economie. Wij zijn nu de vergrijzing van de bevolking aan het
meemaken. Dus er zullen veel jobs binnen een paar jaar vrij komen en die zullen moet vervangingen
worden door een jongere generatie. Maar als men kiest om geen kinderen te maken zullen er te
weinig kinderen zijn en dus te weinig kanidaten om bepaalde jobs 'over te nemen’ wat zal leiden tot
een economisch probleem.

Volgens de Uitslag Vaders van Nu-quete voegt de komst van een kind iets bijzonders toe aan je
relatie. Ik vind persoonlijk dat een kind krijgen het top punt is van een relatie met je partner. Dus de
vraag van een kind krijgen of nietis duidelijk voor mij. Natuurlijk!

Welke tekst is beter qua argumentatie?
i How to compare

Figure 1: Screenshot of the Comproved web application (https://comproved.com), showcasing a comparative
judgment assessment. Here, two Dutch essays discussing the topic ‘Having children, yes or no?’ are randomly
chosen and presented to an assessor, who determines which essay showed the best argumentation.

alleviate the cold start of CJ. These steps were con-
ducted to answer the following research questions:

1. To what extent can current deep learning mod-
els automatically predict essay quality scores
that resemble quality scores obtained from CJ
assessments?

2. If these predicted scores are used as initial
quality scores within CJ, to what extent can
we decrease the number of comparative judg-
ments needed to obtain reliable scores?

2 Background

2.1 Comparative Judgment Assessments

Generally, CJ assessments consist of three steps
that are repeated. In a first step, a pair of two es-
says is selected and presented to one of the multiple
assessors. In a second step, the assessor is tasked
with comparing the two essays and determining
which is of a higher quality given the task descrip-
tion of the assignment, that is, the prompt. In a
third step, statistical models such as the Bradley-
Terry-Luce (BTL) model are used to model the
outcomes of all pairwise comparisons on a quality
scale (Bradley and Terry, 1952; Luce, 1959).
More formally, BTL model relates P(i > j), that
is the probability that essay ¢ is preferred over essay
J, to the difference in their estimated quality scores,
¢; and 0; (see Equation 1), withi € {1,...,n} and
i # j. The smaller the difference, the closer the
probability is to 0.50. The outcome of comparing

essay ¢ with essay j is denoted by Z;; € {0,1},
where Z;; = 1 in case essay i is preferred over
essay j, and O otherwise. Each quality is a logit
value ¢; € R where >_"" | 0; = 0.

0;—0;

Zi; ~ Bernoulli (P(i > j)) (2)

Different selection rules for CJ (step 1) have
been proposed to increase the efficiency of the as-
sessment. These selection rules rely on certain char-
acteristics of essays. Most notably, Pollitt (2012)
proposed to select pairs of essays adaptively based
on the closest estimated quality scores. The out-
comes of these judgments are the most uncertain
and, therefore, the most informative for the quality
scores in a statistical sense. However, there are two
drawbacks to adaptive selection: First, it cannot be
used at the start of the assessment, as quality scores
are still unknown, and second, during the assess-
ment, adaptive selection can lead to an overly opti-
mistic view of reliability, causing the assessment
to end prematurely (Bramley and Vitello, 2019;
Crompvoets et al., 2020). Alternatively, pairs of
essays can be selected based on the textual informa-
tion of essays. De Vrindt et al. (2022) proposed to
select pairs of essays that are semantically similar
during the initial phase of the CJ assessment. They
encoded the essay texts as numeric vectors using
doc2vec (Le and Mikolov, 2014) and selected the
pairs with the highest cosine similarity. However,
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the efficiency gain they observed was only limited.
Therefore, it is of interest to investigate other ways
of using textual information of essays to speed up
CJ assessments. We focus on the automatic predic-
tion of quality scores based on previously assessed
essay texts.

2.2 Automated Essay Scoring

In the field of AES, the automatic prediction of
scores has been extensively investigated with as
goal to reduce the workload of assessors. This
field has experienced significant advances driven
by deep learning (Ramesh and Sanampudi, 2022).
The proposed deep learning techniques depend on
the educational setting in which AES is used. In
scenarios where no previously scored essays are
available, the prediction relies solely on the es-
say text itself. This can be achieved, for example,
through unsupervised learning (Mim et al., 2019;
Wang et al., 2023). In AES research, it is typical
to have scored essays on hand. These scored es-
says help researchers understand the connection
between scores and essay content, enabling them
to predict essay scores more accurately. This can
be achieved through supervised learning (Alikan-
iotis et al., 2016; Taghipour and Ng, 2016; Yang
et al., 2020; Li et al., 2022). For supervised learn-
ing, essays that have been scored in the training set
can be written for a different assignment than the
essays in the test set for which scores are predicted.
In such a setting, the prompt for the assignments
is often considered to predict the essay scores in
addition to the essay texts (Li et al., 2020; Do et al.,
2023; Liu et al., 2019).

2.3 Cold-start Problem in Psychometry

The cold-start problem is most commonly termed
in the context of recommender systems to denote
the difficulty of proposing items to users when the
preferences of the users or the characteristics of
the items are unknown due to limited user interac-
tions. Using language models, this issue has been
addressed by extracting characteristics from item
texts (Penha and Hauff, 2020) or by generating
user preferences based on the textual description of
user historical preferences and items (Wang et al.,
2024).

Similarly, in computerized adaptive testing, the
cold-start problem persists. These systems select
test items so that the difficulty of the item matches
the test takers ability, but when responses for items
are lacking, inferring item difficulty becomes chal-

lenging. Therefore, to calibrate the characteristics
of the items, responses for the items need to be col-
lected during a pilot phase. To mitigate the need for
extensive piloting, Settles et al. (2020) extracted the
linguistic features of test items measuring their dif-
ficulty. Alternatively, McCarthy et al. (2021) used
pre-trained embeddings of test items to estimate
their difficulty and discriminatory power.

The cold-start problem for CJ is similar: quality
scores for essays are unknown at the start of an as-
sessment because assessors have not judged them,
requiring assessors to make many judgments dur-
ing the assessment. Analogously to recommender
systems and computerized adaptive testing, we ad-
dress the cold start of CJ by inferring the unknown
measures, namely the quality scores, from essay
texts.

3 Method

3.1 Data

This study was based on data gathered in a previous
study by Lesterhuis et al. (2022). The dataset, de-
scribed in Table 1, comprised three assignments in
which students around the age of 16 wrote argumen-
tative essays in Dutch. The topics for these essays
were: (1) having children, (2) organ donation, and
(3) stress experienced by students. Students were
provided with a prompt detailing the essay topic,
the task requirements, and the source texts they
were required to integrate in the essay.

Assignment Essays Tokens Tokens/Essay
N M+ SD

1. Children 135 42,349 316 (£ 93)

2. Organ 136 40,990 304 (£ 90)

3. Stress 35 11,286 322 (&£ 103)

Table 1: Overview of the argumentative writing tasks
gathered by Lesterhuis et al. (2022). Tokenization was
performed using the Dutch tokenizer from spaCy (Ex-
plosion, 2023), which splits the essay texts into mean-
ingful segments.

The essays were assessed by secondary edu-
cation assessors using a comparative judgment
method. Assessors were presented with pairs of
randomly selected essays and had to decide which
one was better in terms of argumentation, as illus-
trated in Figure 1. The number of assessors for
each assignment and the total of judgments per
essay are detailed in Table 2.
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Assignment Judgments/Essay Assessors

1. Children 18 55
2. Organ 13 52
3. Stress 27 42

Table 2: Overview of the number of comparative judg-
ments made per argumentative writing assignment

To study the predictability of initial essay quality
scores and their role in a warm start, it is of course
imperative to have quality scores for each essay.
For each of the three assignments separately, essay
quality scores were derived from the parameters of
a Bayesian BTL model with a cold-start condition.
These model parameters were estimated based on
all comparative judgments within the same assign-
ment. Since these parameters reflect the quality
scores estimated at the end of the CJ assessment,
we will refer to them as the ‘final quality scores’
throughout the remainder of this paper. Additional
details regarding this cold-start model will be pro-
vided in Section 3.5. The distributions of the qual-
ity score for each essay within each assignment
are shown in Figure 2. Given the large number of
comparative judgments per essay (Verhavert et al.,
2019) and the diverse panel of assessors responsi-
ble for these judgments (van Daal et al., 2016), we
can confidently affirm the reliability and validity of
these estimated scores.

Children s ——
Organ -’
Stress —_—
I I I I 1
-2 -1 0 1 2

True quality scores

Figure 2: Distributions of final quality scores estimated
from a Bayesian BTL model with a cold-start condition

3.2 Models

For predicting essay quality scores, we employed
various pre-trained language models and fine-tuned
them based on the final quality scores. While al-
ternative feature-based and classical NLP methods
exist for this purpose, we focused on fine-tuning
transformer models due to their demonstrated supe-
riority in AES research (Uto et al., 2020; Ormerod
et al., 2021). We specifically avoided multilin-

gual models, concentrating solely on Dutch mod-
els, as prior studies indicate that monolingual mod-
els tend to outperform on tasks involving Dutch
texts (de Vries et al., 2019; Delobelle et al., 2020).
We used three different pre-trained Dutch lan-
guage models, namely BERTje (base, uncased)
(de Vries et al., 2019), RobBERT (v2) (Delobelle
et al., 2022), and RobBERTje (non-shuffled) (De-
lobelle et al., 2021). BERT]e is built upon the
BERT architecture trained on 12GB of Dutch texts
containing 2.4B tokens. RobBERT on the other
hand, is based on the RoBERTa architecture, which
boosts BERT’s efficacy by pre-training in batches
on 36GB of Dutch texts containing 6.6B tokens.
RoBERTje employs a DistilBERT architecture, de-
rived from RobBERTje, while preserving compara-
ble efficacy with fewer parameters by using knowl-
edge distillation.

We conducted a machine learning experiment
with two model configurations: (a) fine-tuning the
model solely on the provided essay text as input,
and (b) fine-tuning the model on both the essay
text and the given prompt as input. The models
were imported with the Hugging Face library with
a Pytorch backend and implemented to perform a
regression task.

More details on the specific computing infras-
tructure can be found in Appendix A. For the final
regression layer, we employed a sigmoid activation
function as a way of bounding the scalar values to
enhance the training stability. These bounded val-
ues functioned as predicted quality scores. Consis-
tent with common practice in essay scoring (Alikan-
iotis et al., 2016; Yang et al., 2020; Li et al., 2022),
all quality scores were min-max normalized before
training. These normalized scores, along with the
predicted scores, were used to compute the mean
squared error, which functioned as the training loss.
After training, the predicted scores were reverted
to the original scale.

In the second configuration, the assignment
prompt was taken into account in addition to the
essay texts for the prediction of quality scores. We
hypothesized that prompt information would be
important for the prediction of quality scores, as
the essays in the training set and the test set were
written for different assignments. To incorporate
this information into the model, we encoded the
prompt using the same transformer model as for
the essay text (i.e., a shared encoder). Two addi-
tional cross-attention layers were added to model
the relationship between essays and prompts in
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both directions. This is similar to the configuration
proposed by Liu et al. (2019).

The hyperparameters are given in Appendix B.
These were selected based on preliminary results
on a held-out set, comprising 15% of essays ran-
domly selected from the training set, which were
omitted during training but used for model evalua-
tion.

3.3 Experimental Setup

To evaluate the reliability of the quality scores pre-
dicted by the fine-tuned models, we ran a machine
learning experiment with the following training
and test splits: {1,2} — 3, {1,3} — 2, and
{2,3} — 1. In each fold, the three pre-trained
models were fine-tuned on essays coming from
two assignments (e.g., 1 and 2) and were evaluated
on essays coming from the remaining assignment
(e.g., 3). We employed this setup to emulate a real-
world assessment scenario where we would have
an assignment for which we do not have any scores
yet (e.g., 3) and for which we need to predict initial
quality scores based on scores estimated for other
assignments (e.g., 1 and 2).

It is crucial to note that, despite the scores be-
ing logit values derived from distinct assignments,
there was no complication in joining them within
the training set. This was possible because the as-
signments were very similar, each assessing the
quality of argumentative writing.

3.4 Evaluation Metric

Because our objective was to establish the relia-
bility of predicted quality scores, we utilized the
squared Pearson correlation (Bi, 2003)

Varg«
2 0
Po “,0 Val‘gim't

to assess the reliability between the predicted ini-
tial quality scores 0" and final quality scores 60}
fori = {1,...,n} the essays in the test set. The
reliability can be interpreted as the proportion of
variance of the predicted initial quality scores that
is attributed to the final quality scores. The closer
this ratio is to one, the higher the reliability.

3.5 Efficiency Simulation Study

After having fine-tuning and evaluated pre-trained
models, we simulated the impact of integrating
model predictions as initial quality scores in CJ
assessments. For each train-test split, we selected
the model and its configuration (i.e., essay text with

or without prompt) that exhibited the highest reli-
ability. Subsequently, we conducted simulations
to compare CJ assessments under two conditions:
a warm-start BTL model (our experimental con-
dition, where initial quality scores were predicted
using the best model) and a cold-start BTL model
(our control condition, where initial quality scores
were absent).

While likelihood-based techniques (Hunter,
2004) are typically employed for parameter estima-
tion in the BTL model (Equation 1), we adopted
a Bayesian approach to simulate CJ assessments
with both cold-start and warm-start BTL models.
Within this framework, we could establish prior as-
sumptions about the distribution of quality scores.
Bayes’ theorem allowed us to integrate these priors
with judgments in the BTL model, resulting in pos-
terior distributions for all quality scores. Compared
to maximum likelihood estimation, Bayesian infer-
ence provides more stable estimates and a clearer
understanding of the associated uncertainty (Phelan
and Whelan, 2017).

3.5.1 Cold-Start Bayesian BTL Model

Under the cold-start condition, we formulated
for each quality score a normal prior distribution
(Equation 4) having a mean of 0 for all quality
scores.

0; ~ Normal (O, aiz) 4

This prior serves to regularize the distribution
of quality scores, rendering it weakly informa-
tive. The lack of specificity about the essays for
which quality scores are estimated characterizes
this Bayesian BTL model as having a ‘cold start’.
For the variance of each quality score, we spec-
ified a normal-truncated prior distribution (Equa-
tion 5), which is a common choice for 02 € (0, c0).

0-1.2 ~ Normalp,4ne (/LOa Ug) o)

The parameters of the distribution of o7 determined
the level of uncertainty of the prior quality scores:
the larger the location and scale parameters, the
greater the prior uncertainty of the quality scores.
Based on preliminary results, we chose to fix these
parameters for all quality scores: pg = 0.5 and
5=0.1
o5 =0.1.

3.5.2 Warm-Start Bayesian BTL Model

Under the warm-start condition, we formulated
prior distributions for the quality scores using the
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predicted quality scores. These priors are deemed
informative, as they incorporate information about
each essay’s quality score.

To construct informative priors, we assumed a
normal prior distribution for all quality scores 6;
for i = {1,...,n} with as mean their predicted
initial quality scores 6.

0; ~ Normal (0", 7) (6)
All predicted quality scores were first centered,
gt — S~ 0 to speed up convergence and
encourage y ., 6; ~ 0. As in the cold-start con-
dition, prior distributions were specified for the
variance of the quality scores, measuring the uncer-
tainty of the estimates (see Equation 5).

3.5.3 Sampling and Simulations

To estimate the posterior distribution of each 6; and
01-2, samples were drawn according to the Hamilto-
nian Monte Carlo algorithm using Stan (Gelman
et al., 2015), with 4 chains of 2000 steps of which
500 were warm-up steps. These were sufficient to
reach convergence as diagnosed by a r-hat value
of 1 (Vehtari et al., 2021). After convergence, the
averages of the posterior distributions were used as
point estimates.

To simulate a CJ assessment, we repeatedly es-
timated 6; and 02-2 using increasingly more judg-
ments; for an example of a simulated CJ assess-
ment, see Appendix C. To account for possible
effects of the order of judgments, we shuffled the
sequence of judgments twenty times, resulting in
twenty simulations of a CJ assessment. We re-
peated this process for each assessment, employing
both a cold and a warm start.

3.54

We assessed the gain in efficiency when introduc-
ing a warm start by observing the decrease in the
average number of judgments required per essay
to achieve a specific reliability level. The relia-
bility of the quality scores was determined by the
squared Pearson correlation (pg ¢+) between the fi-
nal quality scores 6%, estimated at the end of the
assessment, and the quality scores in a Bayesian
BTL model estimated at a certain point during the
assessment 6.

However, the use of this reliability metric
presents a practical challenge. In practice, the relia-
bility cannot be calculated during an assessment, as
the final quality scores that would be estimated at
the end of the assessment are still unknown. Hence,

Measuring Efficiency Gain

the reliability has to be approximated based on the
estimated quality scores, which can be achieved us-
ing the Scale Separation Reliability (SSRy). More
specifically, the SSRy estimates Vary« in Equa-
tion 3 by Varg —E 2; see Equation 7. For a detailed
derivation of the SSRy, please refer to Verhavert
et al. (2018). Note that we adjusted the reliabil-
ity of the estimated quality scores to account for
the reliability level of the final quality scores; see
Appendix D.

Varg — E,»

SSRy =
0 Varg

— pj ¢~ (7

4 Results

4.1 Machine Learning Experiment

Table 3 shows the results of the machine learn-
ing experiment. The findings indicate that all fine-
tuned language models effectively predicted qual-
ity scores for a completely new assignment, with
correlation coefficients significantly different from
zero. Notably, RobBERT consistently exhibited
the highest reliability in predicting quality scores,
aligning with its superior performance over other
Dutch transformer models in diverse tasks (Delo-
belle et al., 2022).

Furthermore, when integrating both essay and
prompt information, the RobBERT model consis-
tently achieved the highest reliability with true qual-
ity scores. This observation aligns with previous
AES research, emphasizing the predictive accuracy
of essay scores across various prompts (Li et al.,
2020; Do et al., 2023). As a result of these find-
ings, we opted for the RobBERT model incorporat-
ing additional prompt information to predict initial
quality scores in the simulation study.

It is crucial to note, however, that despite achiev-
ing high reliability, the fact that the reliability levels
did not surpass 0.70 underscores the importance of
assessor judgments to further improve the reliabil-
ity of essay quality scores.

4.2 Simulation of CJ Assessments

The simulation study results, shown in Figure 3,
highlight the comparison between CJ assessments
under warm-start and cold-start conditions. The
outcomes indicate that adopting a warm-start ap-
proach proved more efficient in terms of the num-
ber of judgments per essay needed to achieve a
reliability level of at least 0.70.

In both Assignment 1 (Figure 3.c) and Assign-
ment 3 (Figure 3.a), the desired reliability was
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Fold EsSAY TEXTS + PROMPT INFORMATION
BERTje RobBERT RobBERTje | BERTje RobBERT RobBERTje

{1,2} — 3| 0.56 0.61 0.54 0.60 0.63 0.52

{1,3} =2 | 0.51 0.55 0.43 0.50 0.59 0.45

{2,3} - 1043 0.56 0.16 0.42 0.57 0.17

Average 0.50 0.57 0.38 0.52 0.59 0.37

Table 3: Squared Pearson correlations computed on the test set, comparing final quality scores and scores predicted
by fine-tuned models, utilizing either only the essay texts or the prompts as well. Maximum scores are boldfaced.

(a){1,2}-3

(b) {1,3}-2

(c) {2,3}~-1
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Figure 3: Results of simulated CJ assessments with a warm and a cold start. The average reliability and the average
SSRy of the estimated quality scores are given in function of the average number of comparisons made per essay.
These scores are averaged over 20 different orders of comparative judgments used to simulate an assessment.

reached with fewer than six judgments per es-
say. Conversely, employing a cold-start method
required more than nine judgments per essay to
attain an equivalent reliability level. Consequently,
the warm-start approach resulted in efficiency gains
of 35% and 41%, respectively. For Assignment 2
(Figure 3.b), a reliability of 0.70 required less than
nine judgments per essay, while with a cold start at
least ten judgments per essay were needed, which
corresponds to an efficiency gain of 15%.

When exceeding ten judgments per essay, the dis-
parity in reliability between warm and cold starts
decreased across all assignments. This can be at-
tributed to the diminishing impact of prior distri-
butions on posterior distributions as the number of
judgments increases. Additionally, for assignments
2 and 3, the reliability with a warm start begins
to slightly trail behind that of the cold-start condi-
tion after ten judgments per essay. We posit that

this observed difference may be associated with
the choice to estimate final quality scores using a
Bayesian BTL model with a cold start.

In practical scenarios, reliability is not accessible
during assessments, making accurate measurement
with the SSRy crucial. As shown in Figure 3, the
SSRy demonstrated a faster approximation of relia-
bility when employing a warm start compared to a
cold start. Specifically, the SSRy reached the 0.70
reliability level for all assignments under a warm
start. In contrast, the SSRy approached reliability
at levels of 0.75 for Assignment 2 and 0.80 for
Assignments 1 and 3 under a cold start.

To examine the impact of warm-starting assess-
ments on individual quality scores, we compared
the progression of quality score rankings. For il-
lustration purposes, we show the results of one
simulated assessment for Assignment 3. Figure 4
demonstrates that adopting a warm start led to qual-
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(a) 1 judgment / essay

(b) 5 judgments / essay

(c) 10 judgments / essay

% %

) T T T 1 ) T T 1 ) T T T 1
-2 -1 0 1 2 -2 -1 1 2 -2 -1 0 1 2
Quality scores Quality scores Quality scores
[N TR | (AT ITINT IT AT | (& 1 I 0 |

(d) 1 judgment / essay

(e) 5 judgments / essay

(f) 10 judgments / essay

I e — —————O————————
— —
= — = =
s —
% e
= —
—— e— — $
= —> — =
% P ——
P—— e — $
—————O—— ——————O————
-2 -1 0 1 2 -2 -1 1 2 -2 -1 0 1 2
Quality scores Quality scores Quality scores
(L T ITh o | | I W] | | | M | |

Figure 4: Forest plots of quality scores with 94%-high density intervals estimated at different stages of the CJ
assessment of Assignment 3, with a cold-start condition (plots a—c above) and a warm-start condition (plots d—f
below). The bar plots at the bottom show ranking accuracy based on the absolute differences in rank order of
estimated and final quality scores, with darker shades indicating more incorrect rankings of estimated quality scores.

ity scores being more spread out, yielding a fairly
accurate ranking at the start of the assessment. In
contrast, quality scores under the cold-start condi-
tion clustered around the mean value, resulting in
less precise rankings. This highlights the efficacy
of informative priors in the warm-start condition in
discerning between quality scores. Even after ten
judgments per essay, the warm-start approach dis-
played a wider range of quality scores and a better
ranking compared to the cold-start method.

5 Discussion

Our findings underscore the ability of current deep
learning models, particularly transformer models,
to predict initial quality scores that provide valu-
able information on the argumentative writing qual-
ity of essays. Furthermore, incorporating the as-
signment prompts for fine-tuning enhances the re-

liability of predicted quality scores, which aligns
with prior research in AES (Li et al., 2020; Do et al.,
2023; Sun et al., 2022b). We posit that prompt in-
formation is especially important for the prediction
of initial quality score, since, in this study, the es-
says in the training set were written for different
assignments than the essays in the test set.

When warm-starting CJ assessments with these
predicted initial quality scores, the necessary num-
ber of comparative judgments to obtain reliable
quality scores decreases significantly. This sug-
gests that less effort from assessors is required
while upholding high levels of reliability of the
quality scores. Furthermore, our approach to in-
crease the efficiency of CJ avoids any undesirable
effects with respect to the reliability measures,
which have been noted when employing an adap-
tive selection rule (Bramley, 2015; Bramley and
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Vitello, 2019; Crompvoets et al., 2020). Addition-
ally, our method demonstrates a more substantial
improvement in efficiency compared to the ap-
proach of De Vrindt et al. (2022), who devised
a more efficient selection rule based on similarities
in essay texts.

6 Conclusion

We successfully improved the efficiency of CJ as-
sessments by introducing a warm start for the es-
timation of the quality scores. This involved pre-
dicting essay quality scores, which were then used
to form informative prior distributions within a
Bayesian BTL model. Through an extensive sim-
ulation study, we demonstrated that our approach
led to a reduction, ranging between 15% and 41%,
in the number of comparative judgments needed
to reach a reliability of 0.70 and produced more
accurate rankings of essays at the start of an as-
sessment. Furthermore, our findings indicate that
these efficiency gains can be measured in practical
settings, as the SSRy approximates the reliability
well.

7 Limitations

To fine-tune the transformer models for the pre-
diction of quality scores, we devised a training set
combining the quality scores from different CJ as-
sessments. This was feasible, as the quality scores
measured the same quality of argumentative writ-
ing. However, if the essays were written in different
text genres, such as informative writing, combining
the quality scores would become non-trivial, since
they measure a different kind of writing quality.
Therefore, we recommend that before combining
quality scores, they are first calibrated on a fixed
scale using, for example, the method of Fair Av-
erages (Linacre, 1989). Furthermore, differences
in the genre of essays in train and test could make
predicting the initial scores more difficult, causing
lower reliability.

In this study, we assumed that the quality scores
of essays written for other assignments were avail-
able to train a deep learning model for score pre-
diction. However, settings may arise where these
quality scores are unavailable, particularly in edu-
cational contexts where privacy concerns may pre-
vent the inclusion of students’ essays in a training
set. In such cases, alternative methods for predict-
ing scores must be explored. One approach is to
train a deep learning model on publicly available

AES datasets, such as the Automated Student As-
sessment Prize (ASAP) dataset published by the
Hewlett Foundation (Hamner et al., 2012). How-
ever, it should be noted that these essays are writ-
ten in English, prompting the need to evaluate how
well a model trained on these can predict scores for
Dutch essays. Alternatively, in case no essay scores
are available for training, unsupervised learning
approaches for AES could be considered (Ridley
et al., 2020; Zhang and Litman, 2021).

To simulate the CJ assessments, we chose to
repeatedly shuffle the order of judgments (see Ap-
pendix C). However, this approach may not re-
flect a realistic CJ assessment process, as, typically,
pairs of essays for judgment are selected in such
a way that each essay is compared (close to) the
same number of times. For example, if an essay is
compared 9 times and the others 10, that essay is
selected and paired with a randomly selected essay.
Based on preliminary results, we observed that our
choice to repeatedly shuffle judgments has a negli-
gible impact on the reliability results, as outlined
in this study.

The current study reports an increase in reliabil-
ity at the start of the assessment, but after more
judgments have been made, the difference in re-
liability between a cold and a warm start became
minimal (see Figure 3). For future research, we
recommend exploring methods that use essay texts
for the selection of pairs in a way that increases the
reliability toward the end of an assessment, while
avoiding the perverse effects that adaptive selec-
tion rules introduce (Bramley, 2015; Bramley and
Vitello, 2019; van Daal et al., 2017).
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essay scoring performance via fine-tuning pre-trained
language models with combination of regression and
ranking. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1560-1569,
Online. Association for Computational Linguistics.

Haoran Zhang and Diane Litman. 2021. Essay Quality
Signals as Weak Supervision for Source-based Es-
say Scoring. In Proceedings of the 16th Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 85-96, Online. Association for
Computational Linguistics.

A Computing Information

We implemented both transformer models for qual-
ity score prediction using Pytorch 2.1.0, Hugging
Face 4.32.1, and Python 3.9.12. We conducted the
experiments on a system running Ubuntu 22.04.2.

B Hyperparameters

The AdamW optimizer was used (Loshchilov and
Hutter, 2017), with a polynomial learning rate
scheduler and a starting learning rate of le — 5.
The warm-up ratio was set at 10% of the steps,
with a batch size of 5. The weight decay was set
to 0.09. Furthermore, a 5% dropout was used to
prevent overfitting. The transformer models were
fine-tuned for 40 epochs with the possibility of
early stopping based on the evaluation metric mea-
sured on the held-out set.

C Example of Simulated CJ Assessment

For the CJ assessment of Assignment 3, 27 judg-
ments were made for each essay, as detailed in
Table 2. This means that each essay was involved
in 27 pairwise comparisons. Given that there are
35 essays part of the assessment, assessors had to
make 35 x 27/2 ~ 473 judgments in total. To
simulate the CJ assessment of Assignment 3, all 6;
and 02-2 parameters in a Bayesian BTL model were
iteratively estimated using 1 to 473 judgments. Fol-
lowing each estimation, the SSRy and reliability
were computed. Recognizing that the order of judg-
ments selected could influence the estimates and
reliability levels, we shuffled the sequence of judg-
ments twenty times and repeated the procedure
mentioned above.

D Adjusting the Reliability Measure

In studies on the reliability of CJ, the ‘true qual-
ity scores’ are obtaining using a all-play-all design
(Bramley, 2015; Crompvoets et al., 2020), where
every pairwise combination essays has been judged.

Since the data in this study were not gathered us-
ing an all-play-all, we assume that the final quality
scores are, in fact, the true scores. However, these
final quality scores possess their own level of relia-
bility, as given by the SSR of the estimated quality
scores at the end of a CJ assessment: SSRy«. To
account for this, we adjusted the reliability of the
estimated quality scores, pgﬂ*, by multiplying it by
SSRy~. Consequently, SSRy converges to SSRy-,
when the estimated quality scores align with the
final quality scores at the end of the assessment
(i.e., when pgﬁ* ~ 1).
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Abstract

This paper presents a cutting-edge method
that harnesses contextualized language models
(LMs) to significantly enhance the prediction
of early academic performance in STEM fields.
Our approach uniquely tackles the challenge
of transfer learning with limited-domain data.
Specifically, we overcome this challenge by
contextualizing students’ cognitive trajectory
data through the integration of both distal back-
ground factors (comprising academic informa-
tion, demographic details, and socioeconomic
indicators) and proximal non-cognitive factors
(such as emotional engagement). By tapping
into the rich prior knowledge encoded within
pre-trained LMs, we effectively reframe aca-
demic performance forecasting as a task ideally
suited for natural language processing.

Our research rigorously examines three key as-
pects: the impact of data contextualization on
prediction improvement, the effectiveness of
our approach compared to traditional numeric-
based models, and the influence of LM capacity
on prediction accuracy. The results underscore
the significant advantages of utilizing larger
LMs with contextualized inputs, representing a
notable advancement in the precision of early
performance forecasts. These findings empha-
size the importance of employing contextu-
alized LMs to enhance artificial intelligence-
driven educational support systems and over-
come data scarcity challenges.

1 Introduction

Modern artificial intelligence (AI) methods, such
as deep learning (DL), have increasingly been de-
ployed as cost-effective solutions to develop early-
warning systems across various sectors, including
health (Adler et al., 2022; Mamun et al., 2022; Zhao
et al., 2019; Horwitz et al., 2022; Liu et al., 2023a;
Collins et al., 2023; Xu et al., 2023; Adler et al.,
2020) and education (Wang et al., 2016, 2014; Li
et al., 2020; Xu and Ouyang, 2022). These systems

leverage forecasting-based interventions to preemp-
tively address potential issues, from medical condi-
tions to academic performance. In the educational
domain, specifically, Al-based interventions uti-
lize cognitive data, like students’ course-related as-
sessment scores, to predict and improve academic
outcomes (Greenstein et al., 2021; Arnold and Pis-
tilli, 2012; Liu et al., 2023b). The efficacy of these
interventions hinges on the precision of early fore-
casts—predicting course performance as early as
possible (Hasan and Aly, 2019; Hasan and Khan,
2023). However, this poses a significant challenge
when training data is scarce, leading to suboptimal
model performance. Transfer learning could offer a
solution, yet the approach is hampered by the lack
of relevant pre-trained models or sufficiently large,
domain-specific datasets for pre-training (Tsiak-
maki et al., 2020).

In this paper, we address the challenges asso-
ciated with limited training data by introducing a
novel transfer learning methodology specifically
tailored for domain-specific data within STEM
(Science, Technology, Engineering, and Mathe-
matics) education contexts. We propose leverag-
ing Transformer-based (Vaswani et al., 2017) pre-
trained language models (LMs) for early prediction
of academic performance in undergraduate STEM
courses. Our method exploits the extensive knowl-
edge base (Raffel et al., 2020; Roberts et al., 2020)
and reasoning capabilities (Chowdhery et al., 2022;
Wei et al., 2023; Bhatia et al., 2023) of LMs, trans-
forming end-of-the-semester performance forecast-
ing into a natural language text generation task.

To enhance knowledge transfer using limited do-
main data, we contextualize students’ cognitive
data by integrating both distal background factors
and proximal non-cognitive factors. This multi-
dimensional approach encompasses demographic,
socioeconomic, and academic background factors,
as well as non-cognitive features like emotional
engagement, to enrich the predictive model. By
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transforming the ordinal (numeric or real-valued)
features of our data into natural language text se-
quences, we tailor pre-trained LMs to our specific
task. Additionally, we augment these sequences to
increase the dataset size, thereby improving predic-
tive accuracy through a more balanced representa-
tion of various performance outcomes.

Contextualizing Academic Trajectories. Our ap-
proach integrates students’ background and engage-
ment data to provide a comprehensive view of their
academic journey. Based on Social Cognitive Ca-
reer Theory (Bandura, 2001), we hypothesize that a
student’s course performance correlates with their
background, suggesting that LMs can learn indi-
vidualized academic patterns. Furthermore, longi-
tudinal non-cognitive data, reflecting aspects like
motivation and engagement, are posited to have a
strong correlation with students’ academic trajec-
tories, potentially enhancing the LMs’ predictive
accuracy (Fogg, 2009; Fredricks, 2014).

Our contextualization process divides into four cat-
egories:

* Demographic Contextualization: Includes
inherent personal and social identity factors,
such as race and gender. These are critical for
understanding the diverse identities students
bring to their educational experiences and how
these aspects influence their academic out-
comes in the course.

* Socioeconomic Contextualization: Encom-
passes factors related to the economic status
and background of the student’s family, like
parent’s total yearly income. This contextual-
ization helps to understand the resources and
socio-economic pressures that might influence
a student’s academic performance and oppor-
tunities.

* Academic Contextualization: Pertains to the
specifics of a student’s educational path, in-
cluding their class standing year (freshman,
sophomore, junior, senior) and their chosen
major. This type of contextualization is vital
for understanding how students’ educational
choices and progression affect performance.

* Emotional Engagement Contextualization:
Centers on students’ emotional and perceptual
dimensions of academic engagement. Specifi-
cally, it aims to explore how students’ anticipa-
tions of academic outcomes (expected grades)

and their satisfaction with their academic per-
formance influence their engagement, motiva-
tion, and overall educational journey.

Using the contextualized academic trajectory
data, we address the following research questions.

* [RQ1]: How does contextualization of aca-
demic trajectory data impact the efficacy of
transfer learning from pre-trained LMs in
early academic performance forecasting?

* [RQ2]: How does a natural language text
generation approach compare with numeric
feature-based models in early performance
forecasting?

* [RQ3]: What impact does the capacity of pre-
trained LMs (i.e., the number of parameters)
have on forecasting accuracy?

Our primary contributions are threefold.

Innovative Methodology: We introduce a novel
methodology that employs natural language text
generation for the early forecasting of academic
performance, showcasing a unique blend of linguis-
tic and educational insights.

Contextualization as a Catalyst for Transfer
Learning: We demonstrate that contextualizing
academic trajectory data significantly enhances the
transfer learning process from pre-trained LMs. By
embedding both cognitive and non-cognitive fea-
tures within a rich contextual narrative, our ap-
proach unlocks the vast potential of LMs to under-
stand and predict academic outcomes with remark-
able accuracy.

Exploitation of Pre-trained LM Knowledge: Our
research underscores the pivotal role of leveraging
the inherent, comprehensive knowledge encapsu-
lated within LMs. Through our method, we illus-
trate how the nuanced understanding and versa-
tility of LMs can be effectively harnessed for the
domain-specific task of predicting student perfor-
mance, thus marking a significant advancement in
the field of educational Al

The remainder of the paper is organized as fol-
lows: Section 2 outlines our methodology, encom-
passing a description of the dataset and its collec-
tion. In Section 3, we present the experiments and
provide a detailed analysis of the results, followed
by our conclusions and suggestions for future work
in Section 4. Finally, Section 5 offers a discussion
of pertinent literature.
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Figure 1: An overview of the approach for enhancing transfer learning from pre-trained language models for early

academic performance forecasting.

2 Method

To harness the nuanced understanding pre-trained
LMs offer regarding students’ academic expe-
riences, we assembled a detailed longitudinal
dataset that examines the interplay among vari-
ous factors, including background, cognitive, and
non-cognitive elements in student learning. Figure
1 illustrates the LM-based transfer learning frame-
work, featuring the contextualization of proximal
cognitive data followed by the preprocessing of the
contextualized academic trajectory. Data contex-
tualization involves integrating distal background
and proximal non-cognitive factors with cognitive
trajectory data. Below, we outline the process of
compiling a language dataset, encompassing data
collection and pre-processing methods, and con-
clude with a formal description of transfer learning
through fine-tuning of LMs.

2.1 Data Collection

Our dataset comprises information obtained from
48 first-year college students enrolled in an intro-
ductory programming course at a public univer-
sity in the United States, following approval from
the University’s Institutional Review Board. The
dataset encompasses three key dimensions of the
students’ academic journeys.

Background Data (5-dimensional): At the out-
set of the semester, critical 5-dimensional back-
ground data was collected through a Qualtrics-

based multiple-choice web survey. This numeric
dataset includes students’ academic details (such
as class standing year and major), demographic
information (including gender and race), and a so-
cioeconomic indicator (family yearly income).

Non-Cognitive Data (2-dimensional): This di-
mension includes longitudinal measures of stu-
dents’ emotional engagement throughout the
semester, comprising 2-dimensional data reflecting
students’ anticipated end-of-semester performance
and their current performance satisfaction, both in
numeric format.

The data is collected via a privacy-preserving
smartphone application, designed to prompt con-
textually relevant, study-specific multiple-choice
questions daily. This ensures that participants’
anonymized responses are securely compiled on
cloud servers for subsequent analysis. Each partici-
pant is assigned a unique randomly generated ID
upon enrollment, with no personally identifiable
information collected via the app. All data col-
lected is tagged solely by the participant’s random
ID, with no linkage maintained between the ID and
participant identity. Geolocation and Bluetooth
sensors are utilized in the app to ascertain instanta-
neous context for question triggers, although sensor
data is not persistently stored. By transparently in-
forming students about the privacy-preservation
mechanisms, we mitigate potential psychological
and academic incentives for artificial performance
or dishonest responses during experience sampling.

139



Furthermore, this privacy-preserving mechanism
serves to mitigate potential biases in the data col-
lection process. By anonymizing participants’ re-
sponses and ensuring that no personally identifiable
information is collected, we minimize the risk of
participants feeling pressured to provide socially
desirable responses. This approach promotes more
authentic and unbiased data collection, contributing
to the reliability and validity of our findings.

Cognitive Data (21-dimensional): The dataset
also includes 21-dimensional numeric cognitive
data derived from students’ assessment scores (both
formative and summative) over the first 8 weeks
of the semester. This cognitive data was obtained
from the course’s learning management system,
Canvas, providing insights into students’ academic
performance, engagement, and progress within the
course curriculum.

2.2 Data Contextualization

We enriched students’ cognitive trajectory
data—comprising their course-related formative
and summative scores—by incorporating four
contextual dimensions: demographic (gender
and race), academic (class standing year and
major), socioeconomic (family yearly income),
and behavioral (emotional engagement). The
dynamic cognitive and non-cognitive data were
intertwined to preserve their temporal sequence,
while the static background data was added at the
end of the trajectory.

2.3 Data Pre-processing

The contextualized numeric trajectory data un-
derwent preprocessing to adapt it for LM use,
which included handling missing values in the non-
cognitive data, verbalization of the data, and data
augmentation for enhanced model training.

Data Imputation. The proximal non-cognitive
data exhibited missing values, resulting from par-
ticipants either skipping questions or temporarily
uninstalling the app. We encountered two dis-
tinct patterns of missing data: complete absence
of responses for an entire day and partial absences
within a day. To address days with entirely missing
data, we employed the Last Observation Carried
Forward (LOCF) imputation method (Liu, 2016).
This method involves carrying forward the last ob-
served value for each participant to replace missing
values at subsequent time points. While LOCF is a
commonly used approach due to its simplicity, it as-

sumes that the missing data points would have fol-
lowed a similar trajectory as the last observed value.
In situations where no prior data were available, the
Next Observation Carried Backward (NOCB) ap-
proach was employed (Jahangiri et al., 2023), using
data from a subsequent day that contained relevant
responses. The challenge of partially missing data,
particularly for follow-up questions, necessitated
a more nuanced approach. When the preceding
day’s trigger question response did not match, di-
rectly applying LOCEF for the follow-up question
was deemed unreliable (Lachin, 2016). Instead, we
filled these gaps with responses from days where
the trigger question responses aligned. If no match-
ing previous day could be identified, a future day
with corresponding answers was utilized.

Data Verbalization. To transform the numeric
dataset into natural language, we designed a tem-
plate for verbalizing both the input (X) and out-
put (Y) data sequences (refer to the Appendix for
details). Input sequences were prefaced with con-
textual messages, such as “A student obtained the
following assessment scores in an introductory pro-
gramming course ...” for cognitive data, and “Some
background information about the student: ...” for
distal data. Chronological order was emphasized
by prefacing data with the week number, e.g., “In
week [WEEK_NUMBER]”. The output sequences,
categorized into four performance groups (at-risk,
prone-to-risk, average, outstanding), contextual-
ized the final letter grade in a natural language
expression, e.g., “At the end of the semester, the
student will be at risk.” . This verbalization process
yielded three datasets based on 8-week, 4-week,
and 2-week long input sequences.

Data Augmentation. Given the initial dataset’s
unbalanced distribution across performance cate-
gories (24 instances of outstanding, 12 average, 6
prone-to-risk, and 6 at-risk), we employed a two-
fold approach for data augmentation. Firstly, we
utilized oversampling techniques (Haixiang et al.,
2017; Hernandez et al., 2013) to duplicate instances
from minority classes, thus balancing the dataset.
Secondly, we incorporated synonym replacement
methods (Li et al., 2022), which involved substitut-
ing words with their synonyms to introduce token
variations. This comprehensive approach aimed to
not only address class imbalance but also enrich
the dataset with diverse token variations.

As aresult of our data augmentation strategy, the
augmented dataset showcased a more equitable dis-
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tribution among performance categories, totaling
144 samples, comprising 48 instances of outstand-
ing, 36 average, 30 prone-to-risk, and 30 at-risk.

These methodologies provide a robust founda-
tion for applying transfer learning to LMs, facilitat-
ing a deep understanding of students’ academic per-
formance through a multi-dimensional data lens.

2.4 Fine-tuning LMs

Each sequence in X and Y contains standard
lexical literals used in English (e.g., words and
phrases), which is used to fine-tune a pre-trained
encoder-decoder LM. The encoder fr(.) maps the
input sequence (x1, z2, ..., 2;) to an intermediate
latent embedding sequence (z1, 22, ..., 27).

z = fr(x1,22,...,21,0R) (D)

where 6 are the weights of the encoder.

The decoder fp(.) takes the latent embed-
dings (z1, 22, ..., 2) to generate an output sequence
(91, Y2, ---, Um) in an auto-regressive fashion, i.e.,
at each step the decoder fp(.) uses previously gen-
erated symbols ¢, as additional input for generat-
ing the next token j,,,. The probability of generating
the m-th token gj,,, is given by

p(gm|?)<ma 21y B2y +nny Zl)
= softmax(fp(Y<m; 21, 22, ..., 21;0p)) (2)

where 0p are the weights of the decoder. For
fine-tuning the encoder-decoder LM, the multi-
class cross-entropy loss function is used. The num-
ber of classes in the loss function is set by the total
number of tokens in the vocabulary. For a batch
size B, the loss function is:

B M
L==>"%" yhlogih, 3)

b=1m=1
3 Experiments

To thoroughly investigate the research questions
outlined in Section 1, we performed a series of ex-
periments focusing on the learning capabilities of
LMs. These experiments involved fine-tuning pre-
trained LMs across multi-dimensional language
datasets spanning 8 weeks, 4 weeks, and 2 weeks.
This selection of timeframes facilitated an in-depth
examination of LM adaptability over various peri-
ods. The effectiveness of the adapted LMs was as-
sessed through their ability to identify performance
types based on matching keywords in the predicted

output sequences. Moreover, we explored the im-
pact of LM size—small, medium, and large—on
their performance.

Experimental Setup. For the encoder-decoder
LM, we used pre-trained FLAN-T5 (Chung et al.,
2022), which is a variant of the TS5 model (Raf-
fel et al., 2020). The FLAN-T5 model is instruc-
tion fine-tuned, making it suitable for our purposes.
We employed FLAN-TS with three different ca-
pacities, determined by the number of parameters:
FLAN-T5-Small (80M), FLAN-T5-Base (250M),
and FLAN-T5-Large (770M). These LMs have a
context window limited to 512 tokens. As base-
line comparisons, we utilized four models that
work with only numeric features: three neural net-
works (NNs) and one non-NN machine learning
model. The neural networks include a Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), a Convolutional Neural Net-
work (CNN) with a one-dimensional (1D) convolu-
tional kernel (Kim, 2014), and a Transformer net-
work (Vaswani et al., 2017). The non-NN machine
learning model employed was a Support Vector
Machine (SVM) with a linear kernel (Boser et al.,
1992), which demonstrated superior performance
over the Gaussian Radial Basis Function kernel.

The baseline models were trained using 3
variably-length numeric datasets containing only
the cognitive features. Exploring baseline models
with all three feature types is planned as future
work. To ensure compatibility with the LM-based
experiments, the numeric datasets were created
from the augmented verbalized datasets by decod-
ing the cognitive feature part of text sequences into
numeric values.

We used the same test sets to evaluate both model
types, employing the following metrics: accuracy,
precision, recall, and F1 score. A detailed descrip-
tion of the experimental setup is provided in the
Appendix.

3.1 Results

[RQ1]: How does contextualization of academic
trajectory data impact the efficacy of transfer
learning from pre-trained LMs in early academic
performance forecasting? The core objective
of this study is to evaluate how the contextualiza-
tion of academic trajectory data influences the fore-
casting effectiveness of pre-trained LMs. To this
end, we fine-tuned LMs of varying sizes with aca-
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Table 1: Evaluation of the large LM (FLAN-TS5-Large) fine-tuned with four combinations of the 3 feature types
using the 8-week, 4-week, and 2-week datasets. The best results are in bold.

Legends: C=Cognitive, NC=Non-Cognitive, B=Background, AR=At-Risk, PR=Prone-To-Risk, AV=Average,
OU=Outstanding, P=Precision, R=Recall, FI=F1 Score, A=Accuracy

Features Class 8-week 4-week 2-week
P [R [FlL [A [P |R [F1 [A [P [R [FL [A
Full AR 0.78 | 1.00 | 0.88 1.00 | 1.00 | 1.00 0.64 | 1.00 | 0.78
. PR 0.89 | 0.80 | 0.84 0.89 | 0.80 | 0.84 1.00 | 0.50 | 0.67
C‘zgti";léhﬁ;l)"“ AV 092 1001096 | *® [071 001 080" 073 100 0851 *7’
(018 093 | 0.81 | 0.87 0.86 | 0.75 | 0.80 0.85 | 0.69 | 0.76
Partial AR 0.70 | 1.00 | 0.82 0.70 | 1.00 | 0.82 0.62 | 0.71 | 0.67
. PR 1.00 | 0.60 | 0.75 0.86 | 0.60 | 0.71 0.71 | 0.50 | 0.59
Conzfg‘fal\lg‘“‘m AV 1073 [1.00 085 | 8% 069 [1.00 081 %" 062 (001 (074 *68
(018} 092 | 0.75 | 0.83 091 | 0.62 | 0.74 0.77 | 0.62 | 0.69
Partial AR 0.78 | 1.00 | 0.88 0.88 | 1.00 | 0.93 0.60 | 0.86 | 0.71
. PR 0.89 | 0.80 | 0.84 0.71 | 1.00 | 0.83 0.71 | 0.50 | 0.59
C"m‘zét‘fgat“’“ AV 1067 073070 "7 069 [os2 1075 %" (070 [06a 067 >
ou 0.79 | 0.69 | 0.73 0.89 | 0.50 | 0.64 0.59 | 0.62 | 0.61
No AR 0.60 | 0.86 | 0.71 0.62 | 0.71 | 0.67 0.36 | 0.57 | 0.44
. PR 0.86 | 0.60 | 0.71 0.67 | 0.60 | 0.63 0.88 | 0.70 | 0.78
C"ntexz‘ghza“"“ AV 1060 0821069 72 067 001 1077 %70 (054 [06a [ 058 | 2
(018 092 | 0.69 | 0.79 0.83 | 0.62 | 0.71 0.42 | 0.31 | 0.36
0 Full Contextualization (C + NC + B) I Full Contextualization (C + NC + B)
I Partial Contextualization (C + NC) I Partial Contextualization (C + NC)
0] B Partial Contextualization (C + B) 0] B Partial Contextualization (C + B)
I No Contextualization (C) I No Contextualization (C)

Accuracy
°
S

0.4

0.2

2-week

8-week 4-week

(a) FLAN-TS Base

Accuracy

o
Y

0.4
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Figure 2: Impact of contextualization on the FLAN-TS Base and Small models.

demic trajectory data enriched with three types of
features: cognitive (C), non-cognitive (NC), and
background (B). This investigation includes com-
paring the performance impact between fully con-
textualized LMs (utilizing all three feature types)
and partially-contextualized or non-contextualized
LMs. For partial contextualization, we explored
combinations of C+NC and C+B features, whereas,
in the non-contextualization scenario, only cogni-
tive (C) features were employed for model fine-
tuning.

According to the performance metrics provided
in Table 1 for the best-performing large LM, FLAN-
T5-Large, it is evident that models utilizing a con-
textualization approach, whether fully or partially,
significantly outperform those without any contex-
tualization. Specifically, the fully contextualized
LMs demonstrate superior forecasting abilities.
For instance, such a model can predict student per-
formance with an accuracy of 77% by the end of
the 2nd week of the semester. This early prediction
capability is vital for implementing effective early
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Figure 3: Comparison with baseline models on cognitive features.

Table 2: Evaluation of the three baseline models trained with cognitive features using the 8-week, 4-week, and

2-week datasets. The best results are in bold.

Legends: AR=At-Risk, PR=Prone-To-Risk, AV=Average, OU=Outstanding, P=Precision, R=Recall, FI=F1 Score,

A=Accuracy

8-week 4-week 2-week
Model | Class |5 T A T P TR [FIl | A | P | R | F | A
AR 0.50 | 0.86 | 0.63 0.44 | 0.57 | 0.50 045 | 0.71 | 0.56
PR 0.83 | 0.50 | 0.62 1.00 | 0.30 | 0.46 0.44 | 0.70 | 0.54
CNN AV 1.00 | 0.09 | 0.17 0.59 0.33 | 0.55 | 0.43 050 0.22 | 0.18 | 0.20 0.45
Oou 0.56 | 0.88 | 0.68 0.37 | 0.56 | 0.58 0.75 | 0.38 | 0.50
AR 1.00 | 0.14 | 0.25 0.00 | 0.00 | 0.00 0.15 | 0.29 | 0.20
PR 0.27 | 0.40 | 0.32 0.00 | 0.00 | 0.00 0.00 | 0.00 | 0.00
LST™ AV 0.33 | 0.27 | 0.30 0.34 0.26 | 0.73 | 0.38 0.25 0.00 | 0.00 | 0.00 0.34
Oou 0.37 | 0.44 | 0.40 0.33 | 0.19 | 0.24 0.42 | 0.81 | 0.55
AR 0.78 | 1.00 | 0.88 0.54 | 1.00 | 0.70 0.56 | 0.71 | 0.63
PR 0.57 | 0.40 | 0.47 1.00 | 0.60 | 0.75 0.80 | 0.60 | 0.71
Transformer | =071 7064 1050 | *°° [0.40 [0.18 [0.25 | >/ [0.00 [ 0.00 [0.00] 7
(018 0.73 | 0.50 | 0.59 0.50 | 0.62 | 0.56 0.46 | 0.81 | 0.59
AR 1.00 | 0.71 | 0.83 1.00 | 0.86 | 0.92 0.54 | 0.78 | 0.64
PR 0.88 | 0.78 | 0.82 1.00 | 0.33 | 0.50 1.00 | 0.20 | 0.33
SVM AV 0.41 | 0.88 | 0.56 0.68 0.38 | 0.38 | 0.38 0.59 0.67 | 0.50 | 0.57 0.59
Oou 0.67 | 0.46 | 0.55 0.38 | 0.62 | 0.47 0.57 | 0.76 | 0.65
intervention strategies. variations: one combining cognitive and non-

Moreover, identifying students at risk (AR) or
prone to risk (PR) early is crucial for timely sup-
port. The 2-week model, when fully contextualized,
exhibits a remarkable recall rate of 100% for the
AR group. As more data becomes available, the
4-week model maintains this 100% recall for the
AR group and also achieves an 80% recall for the
PR group, both of which are essential for early in-
tervention efficacy. Expanding the data window to
8 weeks further enhances the model’s accuracy to
89%, underlining the benefits of full contextualiza-
tion in improving early detection and intervention
outcomes.

Partial Contextualization was explored in two

cognitive features (C + NC) and the other cognitive
and background features (C + B). The C + NC
configuration demonstrated moderate success, with
overall accuracy ranging from 68% to 82%, indicat-
ing a somewhat effective use of student information
minus the background context. In contrast, the C
+ B setup, omitting non-cognitive traits, showed
a slight decrease in performance, particularly for
the 2-week predictions, where accuracy dropped
to 64%. These outcomes highlight the nuanced
contribution of non-cognitive factors in short-term
risk assessment.

No Contextualization (C alone) presented the
most significant drop in performance, with ac-
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curacy falling to 52% for the 2-week predictions.
This stark decrease underscores the critical role of
contextualization in enhancing the predictive power
of the model.

In addressing RQ1, the evaluation of the FLAN
T5 Base model also underscores the importance of
academic trajectory data contextualization (see Fig-
ure 2(a)). When fine-tuned with a comprehensive
set of features (C + NC + B), it demonstrates a clear
advantage, achieving accuracies of 86%, 84%, and
68% across 8-week, 4-week, and 2-week forecasts,
respectively. This trend highlights the efficacy of
full contextualization in enhancing model perfor-
mance, despite a slight performance dip compared
to the larger model variant, affirming the signifi-
cance of a rich feature set for improved predictive
accuracy.

The investigation with the FLAN T5 Small
model further supports the value of contextual-
ization (see Figure 2(b)), achieving peak accura-
cies of 82%, 75%, and 64% across the same time-
frames with full feature integration. Despite facing
challenges in short-term risk prediction, the Small
model’s performance emphasizes the critical role
of a comprehensive feature blend in maintaining
predictive accuracy, even with constrained compu-
tational resources. These findings collectively vali-
date that full contextualization substantially bene-
fits the forecasting capabilities of pre-trained LMs
across different model sizes.

[RQ2]: How does natural language text gener-
ation compare to numeric feature-based models
in forecasting early academic performance, using
only cognitive features? Our analysis contrasts
the efficacy of three varying-capacity LMs against
four numeric feature-based baseline models, focus-
ing solely on the cognitive features of our dataset.
As illustrated in Figure 3 for datasets spanning 8-
week, 4-week, and 2-week intervals, the results
demonstrate distinct performance dynamics. In the
4-week and 8-week forecasts, LMs consistently
outperform the numeric baseline models. Yet, in
the initial 2-week forecast, numeric models, specif-
ically the SVM and Transformer, with accuracies
of 59% and 55% respectively, outdo the large LM,
which records a 52% accuracy. Remarkably, the
SVM’s performance plateaus at 59% accuracy for
the 4-week datasets, in contrast to the large LM,
which notably enhances its accuracy to over 70%
consistently across the 4-week duration. Detailed
comparisons of baseline model performances are

provided in Table 2.

[RQ3]: What impact does the capacity of pre-
trained LMs (i.e., the number of parameters) have
on forecasting accuracy? Analyzing the test accu-
racies among the three differently sized LMs (refer
to Table 1, Figures 2 and 3) reveals a clear trend:
larger models demonstrate enhanced forecasting
capabilities. Notably, even after implementing full
contextualization, the recall for the at-risk group
in the smaller and medium-sized models stands at
86%, while the large model achieves a recall of
100%. This pattern strongly indicates that achiev-
ing optimal early forecasting through the con-
textualization of LMs is more effective with the
deployment of large language models (LLMs).

4 Conclusion

In this paper, we ventured into the realm of lever-
aging modern Al, particularly deep learning and
transfer learning methodologies, to tackle the criti-
cal challenge of early performance forecasting in
the educational sector. Our investigation centered
on the innovative use of Transformer-based pre-
trained LMs for predicting undergraduate STEM
course outcomes, marking a significant departure
from traditional numeric feature-based models. By
integrating a novel transfer learning approach tai-
lored for small-domain data within STEM educa-
tion, we aimed to overcome the limitations posed
by sparse training datasets, a common hurdle in the
educational domain.

Our methodology hinged on the contextualiza-
tion of academic trajectory data, incorporating a
rich tapestry of both cognitive and non-cognitive
factors. Through this multi-dimensional approach,
we enhanced the LMs’ capacity to understand and
predict academic performance, achieving a notable
improvement in forecasting accuracy. Specifically,
we demonstrated that:

* Contextualizing academic trajectory data sig-
nificantly enhances the transfer learning pro-
cess from pre-trained LMs, as evidenced by
our responses to [RQ1].

* Compared to numeric feature-based models,
our natural language text generation approach
shows superior performance in early academic
forecasting, addressing [RQ2].

* The capacity of pre-trained LMs, in terms of
their number of parameters, plays a crucial
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role in forecasting accuracy, with larger mod-
els outperforming their smaller counterparts,
as explored in [RQ3].

These insights underscore the transformative po-
tential of Al-driven tools in proactively identifying
and supporting students at risk, thereby enhanc-
ing educational outcomes. By leveraging the vast
knowledge encapsulated within LMs and enrich-
ing it with detailed contextual data across demo-
graphic, socioeconomic, academic, and emotional
engagement dimensions, we not only tailored the
pre-trained LMs to our specific task but also en-
riched the predictive model with a comprehensive
understanding of students’ academic journeys.

Looking ahead, our work opens the door to fu-
ture research in several key areas. Integrating more
detailed contextual signals such as real-time aca-
demic engagement and behavioral data could en-
hance LM predictive accuracy, leveraging advances
in natural language processing and sentiment analy-
sis to understand students’ emotional and cognitive
states better. Expanding our approach to a wider
range of educational contexts and disciplines would
help validate its scalability and adaptability. Ad-
ditionally, exploring continual learning techniques
for LMs might illuminate how to improve fore-
casting systems’ accuracy and reliability over time
without extensive retraining. Addressing the ethical
and privacy concerns inherent in using detailed stu-
dent data is also crucial, necessitating robust data
governance and ethical Al frameworks to protect
students’ rights and ensure equitable benefits.

5 Related Work

In advancing educational forecasting, we introduce
a distinct approach by applying transfer learning
from pre-trained LMs to contextualized time-series
data of academic trajectories. This dataset uniquely
incorporates both cognitive and non-cognitive fea-
tures, enriching the forecasting model with a de-
tailed temporal perspective.

Research in time-series forecasting with pre-
trained LMs splits into two main streams: data-
centric and model-centric approaches (Sun et al.,
2023). Data-centric methods focus on transform-
ing time-series data into formats amenable to LMs,
employing innovative embedding techniques to
match time-series data with the textual embedding
space of LMs. These techniques range from embed-
ding alignment and augmentation (Sun et al., 2023)

to two-stage fine-tuning (Chang et al., 2023) and
zero-shot preprocessing for numerical data (Gru-
ver et al., 2023). Model-centric strategies, on the
other hand, adapt pre-trained LMs specifically for
time-series forecasting. This involves fine-tuning
certain LM components while introducing time
series-specific modifications such as decomposi-
tion and soft prompts (Cao et al., 2023), aiming
to formulate forecasting as a question-answering
task (Xue and Salim, 2023), and prompt-tuning
with few-shot learning (prompt engineering) (Liu
et al., 2023c).

Our work diverges by leveraging a model-centric
approach tailored to the contextual data of aca-
demic paths, utilizing discrete prompts. This novel
strategy emphasizes the importance of transfer
learning from pre-trained LMs to enrich forecast-
ing with a deep, context-aware analysis, setting our
research apart in the field of educational forecast-
ing.

6 Limitations

Our study has made important progress in showing
how contextualized language models (LMs) can
predict early academic performance. Yet, we must
acknowledge some limitations that define our re-
search’s scope and point towards future research
directions.

Data Scope and Diversity: The primary focus
of our research on undergraduate STEM courses
may circumscribe the applicability of our findings
across different academic disciplines and educa-
tional levels. The distinct cognitive and engage-
ment challenges inherent to non-STEM subjects
underscore the need for subsequent studies aimed
at adapting and validating our methodology in a
wider educational context.

Model Size and Computational Resources: The
deployment of LMs brings to the fore the exigen-
cies of computational resources. The high com-
putational overhead required for the training and
operational deployment of these models might pre-
clude their adoption in institutions with limited
technological infrastructure, potentially curtailing
the broad-scale application of our approach in var-
ied educational settings.

Ethical and Privacy Concerns: Leveraging de-
tailed personal and contextual data of students ne-
cessitates a careful navigation of ethical and privacy
considerations. While our study has endeavored to
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adhere to these imperatives scrupulously, the ex-
pansive use of similar methodologies demands a
rigorous commitment to data protection standards
and ethical practices to mitigate the risk of infring-
ing upon student privacy.

Temporal Dynamics: Our forecasting approach
captures a static slice of contextual data, possibly
overlooking the dynamic nature of student engage-
ment and performance, which are subject to change
over the academic term. The challenge of incorpo-
rating continuous data updates into LMs without
necessitating extensive retraining poses a signifi-
cant question for future research.

Interpretability and Explainability: The opaque
nature of LMs, as with many deep learning models,
presents a barrier to interpretability and explain-
ability. To engender trust among educational practi-
tioners and stakeholders, it is imperative to develop
methodologies that elucidate the rationales behind
model predictions in a comprehensible manner.

Bias and Fairness: The risk of propagating biases
through pre-trained LMs, a reflection of their train-
ing datasets, is a critical concern. These biases
have the potential to skew forecasting accuracy and
fairness, impacting various student demographics
disparately. Vigilance to prevent the reinforcement
of existing educational disparities is essential.

Computational Limitations: Our investigation’s
scope was notably constrained by the limited mem-
ory capacity of available GPUs. This limitation
thwarted our ability to fully leverage the spectrum
of distal and proximal non-cognitive features, em-
ploy rich and expressive instructional prompts, and
utilize LMs with > 1 billion parameters. Over-
coming these computational hurdles is crucial for
unlocking the full potential of LLMs in educational
forecasting.

These limitations underscore the imperative for
continued research to surmount these hurdles. Fu-
ture endeavors should focus on broadening the in-
clusivity, ethical integrity, and scalability of Al-
driven educational interventions, ensuring they
serve as equitable and effective support mecha-
nisms across the diverse landscape of learning en-
vironments.
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Abstract

Automated essay scoring (AES) to evaluate sec-
ond language (L2) proficiency has been a firmly
established technology used in educational con-
texts for decades. Although holistic scoring has
seen advancements in AES that match or even
exceed human performance, analytic scoring
still encounters issues as it inherits flaws and
shortcomings from the human scoring process.
The recent introduction of large language mod-
els presents new opportunities for automating
the evaluation of specific aspects of L2 writing
proficiency. In this paper, we perform a series
of experiments using GPT-4 in a zero-shot fash-
ion on a publicly available dataset annotated
with holistic scores based on the Common Eu-
ropean Framework of Reference and aim to
extract detailed information about their under-
lying analytic components. We observe sig-
nificant correlations between the automatically
predicted analytic scores and multiple features
associated with the individual proficiency com-
ponents.

1 Introduction

Automated essay scoring (AES) of second lan-
guage (L2) proficiency is a well-established tech-
nology in educational settings, involving the auto-
matic scoring and evaluation of learners’ written
productions through computer programs (Shermis
and Burstein, 2003).

Originating in the 1960s, the roots of AES can
be traced back to the development of Project Essay
Grade (PEG) (Page, 1966, 1968), an automatic sys-
tem which evaluated writing skills based only on
proxy traits: hand-written texts had to be manually
entered into a computer, and a scoring algorithm
then quantified superficial linguistic features, such
as essay length, average word length, count of punc-
tuation, count of pronouns and prepositions, etc.
Across the following decades, as natural language
processing (NLP) technologies have advanced and
increased their power (Landauer, 2003), the field

of AES has expanded and improved, and more
significant studies have been conducted from the
1990s and early 2000s. The most widely known
automated scoring systems for essays include the
e-rater®, developed by Educational Testing Ser-
vice (Burstein, 2002; Attali and Burstein, 2006),
IntelliMetric™ by Vantage Learning (Rudner et al.,
2006), and the Intelligent Essay Assessor™, built at
Pearson Knowledge Technologies (Landauer et al.,
2002).

In recent years, deep neural network (DNN)
approaches have brought significant improve-
ments (Alikaniotis et al., 2016), and especially the
advent of transformer-based architectures (Vaswani
et al., 2017), such as BERT (Devlin et al., 2019)
which took the world of NLP and, consequently,
AES by storm, outperforming classic feature-based
systems (Rodriguez et al., 2019). Yet, the most
recent breakthrough has been brought by large
language models (LLMs), such as the GPT mod-
els (Brown et al., 2020; OpenAl, 2023), which
might revolutionise the world of AES, not only
from the NLP experts’ and language testers’ per-
spective, but also considering the users’ point
of view due to GPT’s extremely accessible and
intuitive interface. In the context of L2 writ-
ing assessment, previous studies have employed
GPT-3.5 (Mizumoto and Eguchi, 2023) and GPT-
4 (Yancey et al., 2023), obtaining promising results.

Although LLMs have been employed for holistic
scoring (i.e., assessing the overall quality of a com-
position as a whole, considering various aspects
such as vocabulary, grammar, coherence, etc. alto-
gether), to the best of our knowledge, so far they
have not been investigated for the task of analytic
scoring (i.e., breaking down a composition into spe-
cific components or criteria and assigning separate
scores or ratings to each component).! Offering L2

"Naismith et al. (2023) investigated the use of GPT-4 on
a proprietary dataset annotated with specific scores targeting
coherence only.

149

Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 149-164
June 20, 2024 ©2024 Association for Computational Linguistics



learners specific analytic proficiency scores is cru-
cial for delivering insightful and effective feedback,
emphasising both their strengths and weaknesses
to facilitate improvement.

For holistic scoring, previous works have shown
that state-of-the-art automatic techniques can
reach near-human results (Alikaniotis et al., 2016;
Taghipour and Ng, 2016) or even outperform
them (Rodriguez et al., 2019). This is, at least
in part, ascribable to the fact that holistic scores are
generally easier to obtain for human evaluators (see
Section 2). Conversely, assessing analytic aspects
of language proficiency is generally considered to
be more difficult, time-consuming, and cognitively
demanding for human evaluators, and, as a result,
“noisy” ground truth scores are harder to learn and
predict for automatic systems (see Section 2).

Starting from these premises, in this paper, we
conduct a series of exploratory experiments on a
publicly available dataset annotated with holistic
scores according to the Common European Frame-
work of Reference (CEFR) (Council of Europe,
2001, 2020) using GPT-4 in a zero-shot fashion,
and aim to extract specific information about their
underlying analytic components. Although ground
truth analytic scores are not available, we find sig-
nificant correlations between the analytic scores
predicted by the model and several features related
to the analytic scores.

2 Holistic versus analytic scoring

2.1 Human assessment

Holistic and analytic approaches to assessing L2
proficiency are commonly utilised, differing in scor-
ing methods, underlying assumptions, and practical
application. While holistic assessment consists of
assigning a single overall numerical score to a spe-
cific performance based on a singular set of rating
criteria, analytic assessment involves providing var-
ious sub-scores to the performance based on multi-
ple sets of criteria. As a result, there are conceptual
differences between the two approaches (Barkaoui,
2011). Holistic assessment typically assumes that
the construct being evaluated is a unitary entity
and can be represented on a single scale. While
this approach acknowledges that the construct may
consist of various elements, it implies that devel-
opment across various aspects of proficiency is
uniform. Conversely, analytic assessment views
the construct as multi-dimensional and advocates
for a multi-faceted assessment, recognising that

development across various aspects may be irreg-
ular. For instance, the levels of the CEFR are
structured according to ‘can-do’ descriptors of lan-
guage proficiency outcomes and expect evaluators
to grade proficiency by means of holistic assess-
ments. Nonetheless, the CEFR levels do have a
modularisable structure with multiple underlying
components (e.g., vocabulary range, vocabulary
control, grammatical accuracy, etc.), acknowledg-
ing that a learner may be more proficient in cer-
tain aspects than others (Council of Europe, 2001,
2020).

When we consider assessment strictly from a
human perspective, holistic assessment is consid-
ered highly practical as it is more time-efficient per
se and in relation to rater training (White, 1984),
less cognitively demanding (Xi, 2007), and gener-
ally has a higher inter-annotator agreement (Wei-
gle, 2002) than analytic assessment. On the other
hand, holistic scoring may suffer from lack of clar-
ity regarding how different aspects are prioritised,
which may vary among evaluators (Weigle, 2002;
Xi, 2007), the risk that evaluators might primar-
ily concentrate on candidates’ strengths rather than
their weaknesses (Bacha, 2001), and the potentially
erroneous assumption that various aspects of profi-
ciency develop uniformly over time (Kroll, 1990).

Analytic assessment allows for a more detailed
and systematic evaluation and is supposed to pro-
vide much more detailed feedback to L2 learn-
ers, by highlighting their fortes and their weak-
nesses (Hamp-Lyons, 1995) in addition to enhanc-
ing scoring validity. However, it is not a panacea.
Analytic scores may be psychometrically redun-
dant (Lee et al., 2009) due to a halo effect (En-
gelhard, 1994), whereby raters fail to distinguish
between different aspects of learners’ performances
but assess all or some of them with similar scores.
For example, when assessing grammatical accu-
racy, raters might be influenced by the score previ-
ously assigned to vocabulary range. On top of this,
raters might confuse analytic criteria in the phase
of assessment due to high cognitive load (Underhill,
1987; Cai, 2015) or, more simply, to indefiniteness
of the analytic criteria (Douglas and Smith, 1997).
The difficulty in providing analytic scores — es-
pecially for a large number of written productions
— is evident in the total absence of publicly avail-
able L2 English learner datasets annotated in this
way? and the fact that the primary emphasis in AES

2To the best of our knowledge, the only formerly publicly
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research has been on holistic scoring.

2.2 Automatic assessment

The introduction of automatic assessment tech-
niques — and especially their recent advance-
ments — have started to change the game. For
holistic scoring, DNN-based systems reached near-
human performances (Alikaniotis et al., 2016;
Taghipour and Ng, 2016), and the application of
transformers-based architectures even beat human
inter-annotator agreement (Rodriguez et al., 2019).
However, a notorious problem lies in the impos-
sibility to enter the black box of neural scoring
models, and this poses a challenge for explainabil-
ity and interpretability of the machine-generated
holistic scores. Even more so, it is important to
explore the ability of automatic models to evaluate
specific aspects of language proficiency through
analytic scoring: if it is not possible to decom-
pose the holistic assessment process by peeking
inside the black box, it may be possible to recon-
struct holistic scores starting from their analytic
components (with the caveat that we should keep
in mind the potential unreliability of human ana-
Iytic scores, as discussed above). In this regard,
automatic systems have been found to be generally
better at evaluating specific linguistic phenomena,
whilst humans tend to focus on more general as-
pects of proficiency. For example, Enright and
Quinlan (2010) suggested that human raters might
achieve higher results when assessing ideas, con-
tent, and organisation, whereas automatic systems
might have better performances when evaluating
microfeatures at the grammatical, syntactic, lexical,
and discourse levels. It should be noted, however,
that these limitations attributed to automatic sys-
tems may no longer necessarily be true in light
of the recent advancements involving neural sys-
tems, which can be used quite effectively also to
assess higher-level aspects of proficiency. For ex-
ample, previous studies have focused on specific
traits of written productions, such as organisation,
content, word choice, sentence fluency, narrativ-
ity, etc. (Hussein et al., 2020; Mathias and Bhat-
tacharyya, 2020; Ridley et al., 2021), but they have
used the ASAP dataset, which is problematic for
reproducibility and only features essays written by

available dataset annotated with analytic scores is the ASAP
dataset (kaggle.com/c/asap-aes/data), but the test data
are no longer available for evaluation and comparison with
previous work. Furthermore and most importantly, it contains
essays written by L1 English speakers.
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L1 English speakers (see note 2). For L2 speaking
assessment, the initial study by Banno et al. (2022)
investigated the use of multiple different graders,
each of which focused on a different set of features
related to a specific proficiency aspect.

The introduction of LLMs could be a further
game-changer, considering their outstanding re-
sults in a broad range of tasks.

To sum up, given that:

* holistic scores are generally easier to obtain
both from human and automatic graders and
generally have a higher inter-annotator agree-
ment, hence higher reliability;

analytic scores are difficult to obtain and
might not always be sufficiently reliable;

more often than not, L2 learner datasets are
annotated with holistic scores only;

LLMs have been proven to be extremely pow-
erful tools in many NLP tasks;

we pose the following research question:

is it possible to extract information about
analytic aspects from L2 learner essays
and their assigned holistic scores using
GPT-4?

Figure 1 shows the pipeline adopted in this study,
which will be illustrated in detail in Section 4.

3 Data

3.1 Write & Improve

Write & Improve (W&I) is an online platform
where L2 learners of English can practise their writ-
ing skills (Yannakoudakis et al., 2018). Users can
submit their compositions in response to different
prompts, and the W&I automatic system provides
assessment and feedback. Some of these composi-
tions have been manually annotated with CEFR lev-
els and grammatical error corrections since 2014,
resulting in a corpus of 3,300 texts, partitioned into
a training set of 3,000 and a validation set of 300
essays.’ The proficiency scale ranges from Al to
C2 but also has intermediate levels, resulting in 12
levels, that we arranged on a scale from 1 to 6.5,
where 11s Al, 1.51s Al+, 21is A2, 2.5 is A2+, etc.,
as shown in Table 5 (see Appendix D).

3The dataset can be downloaded from this link:
huggingface.co/datasets/wi_locness.


kaggle.com/c/asap-aes/data
huggingface.co/datasets/wi_locness

PROMPT

Given this

ESSAY

which received this

‘ GRADER }—) HOLISTIC SCORE

which one of these

ANALYTIC CEFR
DESCRIPTORS

best maiches this
essay?

4>{ GPT-4 }—} ANALYTIC SCORE

GRAMMATICAL ACCURACY

optlen A: Good grammarical control...

optlen B: Maintains consistent grammatical...
optlen C: Shaws only imited control..
optlen D: Consistently maintains a high...
optlen E: Communicates with reasonatie...
optlon F: Uses some simple siructures...

Figure 1: The pipeline presented in this study. Grammatical accuracy is only one of the aspects considered.

3.2 EFCAMDAT

Arguably the largest publicly available* L2 learner
corpus, the second release of EF-Cambridge Open
Language Database (EFCAMDAT) (Geertzen et al.,
2013; Huang et al., 2017, 2018) comprises
1,180,310 scripts written by 174,743 L2 learners
as assignments to Englishtown, an online English
language school. The compositions are annotated
with a score on a scale from 0 to 100 and a profi-
ciency level from 1 to 16 (mapped to CEFR levels
from Al to C2).° In order to align them to the pro-
ficiency levels in the W&I dataset, we normalised
the scores as described in Table 5 (see Appendix D).
For our experiments, we selected a subset of data
consisting of 753,508 essays for the training set
and 7612 for the validation set, following a similar
process to Banno et al. (2023).

4 Experimental setup

4.1 Longformer-based holistic grader

Following the pipeline illustrated in Figure 1, we
start our experiments from training a holistic grader,
which consists of a Longformer model (Beltagy
et al., 2020) in the version provided by the Hug-
gingFace Transformer Library,® a dropout layer, a
dense layer of 768 nodes, a dropout layer, another
dense layer of 128 nodes, and finally, the output
layer. The baseline model (W&I) is trained on the
W& training data and optimised on the W&I vali-
dation data using an Adam optimiser (Kingma and

4ef-lab.mmll.cam.ac.uk/EFCAMDAT.html

5englishlive.ef.com/en/how—it—works/
levels-and-certificates/

®huggingface.co/allenai/longformer-base-4096

Ba, 2014) for 3 epochs with batch size 16, learn-
ing rate le-6 and mean squared error as loss, but
our best-performing model — which is the one we
will use in the following steps of our pipeline — is
trained on the EFCAMDAT training set and opti-
mised on the validation data from the same dataset
for 0.5 epochs with batch size 16 and learning rate
le-5, and subsequently fine-tuned on the W&I train-
ing data and optimised on the W&I validation data
for 4 epochs.

To evaluate the holistic grader performance,
we use Pearson’s correlation coefficient (PCC),
Spearman’s rank coefficient (SRC), and root-mean-
square error (RMSE).

4.2 GPT-4-based analytic graders

Once we obtain the holistic scores from the
Longformer-based model, we move on to feed-
ing them into GPT-4 (“gpt-4-1106-preview’) to
extract analytic scores. Specifically, the analytic
scores are related to 9 proficiency aspects as de-
scribed in Council of Europe (2020), reported in
Appendix A. Five of them compose the linguistic
competence: general linguistic range, vocabulary
range, grammatical accuracy, vocabulary control,
and orthographic control; while the remaining four
form the pragmatic competence: flexibility, the-
matic development, coherence and cohesion, and
propositional precision.

We excluded sociolinguistic appropriateness be-
cause it is not consistently elicited in the W&I
essays, as well as the aspects strictly related to
speaking proficiency (i.e., phonological control,
turntaking, and fluency) for obvious reasons.
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The prompt given to GPT-4 can be found in Ap-
pendix C. To exclude potential biases, the holistic
scores are fed in their numerical form (i.e., from 1
to 6.5) instead of the original CEFR notation (i.e.,
from A1 to C2+), and the analytic CEFR descrip-
tors are provided in random order and, obviously,
without any reference to the CEFR levels. For
completeness, we also try this experiment without
giving GPT-4 the holistic score.

At the end of the process, the option selected
by GPT-4 is mapped back to its respective CEFR
level.

4.3 Explanation of the features

As mentioned in Section 1, the W&I dataset does
not include analytic scores, but we find significant
correlations with relevant features extracted from
the essays (see Tables 3 and 4).

90 gram. refers to the grammatical error rate, which
is the number of grammatical error edits divided
by the number of words in the essay. These edits
are extracted by feeding the original and corrected
versions of the W&I essays into the ERRor ANno-
tation Toolkit (ERRANT) (Bryant et al., 2017).
#dif.wds. is the number of unique difficult words
extracted with textstat.’

#unq.wds. refers to the number of unique words.
%l.d.t. is the percentage of text types that are con-
tent words obtained using TAACO (Tool for the
Automatic Analysis of Text Cohesion) 2.0 (Cross-
ley et al., 2019).

#unqg.n.chunks refers to the number of unique
noun chunks identified and extracted using spaCy. 8
#unq.q.m.a. refers to the number of unique quali-
fiers, modality markers, and ambiguity indicators
identified and extracted using spaCy.

fl.-kinc.  is the Flesch Kincaid readability
score (Kincaid et al., 1975), obtained using
textstat.

w2y is the average word2vec (Mikolov et al., 2013)
similarity score between all adjacent paragraphs,
extracted with TAACO 2.0.°

av.s.In. is the average sentence length.

The correlations between these features and the
analytic scores are evaluated using SRC since we
do not necessarily expect a linear correlation be-
tween the two. For example, it is well-known that

Tgithub.com/textstat/textstat

8spacy. io/

*Initially, we also extracted the similarity score using La-
tent Semantic Analysis (Landauer et al., 1998) and Latent

Dirichlet Allocation (Blei et al., 2003), which showed similar
figures, but we did not include them due to reasons of space.

certain grammatical errors are absent or rare in the
Al level, increase after B1, and then decline again
by C2 (Hawkins and Buttery, 2010).

S Experimental results

5.1 Holistic scoring

Table 1 shows the results of the Longformer-based
holistic graders on the W&I validation set in terms
of PCC, SRC, and RMSE. The model pre-trained
on EFCAMDAT and fine-tuned on the W&I train-
ing set outperforms the baseline across all met-
rics as expected. These results should confirm that
holistic grading is a relatively easy task and, since
the training data are fully publicly available, poten-
tially within everyone’s reach.

Model | PCC | SRC | RMSE
W&I | 0707 [ 0.772 | 1.267
EFC+W&I | 0.866 | 0.874 | 0.786

Table 1: Holistic scoring results on W&I validation set.

5.2 Holistic score reconstruction

Once we obtain the holistic scores from the
Longformer-based grader, we are ready to feed
them into GPT-4. However, before moving on
to the analysis of the individual analytic scores,
we first calculate the correlation between the av-
erage of the predicted analytic scores — when
providing GPT-4 with the holistic scores from the
ground truth (GT) or the Longformer-based grader
(EFC+W &), or with no holistic score (-) — and the
holistic scores, both the ground truth (GT) and the
scores automatically predicted by the Longformer-
based grader (EFC+W&I), as shown in Table 2.

GPT-4 Prompt Reference
Holistic Score GT EFC+W&I
GT 0.904 0.874
EFC+W&I 0.828 0.898
- 0.797 0.827

Table 2: SRC correlation between the average of the
predicted analytic scores and the holistic scores.

The first result that catches the eye is that GPT-4
reaches a significant correlation of 0.797 when it
is not provided with additional information about
holistic scores (-), although this does not neces-
sarily mean that all the underlying analytic scores
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are effectively targeting their respective proficiency
aspects, as we will discuss in the next section.
Secondly, it is interesting to observe that the two
sources of holistic score in the prompts (i.e., GT
and EFC+W &) result in the information derived
from these scores being used in a non-deterministic
fashion, introducing a certain degree of variability.

5.3 Analytic scoring

We can now move on to discussing the results of an-
alytic scoring. Table 3 shows the correlation results
in terms of SRC between the predicted analytic
scores and several relevant features for each pro-
ficiency aspect. Table 4 does the same but giving
GPT-4 the ground truth holistic scores instead of
the scores predicted by the holistic grader. Partic-
ularly in the latter, when focusing on the results
highlighted in bold, we can observe a broad trend
towards an approximate diagonal which passes
through most of the proficiency aspects of the lin-
guistic (Lng.) and pragmatic (Prg.) competences
on the y-axis and the relevant features on the x-
axis. For completeness, in Table 6 (see Appendix
D), we also report the results obtained without giv-
ing GPT-4 the holistic score, but the correlations
are not as significant as the ones shown in Tables 3
and 4 as the holistic score seems to work as a guide
for analytic scoring. Furthermore, as expected, the
correlations between each individual predicted ana-
lytic score and the holistic scores are significantly
lower than the ones reported in Tables 3 and 4.
Therefore, our analysis in the following lines will
not dwell on these results.

As expected, grammatical error rate (%gram.)
shows the highest correlations with the aspects
of grammatical accuracy and orthographic control
both on Tables 3 and 4.

The number of unique difficult words (#dif.wds.)
seems to be a suitable feature to measure vocab-
ulary control, e.g., if we compare the A2 level
(i.e., “Can control a narrow repertoire dealing with
concrete, everyday needs.”) and the C1 level (i.e.,
“Uses less common vocabulary idiomatically and
appropriately.”), as described in Council of Europe
(2020, pp. 132-133) (see Appendix A). Indeed, this
feature shows the highest correlation with the score
related to vocabulary control.

If we look at the results obtained giving the
ground truth holistic scores to GPT-4 shown in Ta-
ble 4, we can see that the number of unique words
(#ung.wds.), the percentage of lexical density types
(%l.d.t.), and the number of unique noun chunks

(#unqg.n.cks.), which are all related to lexicality,
have their highest correlation with the two scores
related to vocabulary. As expected, the same fea-
tures have slightly weaker — but still relevant —
correlations when we use the automatically pre-
dicted holistic scores, as shown in Table 3.

The number of unique qualifiers, modality mark-
ers, and ambiguity indicators (#unqg.q.m.a.) is sup-
posed to be a measure for propositional precision
since, for example, as shown in Appendix A, a C1-
level learner “[c]an qualify opinions and statements
precisely in relation to degrees of, for example,
certainty/uncertainty, belief/doubt, likelihood, etc”
and “[c]an make effective use of linguistic modality
to signal the strength of a claim, an argument or
a position”, and a C2-level learner “[c]an convey
finer shades of meaning precisely by using, with
reasonable accuracy, a wide range of qualifying
devices [...]” and “[c]an give emphasis, differenti-
ate and eliminate ambiguity” (Council of Europe,
2020, p. 141). As can be observed in Table 4, this
feature has the second-highest correlation with the
propositional precision score and the highest corre-
lation with the score related to vocabulary control,
with which it is in fact connected. Similarly to
what we observed about the lexical features, the
results of the fully-automated pipeline for this fea-
ture are less evident, but we can still see a rather
high correlation with propositional precision.

Given its emphasis on precision and clarity, we
thought that also the Flesch-Kincaid readability
score (fl.kinc.) would be a suitable feature to mea-
sure these. We found that the highest correlation
was exactly with propositional precision followed
by vocabulary control on both Tables 3 and 4.

Furthermore, we considered two features for the
pragmatic competence, especially in relation to
cohesion and coherence. The first one is the aver-
age word2vec similarity score between all adjacent
paragraphs (w2v), which shows the highest cor-
relations on propositional precision and cohesion
and coherence in Table 4. The second is average
sentence length (av.s.In.), which should be an indi-
cator of higher use of subordination and cohesive
devices (i.e., longer sentences should generally be
more complex). This feature shows similar results,
as shown in Table 4. When using the scores pro-
vided by the automatic holistic grader, the results
on both features are also slightly weaker (see Table
3), as observed already for other features above.

It is rather difficult to provide a precise and ex-
haustive explanation of the results for the general
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= =3
L T T T T A
% Y ‘s, & 2 £ % K %
e Ty %
gen. lin. 0.695 0.584 0.514  0.400 0.493 0.527 0.259 0.258 0.143 0.765
gramm. 0.698 0.505 0.469  0.370 0.423 0.468 0.189 0.265 0.134 0.737
Lng. orth. 0.718 0.395 0.317 0.244 0.291 0.350 0.155 0.206 0.073 0.652
voc. ctrl. 0.652 0.638 0.580 0.445 0.537 0.600 0.263 0.291 0.189 0.779
voc. 1g. 0.651 0.621 0.568 0.424 0.548 0.576 0.254 0339 0.177 0.749
propos. 0.601 0.607 0.545 0.389 0.528 0.568 0.294 0.351  0.202 0.702
Prg coh. 0.662 0.621 0.574 0.410 0.551 0.588 0.248 0.336  0.180 0.774
: flexib. 0.424 0.414 0.390 0.291 0.367 0.412 0.178 0.195 0.125 0.443
themat. 0.584 0.544 0.527 0.428 0.516 0.534 0.203 0.287 0.145 0.650
‘ holistic 0.732 0.640 0.665 0.451 0.623 0.637 0.178 0.364 0.141 H 1.000

Table 3: SRC correlation of the GPT-4 predicted scores and relevant linguistic features (using holistic scores
predicted by the Longformer-based grader). The holistic entry refers to the ground-truth holistic scores. In bold
the two highest correlations columnwise.

Ky = =
% T, Y, T ", %, T, |,
% “a 4, < e, 2 % 4 %

: % 4 ”{2

gen.lin. 0726 0574 0541 0414 0522 0519 0197 0267 0.129 || 0.814
gramm. 0731 0472 0464 0363 0433 0450 0.100 0.286  0.030 || 0.791
Lng. orth. 0726 0436 0398 0310 0.354 0427  0.146 0203 0.060 || 0.729
voc.ctrl.  0.674  0.640  0.621 0453 0.591 0.624 0243 0319 0179 || 0.854
voc.rg.  0.672  0.624 0582 0452 0.563 0573 0218 0280 0.134 || 0816
propos.  0.600  0.624 0581 0417 0.560 0593 0261 0353 0.190 || 0.771
Prg coh. 0702 0555 0534 0372 0.511 0535 0238 0339 0201 || 0.827
| flexib. 0425 0370 0368 0.249 0.357 0368  0.140 0163 0.104 || 0.488
themat.  0.639 0514 0504 0413 0.492 0483 0224 0264 0.179 || 0.745
[ holistic 0732 0.640  0.665 0451 0.623 0637 0.178 0364 0.141 || 1.000

Table 4: SRC correlation of the GPT-4 predicted scores and relevant linguistic features (using ground truth holistic
scores). The holistic entry refers to the ground-truth holistic scores. In bold the two highest correlations columnwise.

linguistic range score, which is a broad indicator by
definition since it includes elements of grammati-
cal accuracy, syntactic complexity, and vocabulary,
and, as a result, shows strong correlations with
multiple features. On the other hand, the aspect
of flexibility seems to be a little problematic with
respect to both the features and the holistic score,
probably also due to its “longitudinality”, since it
seems to be evaluated in relation to previous perfor-
mances, according to its descriptors (see Appendix
A).

Finally, we selected some essays in which there
was a large discrepancy between two or more an-
alytic scores, and we evaluated them impression-
istically. One example can be found in Appendix
B. If we focus on the highest and lowest scores, we
notice vocabulary range and orthographic control
on one hand, and coherence and cohesion on the
other hand. Although quite extreme, this discrep-
ancy makes sense, considering that the learner uses
almost no connectors at all and mostly uses coordi-

nating clauses (or even parataxis), but has quite a
rich vocabulary and makes no orthographic errors
(except for punctuation).

5.4 Statistical tests

Additionally, we explore the relationships among
analytic scores using a repeated measures design
in order to assess whether there are significant dif-
ferences among them. While the repeated mea-
sures analysis of variance (rANOVA) is a widely
known approach for such designs, our data fail to
meet the assumptions of sphericity and normality
required for its application. Hence, we employ
the Friedman test (Friedman, 1937), known as the
non-parametric equivalent of rANOVA. This test
assesses whether there are significant differences in
ranks among multiple paired groups. With a signif-
icant p-value obtained, we confirm significant dif-
ferences among the analytic scores. To determine
which scores show significant differences, we con-
duct post-hoc multiple comparisons using the Ne-
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Figure 2: Results of the post-hoc Nemenyi test.

menyi test (Nemenyi, 1963), whose results are re-
ported in Figure 2. The majority of the paired com-
parisons, even those with the holistic score (except
when paired with vocabulary control), show signif-
icant differences (i.e., p-value<0.05) both when we
provide the ground truth and the automatic holistic
scores to GPT-4. In addition to the pairs “general
linguistic range - vocabulary range” and “thematic
development - vocabulary range”, which have some
clear overlaps in their descriptors, there seem be
non-significant differences over the group of as-
pects related to the pragmatic competence (i.e., flex-
ibility, thematic development, coherence and cohe-
sion, and propositional precision) and the aspect of
grammatical accuracy. While we could expect to
see non-significant differences among the aspects
related to the pragmatic competence due to their

frequent overlaps, the non-significant differences
of these with grammatical accuracy might be ex-
plained with the fact that not only do its descriptors
stress the importance of correctness but, as shown
in Appendix A, they also emphasise complexity
(e.g., for Al: “Shows only limited control of a few
simple grammatical structures [...]”; for B2: “Has a
good command of simple language structures and
some complex grammatical forms [...]”"), which is
inherently connected to aspects such as thematic
development and coherence and cohesion (Purpura,
2004). In this regard, it is also worth noting that
the coherence and cohesion score is the third most
correlated with grammatical error rate.

To sum up, under ideal conditions, GPT-4 ap-
pears to produce analytic scores that are very rea-
sonably related to the proficiency aspects they are
expected to evaluate. The fully-automated pipeline
is not always consistent with the ideal system but
generates results that are mostly in line with it.
This is especially evident for the scores pertaining
to grammar and vocabulary.

6 Conclusions

In this paper, we have conducted an initial study
on the use of GPT-4 for assessing 9 individual as-
pects of L2 writing underlying the CEFR profi-
ciency levels in a zero-shot fashion. To do this,
we used a holistic grading system on the essays
of the W&I validation set and, subsequently, fed
them with their respective holistic scores into GPT-
4, asking to assess one individual aspect at a time.
Although the ground truth analytic scores are not
available, we have obtained significant correlations
between the predicted analytic scores and various
features linked to the componential aspects of the
CEFR levels. Beyond its immediate implications
for computer-assisted language learning applica-
tions, we believe that our exploratory experiments
may hold promise as valuable contributions to the-
oretical studies on construct validity in the broader
field of language testing and assessment, given the
inclusion of CEFR descriptors in our study.

In order to collect further evidence to support our
findings, we plan to deploy this system, use it in
educational settings, and evaluate its effectiveness
by monitoring learners’ progress in relation to each
specific aspect of proficiency. Future work will also
explore the use of multi-modal systems, such as the
one presented in Tang et al. (2023), for assessing
L2 speech in a similar fashion.
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Limitations

The main limitation of this study is clearly the lack
of ground truth analytic scores. The reader should
keep in mind, however, that, as mentioned in Sec-
tion 2, human analytic scoring is often an extremely
difficult process, which might not produce com-
pletely reliable information. As evidence of this,
the absence of publicly available L2 English learner
datasets annotated with analytic scores speaks loud
and clear and is not only an issue for the objectives
of this paper, but for the whole scientific commu-
nity.
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A  Appendix A
LINGUISTIC COMPETENCE

General linguistic range

Al: Has a very basic range of simple expressions
about personal details and needs of a concrete type.
Can use some basic structures in one-clause sen-
tences with some omission or reduction of ele-
ments.

A2: Has a repertoire of basic language which en-
ables them to deal with everyday situations with
predictable content, though they will generally
have to compromise the message and search for
words/signs. Can produce brief, everyday expres-
sions in order to satisfy simple needs of a con-
crete type (e.g. personal details, daily routines,
wants and needs, requests for information). Can

use basic sentence patterns and communicate with
memorised phrases, groups of a few words/signs
and formulae about themselves and other people,
what they do, places, possessions, etc. Has a lim-
ited repertoire of short, memorised phrases cover-
ing predictable survival situations; frequent break-
downs and misunderstandings occur in non-routine
situations.

B1: Has a sufficient range of language to describe
unpredictable situations, explain the main points in
an idea or problem with reasonable precision and
express thoughts on abstract or cultural topics such
as music and film. Has enough language to get by,
with sufficient vocabulary to express themselves
with some hesitation and circumlocutions on topics
such as family, hobbies and interests, work, travel
and current events, but lexical limitations cause
repetition and even difficulty with formulation at
times.

B2: Can express themselves clearly without much
sign of having to restrict what they want to say. Has
a sufficient range of language to be able to give
clear descriptions, express viewpoints and develop
arguments without much conspicuous searching for
words/signs, using some complex sentence forms
to do so.

C1: Can use a broad range of complex grammati-
cal structures appropriately and with considerable
flexibility. Can select an appropriate formulation
from a broad range of language to express them-
selves clearly, without having to restrict what they
want to say.

C2: Can exploit a comprehensive and reliable mas-
tery of a very wide range of language to formulate
thoughts precisely, give emphasis, differentiate and
eliminate ambiguity. No signs of having to restrict
what they want to say.

Vocabulary range

Al: Has a basic vocabulary repertoire of
words/signs and phrases related to particular con-
crete situations.

A2: Has sufficient vocabulary to conduct routine
everyday transactions involving familiar situations
and topics. Has sufficient vocabulary for the expres-
sion of basic communicative needs. Has sufficient
vocabulary for coping with simple survival needs.
B1: Has a good range of vocabulary related to
familiar topics and everyday situations. Has suffi-
cient vocabulary to express themselves with some
circumlocutions on most topics pertinent to their
everyday life such as family, hobbies and interests,
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work, travel and current events.

B2: Can understand and use the main technical ter-
minology of their field, when discussing their area
of specialisation with other specialists. Has a good
range of vocabulary for matters connected to their
field and most general topics. Can vary formulation
to avoid frequent repetition, but lexical gaps can
still cause hesitation and circumlocution. Can pro-
duce appropriate collocations of many words/signs
in most contexts fairly systematically. Can under-
stand and use much of the specialist vocabulary of
their field but has problems with specialist termi-
nology outside it.

C1: Has a good command of a broad lexical reper-
toire allowing gaps to be readily overcome with
circumlocutions; little obvious searching for ex-
pressions or avoidance strategies. Can select from
several vocabulary options in almost all situations
by exploiting synonyms of even words/ signs less
commonly encountered. Has a good command of
common idiomatic expressions and colloquialisms;
can play with words/signs fairly well. Can under-
stand and use appropriately the range of technical
vocabulary and idiomatic expressions common to
their area of specialisation.

C2: Has a good command of a very broad lexical
repertoire including idiomatic expressions and col-
loquialisms; shows awareness of connotative levels
of meaning.

Grammatical accuracy

Al: Shows only limited control of a few simple
grammatical structures and sentence patterns in a
learnt repertoire.

A2: Uses some simple structures correctly, but still
systematically makes basic mistakes; nevertheless,
it is usually clear what they are trying to say.

B1: Communicates with reasonable accuracy in
familiar contexts; generally good control, though
with noticeable mother-tongue influence. Errors
occur, but it is clear what they are trying to ex-
press. Uses reasonably accurately a repertoire of
frequently used “routines” and patterns associated
with more predictable situations.

B2: Good grammatical control; occasional “slips’
or non-systematic errors and minor flaws in sen-
tence structure may still occur, but they are rare and
can often be corrected in retrospect. Shows a rel-
atively high degree of grammatical control. Does
not make mistakes which lead to misunderstanding.
Has a good command of simple language structures
and some complex grammatical forms, although

>

they tend to use complex structures rigidly with
some inaccuracy.

C1: Consistently maintains a high degree of gram-
matical accuracy; errors are rare and difficult to
spot.

C2: Maintains consistent grammatical control of
complex language, even while attention is other-
wise engaged (e.g. in forward planning, in moni-
toring others’ reactions).

Vocabulary control

A1: No descriptors available.

A2: Can control a narrow repertoire dealing with
concrete, everyday needs.

B1: Shows good control of elementary vocabulary
but major errors still occur when expressing more
complex thoughts or handling unfamiliar topics and
situations. Uses a wide range of simple vocabulary
appropriately when discussing familiar topics.
B2: Lexical accuracy is generally high, though
some confusion and incorrect word/sign choice
does occur without hindering communication.
C1: Uses less common vocabulary idiomatically
and appropriately. Occasional minor slips, but no
significant vocabulary errors.

C2: Consistently correct and appropriate use of
vocabulary.

Orthographic control

Al: Can copy familiar words and short phrases,
e.g. simple signs or instructions, names of every-
day objects, names of shops, and set phrases used
regularly. Can spell their address, nationality and
other personal details. Can use basic punctuation
(e.g. full stops, question marks).

A2: Can copy short sentences on everyday subjects,
e.g. directions on how to get somewhere. Can
write with reasonable phonetic accuracy (but not
necessarily fully standard spelling) short words that
are in their oral vocabulary.

B1: Can produce continuous writing which is gen-
erally intelligible throughout. Spelling, punctua-
tion and layout are accurate enough to be followed
most of the time.

B2: Can produce clearly intelligible, continuous
writing which follows standard layout and para-
graphing conventions. Spelling and punctuation are
reasonably accurate but may show signs of mother-
tongue influence.

C1: Layout, paragraphing and punctuation are con-
sistent and helpful. Spelling is accurate, apart from
occasional slips of the pen.
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C2: Writing is orthographically free of error.

PRAGMATIC COMPETENCE

Flexibility

A1: No descriptors available.

A2: Can adapt well-rehearsed, memorised, simple
phrases to particular circumstances through limited
lexical substitution. Can expand learnt phrases
through simple recombinations of their elements.
B1: Can adapt their expression to deal with less
routine, even difficult, situations. Can exploit a
wide range of simple language flexibly to express
much of what they want.

B2: Can adjust what they say and the means of
expressing it to the situation and the recipient and
adopt a level of formality appropriate to the cir-
cumstances. Can adjust to the changes of direction,
style and emphasis normally found in conversation.
Can vary formulation of what they want to say. Can
reformulate an idea to emphasise or explain a point.
C1: Can make a positive impact on an intended
audience by effectively varying style of expression
and sentence length, use of advanced vocabulary
and word order. Can modify their expression to
express degrees of commitment or hesitation, con-
fidence or uncertainty.

C2: Shows great flexibility in reformulating ideas
in differing linguistic forms to give emphasis, dif-
ferentiate according to the situation, interlocutor,
etc. and to eliminate ambiguity.

Thematic development

Al: No descriptors available.

A2: Can tell a story or describe something in a
simple list of points. Can give an example of some-
thing in a very simple text using “like” or “for
example”.

B1: Can clearly signal chronological sequence
in narrative text. Can develop an argument well
enough to be followed without difficulty most of
the time. Shows awareness of the conventional
structure of the text type concerned when commu-
nicating their ideas. Can reasonably fluently relate
a straightforward narrative or description as a se-
quence of points.

B2: Can develop an argument systematically with
appropriate highlighting of significant points, and
relevant supporting detail. Can present and respond
to complex lines of argument convincingly. Can
follow the conventional structure of the commu-
nicative task concerned when communicating their
ideas. Can develop a clear description or narrative,

expanding and supporting their main points with
relevant supporting detail and examples. Can de-
velop a clear argument, expanding and supporting
their points of view at some length with subsidiary
points and relevant examples. Can evaluate the
advantages and disadvantages of various options.
Can clearly signal the difference between fact and
opinion.

C1: Can use the conventions of the type of text
concerned to hold the target reader’s attention and
communicate complex ideas. Can give elaborate
descriptions and narratives, integrating sub-themes,
developing particular points and rounding off with
an appropriate conclusion. Can write a suitable
introduction and conclusion to a long, complex
text. Can expand and support the main points at
some length with subsidiary points, reasons and
relevant examples.

C2: Can use the conventions of the type of text
concerned with sufficient flexibility to communi-
cate complex ideas in an effective way, holding the
target reader’s attention with ease and fulfilling all
communicative purposes.

Propositional precision

Al: Can communicate basic information about
personal details and needs of a concrete type in a
simple way.

A2: Can communicate what they want to say in
a simple and direct exchange of limited informa-
tion on familiar and routine matters, but in other
situations they generally have to compromise the
message.

B1: Can explain the main points in an idea or
problem with reasonable precision. Can convey
simple, straightforward information of immediate
relevance, getting across the point they feel is most
important. Can express the main point they want
to make comprehensibly.

B2: Can pass on detailed information reliably. Can
communicate the essential points even in more de-
manding situations, though their language lacks
expressive power and idiomaticity.

C1: Can qualify opinions and statements pre-
cisely in relation to degrees of, for example, cer-
tainty/uncertainty, belief/doubt, likelihood, etc.
Can make effective use of linguistic modality to
signal the strength of a claim, an argument or a
position.

C2: Can convey finer shades of meaning precisely
by using, with reasonable accuracy, a wide range of
qualifying devices (e.g. adverbs expressing degree,
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clauses expressing limitations). Can give emphasis,
differentiate and eliminate ambiguity.

Coherence and cohesion

Al: Can link words/signs or groups of words/signs
with very basic linear connectors (e.g. “and” or
“then”).

A2: Can use the most frequently occurring con-
nectors to link simple sentences in order to tell
a story or describe something as a simple list of
points. Can link groups of words/signs with simple
connectors (e.g. “and”, “but” and “because”).

B1: Can introduce a counter-argument in a simple
discursive text (e.g. with “however”). Can link a
series of shorter, discrete simple elements into a
connected, linear sequence of points. Can form
longer sentences and link them together using a
limited number of cohesive devices, e.g. in a story.
Can make simple, logical paragraph breaks in a
longer text.

B2: Can use a variety of linking expressions effi-
ciently to mark clearly the relationships between
ideas. Can use a limited number of cohesive de-
vices to link their utterances into clear, coherent
discourse, though there may be some “‘jumpiness”
in a long contribution. Can produce text that is gen-
erally well-organised and coherent, using a range
of linking expressions and cohesive devices. Can
structure longer texts in clear, logical paragraphs.
C1: Can produce clear, smoothly flowing, well-
structured language, showing controlled use of or-
ganisational patterns, connectors and cohesive de-
vices. Can produce well-organised, coherent text,
using a variety of cohesive devices and organisa-
tional patterns.

C2: Can create coherent and cohesive text making
full and appropriate use of a variety of organisa-
tional patterns and a wide range of cohesive de-
vices.

B Appendix B

I deal with consulting and sales of financial prod-
ucts and services to an international bank, in the
mass-market and small-business. I follow the re-
lationship with customers from acquisition to the
advise until the realization of contracts, building
and maintaining relationships after-sales in the
aim of customer satisfaction

I also worked with large and small teams in
back-offices, managed many administrative activi-
ties related to mortages, personal loans, contability
and investments too.

I worked for several years to the acquisition of
new customers, to provide them with a complete
service, from the account to insurance products, in-
vestment products, personal loans, revolving credit,
and cross-selling products. In many years of work I
have honed my skills in managing non-standard sit-
uations, analyzing the problem, finding and imple-
menting practical and easy solutions. non-standard
situations, analyzing the problem, finding and im-
plementing practical and easy solutions.

I have faced several situations always work with
serenity and enthusiasm, I like to work in a multi-
cultural and dynamic.

I’'m careful to meet the goals of the team in which
I work, cooperating with colleagues to achieve
the goals by providing my skills, always willing
to learn, respecting other points of view together
finding ways to deal. I work for the same large
company for 25 years, now is the time to change
and find new job opportunities. Needs to work my
husband has been living in Zaandam, I want to find
a new job in Holland to rejoin our family.

1 like sports such as skiing, riding and swimming.
I've also got the rescue licence, I worked as a life-
guard in the summer studying for the patent padi
dive master

The holistic score is 3.5 (B1+), and GPT-4 pro-
vided these analytic scores:

* general linguistic range: 3

* vocabulary range: 4

* grammatical accuracy: 2

* vocabulary control: 3

* orthographic control: 4

* flexibility: 2

* thematic development: 2

* coherence and cohesion: 1

* propositional precision: 3
C Appendix C

When we include the holistic score, the prompt
given to GPT-4 is the following:

Consider the

[ESSAY]

following essay:
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It has been given this score on
a scale from 1 to 6.5: [HOLISTIC
SCORE].

I want you to assess it
only considering the aspect of
[ASPECT], for which you have 6
different feedback options, that
you will have to accept or reject:
[ANALYTIC CEFR DESCRIPTORS]

ONLY ONE option can be accepted
and is the option you will have

to output by only selecting
the option letter in the
following format: ’option

A/B/C/D/E/F’10 WITHOUT ANY
ADDITIONAL OBSERVATION, COMMENT,
NOTE, EXPLANATION, CLARIFICATION,
OR JUSTIFICATION OF ANY SORT.

CEFR W&I EFCAMDAT
Al (1) 1,2
Al Al+ (1.5) 3
A2 (2) 4,5
A2 A2+ (2.5) 6
B1 (3) 7,8
Bl B1+ (3.5) 9
B2 4) 10,11
B2 B2+ (4.5) 12
Cl C1(5 13,14
Cl1+(5.5) 15
2 C2 (6) 16 (score<85)
C2+ (6.5) | 16 (score>85)

Table 5: Score alignment.

Additional experimental results

Table 6 reports the results of the experiment con-

ducted when no holistic scores are given to GPT-4.

Your answer:

When we do not provide GPT-4 with the holistic
score, the prompt is the following:

Consider the following

[ESSAY]

essay:

I want you to assess it
only considering the aspect of
[ASPECT], for which you have 6
different feedback options, that
you will have to accept or reject:
[ANALYTIC CEFR DESCRIPTORS]

ONLY ONE option can be accepted
and is the option you will have
to output by only selecting
the option letter in the
following format: ’option
A/B/C/D/E/F* ! WITHOUT ANY
ADDITIONAL OBSERVATION, COMMENT,
NOTE, EXPLANATION, CLARIFICATION,
OR JUSTIFICATION OF ANY SORT.

Your answer:

D Appendix D

Score alignment

Table 5 shows the holistic score normalisation pro-
cess for EFCAMDAT.

9The aspects of vocabulary control, flexibility, and the-
matic development only have options A-E since no descriptors
are available for the A1 level.

"See note 10.
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Ry 2 =3
% o, w T, Y o, K %, A S
% “a i, < 2, ‘9 “% K %
; % fp /&'9'3

gen. lin. 0.643 0.622 0.547 0471 0.526 0.565 0.268 0.275 0.148 0.739
gramm. 0.707 0.408 0.365 0.284 0.324 0.364 0.151  0.170 0.099 0.692
Lng. orth. 0.730 0.362 0.290 0.234 0.259 0.309 0.133 0.166  0.068 0.653
voc. ctrl. 0.697 0.391 0.363  0.305 0.331 0.369 0.153 0.102 0.107 0.654
voc. 1g. 0.529 0.539 0.456  0.410 0.450 0.452 0.247 0.241 0.131 0.616
propos. 0.432 0.510 0.442  0.341 0.430 0.492 0.246 0.304 0.145 0.539
Prg coh. 0.602 0.601 0.542 0.379 0.533 0.571 0.244 0299 0.162 0.729
: flexib. 0.307 0.361 0.363 0.282 0.348 0.346 0.202 0.149 0.160 0.330
themat. 0.425 0.612 0.587 0.496 0.576 0.583 0.242  0.333 0.150 0.543
{ holistic 0.732 0.640 0.665 0.451 0.623 0.637 0.178 0.364  0.141 H 1.000

Table 6: SRC correlation of the GPT-4 predicted scores and relevant linguistic features (without giving GPT-4 the
holistic score). The holistic entry refers to the ground-truth holistic scores. In bold the two highest correlations

columnwise.
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Abstract

One of the key challenges in programming ed-
ucation is being able to provide high-quality
feedback to learners. Such feedback often in-
cludes explanations of the issues in students’
programs coupled with suggestions on how
to fix these issues. Large language models
(LLMs) have recently emerged as valuable
tools that can help in this effort. In this arti-
cle, we explore the relationship between the
program repair ability of LLMs and their profi-
ciency in providing natural language explana-
tions of coding mistakes. We outline a bench-
marking study that evaluates leading LLMs (in-
cluding open-source ones) on program repair
and explanation tasks. Our experiments study
the capabilities of LLMs both on a course level
and on a programming concept level, allowing
us to assess whether the programming concepts
practised in exercises with faulty student pro-
grams relate to the performance of the models.
Our results highlight that LLMs proficient in re-
pairing student programs tend to provide more
complete and accurate natural language expla-
nations of code issues. Overall, these results
enhance our understanding of the role and ca-
pabilities of LLMs in programming education.
Using program repair as a proxy for explana-
tion evaluation opens the door for cost-effective
assessment methods.

1 Introduction

Large Language Models (LLMs) and applications
leveraging them such as ChatGPT have been em-
braced by both the general public and academia.
The adoption is also visible in the domain of
computing and programming education, where re-
searchers have highlighted a variety of learning
tasks that LLMs can tackle (Denny et al., 2023;
Prather et al., 2023), including their performance
in providing help and feedback to students (Hellas
et al., 2023).

Feedback is a crucial part of learning 