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Introduction

This year marks the 19th edition of the Workshop on Innovative Use of NLP for Building Educational
Applications. As in previous years, we are happy to welcome a plethora of work on various aspects and
types of educational applications – from some of the traditionally popular tasks around language learning
including automated essay scoring, grammatical error detection and correction, readability assessment,
and vocabulary acquisition, among others, to topics related to math and programming education, que-
stions around empathy in teachers’ responses and evaluation of teacher encouragement, fairness and
explainability, bias alleviation, and ethics in AI models applied to the educational domain and many
other exciting developments.

In total, we received 88 submissions, and from these, we have accepted 4 papers as talks and 34 as poster
and demo presentations, for an overall acceptance rate of 43 percent. Like the rest of the NLP communi-
ty, we are observing a paradigm shift, with more and more researchers applying Large Language Models
(LLMs) in the context of educational applications for a variety of purposes including implementation
and evaluation. A large number of papers that we have received and accepted this year investigate the
topics around the integration of LLMs into educational applications. With research excellence being one
of the main factors considered when making paper acceptance decisions, we hope we have also brought
together a diverse program. As before, we also put a particular emphasis on multilingualism of the work
included in our program, and this year BEA features work done not only on English, but also on other
languages including Catalan, Danish, Dutch, Filipino, French, German, Japanese, Italian, Portuguese,
Romanian, Russian, Sinhala, Spanish, and Swedish.

In addition to the diverse oral, poster, and demo presentations, this year, Alla Rozovskaya, an Assistant
Professor in the Department of Computer Science at Queens College, City University of New York, will
give a keynote on Multilingual Low-Resource Natural Language Processing for Language Learning.
Furthermore, BEA 2024 has hosted two shared tasks – on Automated Prediction of Item Difficulty and
Item Response Time (APIDIRT) and on Multilingual Lexical Simplification Pipeline (MLSP). Both tasks
have attracted a large number of participants, and the program includes oral presentations on the shared
task descriptions from the organizers as well as extended poster sessions for shared task participants pre-
senting their systems.

Last but not least, we would like to thank everyone who has been involved in organizing the BEA wo-
rkshop this year. We are particularly grateful to our sponsors who keep supporting BEA: this year, our
sponsors include British Council, Cambridge University Press & Assessment, CATALPA, Duolingo En-
glish Test, Educational Testing Service, and the National Board of Medical Examiners. We would like to
also thank all the authors who showed interest and submitted a paper this year.

Due to the record number of submissions received, we had to extend our invitation to become part of
the Program Committee to all the authors of submitted papers, and many have helped us and provided
their valuable feedback and thoughtful reviews. Without this help from the community, it would not be
possible to spread the reviewing load reasonably, and we are very grateful to our regular reviewers as
well as to emergency reviewers and all the authors who joined our PC this year and who, we hope, may
become our regular PC members. In particular, we would like to extend our gratitude to the following
emergency and outstanding reviewers: Michael Gringo Angelo Bayona, Jeanette Bewersdorff, Jie Cao,
Scott Crossley, Sam Davidson, Kordula De Kuthy, Jasper Degraeuwe, Rujun Gao, Handoko Handoko,
Michael Holcomb, Helen Jin, John Sie Yuen Lee, Hunter McNichols, Arun Balajiee Lekshmi Narayanan,
Huy Viet Nguyen, Adam Nohejl, Eda Okur, Udita Patel, Martí Quixal, Manav Rathod, Alla Rozovskaya,
Abhijit Suresh, Chee Wei Tan, Gladys Tyen, Justin Vasselli, Elena Volodina, ManFai Wong, Kevin Yan-
cey, Roman Yangarber, Torsten Zesch.
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Keynote Talk
Multilingual Low-Resource Natural Language Processing for

Language Learning
Alla Rozovskaya

Queens College, City University of New York

Abstract: Recent studies on a wide range of NLP tasks have demonstrated the effectiveness of training
paradigms that integrate large language models. However, such methods require large amounts of labe-
led and unlabeled data, limiting their success to a small set of well-resourced languages. This talk will
discuss low-resource approaches for two language learning applications. We will begin with work on
generating vocabulary exercises. We will describe an approach that does not require labeled training data
and can be used to adapt the exercises to the linguistic profile of the learner. Next, we will discuss our
recent work on multilingual grammatical error correction (GEC), addressing the issue of training GEC
models for languages with little labeled training data, and the issue of evaluating system performance
when high-quality benchmarks are lacking.

Bio: Alla Rozovskaya is an Assistant Professor in the Department of Computer Science at Queens Col-
lege, City University of New York (CUNY), and a member of the Doctoral Faculty of the Computer
Science and Linguistics programs at the CUNY Graduate Center. She earned her Ph.D. in Computatio-
nal Linguistics at the University of Illinois at Urbana-Champaign, under the supervision of Prof. Dan
Roth. Her research interests lie broadly in the area of low-resource and multilingual NLP and educational
applications.
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Abstract

The creation of pedagogically effective ques-
tions is a challenge for teachers and requires
significant time and meticulous planning, espe-
cially in resource-constrained economies. For
example, in India, assessments for social sci-
ence in high schools are characterized by rote
memorization without regard to higher-order
skill levels. Automated educational question
generation (AEQG) using large language mod-
els (LLMs) has the potential to help teachers
develop assessments at scale. However, it is im-
portant to evaluate the quality and relevance of
these questions. In this study, we examine the
ability of different LLMs (Falcon 40B, Llama2
70B, Palm 2, GPT 3.5, and GPT 4) to generate
relevant and high-quality questions of different
cognitive levels, as defined by Bloom’s taxon-
omy. We prompt each model with the same
instructions and different contexts to generate
510 questions in the social science curriculum
of a state educational board in India. Two hu-
man experts used a nine-item rubric to assess
linguistic correctness, pedagogical relevance
and quality, and adherence to Bloom’s skill
levels. Our results showed that 91.56% of the
LLM-generated questions were relevant and
of high quality. This suggests that LLMs can
generate relevant and high-quality questions at
different cognitive levels, making them useful
for creating assessments for scaling education
in resource-constrained economies.

1 Introduction

In recent years, large language models (LLMs)
have seen significant advances. They undergo train-
ing on extensive text datasets sourced from the
internet and are utilized for a variety of natural lan-
guage processing tasks. The introduction of Ope-
nAI’s ChatGPT and Google’s Bard has made LLMs
more accessible to a wider audience, enabling indi-
viduals without expertise in natural language pro-
cessing (NLP) to leverage them for their everyday

needs. These models are characterized by their sub-
stantial size and their ability to comprehend and
produce intricate text. Through instruction fine-
tuning, language models are calibrated to adhere
to user directives (Zhang et al., 2022). In contrast
to conventional language models, these LLMs pos-
sess zero-shot capabilities, allowing them to handle
various tasks without specific training by simply
interpreting the given instructions (Kojima et al.,
2022). The educational applications of LLMs are
varied and promising, covering personalized con-
tent generation, assessments, and feedback (Kas-
neci et al., 2023).

According to World Bank data, the teacher-pupil
ratio in India’s high schools is 1:291, compared to
middle and high-income countries with an average
of 1:18 and 1:13, respectively. This increases the
workload on teachers and the quality of the instruc-
tion and assessment decreases. In India, subjects
such as history are taught and evaluated, focusing
on rote memorization (Sreekanth, 2007) with min-
imal emphasis on higher-order thinking skills or
inquiry. Inquiry-based learning with high-quality
questions fosters deep engagement and real-world
connections for learners (Grant et al., 2022). As-
sessments aligned with Bloom’s taxonomy levels
(Anderson and Krathwohl, 2001), as detailed in
Table 1, help educators identify learning gaps and
personalize instruction, but require significant time
and effort to create (Kurdi et al., 2020). Auto-
mated Educational Question Generation Systems
(AEQG) have the potential to reduce this burden
(Mulla and Gharpure, 2023), allowing teachers to
personalize instruction and enhance student par-
ticipation. This study investigates the capabilities
of open source and proprietary LLMs to generate
high-quality, context-aligned questions with differ-
ent cognitive skills for effective assessments.

Although LLMs are capable of Natural Lan-

1https://data.worldbank.org
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Table 1: Revised Bloom’s taxonomy (Anderson and Krathwohl, 2001) in ascending order in the cognitive dimension

Bloom’s level Description
Remember Retrieve relevant knowledge from long-term memory.
Understand Construct meaning from instructional messages, including oral, written, and graphic

communication.
Apply Carry out or use a procedure in a given situation.
Analyze Break material into foundational parts and determine how parts relate to one another

and the overall structure or purpose.
Evaluate Make judgments based on criteria and standards.
Create Put elements together to form a coherent whole; reorganize into a new pattern or

structure.

guage Generation (NLG) tasks, their output can
have errors and inconsistencies for specific con-
texts. These models are also prone to hallucina-
tions (Ji et al., 2023). These issues directly im-
pact the quality of educational questions generated,
which can vary significantly across LLMs. For this
reason, evaluating the quality of these questions
is important. Despite the existence of automated
techniques focusing on readability and linguistic
aspects, these methods do not address pedagogi-
cal aspects and question appropriateness for the
given context (Amidei et al., 2018a). Therefore,
expert evaluation remains essential to guarantee
the quality of LLM-generated questions.

In this study, we followed a zero-shot prompting
approach for question generation. We prompted
LLMs to generate questions at different cognitive
levels, as defined in Bloom’s taxonomy, on topics
covering events of the Indian independence strug-
gle from 1857 to 1947. Using five different LLMs,
we generated 510 questions in total. Two subject
matter experts evaluated the generated questions
based on a nine-item rubric to consider both the
linguistic and pedagogical aspects of the questions
(Horbach et al., 2020).

This work investigates the following research
questions. (i) Can modern LLMs generate relevant
and high-quality educational questions of different
cognitive levels and follow the instructions pro-
vided in the prompt?; (ii) Which LLM performs
the best in question generation?

Our experiments and evaluations demonstrate
that the questions generated by LLMs are relevant
and of good quality. These LLMs can be used for
AEQG with minimal effort of the educator. Our
dataset ‘HistoryQ’2 containing 510 questions eval-

2https://github.com/nicyscaria/
AEQG-SocialSciences-BloomsSkills

uated by two experts and annotated with Bloom’s
taxonomy levels will be made available for research
in the development and evaluation of AEQG sys-
tems.

2 Related Work

Traditional automated question generation (AQG)
systems mainly relied on question-answering
datasets before the widespread adoption of LLMs.
The primary reading comprehension datasets used
for question generation tasks included SQUAD
(Rajpurkar et al., 2016), SQuAD 2.0 (Rajpurkar
et al., 2018) and NQ (Kwiatkowski et al., 2019).
One of the crowd-sourced educational datasets
used for question generation tasks is SciQ (Welbl
et al., 2017). LearningQ(Chen et al., 2018) and
EduQG(Hadifar et al., 2023) are the other two pop-
ular datasets available for AEQG. The lack of avail-
ability of these datasets for all subjects and the
human expert labor associated with creating high-
quality datasets restricted the ability to develop
effective AQG systems (Zhang et al., 2021). With
the advent of large transformer-based pre-trained
large language models, NLG tasks in recent years
have improved rapidly (Zhang et al., 2022). Pre-
trained and fine-tuned models such as the Text-to-
Text Transfer Transformer (T5) and GPT3 were
used for question generation (Nguyen et al., 2022).
Leaf (Vachev et al., 2022) is a question generation
developed using a pre-trained T5 model. A pre-
trained T5 model (EduQG) was developed in edu-
cational text to improve the quality of the generated
question (Bulathwela et al., 2023). Most AEQG
systems are generic with a focus on reading com-
prehension or science and mathematics. AEQG re-
search for social sciences is minimal (Bechet et al.,
2022; Antoine et al., 2023). Subjects like science
and mathematics tend to seek precise, quantifiable,

2
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and objective answers. But for subjects like social
sciences, the questions can be more subjective, of-
ten do not have a single correct answer, and can be
interpreted differently by different people.

Many AQG systems, built by fine-tuning LLMs
on specific datasets such as the ones mentioned
above, often generate questions that focus on lower-
order cognitive skills or simply retrieve answers
directly from the context information provided
(Ushio et al., 2022; Bulathwela et al., 2023). Most
of the questions in EduQG(Hadifar et al., 2023)
are within the first three levels of Bloom’s tax-
onomy. These questions do not assess students’
higher-order thinking abilities. Bloom’s taxonomy
guides educators in generating learning objectives
and questions to teach and test different cognitive
skills. A recent work (Sridhar et al., 2023) uses
GPT4 to create course content based on Bloom’s
taxonomy. Although automated metrics exist to
evaluate machine-generated questions, they primar-
ily analyze linguistic aspects. In the case of educa-
tional question generation, pedagogical elements
play a crucial role. Expert evaluation is necessary
to understand the pedagogical aspects of machine-
generated questions (Horbach et al., 2020; Steuer
et al., 2021). Such evaluations are also used in
student-generated questions (Moore et al., 2022).

3 Methodology

3.1 Language models and content

We chose five recent open-source and proprietary
LLMs for the study. LLMs used in this study were
Falcon 40B (falcon-40b-instruct), Llama 2 70B
(Llama-2-7b-chat-hf), Palm 2 (chat-bison-001),
GPT-3.5 (gpt-3.5-turbo-0613), and GPT-4 (gpt-4-
0613). Among these, Falcon 40B is the smallest
LLM with 40 billion parameters and GPT 4 is the
largest (rumored, as the exact number of parame-
ters is unknown). The questions were generated for
the subject “History”, covering events of the Indian
independence struggle from 1857 to 1947. We used
content from two chapters of the tenth grade social
science textbook called Samacheer Kalvi (Tamil
Nadu Textbook and Educational Services Corpo-
ration. State Council of Educational Research and
Training, 2022) used in schools under the Indian
state of Tamil Nadu’s educational board. The text
is in English. This content served as the context for
LLMs based on the questions generated. The av-
erage length of the context was around 450 words,
making it equivalent to around 600 tokens. The

LLMs used had a sequence length of more than
1024 tokens to accommodate this context length
and instructions. We consider 17 such contexts, so
that overall nearly 500 (510, to be exact) questions
are generated.

3.2 Prompt design and question generation
Each prompt had a context and instructions asso-
ciated with it. The prompts were designed using
techniques of pattern reframing, itemizing refram-
ing, and assertions (instead of negations) (Mishra
et al., 2022). Most Indian students, even at the ter-
tiary level of education, are only within level B2
of the Common European Reference Framework
(CEFR) for English (Council of Europe. Council
for Cultural Co-operation. Education Committee.
Modern Languages Division, 2001; Ravindra Babu
and Shiela Mani, 2018). Therefore, additional in-
struction was provided in the prompt to use words
within the CEFR B2 level. This approach would
help students better understand the questions, thus
decreasing the chances of confusion or misunder-
standing arising from difficulties in comprehending
the language.

We gave the same prompt to all LLMs. Each
LLM had to generate six questions, one for each
level in Bloom’s taxonomy corresponding to the
17 contexts. Each model generated 102 questions,
resulting in a total of 510 questions. The sampling
temperature of an LLM typically varies between 0
and 1 in most implementations. A lower tempera-
ture results in a more deterministic output from the
LLM, giving preference to the most probable pre-
dictions, while a higher temperature increases the
randomness in the LLM output, resulting in less
probable predictions (Hinton et al., 2015; Wang
et al., 2020, 2023). A temperature value of 0.9
was used for AEQG with the LLMs to maximize
the variety and diversity of the generated questions.
The example of generation prompts is given in the
Appendix A.1.

3.3 Human evaluation
Two experts evaluated the relevance and quality of
the 510 questions based on a nine-item rubric (Ta-
ble 2), a modified version of the nine-item rubric
in Horbach et al.’s (2020). The two experts had
subject knowledge and experience in teaching the
subject social sciences and worked on question-
generation tasks for multiple organizations. The
experts were presented with the LLM questions
in random order with only context information.
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Table 2: Hierarchical nine-item rubric used to evaluate questions generated by LLMs along with the percentage
agreement and Cohen’s κ for each item

Rubric item Definition
Understandable Could you understand what the question is asking?
(100.00%, κ = 1.00)
ContextRelated Is the question related to the context given?
(100.00%, κ = 1.00)
Grammatical Is the question grammatically well-formed?
(100.00%, κ = 1.00)
Clear Is it clear what the question asks for?
(99.61%, κ = 0.79)
Answerable Can students answer the question?
(99.60%, κ = 0.88)
InformationNeeded What kind of information is needed to answer the question?
(86.80%, κ = 0.73) • Information presented directly and in one place only in the text

• Information presented in different parts of the text
• A combination of information from the text with external knowledge
• General knowledge about the topic, not from the text
• The reader’s feelings /judgements /... about the text
• The reader’s feelings/judgements/... about the text with external knowledge

Central Do you think being able to answer the question is important to work on the
(100.00%, κ = 1.00) topic covered in the context?
WouldYouUseIt If you were a teacher working with that text in class, do you think you would
(90.87%, κ = 0.84) use this question?
Bloom’sLevel What is the Bloom’s skill associated with the question?
(89.41%, κ = 0.95)

They were asked to respond to each question on
the rubric hierarchically from top to bottom. Seven
items in the rubric were a ‘yes’ or ‘no’ response.
The InformationNeeded item comprises six unique
options that indicate what information is needed
to answer the question. The questions in social
sciences can be subjective and sometimes do not
have a single correct answer. They can be open to
interpretation. Due to this, the InformationNeeded
contains options like ‘The reader’s feelings /judge-
ments /... about the text’ in addition to informa-
tion derived from both the text itself and external
sources. The Bloom’sLevel item consists of the
different skills defined in Bloom’s taxonomy cogni-
tive dimension, viz., remember, understand, apply,
analyze, evaluate, and create. The specifics regard-
ing the meaning of each level of Bloom’s Skill are
provided in Table 1. Along with ‘yes’ or ‘no’, the
option ‘maybe’ is also added in the WouldYouUseIt
rubric item. In the evaluation metrics, WouldYouU-
seIt is the most subjective one.

The rubric items are structured hierarchically
(Table 2), which means that if a criterion in bold

font is answered with a ‘no’, the subsequent items
in the rubric would not be considered for evalua-
tion. For instance, if Understandable, Clear, or
Answerable is marked ‘no’, the following items
are not evaluated for that question and are marked
as ‘not applicable’. This simplifies the evaluation
process.

A question is relevant and of high quality if ex-
perts say ‘yes’ for Understandable, ContextRelated,
Grammatical, Clear, Answerable, and Central and
mark ‘yes’ or ‘maybe’ for WouldYouUseIt. Further-
more, we utilized the Bloom’sSkill and CEFRLevel
to understand whether the LLM adheres to the in-
structions provided in the prompt. Evaluators had
to select the Bloom’s level for Bloom’sSkill metric.
We used ‘Text Inspector’3 developed by Cambridge
as part of their English Profile Research (Alex-
opoulou, 2008) to understand the CEFR level of
vocabulary used in the question. The LLM adhered
to the instructions provided if the Bloom’sSkill la-
bel given by the evaluators matches the Bloom’s

3https://www.englishprofile.org/wordlists/
text-inspector
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skill level in the prompt to the LLM and if the
words are within B2 for CEFRLevel.

Since experts’ opinions on LLM-generated ques-
tions are influenced by their writing style prefer-
ences, personal beliefs, knowledge base, and focus
on detail (Amidei et al., 2018b), two inter-rater reli-
ability measures, namely, percentage agreement
and Cohen’s Kappa κ (Cohen, 1960; McHugh,
2012) were used. The former is the proportion of
times experts agreed on a specific rating and the lat-
ter is a robust measure that accounts for the chance
agreement and provides a more accurate estimate
of the true agreement between experts. Cohen’s
κ treats all disagreements as equal, but the dis-
agreements cannot be considered the same for the
ordinal metrics, WillYouUseIt and Bloom’sLevel. In
this case, we used the quadratic weighted Cohen’s
κ (Cohen, 1968) instead of the simple Cohen’s κ
to penalize considerable disagreements more than
minor disagreements.

4 Results and analysis

The percentage agreements and Cohen’s κ values
obtained between the two human evaluators for the
nine-item rubric are given in Table 2. The percent-
age agreements and Cohen’s κ values are calcu-
lated only for questions not labeled ‘no’ for the
preceding rubric items in the hierarchy (marked in
bold). These values indicate substantial agreement
between experts on most of the metric items. Four
items, Understandable, ContextRelated, Grammat-
ical, and Central had perfect agreement.

4.1 Relevance and quality metrics

Both experts rated 100% of the generated questions
as Understandable, ContextRelated, and Grammat-
ical. Of these, 98.82% of the questions were rated
as Clear and 97.84% as Answerable. Among the
Answerable questions, evaluators chose one option
out of the six for InformationNeeded item. Ac-
cording to the evaluators, the knowledge needed to
answer 19.22% of the questions could be found in
one place in the context, 18.24% from a different
part of the context, and 23.33% questions needed a
combination of information from the context along
with external knowledge. Only 0.2% of the ques-
tions required general knowledge alone to answer,
with no necessary context information. 13.73%
and 10.39% of the questions required the reader’s
judgement about the text and the reader’s judge-
ment about the text along with external knowledge,

respectively, to provide an answer. Experts rated
95.88% of the questions as Central to the topics
covered in the respective contexts. The evaluators
responded either ‘yes’ or ‘maybe’ to WouldYouU-
seIt rubric item for 91.56% of the questions. Thus,
we say that the experts rated 91.56% of generated
questions as relevant and high quality.

Table 3: Performance of all generated questions on
different evaluation metrics

Metric Questions (%)
Relevant & High quality 91.56%
Adherence

• Bloom’sLevel 76.53%
• CEFRLevel 87.64%

It is observed that in the Bloom’sLevel metric,
there is an adherence of 76.53% between the evalu-
ators and the LLM. In the CEFRLevel, the adher-
ence is 87.64% (Table 3). We are releasing our
dataset, ‘HistoryQ’ containing 510 LLM-generated
questions annotated with the nine-item metric by
experts along with CEFRLevel for further study and
analysis by the community. Examples of some rel-
evant and high-quality questions based on Bloom’s
taxonomy that adhered to the instructions in the
prompt are given in the Appendix A.2.

4.2 Performance of different LLMs

Figure 1: Performance of different LLMs on the differ-
ent evaluation metrics.

The performance of the five LLMs in the AEQG
task according to different evaluation criteria is
summarized in Table 4. We observed that pro-
prietary models, Palm 2, GPT 3.5, and GPT 4,
which are believed to have 175 billion plus or even
trillions of parameters, outperformed open-source
models with 40 and 70 billion parameters in all
criteria except the CEFR level adherence metric, as
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Table 4: Performance of different large language models on different evaluation metrics

Metric Falcon 40B Llama 2 70B Palm 2 GPT 3.5 GPT 4
Relevance & High quality 87.25% 88.24% 91.18% 96.08% 95.10%
Adherence

• Bloom’sLevel 60.00% 63.73% 85.10% 84.04% 88.04%
• CEFRLevel 88.23% 96.07% 94.11% 80.39% 79.41%

Table 5: Precision, recall and F1 score of different large language models on Bloom’s skill level compared with
expert opinion

Metric Falcon 40B Llama 2 70B Palm 2 GPT 3.5 GPT 4
Precision 0.60 0.65 0.85 0.84 0.87
Recall 0.60 0.66 0.86 0.86 0.88
F1 score 0.57 0.62 0.85 0.84 0.87

indicated in Figure 1.
Aligning with Bloom’s taxonomy level was one

of the important criteria in this study. The skill
levels given by the LLM for the generated ques-
tions were compared with the ground-truth skill
level labels provided by the human raters. The
corresponding precision, recall, and F1 score for
this task are shown in Table 5. GPT 4 outperforms
other models, while Palm 2 and GPT 3.5 are in the
second and third positions.

5 Conclusion

We found that 91.56% of the questions generated
by different LLMs are relevant and of high quality.
This indicates that LLMs can be used for AEQG
with minimal effort of the educator. However, the
performance varies between different LLMs. GPT
3.5 and GPT 4 generated the highest proportion of
relevant and high-quality questions. In the metric
of adherence to Bloom’s level, GPT 4 outperformed
the other models, followed by Palm 2. In contrast,
the open source LLMs, Falcon 40B and Llama 2
70B, performed poorly on all metrics, except adher-
ence to CEFR levels. This could be due to the large
size of these proprietary models, which results in
their ability to capture and represent complex pat-
terns in the text data. Another interesting observa-
tion in the study was the inability of most models
to generate high-quality questions at the ‘Apply’
and ‘Create’ levels of Bloom’s taxonomy. GPT
3.5 and GPT 4 showed comparable performance in
all criteria. Surprisingly, GPT 4 and GPT 3.5 had
poor alignment with the CEFR level requested in
the prompt. These models produced complex texts
compared to other models.

Our research suggests that educators can lever-

age Palm 2, GPT 3.5, and GPT 4 to create rele-
vant, high-quality questions of different cognitive
levels defined by Bloom’s taxonomy for scaling
social science research in India. The LLMs must
be prompted with the context in English obtained
from the relevant curriculum. This approach con-
siderably reduces the workload on teachers, espe-
cially in an under-resourced school setting where
the teacher-pupil ratio is low. In addition, students
can create practice tests for themselves and identify
learning gaps. Expert-evaluated ‘HistoryQ’ could
serve as a training and validation dataset for re-
search involving the development and evaluation
of AEQG models with a focus on higher-order cog-
nitive skills.

6 Limitations

Our study required considerable time and effort
from experts. Despite rigorous efforts to ensure ob-
jectivity in the evaluation through a detailed rubric
and a randomized presentation of LLM-generated
questions, it is important to recognize that expert
evaluations can still exhibit inherent subjectivity, in-
fluenced by individual perspectives and biases. An
automated system to assess the quality of machine-
generated questions for their pedagogical and lin-
guistic aspects can reduce this time and effort. This
paves the way for exploring and creating high-
quality automated evaluation systems. Further-
more, our study used the same prompt in different
contexts for all LLMs. We did not investigate the
performance of models on diverse prompts with ad-
ditional information or few-shot prompting. This
is another potential future direction for exploring
the performance of LLMs.
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A Appendix

A.1 Example prompt with a specific context
The example prompt for a specific context given
to the LLMs to generate the questions is given be-
low. All the instructions and other details remained
the same for other prompts except for the context
information.

Please read through the following context and in-
structions to create high quality questions based
on the context and as per the instructions.

Context:

In 1857, British rule witnessed the biggest chal-
lenge to its existence. Initially, it began as a mutiny
of Bengal presidency sepoys but later expanded
to the other parts of India involving a large num-
ber of civilians, especially peasants. The events of
1857–58 are significant for the following reasons:
1. This was the first major revolt of armed forces
accompanied by civilian rebellion. 2. The revolt
witnessed unprecedented violence, perpetrated by
both sides. 3. The revolt ended the role of the East
India Company and the governance of the Indian
subcontinent was taken over by the British Crown.

(a) Causes

1. Annexation Policy of British India
In the 1840s and 1850s, more territo-
ries were annexed through two major
policies: The Doctrine of Paramountcy.
British claimed themselves as paramount,
exercising supreme authority. New terri-
tories were annexed on the grounds that
the native rulers were inept, and the Doc-
trine of Lapse. If a native ruler did not
have male heir to the throne, the territory
was to ’lapse’ into British India upon the
death of the ruler. Satara, Sambalpur,
parts of the Punjab, Jhansi and Nagpur
were annexed by the British through the
Doctrine of Lapse.

2. Insensitivity to Indian Cultural Senti-
ments
In 1806 the sepoys at Vellore mutinied
against the new dress code, which pro-
hibited Indians from wearing religious
marks on their foreheads and having
whiskers on their chin, while proposing
to replace their turbans with a round hat.
It was feared that the dress code was part

of their effort to convert soldiers to Chris-
tianity. Similarly, in 1824, the sepoys at
Barrackpur near Calcutta refused to go
to Burma by sea, since crossing the sea
meant the loss of their caste. The se-
poys were also upset with discrimination
in salary and promotion. Indian sepoys
were paid much less than their European
counterparts. They felt humiliated and
racially abused by their seniors.

(b) The Revolt of 1857

The precursor to the revolt was the circula-
tion of rumors about the cartridges of the new
Enfield rifle. There was strong suspicion that
the new cartridges had been greased with cow
and pig fat. The cartridge had to be bitten
off before loading (pork is forbidden to the
Muslims and the cow is sacred to a large sec-
tion of Hindus). On 29 March a sepoy named
Mangal Pandey assaulted his European offi-
cer. His fellow soldiers refused to arrest him
when ordered to do so. Mangal Pandey along
with others were court-martialled and hanged.
This only fuelled the anger and in the follow-
ing days there were increasing incidents of
disobedience. Burning and arson were re-
ported from the army cantonments in Ambala,
Lucknow, and Meerut.

Instructions:

1. Create a question for each cognitive level in
Bloom’s taxonomy: remember, understand,
apply, analyze, evaluate, and create from the
context.

2. Ensure the questions use B2 level words or
below of the Common European Framework
of Reference for the English Language.

3. Make sure the questions relate to the students
in India.

4. Make sure to connect events within the context
while creating questions.

A.2 Examples of LLM generated questions
Some questions generated by LLMs that are rele-
vant, high-quality, and adhered to instructions are
given along with Bloom’s skill associated with the
question.

• Remember: Name the three leaders referred
to as Lal-Bal-Pal during the Swadeshi period.
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• Understand: How did the Swadeshi move-
ment help to promote Indian industries?

• Apply: How would you promote the concept
of Swadeshi today, especially given the glob-
alized world we live in?

• Analyze: How did the development of
Swadeshi industries relate to the wider goals
of the Swadeshi Movement?

• Evaluate: Considering the importance of self-
sufficiency, do you think the boycott of for-
eign goods was an effective method in pro-
moting Swadeshi industries? Provide reasons
for your answer.

• Create: Compose a short speech or para-
graph encouraging fellow students to support
Swadeshi industries, drawing inspiration from
the historical events mentioned.
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Abstract

Tagged corruption models provide precise
control over the introduction of grammati-
cal errors into clean text. This capability
has made them a powerful tool for gener-
ating pre-training data for grammatical er-
ror correction (GEC) in English. In this
work, we demonstrate their application to four
languages with substantially fewer GEC re-
sources than English: German, Romanian,
Russian, and Spanish. We release a new
tagged-corruption dataset consisting of 2.5M
examples per language that was generated by
a fine-tuned PaLM 2 foundation model. Pre-
training on tagged corruptions yields consis-
tent gains across all four languages, especially
for small model sizes and languages with lim-
ited human-labelled data.

1 Introduction

Grammatical error correction (GEC) is the task
of correcting writing errors in text (see Bryant
et al. (2023) for an overview). Neural sequence-
to-sequence models, commonly used for GEC, are
hard to train due to limited human-labelled data.
A common strategy to mitigate data sparsity is to
generate synthetic training data, but most exist-
ing methods do not generate sufficiently diverse
errors. Modern GEC systems are expected to han-
dle a broad range of errors involving grammar,
spelling, word choice, punctuation and orthography.
However, many existing data generation methods
that employ rules or character- or word- level nois-
ing strategies, cover only a small subset of error
types (Grundkiewicz et al., 2019; Grundkiewicz
and Junczys-Dowmunt, 2019; Náplava and Straka,
2019; Lichtarge et al., 2019; Flachs et al., 2021).
Stahlberg and Kumar (2021) improved the diversity
of model-based data generation (Xie et al., 2018;
Kiyono et al., 2019) by introducing tagged corrup-
tion models. Tagged corruption models are trained
to generate an ungrammatical version of a clean

sentence given a specific error type tag. For exam-
ple, the incorrect plural “sheeps” of “sheep” (i.e. a
noun inflection error – NOUN:INFL) would be rep-
resented in a sentence as follows (Stahlberg and
Kumar, 2021):

“NOUN:INFL There were a lot of sheep.”
→ “There were a lot of sheeps.”

In this work, we adapt the tagged corruption ap-
proach of Stahlberg and Kumar (2021) to languages
with fewer GEC resources than English such as Ger-
man, Spanish, Romanian, and Russian. We faced
two major challenges: First, training tagged cor-
ruption models is more challenging due to training
data scarcity. We mitigated this issue by leverag-
ing the large language model PaLM 2 (Anil et al.,
2023). Second, automatic error type annotation
tools such as ERRANT (Felice et al., 2016; Bryant
et al., 2017) for English are not available for most
other languages. Therefore, we developed a multi-
lingual annotation tool based on classification rules
that apply to multiple languages and writing sys-
tems. Using our framework, we generated a new
synthetic pre-training dataset with 2.5M examples
per language. We demonstrate consistent gains
from pre-training mT5 (Xue et al., 2021) models
on our new dataset and then fine-tuning them on
gold data. We achieve the largest improvements
(up to 30% relative) for smaller models and lan-
guages with limited gold data. We have released
the dataset and the error annotation tool to the sci-
entific community.

2 Multilingual rule-based error type
annotation

ERRANT (Felice et al., 2016; Bryant et al., 2017) is
a rule-based system for English that classifies writ-
ing errors into 25 different error categories. Some
ERRANT rules are specific to English and do not
apply to other languages. German (Boyd, 2018)
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Figure 1: Development set tag distributions for German, Spanish, Romanian, and Russian.

Tag Description
adj, adp, adv,
cconj, det, part,
pron, propn, sconj

Error classified by SpaCy part-
of-speech (POS) tag.

morph Morphology error.
noun Noun or noun phrase error.
n:num Noun number error.
num Number error.
orth Orthography error.
other Unclassified error (no rule

matched).
punct Punctuation error.
spell Spelling error according to

GNU Aspell 0.60.
verb Verb or verb phrase error.
v:tense Verb tense error.
wo Word order error.

Table 1: The error type tag set of our multilingual
annotation tool. We use the same tag set for all lan-
guages. Rules are defined based on Aspell suggestions
and SpaCy POS tags.

and Romanian (Cotet et al., 2020) versions of ER-
RANT have been developed, but they continue to
be language-specific. Since our goal is to develop
a recipe for low-resource GEC that is applicable to
a large set of languages, we developed an annota-
tion toolkit that implements a small set of general
rules relying on multi-lingual NLP toolkits such
as SpaCy’s1 part-of-speech (POS) tagger or GNU
Aspell2 for spelling correction. The error tag set
of our tool is shown in Table 1.3 We intentionally
did not implement rules that rely on any language-
specific knowledge beyond SpaCy’s POS tags or
Aspell suggestions. Therefore, compared to ER-
RANT, our tag set is more coarse-grained and less
expressive. Despite the drawback, the tool’s mul-
tilingual nature makes it useful for synthetic data
generation across a range of languages.

1https://spacy.io/
2http://aspell.net/
3An open-source version of our tool is released on the

dataset Github page. Please see the source code for more
details about the implemented rules.

3 Synthetic data generation using a
tagged corruption model

Tagged corruption models are neural models that
corrupt a clean sentence according to an error type
tag. We adapt Stahlberg and Kumar’s (2021) recipe
for English data generation as follows: for each
language:

1. Annotate the gold development set with error
type tags using our tool from Sec. 2.

2. Compute the unigram distribution of error tags
on the gold development set.

3. Sample sentences from the large clean text
corpus mC44 (Xue et al., 2021).

4. Randomly assign an error tag to each sentence
according to the tag distribution.

5. Use the tagged corruption model with temper-
ature sampling to generate corrupted versions
of the sentences. Pair them with the original
sentences to build a parallel GEC dataset.

6. Filter the dataset with language identification
and simple heuristics based on length offsets
and edit distances.

Fig. 1 shows the tag distributions on the devel-
opment set for German, Spanish, Romanian, and
Russian. Our corruption model is a PaLM 2 (Anil
et al., 2023) model5 that was jointly fine-tuned on
the gold training sets of all four languages. The
corruption model uses the following format:

“Corrupt 〈lang〉 〈tag〉: 〈clean_sentence〉” →
“〈corrupted_sentence〉”

Fig. 2 illustrates how a training example for the
corruption model is derived from the gold data. If a

4https://www.tensorflow.org/datasets/catalog/
c4#c4multilingual

5“Bison” model size available via the Google Cloud API.
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Figure 2: Example training instance for the tagged cor-
ruption model with a German verb error.

de es ro ru
Number of examples 2.5M
Avg. sentence length (words) 18.9 22.0 20.8 19.1
Avg. edit distance (words) 2.8 1.9 2.3 1.5
Avg. sentence length (chars) 131.8 134.1 130.6 137.1
Avg. edit distance (chars) 5.6 5.2 3.6 4.1

Table 2: Average sentence lengths and source/target
edit distances in the PRE corpus.

Language Corpus Train Dev Test
German (de) Falko-Merlin 19.2K 2.5K 2.3K
Spanish (es) COWS-L2H 10.1K 1.4K 1.1K
Romanian (ro) RONACC 7.1K 1.5K 1.5K
Russian (ru) RULEC 5.0K 2.5K 5.0K

Table 3: Number of training examples in the GOLD
datasets.

sentence has multiple errors, the training example
is repeated with each error tag.

Using the recipe (steps 1-6) we generated a large
synthetic dataset6 consisting of 2.5M examples per
language. Table 2 lists some basic statistics of our
new dataset. We will refer to this dataset as PRE.

4 Experimental setting

4.1 Gold datasets

We use the following GOLD GEC datasets for
training the corruption model and for fine-tuning
our GEC models: the Falko-Merlin corpus (Boyd,
2018) for German (de), the COWS-L2H cor-
pus (Davidson et al., 2020) for Spanish (es), the
RONACC corpus (Cotet et al., 2020) for Romanian
(ro), and the RULEC-GEC corpus (Rozovskaya
and Roth, 2019) for Russian (ru). Table 3 lists the
dataset sizes.

6https://github.com/google-research-datasets/
C4_200M-synthetic-dataset-for-grammatical-error-
correction

4.2 Training setups

We train monolingual GEC models by fine-tuning
the publicly available mT5 (Xue et al., 2021) check-
points using the T5X (Roberts et al., 2023) frame-
work on 4x4 TPUs (v3). We chose mT5 because
it is available for a wide range of languages and
model sizes. We use the default hyper-parameters,7

but tune the learning rate (0.0001-0.001) and the
number of training steps (1K-20K) on the respec-
tive development set. The model sizes range from
mT5-base (580M parameters) to mT5-xxl (13B
parameters). We compare four different training
pipelines:

• GOLD: Fine-tune on the gold dataset (Sec.
4.1).

• PRE: Fine-tune on the synthetic tagged cor-
ruption dataset (Sec. 3).

• PRE→GOLD: Fine-tune first on the synthetic
dataset, and then on the gold dataset.

• PRE+CLANG8→GOLD (only German and
Russian): Fine-tune first on a 1:1 mix of
the synthetic dataset and the CLANG8 cor-
pus (Rothe et al., 2021), and then on the gold
dataset. The CLANG8 corpus is a re-annotated
version of the the language learner corpus
Lang-88 (Mizumoto et al., 2011) available in
German (114K examples) and Russian (45K
examples).

5 Results

Like prior work we compute F0.5-scores on the
German, Russian, and Spanish test sets with the
M2 scorer (Dahlmeier and Ng, 2012), and on the
Romanian test set with Cotet et al.’s (2020) version
of ERRANT.9

Table 4 contains the results for the three train-
ing setups for all four languages and model sizes.
F0.5-scores after training on PRE do not always sur-
pass the GOLD baseline, which indicates that our
synthetic dataset is not a replacement for human-
labelled data. However, subsequent fine-tuning
on GOLD after PRE consistently outperforms fine-
tuning on GOLD alone, which shows the benefit of

7https://github.com/google-research/t5x/tree/
main/t5x/examples/t5/mt5

8https://lang-8.com/
9https://github.com/teodor-cotet/errant/tree/

0cb0f61af39ffb8c560ed6f92065f3b9e43e10dd
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Setup mT5-base mT5-large mT5-xl mT5-xxl
de es ro ru de es ro ru de es ro ru de es ro ru

GOLD 65.6 45.9 59.4 17.3 70.6 50.5 63.2 22.8 73.5 54.8 72.4 35.0 74.9 58.1 74.4 39.5
PRE 60.8 38.6 60.7 15.9 63.9 43.6 64.0 28.4 67.3 46.6 66.1 34.7 68.4 46.4 66.6 37.8
PRE→GOLD 70.5 50.1 68.1 19.8 71.8 54.2 71.9 29.6 74.6 56.5 72.8 38.2 75.5 58.9 75.5 40.0

Table 4: Test set F0.5-scores for all four languages and model sizes. The systems highlighted in green outperform
the GOLD baseline.

System German (de) Spanish (es) Romanian (ro) Russian (ru)
Grundkiewicz and Junczys-Dowmunt (2019) 70.24 34.46
Náplava and Straka (2019) 73.71 50.20
Katsumata and Komachi (2020) 68.86 44.36
Cotet et al. (2020) 53.80
Niculescu et al. (2021) 69.01
Flachs et al. (2021) 69.24 57.32 44.72
Rothe et al. (2021) 75.96 51.62
Náplava et al. (2022) 73.71 50.20
Kementchedjhieva and Søgaard (2023) 73.60 55.20 68.60 49.20
This work (mT5-xxl)
PRE→GOLD 75.46 58.89 75.47 39.96
PRE+CLANG8→GOLD 76.08 44.31

Table 5: Comparison of the test set F0.5-scores of our best systems to other results from the literature.
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Figure 3: Relative improvements of the PRE→GOLD
setup over GOLD-only.

adapting the model to the GEC domain before the
final fine-tuning stage.

Fig. 3 shows a log-log plot of the relative im-
provements between the GOLD baseline and the
PRE→GOLD setup across various model sizes. The
improvements range between 0.5% and 30% de-
pending on the language and model size. Our PRE

dataset is particularly useful for small training sets
(ru) and small models (left side of the plot). Gram-
matical error correction models deployed in prac-
tice are often small because a low latency is less
disruptive for writers.

To investigate if pre-training can be further im-
proved by adding external data, we performed ex-
periments using the CLANG8 corpus (Rothe et al.,
2021). Table 6 shows that pre-training on a 1:1 mix

Setup mT5-base mT5-xxl
de ru de ru

Rothe et al. (2021) 69.21 26.24 75.96 51.62
This work
CLANG8 66.39 24.58 74.83 40.37
CLANG8→GOLD 70.59 26.24 75.65 43.62
PRE+CLANG8 69.87 25.74 74.47 44.48
PRE+CLANG8→GOLD 72.02 26.39 76.08 44.31

Table 6: Combining our PRE dataset with the CLANG8
corpus from Rothe et al. (2021). We report F0.5-scores
on the German and Russian test sets.

of PRE and CLANG8 outperforms pre-training on
only one of them.

Table 5 lists our best setups in relation to prior
work. We advance the state-of-the-art on Span-
ish and Romanian and match the best published
results on German despite using a relatively sim-
ple training setup (standard 2-stage fine-tuning of
off-the-shelf T5 models with normal cross-entropy
loss).

6 Conclusion

We have introduced a new large synthetic dataset
for GEC that was generated by an LLM-based
tagged corruption model in German, Spanish, Ro-
manian, and Russian. Our dataset consists of 2.5M
examples per language. Pre-training GEC models
on this dataset yields consistent gains on all four
languages, especially for small gold training sets
and small model sizes.
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7 Limitations

Even though we took into account the distribution
of the error tags on the development sets for syn-
thetic data generation, it is possible that the syn-
thetic dataset does not capture all its error character-
istics. First, our tag set is not sufficient to represent
more complex inter-dependencies between error
types. Second, our automated annotation tool op-
erates on the lexical level, so clausal, sentential,
or discourse level errors are not represented in the
error tag set. Third, the tagged corruption model
is not guaranteed to always synthesize the correct
error type. Fourth, error type tags are assigned to
sentences randomly, but it is sometimes not even
possible to enforce an error type in a particular
sentence (e.g. corrupting a sentence without a con-
junction with cconj). Despite these limitations, we
confirm Stahlberg and Kumar’s (2021) findings by
demonstrating the effectiveness of tagged corrup-
tion models to generate diverse synthetic training
data for GEC across a range of languages.
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Abstract

In this paper, we carry out experimental re-
search on Grammatical Error Correction, delv-
ing into the nuances of single-model systems,
comparing the efficiency of ensembling and
ranking methods, and exploring the application
of large language models to GEC as single-
model systems, as parts of ensembles, and
as ranking methods. We set new state-of-the-
art performance1 with F0.5 scores of 72.8 on
CoNLL-2014-test and 81.4 on BEA-test, re-
spectively. To support further advancements
in GEC and ensure the reproducibility of our
research, we make our code, trained models,
and systems’ outputs publicly available.2

1 Introduction

Grammatical Error Correction (GEC) is the task of
correcting human text for spelling and grammatical
errors. There is a wide variety of GEC approaches
and model architectures. In recent years, most sys-
tems have used Transformer-based architectures
(Bryant et al., 2023). A current trend involves writ-
ing prompts for Large Language Models (LLMs)
such as GPT-4 (OpenAI, 2023) that would gener-
ate grammatical corrections (Loem et al., 2023),
(Coyne et al., 2023), (Wu et al., 2023), (Fang et al.,
2023).

The varied approaches within GEC each pos-
sess unique strengths and limitations. Combining
several single-model GEC systems through ensem-
bling or ranking may smooth out their weaknesses
and lead to better overall performance (Susanto
et al., 2014). Even quite simple ensembling meth-
ods, such as majority voting (Tarnavskyi et al.,
2022) or logistic regression (Qorib et al., 2022),

∗ Corresponding author:
kostiantyn.omelianchuk@grammarly.com.

† The work was carried out while working at Grammarly.
1https://nlpprogress.com/english/grammatical_

error_correction.html (Accessed 10 March 2024).
2https://github.com/grammarly/pillars-of-gec

may work surprisingly well. Combining single-
model systems is also often straightforward from
an implementation perspective. Because only the
outputs of the models are required for many ensem-
bling algorithms, there is no need to retrain models
or perform inference passes iteratively. A further
review of related work is presented in the end and
near the descriptions of considered methods.

Our contributions are the following:
1. Comprehensive comparison of GEC meth-

ods. We reproduce, evaluate, and compare the most
promising existing methods in GEC, both single-
model systems and ensembles. We show that usage
of ensembling methods is crucial to obtain state-of-
the-art performance in GEC.

2. Establishing new state-of-the-art baselines.
We show that simple ensembling by majority vote
outperforms more complex approaches and signifi-
cantly boosts performance. We push the boundaries
of GEC quality and achieve new state-of-the-art re-
sults on the two most common GEC evaluation
datasets: F0.5 = 72.8 on CoNLL-2014-test and
F0.5 = 81.4 on BEA-test.

3. Exploring the application of LLMs for
GEC. We thoroughly investigate different scenar-
ios for leveraging large language models (LLMs)
for GEC: 1) as single-model systems in a zero-shot
setting, 2) as fine-tuned single-model systems, 3)
as single-model systems within ensembles, and 4)
as a combining algorithm for ensembles. To the
best of our knowledge, we are the first to explore
using GPT-4 to rank GEC edits, which contributes
to a notable improvement in the Recall of ensemble
systems.

4. Commitment to open science. In a move
toward fostering transparency and encouraging fur-
ther research, we open-source all our models, their
outputs on evaluation datasets, and the accompany-
ing code.2 This ensures the reproducibility of our
work and provides a foundation for future advance-
ments in the field.
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2 Data for Training and Evaluation

We use the following GEC datasets for training
models (Table 1):

1. Lang-8, an annotated dataset from the Lang-8
Corpus of Learner English (Tajiri et al., 2012);

2. NUCLE, the National University of Singa-
pore Corpus of Learner English (Dahlmeier et al.,
2013);

3. FCE, the First Certificate in English dataset
(Yannakoudakis et al., 2011);

4. W&I, the Write & Improve Corpus (Bryant
et al., 2019) (also known as BEA-Train). We also
use a larger synthetic version of Lang-8 with target
sentences produced by the T5 model (Raffel et al.,
2020);

5. cLang-8 (Rothe et al., 2021), and synthetic
data based on two monolingual datasets;

6. Troy-1BW (Tarnavskyi et al., 2022), pro-
duced from the One Billion Word Benchmark
(Chelba et al., 2014);

7. Troy-Blogs (Tarnavskyi et al., 2022), pro-
duced from the Blog Authorship Corpus (Schler
et al., 2006).

# Dataset Part # sent. # tokens % edits
1 Lang-8 Train 1.04M 11.86M 42
2 NUCLE Train 57.0k 1.16M 62

Test 1.3k 30k 90
3 FCE Train 28.0k 455k 62

Train 34.3k 628.7k 67

4 W&I +
LOCNESS Dev 4.4k 85k 64

Test 4.5k 62.5k N/A
5 cLang-8 Train 2.37M 28.0M 58
6 Troy-1BW Train 1.2M 30.88M 100
7 Troy-Blogs Train 1.2M 21.49M 100

Table 1: Statistics of GEC datasets used in this work for
training and evaluation.

For evaluation, we use current standard evalua-
tion sets for the GEC domain: the test set from
the CoNLL-2014 GEC Shared Task (Ng et al.,
2014), and the dev and test components of the W&I
+ LOCNESS Corpus from the BEA-2019 GEC
Shared Task (BEA-dev and BEA-test) (Bryant
et al., 2019). For BEA-test, submissions were made
through the current competition website.3 For
each dataset, we report Precision, Recall, and F0.5

scores. To ensure an apples-to-apples comparison
with previously reported GEC results, we evaluate
CONLL-2014-test with M2scorer (Dahlmeier and

3https://codalab.lisn.upsaclay.fr/
competitions/4057

Ng, 2012), and BEA-dev with ERRANT (Bryant
et al., 2017).

3 Single-Model Systems

3.1 Large Language Models
We investigate the performance of open-source
models from the LLaMa-2 family (Touvron et al.,
2023), as well as two proprietary models: GPT-
3.5 (Chat-GPT) and GPT-4 (OpenAI, 2023). For
LLaMa, we work with four models: LLaMa-2-
7B, LLaMa-2-13B, Chat-LLaMa-2-7B, and Chat-
LLaMa-2-7B. We use two LLaMa-2 model sizes:
7B and 13B. If the model is pre-trained for instruc-
tion following (Ouyang et al., 2022), it is denoted
as "Chat-" in the model’s name.

Chat-GPT and GPT-4 are accessed through the
Microsoft Azure API. We use versions gpt-3.5-
turbo-0613 and gpt-4-0613, respectively.

We explore two scenarios for performing GEC
using LLMs: zero-shot prompting (denoted as
"ZS") and fine-tuning (denoted as "FT").

3.1.1 Zero-Shot Prompting
In recent studies dedicated to prompting LLMs
for GEC, it was shown that LLM models tend to
produce more fluent rewrites (Coyne et al., 2023).
At the same time, performance measured by au-
tomated metrics such as MaxMatch (Dahlmeier
and Ng, 2012) or ERRANT has been identified as
inferior. We frequently observed that these auto-
mated metrics do not always correlate well with
human scores. This makes LLMs used in zero-shot
prompting mode potentially attractive, especially
in conjunction with other systems in an ensemble.

For the Chat-LLaMa-2 models, we use a two-
tiered prompting approach that involves setting the
system prompt "You are a writing assistant. Please
ensure that your responses consist only of corrected
texts." to provide the context to direct the model
focus toward GEC task. Then, we push the follow-
ing instruction prompt to direct the model’s focus
toward the GEC task:
Fix grammatical errors for the following text.

Temperature is set to 1. For Chat-GPT and GPT-
4 models, we employ a function-calling API with
the "required" parameter. This guides the LLM to
more accurately identify and correct any linguistic
errors within the text or replicate the input text if
it was already error-free, thus ensuring consistency
in the models’ responses. The instruction prompt
for GPT models is:
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CoNLL-2014-test BEA-dev BEA-test
# System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

1 Chat-LLaMa-2-7B-ZS 42.9 47.3 43.7 19.1 34.1 21.0 - - -
2 Chat-LLaMa-2-13B-ZS 49.1 56.1 50.4 30.6 45.0 32.7 - - -
3 GPT-3.5-ZS 56.2 57.7 56.5 37.4 50.6 39.4 - - -
4 GPT-3.5-CoT-ZS 56.0 58.7 56.5 36.4 50.8 38.5 - - -
5 GPT-4-ZS 59.0 55.4 58.2 42.5 45.0 43.0 - - -
6 Chat-LLaMa-2-7B-FT 75.5 46.8 67.2 58.3 46.0 55.3 72.3 67.4 71.2
7 Chat-LLaMa-2-13B-FT 77.3 45.6 67.9 59.8 46.1 56.4 74.6 67.8 73.1
8 T5-11B 70.9 56.5 67.5 60.9 51.1 58.6 73.2 71.2 72.8
9 UL2-20B 73.8 50.4 67.5 60.5 48.6 57.7 75.2 70.0 74.1

10 GECToR-2024 75.0 44.7 66.0 64.6 37.2 56.3 77.7 59.0 73.1
11 CTC-Copy 72.6 47.0 65.5 58.3 38.0 52.7 71.7 59.9 69.0
12 EditScorer 78.5 39.4 65.5 67.3 36.1 57.4 81.0 56.1 74.4

Table 2: All single-model systems evaluated on CoNLL-2014-test, BEA-dev, and BEA-test datasets.

Fix all mistakes in the text (spelling, punctuation,
grammar, etc). If there are no errors, respond with
the original text.

Additionally, we employ a form of the chain-of-
thought (CoT) prompting (Wei et al., 2022), which
involves requesting reasoning from the model be-
fore it makes corrections by means of function
calling.

3.1.2 Fine-tuning the Large Language Models
Fine-tuning is a mainstream method for knowledge
transfer. Since we have several available annotated
GEC datasets, they may be used to fine-tune LLMs
(Zhang et al., 2023b; Kaneko and Okazaki, 2023).

We use three datasets for fine-tuning — NUCLE,
W&I, and cLang-8 (Table 1) — as they are com-
monly used in recent GEC research (Zhang et al.,
2023b; Kaneko and Okazaki, 2023; Loem et al.,
2023). We varied the datasets and their shares to
find the best combination.

We use the Transformers library4 to conduct
1000–1200 updates with 250 warm-up steps, a
batch size of 8, and a learning rate of 1e− 5. We
fine-tune only LLaMA-2 models on next token pre-
diction task, both autocomplete and instruction-
following pre-trained versions (denoted as "Chat-
"). For the Chat-LLaMA-2 models, we use the
following prompt:
Rewrite the following text to make it grammatically
correct.
[Input text]
Result:
[Output text]

Additionally, we perform an ablation study on
the models’ size and the usefulness of the instruc-
tions (Appendix D, Table 11). Not surprisingly,
our results indicate that instructions work better for
"Chat" versions of models.

4https://github.com/huggingface/transformers

3.2 Sequence-to-Sequence models

In a sequence-to-sequence approach, GEC is con-
sidered a machine translation task, where errorful
sentences correspond to the source language, and
error-free sentences correspond to the target lan-
guage (Grundkiewicz et al., 2019; Kiyono et al.,
2019). In this work, we investigate two power-
ful Transformer-based Seq2Seq models: the open-
sourced "T5-11B" (Rothe et al., 2021), and "UL2-
20B", the instruction-tuned version of FLAN (Tay
et al., 2022).

T5-11B is fine-tuned on W&I + LOCNESS train
data for 500 updates with batch size 256 and a
learning rate of 1e− 4. UL2-20B is fine-tuned on
W&I + LOCNESS train data for 300 updates with
batch size 16 and a learning rate of 5e− 5.

3.3 Edit-based Systems

Edit-based GEC systems produce explicit text
changes, restoring error-free language from the
errorful source text. Usually, such systems are
based on encoder-only architectures and are non-
autoregressive; therefore, they are less resource-
consuming and more attractive for productization.
In this work, we consider three publicly available
open-source edit-based systems for GEC: GECToR,
CTC-Copy, and EditScorer.

GECToR5 (Omelianchuk et al., 2020), (Tar-
navskyi et al., 2022) is a family of non-
autoregressive sequence tagging GEC systems.
The concept revolves around training Transformer-
based, encoder-only models to generate corrective
edits.

CTC-Copy6 (Zhang et al., 2023a) is another non-
autoregressive text editing approach. It uses Con-

5https://github.com/MaksTarnavskyi/
gector-large

6https://github.com/yzhangcs/ctc-copy
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CoNLL-2014-test BEA-test
System name Precision Recall F0.5 Precision Recall F0.5

GECToR-RoBERTa(L) (Tarnavskyi et al., 2022) 70.1 42.7 62.2 80.6 52.3 72.7
GECToR-FT-Stage-I 75.2 44.1 65.9 78.1 57.7 72.9

GECToR-FT-Stage-II (GECToR-2024) 75.0 44.7 66.0 77.7 59.0 73.1

Table 3: GECToR fine-tuning experiments. We compare the performance of our fine-tuned model after stage I and
stage II to the initial off-the-shelf model as a baseline.

nectionist Temporal Classification (CTC) (Graves
et al., 2006) initially developed for automatic
speech recognition and introduces a novel text edit-
ing method by modeling the editing process with
latent CTC alignments. This allows more flexible
editing operations to be generated.

EditScorer7 (Sorokin, 2022) splits GEC into two
steps: generating and scoring edits. We consider it
a single-model system approach because all edits
are generated by a single-model system.

We also attempt to reproduce the Seq2Edit ap-
proach (Stahlberg and Kumar, 2020), (Kaneko and
Okazaki, 2023), but fail to achieve meaningful re-
sults. Please find more details in Appendix B.

For GECToR, we use the top-performing model,
GECToR-RoBERTa(L) (Tarnavskyi et al., 2022).
Since this model was not trained on cLang-8 data,
we additionally fine-tune it on a mix of cLang-
8, BEA, Troy-1BW, and Troy-Blogs data. We
leverage a multi-stage fine-tuning approach from
(Omelianchuk et al., 2020). In stage I, a mix of
cLang-8, W&I + LOCNESS train (BEA-train),
Troy-1BW, and Troy-Blogs datasets is used for
fine-tuning; in stage II, the high-quality W&I +
LOCNESS train dataset is used to finish the train-
ing. During stage I, we fine-tune the model for 5
epochs, early-stopping after 3 epochs, with each
epoch equal to 10000 updates and a batch size of
256. During stage II, we further fine-tune the model
for 4 epochs, with each epoch equal to 130 updates.
The full list of hyperparameters for fine-tuning can
be found in Appendix D, Table 7. We refer to this
new, improved GECToR model as GECToR-2024.

For CTC-Copy, we use the official code6 with
the RoBERTa encoder to train the English GEC
model.

For EditScorer, we use the open-sourced code7

for GECToR-XLNet(L) option from (Tarnavskyi
et al., 2022) to sample possible edits and stagewise
decoding with the RoBERTa-Large encoder to re-
score them.

7https://github.com/AlexeySorokin/EditScorer

3.4 Single-Model Systems Results

The performance of single-model GEC systems is
presented in Table 2.

We see that all zero-shot approaches considered
have F0.5 scores lower than 60 on the CoNLL-
2014-test dataset, which we assume to be a lower
bound on satisfactory GEC quality. They all suffer
from an overcorrecting issue (Fang et al., 2023),
(Wu et al., 2023) that leads to poor Precision and
inferior F0.5 scores. Notably, GPT models show
consistently better results compared to LLaMa. Im-
plementing the chain-of-thought approach doesn’t
improve the quality.

Among the remaining approaches — LLMs with
fine-tuning, sequence-to-sequence models, and
edit-based systems — we do not see a clear win-
ner. Not surprisingly, we observe that larger mod-
els (T5-11B, UL2-20B, Chat-LLaMA-2-7B-FT,
Chat-LLaMA-2-13B-FT) have slightly higher Re-
call compared to smaller models (GECToR-2024,
CTC-Copy, EditScorer). This is expressed in 1–2%
higher F0.5 scores on CoNLLL-2014-test; however,
the values on BEA-dev and BEA-test don’t show
the same behavior.

Additionally, we observe that simply scaling the
model does not help achieve a breakthrough in
benchmark scores. For example, a relatively small
model such as GECToR-2024 (≈ 300M parame-
ters) still performs well enough compared to much
larger models (≈ 7−20B parameters). We hypoth-
esize that the limiting factor for English GEC is
the amount of high-quality data rather than model
size. We have not been able to realize an F0.5 score
of more than 68% / 59% / 75% on CoNLLL-2014-
test / BEA-dev / BEA-test, respectively, with any
single-model system approach, which is consistent
with previously published results.

For GECToR, after two stages of fine-tuning,
we were able to improve the F0.5 score of the
top-performing single-model model by 3.8% on
CoNLL-2014 and by 0.4% on BEA-test, mostly
due to the increase in Recall (Table 3).

Interestingly, we see a trend where larger models
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Figure 1: Combining the single-model systems’ outputs. Left: In ensembling, candidates (system outputs) are
aggregated on an edit level. Right: In ranking, candidates (system outputs) are aggregated on a sentence level. We
consider ranking to be a special case of ensembling.

exhibit diminishing returns with multi-staged train-
ing approaches. Our exploration of various training
data setups reveals that a simple and straightfor-
ward approach, focusing exclusively on the W&I
+ LOCNESS train dataset, performs on par with
more complex configurations across both evalua-
tion datasets.

4 Ensembling and Ranking of
Single-Model Systems

Combining the outputs of single-model GEC sys-
tems can improve their quality. In this paper, we
explore two combining methods: ensembling and
ranking (Figure 1).

Ensembling combines outputs of single-model
systems on an edit level. The ensemble method
exploits the strengths of each model, potentially
leading to more robust and accurate corrections
than any single-model system could provide on its
own.

Ranking is a special case of ensembling that
combines individual outputs on a sentence level. In
this approach, the performance of each system’s
candidate is assessed against a set of predefined
criteria, and the most effective candidate is selected.
Ranking maintains the internal coherence of each
model’s output, potentially leading to more natural
and readable corrections.

4.1 Oracle-Ensembling and Oracle-Ranking
as Upper-Bound Baselines

To set the upper-bound baseline for our exper-
iments in combining single models, we intro-
duce two oracle systems: Oracle-Ensembling and
Oracle-Ranking.

Oracle-Ensembling approximates an optimal
combination of edits of available single-model sys-
tems. It is computationally challenging because

the number of possible edit combinations grows
exponentially with the number of edits. We use a
heuristic to mitigate this; it optimizes Precision at
the cost of reducing Recall.

Using golden references from evaluation sets,
Oracle-Ensembling works as follows:

1. Aggregate the edits from all systems into a
single pool.

2. Identify and select edits that are present in
both the edit pool and the available annotation.

3. In the case of multiple annotations, we ob-
tain a set of edits for each annotation separately.
We then select the largest set of edits among the
multiple annotations.

Oracle-Ranking approximates an optimal out-
put selection for available single-model sys-
tems. Again using golden references from
evaluation sets, we use M2scorer8 to obtain
(F0.5, ncorrect, nproposed) for each system’s out-
put candidate against the available annota-
tion. The output candidates are then sorted by
(+F0.5,+ncorrect,−nproposed) and the top one is
selected.

For our explorations into combining models’ out-
puts, we select the seven single-model systems that
show the best performance on CoNLL-2014-test
(Table 2): Chat-LLaMa-2-7B-FT, Chat-LLaMa-2-
13B-FT, T5-11B, UL2-20B, GECToR-2024, CTC-
Copy, and EditScorer. As our selection criteria, we
take i) systems of different types to maximize the
diversity and ii) systems that have an F0.5 score of
at least 65 on CoNLL-2014-test. We refer to this
set of models as "best 7".

8https://github.com/nusnlp/m2scorer
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4.2 Ensembling by Majority Votes on Edit
Spans (Unsupervised)

To experiment with ensembling different GEC sys-
tems, we needed a method that is tolerant to model
architecture and vocabulary size. Ensembling by
majority votes (Tarnavskyi et al., 2022) on span-
level edits satisfies this requirement, and it’s simple
to implement, so we decided to start with this ap-
proach. We use the same "best 7" set of models in
our experiments.

Our majority-vote ensembling implementation
consists of the following steps:

0. Initialization. a) Select the set of single-model
systems for the ensemble. We denote the number of
selected systems by Nsys. b) Set Nmin, the thresh-
old for the minimum number of edit suggestions to
be accepted, 0 ≤ Nmin ≤ Nsys.

1. Extract all edit suggestions from all single-
model systems of the ensemble.

2. For each edit suggestion i, calculate the num-
ber of single-model systems ni that triggered it.

3. Leave only those edit suggestions that are
triggered more times than the Nmin threshold: ∀i :
ni > Nmin.

4. Iteratively apply the filtered edit suggestions,
beginning with the edit suggestions with the most
agreement across systems (greatest ni) and ending
with the edit suggestions where ni is lowest. Don’t
apply an edit suggestion if it overlaps with one of
the edits applied on a previous iteration.

4.3 Ensembling and Ranking by GRECO
Model (Supervised Quality Estimation)

The quality estimation approach for combining
single-model systems’ outputs achieved two recent
state-of-the-art results: logistic regression-based
ESC (Edit-based System Combination) (Qorib
et al., 2022), and its evolution, DeBERTA-based
GRECO (Grammaticality scorer for re-ranking cor-
rections) (Qorib and Ng, 2023). In this paper,
we experiment with GRECO because it is open
source and demonstrates state-of-the-art perfor-
mance on the GEC task to the best of our knowl-
edge1. GRECO was trained on the W&I + LOC-
NESS training set.

We experiment with applying the publicly avail-
able GRECO model9 to the "best 7" set of models.
We explore three ways of combining systems’ out-
puts:

9https://github.com/nusnlp/greco

GRECO-ens-beam. We reuse beam-search im-
plementation with beam size k = 16 on the edit
span level.

GRECO-rank. We use GRECO to select the best
single-model system’s output by choosing the one
with the highest score.

GRECO-rank-w. We re-weight GRECO scores
for each system’s output j by multiplying it by a
weighting coefficient wj :

∀k : wj =
nj

max(nk)
, (1)

where the numerator nj is the number of systems
that produce this output j, and the denominator
max(nk) is the maximum number of systems for
all systems’ outputs. This way, we reduce the score
of less frequent systems because it’s not the system
that is being scored/popular but rather the system’s
specific output (the edit).

4.4 Ranking by GPT-4 (Zero-Shot)

Besides the direct application of LLMs for GEC in
a zero-shot setting (we consider it in the Section
3.1.1), LLMs may be used as a combining method
for ensembles. We explore GPT-4 as a ranking tool
for single-model GEC systems’ outputs.

We use version gpt-4-0613 for GPT-4 with tem-
perature 1. We implement two prompts, "prompt-
a", and "prompt-b", with slightly different goals:
prompt-a aims to select the top single-model
system’s output among the systems’ candidates,
whereas prompt-b aims to perform the full ranking
of the systems’ candidates. They both have the
same task description. For the following example
of ranking three systems, it is:
ORIGINAL:
I likes turtles very much.
EDITED:
A: I like turtles very much.
B: I likes turtles very much.
C: I like turtles very much.

But they require a different output format:
prompt-a (top cand.): prompt-b (ranking):
OUTPUT: OUTPUT:
C C A B

To eliminate potential positional bias, we run
each prompt four times with a randomly shuffled
order of single-model systems’ outputs and average
the performance scores. To investigate the impact
of the number of systems to be ranked, we evaluate
the performance of GPT-4 on two sets of single
models: "best 7" and "clust 3".
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CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

ESC (Qorib et al., 2022) 81.5 43.8 69.5 72.9 40.4 62.8 86.6 60.9 79.9
GRECO (Qorib and Ng, 2023), var0* 79.40 48.70 70.48 - - 63.4 86.5 63.1 80.5
GRECO (Qorib and Ng, 2023), var1* 79.60 49.90 71.12 - - - - - -
GRECO (Qorib and Ng, 2023), var2* - - - - - - 86.7 63.7 80.8

Chat-LLaMa-2-13B-FT (single-model system) 77.3 45.6 67.9 59.8 46.1 56.4 74.6 67.8 73.1
UL2-20B (single-model system) 73.8 50.4 67.5 60.5 48.6 57.7 75.2 70.0 74.1

Oracle-Ensembling(best 7), baseline 100.0 57.7 87.2 100.0 58.2 87.4 - - -
Oracle-Ranking(best 7), baseline 91.4 64.2 84.2 79.6 60.2 74.7 - - -

majority-voting(best 7) 83.7 45.7 71.8 71.7 42.2 62.9 87.3 64.1 81.4
majority-voting(best 3) 82.8 44.1 70.4 70.4 43.1 62.5 85.1 64.5 80.0

GRECO-ens-beam(best 7) 77.3 51.6 70.3 65.5 47.6 60.9 - - -
GRECO-rank(best 7) 74.4 54.2 69.2 63.2 50.0 60.0 - - -

GRECO-rank-w(best 7) 81.6 49.3 72.1 68.1 45.8 62.0 82.0 67.5 78.6
GPT-4-rank-prompt-a**(clust 3)** 72.4 58.3 69.1 59.7 52.3 58.1 - - -

MAJORITY-VOTING ✚[ majority-voting(best 7),
GRECO-rank-w(best 7) ] 83.0 48.1 72.5 70.2 43.9 62.7 85.6 65.8 80.7

MAJORITY-VOTING ✚[ majority-voting(best 7),
GRECO-rank-w(best 7), GPT-4-rank-a(clust 3) ] 83.9 47.5 72.8 70.6 43.5 62.8 86.1 65.6 81.1
"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.
*In the paper (Qorib and Ng, 2023), authors prepared different variants of GRECO, each of which is optimized for one test dataset.
**We show mean values across four GPT-4 runs with randomly shuffled single-model systems’ outputs.
✚ We denote 2nd order ensembling (ensembles of ensembles) by capital letters.

Table 4: All ensembles evaluated on CoNLL-2014-test, BEA-dev, and BEA-test datasets.

CoNLL-2014-test BEA-dev

Precision Recall F0.5 Precision Recall F0.5

GPT-4-rank-prompt-a(best 7) 70.9 ± 0.5 59.7 ± 0.6 68.4 ± 0.5 56.8 ± 0.3 53.4 ± 0.8 56.1 ± 0.3
GPT-4-rank-prompt-b(best 7) 69.6 ± 0.8 59.5 ± 0.2 67.3 ± 0.7 56.3 ± 0.5 53.9 ± 0.6 55.8 ± 0.4
GPT-4-rank-prompt-a(clust 3) 72.4 ± 0.3 58.3 ± 0.6 69.1 ± 0.1 59.7 ± 0.1 52.3 ± 0.4 58.1 ± 0.1
GPT-4-rank-prompt-b(clust 3) 71.9 ± 0.4 58.1 ± 0.5 68.7 ± 0.5 58.7 ± 0.3 52.0 ± 0.5 57.2 ± 0.3

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.

Table 5: LLM ranking results. We run each prompt four times with randomly shuffled outputs of single-model
systems’ candidates and report mean ± 2std.

"clust 3" refers to 3 of the 7 best single-model
systems: Chat-LLaMa-2-13B-FT + T5-11B + Edit-
Scorer. This is the subset of single-model systems
from the "best 7" ensemble that provides the most
distinct corrections. To select this set, we perform
hierarchical clustering on TF-IDF vectors extracted
from the BEA-dev dataset using a cosine similar-
ity. The cosine similarity scores are averaged to
produce a single matrix that reflects the collective
performance of the single-model systems. The den-
drogram illustrating the relationships between the
systems based on distance is shown in Appendix D,
Fig. 2. Based on the threshold t = 0.11, we select
the three clusters and choose Chat-LLaMa-2-13B-
FT, T5-11B, Edit-Scorer to represent each.

4.5 Ensembles of Ensembles

Ensembles may themselves be combined via en-
sembling or ranking methods to potentially im-
prove performance, and this is an approach we
explore as well. We experiment with combining
the outputs of three ensemble systems: majority-

voting(best 7), GRECO-rank(best 7), and GPT-4-
rank(clust 3). Here, majority-voting(best 7) was
selected because it achieves the highest F0.5 score;
GRECO-rank(best 7) and GPT-4-rank(clust 3) have
higher Recall and, therefore, potential to add value
in an ensemble.

The MAJORITY-VOTING algorithm (we de-
note second-order ensembling by capital letters) is
identical to that described in 4.2.

4.6 Ensembles Results

Oracle ensembling & ranking. Oracle-
Ensembling shows F0.5 scores of 87.2/87.4 on
CoNLL-2014-test/BEA-dev, while Oracle-Ranking
performs notably worse with F0.5 scores of
84.2/74.7 and Precision of 91.4/79.6 (Table 4).
This highlights the high potential for improvements
on existing candidate generation and ensembling
approaches, whereas ranking is more limited.

Majority-voting ensembling. The only hyper-
parameter for the method (the Nmin threshold) di-
rectly impacts the Precision/Recall balance: the
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higher it is set, the greater the Precision. We find
that the best Nmin values for maximizing F0.5

score are Nmin ≈ Nsys/2. With Nmin = 3, we
achieve 71.8 on CoNLL-2014-test, outperform-
ing the previous state-of-the-art result by 0.7,
and 81.4 on BEA-test, setting a new state-of-the-
art result. (Table 4, "best 7" systems ensemble).

We perform an ablation study to measure the
impact of each system in the ensemble (Appendix
D, Table 12), where we remove systems one by
one in the decreasing direction of F0.5 score on
the BEA-dev dataset. Our experiments show that
even an ensemble combined from just the "best 3"
systems (Chat-LLaMa-2-13B-FT, UL2-20B, and
Chat-LLaMa-2-7B-FT) significantly improves the
F0.5 score over the UL2-20B single-model system
(by 2.9% on CoNLLL-2014-test, 4.8% on BEA-
dev, and 5.9% on BEA-test). These results rein-
force the significance of ensembling in achieving
state-of-the-art performance on the GEC task. We
hypothesize that majority-voting ensembling helps
in mitigating the influence of noise within the data.
By consolidating edits that are consistent across
multiple systems (the true signal), and concurrently
downplaying less prevalent and potentially inac-
curate edits (the noise), the ensembling approach
effectively enhances the overall quality and relia-
bility of the output. Our experiments on BEA-dev
can be found in Appendix D, Table 8.

Supervised ranking & ensembling. Overall,
leveraging GRECO (all variants) for combining
systems’ outputs leads to increased Recall at the
cost of Precision. It leads to an improvement
in F0.5 score on CoNLLL-2014-test, achieving
72.1% (+0.3% from our best unsupervised ensem-
ble, majority-voting(best 7)). However, results on
BEA-test regressed (-2.8% in F0.5 score). GRECO-
ens-beam did not outperform GRECO-rank-w in
our experiments.

Zero-shot ranking. We observe that LLM-
based ranking works better for three distinct single-
model systems (clust 3) than for all seven best
systems (best 7). We hypothesize that this per-
formance disparity may be due to the increased
complexity of selecting the optimal choice from a
larger set of similar options. We also explain in this
way the better performance of prompt-a (selection
of the top candidate rewrite) than prompt-b (per-
forming full ranking among candidate rewrites).
Similar to GRECO-rank, we notice that GPT-4 fa-
vors Recall-oriented outputs, which leads to the

highest Recall (58.4) on the CoNLLL-2014-test,
but a suboptimal F0.5 score. More results are pre-
sented in Table 5 and in Appendix D, Table 9.

Ensembles of ensembles. Applying second-
order ensembles, more specifically MAJORITY-
VOTING[majority-voting(best 7), GRECO-rank-
w(best 7), GPT-4-rank-a(clust 3)], helps to even fur-
ther push the state-of-the-art record on CoNNL-
2014-test, achieving F0.5 = 72.8 : +1.7 com-
pared to the previously highest reported result
by GRECO, var1 (Qorib and Ng, 2023) and +1.0
compared to our majority-voting(best 7) ensemble.

5 Related work

Large language models have demonstrated effi-
cacy across a variety of natural language process-
ing tasks, including GEC (Bryant et al., 2023).
The comparative analysis conducted by (Wu et al.,
2023) on the effectiveness of different models for
GEC — ChatGPT, Grammarly, and open-sourced
GECToR — reveals that ChatGPT possesses a dis-
tinctive capability to enhance textual content by
not only correcting errors on a one-by-one basis
but also by rephrasing original sentences, changing
their structure to maintain grammatical correctness.
The outcomes of human evaluations underscore
the limitations of exclusively relying on automatic
evaluation metrics for assessing GEC model per-
formance, thereby positioning ChatGPT as a poten-
tially invaluable resource for GEC applications.

Other research (Loem et al., 2023), (Fang et al.,
2023) suggests that although zero-shot and few-
shot chain-of-thought methodologies demonstrate
promise in terms of error detection capabilities and
the production of fluently corrected text, they gen-
erally underperform across the majority of error
categories, thus failing to achieve high-quality out-
comes in GEC. Moreover, (Zhang et al., 2023c)
delved into the customization of open-sourced
foundation LLMs including LLaMA (Touvron
et al., 2023) for writing assistant applications, with
GEC as one of the tasks. The experimental find-
ings indicate that instruction tuning for specific
scenarios such as GEC significantly boosts the
performance of LLMs and can be used to de-
velop smaller models that outperform their larger,
general-purpose counterparts.

Additionally, (Kaneko and Okazaki, 2023) intro-
duced a novel approach for predicting edit spans
within source texts, redefining instruction-based
fine-tuning as local sequence transduction tasks.
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This method not only reduces the length of target
sequences but also diminishes the computational
demands associated with inference. The study em-
phasizes that even high-performance LLMs such as
ChatGPT struggle to generate accurate edit spans
in zero-shot and few-shot scenarios, particularly
in the correct generation of indexes, making this
approach unstable.

Recent advancements in GEC have largely been
attributed to the ensembling of outputs from in-
dividual models, as highlighted in studies by
(Omelianchuk et al., 2020; Tarnavskyi et al., 2022).
When integrating systems with significant dispari-
ties, a system combination model is preferred over
simple ensembles. This approach allows for effec-
tive integration of the strengths of various GEC
systems, yielding better results than ensembles, as
demonstrated in (Qorib et al., 2022). Model out-
puts can be re-ranked using majority vote, as well
as with the proposed GRECO model (Qorib and
Ng, 2023), a new state-of-the-art quality estimation
model correlating more closely with the F0.5 score
of a corrected sentence, thus leading to a combined
GEC system with a higher F0.5 score. Additionally,
this study proposes three methods for leveraging
GEC quality estimation models in system combina-
tion: model-agnostic, model-agnostic with voting
bias, and model-dependent methods.

Conclusions

We don’t find that any single-model system ap-
proach is dominant across all benchmarks. While
in general, fine-tuning the larger models leads to
higher F0.5 scores, the 10–50x increase in model
size leads to rather small improvements (up to 1–2
F0.5 points). We hypothesize that the main bot-
tleneck in improvement is high-quality data rather
than system’s architecture or model size.

To date, ensembling is crucial to overcome the
limitations of single-model system approaches.
Even a simple heuristic approach such as majority
voting with just three single-model systems sig-
nificantly boosts the quality (by 3–6 F0.5 points).
While more complex approaches (supervised en-
sembling or LLM zero-shot ranking) may lead to
potentially better results (more specifically, show
higher Recall), they usually do not lead to the target
metric: F0.5 improvement on GEC benchmarks.

Recent LLM-powered methods do not outper-
form other available approaches to date. However,
being properly set, they can perform on par with

other methods and lead to more powerful ensem-
bles.

We’ve not yet reached the ceiling on the existing
GEC benchmarks. Our research shows that it’s
possible to improve previous records noticeably,
setting the new state-of-the-art performance on two
principal GEC benchmarks with F0.5 scores of 72.8
on CoNLL-2014-test and 81.4 on BEA-test, which
are improvements of +1.7 and +0.6, respectively.

In future work, we plan to explore the generation
of high-quality synthetic GEC data powered by
a state-of-the-art ensemble. We hypothesize that
this could democratize the field by reducing the
necessity of expensive training of large models to
achieve a superior level of quality.
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Limitations

Firstly, our analysis was confined to the English
language, potentially limiting the generalizability
of our findings to other languages with potentially
different error correction challenges.

Next, our evaluation relied on two specific bench-
marks using automated metrics, without incorpo-
rating human evaluation to assess the quality of the
GEC. While automated metrics provide a scalable
and objective means of evaluation, they may not
fully capture the nuances of language that human
judgment can offer.

Additionally, as we focus on ensembles, our re-
search does not address the speed performance of
the proposed systems. Therefore our findings may
not provide a comprehensive view of the practical-
ity and scalability of the proposed methods.

Lastly, the use of closed-source proprietary
LLMs introduces a layer of uncertainty, as these
models may undergo changes over time that are not
publicly disclosed. Such changes could potentially
affect the reproducibility of our results.
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A Hierarchical clustering analysis for
single-model systems

Figure 2: Dendrogram of hierarchical clustering analy-
sis for single-model systems. The y-axis represents the
distance metric used for clustering, with a red dashed
line indicating the selected threshold for cluster for-
mation (t = 0.11). The x-axis enumerates different
systems that were analyzed. The dendrogram branches
reflect the hierarchical grouping based on the proximity
of distance metrics.
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B Unsuccessful attempt to reproduce
Seq2Edit approach

The sequence-to-edit approach leverages the fact
that in GEC, the target sentence is usually very
similar to the source one. Instead of rewriting the
entire sentence, it’s possible to generate a list of
required edits, represented as tuples: (start position,
end position, replacement). (Stahlberg and Kumar,
2020). We tried to re-implement the most recent ap-
proach (Kaneko and Okazaki, 2023) that reported
a high score (F0.5 = 71.3%) on the CoNLL-2014-
test. We attempted to fine-tune both T5-11B and
LLaMA-2-7B models using the same set of hy-
perparameters that we used in our other experi-
ments, on pairs of sentences and edits extracted
from the BEA-train dataset. We were unable to get
any meaningful results (our F0.5 on CoNLL-2014-
test was about 30, which is around 40 points lower
than SOTA systems). Our models tended to corrupt
an original sentence more often than correct it. We
believe that our implementation most likely misses
some crucial details required to work properly, and
we encourage other researchers to reproduce and
open-source the sequence-to-edit approach.

C Second-order ensembling of
LLM-containing ensembles by
aggressiveness ranking

AGGR-RANK is a ranking method that takes as
input two ensembles: GPT-4-rank and an alterna-
tive ensemble. It selects GPT-4-rank under two
conditions: 1) it is less "aggressive" than the alter-
native (it suggests fewer edited spans), and 2) it is
non-trivial (edits do exist).

The results are presented in Table 10. The first
system (AGGR-RANK ✚[GPT-4-rank-a(clust 3),
majority-voting(best 7)]) tends to have a higher
Precision across all datasets. The second system
(AGGR-RANK ✚[GPT-4-rank-a(clust 3), GRECO-
rank-w(best 7)]), despite its lower Precision, man-
ages to achieve a slightly higher F0.5 score on the
CoNLL-2014 test dataset, suggesting that its im-
proved Recall adequately compensates in this case.
Overall, the F0.5 score is generally higher for the
first system on CoNLL-2014 test and BEA-test,
indicating that second-order ensembling on top of
the GRECO approach is the most favorable.

D Ablation studies
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Model Datasets used for training CoNLL-2014-test BEA-dev
NUCLE W&I cLang-8 Precision Recall F0.5 Precision Recall F0.5

LLaMA-2-7B-FT - ALL - 68.66 54.27 65.20 57.90 48.63 55.77
LLaMA-2-7B-FT - - ALL 67.25 50.44 63.05 57.99 42.11 53.93
LLaMA-2-7B-FT ALL ALL - 72.45 46.98 65.37 58.00 45.82 55.07

Chat-LLaMa-2-7B-FT ALL - - 70.39 36.31 59.42 50.72 24.51 41.79
Chat-LLaMa-2-7B-FT - ALL - 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMa-2-7B-FT - ALL 100k 68.94 52.78 64.96 57.94 45.53 54.94

Chat-LLaMa-2-7B-FT ALL ALL 48k 75.40 46.84 67.20 58.26 46.03 55.32
Chat-LLaMa-2-7B-FT TP, 8k TP, 8k TP, 24k 68.01 52.84 64.32 53.94 46.03 52.15

Chat-LLaMa-2-13B-FT ALL ALL 100k 77.34 45.57 67.87 59.79 46.08 56.43

Table 6: A search of the best dataset combination for fine-tuning large language models. For fine-tuned models,
different training dataset combinations were evaluated: Here, "ALL" denotes the usage of all available data for
training, specific numbers (e.g., "100k") define the specific number of samples used for training, and "TP" ("true
positives") denotes when only the dataset’s samples containing corrections are used.

Hyperparameter Values for stage I Values for stage II
train data source cLang8, BEA-train, 20 Troy BEA-train
train data size 2,897,676 33,618
batch_size 8 16
accumulation_size 32 16
n_epoch 5 4
patience 3 3
max_len 50 50
LR 1e-05 1e-05
cold_steps_count 0 0
tp_prob 1 1
tn_prob 1 1
updates_per_epoch 10000 0
special_tokens_fix 1 1
transformer_model Roberta-large Roberta-large
Pretrained model roberta-large_1_pie_1bw_st3 roberta-stage1
Inference tweaks:
minimum error probability 0.65 0.65
Inference tweaks:
confidence 0.1 0.1

Table 7: Hyperparameter values for the fine-tuning of GECToR-2024.
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BEA-dev
System name Nmin Precision Recall cF0.5

majority-voting(best 7) 3 71.7 42.2 62.9
majority-voting(best 7) w/o GECToR-2024 3 73.8 39.1 62.7

majority-voting(best 7) w/o CTC-copy 3 73.7 39.0 62.6
majority-voting(best 7) w/o EditScorer 3 72.8 39.5 62.3

majority-voting(best 7) w/o T5-11B 3 74.2 35.8 61.1
majority-voting(best 7) w/o UL2-20B 3 74.2 35.9 61.1

majority-voting(best 7) w/o LlaAMA-2-7B 3 74.3 36.2 61.4
majority-voting(best 7) w/o LlaAMA-2-13B 3 74.3 36.2 61.3
majority-voting(best 6) (best 7 w/o GECToR) 3 73.8 39.1 62.7

majority-voting(best 6) w/o CTC-copy 2 69.8 44.5 62.7
majority-voting(best 6) w/o EditScorer 2 69.0 45.3 62.5

majority-voting(best 6) w/o T5-11B 2 70.6 42.4 62.3
majority-voting(best 6) w/o UL2-20B 2 70.6 42.5 62.3

majority-voting(best 6) w/o Llama-2-7B 2 71.5 43.2 63.2
majority-voting(best 6) w/o Llama-2-13B 2 71.1 43.1 63.0

majority-voting(best 5) (best 6 w/o Llama-2-7B) 2 71.5 43.2 63.2
majority-voting(best 5) w/o CTC-copy 2 74.0 38.8 62.6
majority-voting(best 5) w/o EditScorer 2 72.6 39.2 62.0

majority-voting(best 5) w/o T5-11B 2 75.1 33.8 60.3
majority-voting(best 5) w/o UL2-20B 2 74.8 34.0 60.3

majority-voting(best 5) w/o LlaMA-2-13B 2 74.7 34.9 60.8
majority-voting(best 4) (best 5 w/o CTC-copy) 2 74.0 38.8 62.6

majority-voting(best 4) w/o EditScorer 1 66.2 47.9 61.5
majority-voting(best 4) w/o T5-11B 1 70.4 43.1 62.5
majority-voting(best 4) w/o UL2-20B 1 69.9 43.7 62.4

majority-voting(best 4) w/o LlaMA-2-13B 1 68.5 45.2 62.1
majority-voting(best 3) (best 4 w/o T5-11B) 1 70.4 43.1 62.5

majority-voting(best 3) w/o EditScorer 1 72.9 36.4 60.7
majority-voting(best 3) w/o UL2-20B 1 77.0 28.0 57.0

majority-voting(best 3) w/o LlaMA-2-13B 1 77.3 29.2 58.2

Table 8: Ablation study of removing single-model GEC systems from majority-based ensembles on BEA-dev.
"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 6" (best 6 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy.
"best 5" (best 5 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B.
"best 4" (best 4 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.
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CoNLL-2014-test BEA-dev

Precision Recall F0.5 Precision Recall F0.5

Chat-LLaMa-2-13B-FT 77.3 45.6 67.9 59.8 46.1 56.4
T5-11B 70.9 56.5 67.5 60.9 51.1 58.6

GPT-4-rank-a(best 7)

71.2 60.1 68.7 56.9 53.8 56.2
71.0 59.5 68.4 56.9 53.1 56.1
70.7 59.5 68.2 56.6 53.1 55.9
70.7 59.8 68.2 56.8 53.7 56.2

mean ± 2std 70.9 ± 0.5 59.7 ± 0.6 68.4 ± 0.5 56.8 ± 0.3 53.4 ± 0.8 56.1 ± 0.3

GPT-4-rank-b(best 7)

69.2 59.6 67.0 56.2 53.8 55.7
69.6 59.5 67.3 56.0 53.5 55.5
69.5 59.4 67.2 56.6 54.0 56.0
70.2 59.6 67.8 56.3 54.2 55.9

mean ± 2std 69.6 ± 0.8 59.5 ± 0.2 67.3 ± 0.7 56.3 ± 0.5 53.9 ± 0.6 55.8 ± 0.4

GPT-4-rank-a(clust 3)

72.3 58.4 69.0 59.8 52.2 58.1
72.2 58.6 69.0 59.7 52.5 58.1
72.6 57.9 69.1 59.7 52.1 58.0
72.4 58.4 69.1 59.7 52.5 58.1

mean ± 2std 72.4 ± 0.3 58.3 ± 0.6 69.1 ± 0.1 59.7 ± 0.1 52.3 ± 0.4 58.1 ± 0.1

GPT-4-rank-b(clust 3)

71.7 57.8 68.4 58.7 51.7 57.2
71.8 58.2 68.6 58.5 51.8 57.0
72.2 58.4 69.0 58.9 52.1 57.4
71.9 58.1 68.7 58.7 52.2 57.2

mean ± 2std 71.9 ± 0.4 58.1 ± 0.5 68.7 ± 0.5 58.7 ± 0.3 52.0 ± 0.5 57.2 ± 0.3

Table 9: LLM ranking for "best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B+ Chat-
LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024) and "clust 3" (clustered 3 single-model
systems: Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer). We denote "prompt-a" (top candidate) as "GPT-4-rank-
a", and "prompt-b" (ranking candidates) as "GPT-4-rank-b". We run each prompt four times with randomly shuffled
outputs of single-model systems’ candidates.

CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

AGGR-RANK ✚[GPT-4-rank-a(clust 3),
majority-voting(best 7)] 84.0 45.4 71.8 71.7 41.7 62.7 87.5 63.8 81.4

AGGR-RANK ✚[GPT-4-rank-a(clust 3),
GRECO-rank-w(best 7)] 81.9 49.0 72.2 68.3 45.1 61.9 82.4 67.0 78.8

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.
*In the paper (Qorib and Ng, 2023), authors prepared different variants of GRECO, each of which is optimized for one test dataset.
**We show mean values across four GPT-4 runs with randomly shuffled single-model systems’ outputs.
✚ We denote 2nd order ensembling (ensembles of ensembles) by capital letters.

Table 10: Second-order ensembling by aggressiveness ranking.

Model Instructions CoNLL-2014-test BEA-dev
are used Precision Recall F0.5 Precision Recall F0.5

LLaMA-2-7B-FT No 69.33 50.26 64.44 59.45 46.29 56.25
LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77

Chat-LLaMa-2-7B-FT No 67.53 53.59 64.19 58.00 47.37 55.51
Chat-LLaMa-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50

LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77
LLaMA-2-13B-FT Yes 71.49 55.67 67.65 60.28 49.26 57.69

Chat-LLaMa-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMa-2-13B-FT Yes 72.35 54.48 67.90 59.04 48.73 56.64

Table 11: Ablation study on instructions’ usage in fine-tuned on W&I dataset Large Language Models.
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CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

majority-voting(best 7), Nmin = 3 83.7 45.7 71.8 71.7 42.2 62.9 87.3 64.1 81.4
majority-voting(best 6), Nmin = 3 85.3 41.7 70.5 73.8 39.1 62.7 89.0 60.6 81.4
majority-voting(best 5), Nmin = 2 83.0 46.3 71.7 71.5 43.2 63.2 86.4 64.7 81.0
majority-voting(best 4), Nmin = 2 86.4 40.4 70.3 74.0 38.8 62.6 88.8 59.9 81.0
majority-voting(best 3), Nmin = 1 82.8 44.1 70.4 70.4 43.1 62.5 85.1 64.5 80.0
majority-voting(best 2), Nmin = 1 86.9 36.3 67.9 72.9 36.4 60.7 86.9 57.8 78.9

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 6" (best 6 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy.
"best 5" (best 5 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B.
"best 4" (best 4 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.
"best 2" (best 2 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B.

Table 12: Ablation study for majority-voting ensembles.

33



Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 34–53
June 20, 2024 ©2024 Association for Computational Linguistics

Using Adaptive Empathetic Responses for Teaching English

Li Siyan, Teresa Shao, Zhou Yu, Julia Hirschberg
Department of Computer Science

Columbia University
{siyan.li,ts3488,zy2461,jbh2019}@columbia.edu

Abstract

Existing English-teaching chatbots rarely in-
corporate empathy explicitly in their feedback,
but empathetic feedback could help keep stu-
dents engaged and reduce learner anxiety. To-
ward this end, we propose the task of nega-
tive emotion detection via audio, for recogniz-
ing empathetic feedback opportunities in lan-
guage learning. We then build the first spoken
English-teaching chatbot with adaptive, empa-
thetic feedback. This feedback is synthesized
through automatic prompt optimization of Chat-
GPT and is evaluated with English learners.
We demonstrate the effectiveness of our system
through a preliminary user study.

1 Introduction

Teacher empathy has been shown to improve the
learning experience, including increasing learner
engagement and reducing anxiety (Cooper, 2002;
Lam et al., 2011; Zhang, 2022b). Recently, Wu
et al. (2023) suggests that students’ perceived affec-
tive support (PAS) from teachers has a positive cor-
relation with L2 grit, defined as the passion and per-
severance for second-language learning (Teimouri
et al., 2022). PAS generally corresponds to the
perceived level of support for emotional needs. Its
definition includes caring, valuing responses, listen-
ing, and encouragement (Sakiz, 2007). We there-
fore expect empathy to correlate positively with
PAS. We aim to examine whether an empathetic,
English-teaching system with high PAS similarly
boosts L2 grit.

English-teaching systems have adopted affec-
tive components for various purposes (Zhai and
Wibowo, 2022). However, the systems that have
introduced empathetic components into pedagogy
are either situated in ubiquitous learning environ-
ments (Dai et al., 2014; Santos et al., 2016) or are
not naturalistic or seamless in their approaches to
accounting for student affect (Wu et al., 2022). An

interactive system that effectively detects and al-
leviates ESL learner anxiety without sensors (e.g.
pulse rate monitors) or cameras has yet to be im-
plemented.

Detecting negative emotion from a learner’s au-
dio is a promising way to offer empathetic feed-
back. However, off-the-shelf English speech emo-
tion recognition models are often trained on data
collected with native speakers of English (Busso
et al., 2008; Lotfian and Busso, 2017). We hypoth-
esize that English spoken by non-native speakers
will have differences (Lin, 2014) that challenge
these off-the-shelf models. To address this, we
develop a preliminary pipeline for this task using
annotated audio data and incorporate it into a spo-
ken empathetic chatbot system.

Our spoken chatbot detects negative emotions
or prolonged pauses and then responds empatheti-
cally to encourage students. This negative-emotion-
responsive design is inspired by an automated
physics tutor that senses student frustration using
sensors and cameras (D’mello and Graesser, 2013).
We currently employ model-based and automatic
approaches for sensing negative affect in user audio.
The chatbot also provides grammar feedback. We
utilize a grammar correction model for grammati-
cal feedback and ChatGPT with optimized prompt-
ing for empathetic feedback. Positive preliminary
user study results indicate that users perceive af-
fective support from our system, paving the way
for future large-scale experiments to study our sys-
tem’s effect on learner L2 grit.

Our main contributions are: 1) We release a
dataset of Mandarin-accented English speech with
high-quality ASR transcripts and negative emotion
annotations, and 2) We propose the first sensor-free
educational English chatbot that detects negative
affect and intervenes by providing adaptive empa-
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thetic feedback 1.

2 Related Work

2.1 Emotion Recognition in English-Teaching
Systems

Past English-teaching systems often relied on fa-
cial emotion recognition for detecting user affective
states. Lin et al. (2015) features a teaching assis-
tant that recognizes the user’s emotional state from
facial expressions and then adjusts the material’s
difficulty. Zhang (2022a) proposes a convolutional
neural network-based approach to learner emotion
recognition to be used in future systems. We are
not considering the visual modality due to the con-
straints of the dialogue framework we build upon.

Mazur et al. (2011) creates a gamified scoring
system to adapt to different users. This system is
equipped with affect classification for Japanese tex-
tual input, yet the role of empathy here is unclear.

Other systems have employed less seamless ap-
proaches to detecting affect changes. Wu et al.
(2022) constructs an emotion recognition module
by recording the number of times a learner clicks
on positive and negative emoticons. Santos et al.
(2016) employs Arduino, an open-source electronic
prototyping platform to detect learner physiological
changes, such as pulses and skin conductivity. An-
other ubiquitous learning system, Dai et al. (2014),
uses speech signal and multi-agent behavioral data
for online learning and a neural mechanism model
for analyzing learners’ emotional characteristics.

2.2 Affective English-Teaching Chatbots

Chatbots are effective in increasing student con-
versational activity during discussions (Goda et al.,
2014), improving listening skills (Kim, 2018) and
grammar (Kim et al., 2019), and enhancing writing
abilities (Lin and Chang, 2020). Since ChatGPT
appeared, the quality of chatbot responses has im-
proved dramatically, eliminating concerns about
adverse effects on student outcomes due to low
response quality (Fryer et al., 2020).

Ayedoun et al. (2015) introduces a multimodal
agent that simulates a restaurant waiter to situate
participants in a social conversational context to im-
prove their willingness to communicate. Ayedoun
et al. (2020) further improves this system by in-
corporating communication strategies and affec-
tive backchannels to provide personalized scaffold-

1The dataset and code are in https://github.com/
siyan-sylvia-li/adaptive_empathetic_BEA2024

ing. While the systems alleviate learner anxiety,
learner emotions are not directly accounted for or
addressed. Both systems also rely on pre-scripted
dialogue and are restricted in scenarios.

Shi et al. (2020) builds an empathetic spoken
chatbot into a WeChat program for English tutoring.
The GPT-2-based (Radford et al., 2019) chatbot uti-
lizes an ontology and a retrieval-based generation
approach similar to XiaoIce (Zhou et al., 2020).
Despite being empathetic, the bot only uses audio
for pronunciation correction.

2.3 Pauses and Anxiety in ESL Context

Foreign language anxiety can correlate with higher
pause rates and lower fluency. Pérez Castillejo
(2019) established that learners with higher lan-
guage anxiety tend to pause more frequently. In
a study by Wilang and Vo (2018) that monitors
ESL speakers speaking during an exam, pausing is
associated with heart rate spikes for some, indicat-
ing anxiety during pauses. ESL teachers have also
noted pauses and stammering as signs of students
struggling with language anxiety (Kasap, 2019).

3 System Design

3.1 Overview

Figure 1 shows a system overview: User audio is
sent to the Empathetic Feedback module to deter-
mine whether the user is distressed. If so, the bot
produces empathetic feedback using past user ut-
terances; otherwise, the system continues to the
Grammatical Feedback stage, where grammar cri-
tiques are given if applicable. If either feedback
mechanism is triggered, the system transitions back
to the original conversation through the User Query
Response stage if the user follows up with the feed-
back, then through the Connect Feedback & Con-
versation module. To avoid overwhelming users,
we ensure at least two turns between grammatical
feedback and four turns between empathetic feed-
back. We discussed our design with ESL students
and consulted teachers before finalizing our system.
See Appendix A for details.

We build on an existing dialogue framework (Li
et al., 2022) for speech and text dialogue system
development. The system allows users to con-
verse with the chatbot by recording their utterances
through a microphone. The utterance is then con-
verted to text using Whisper medium (Radford
et al., 2023) and the text and audio are sent to the
chatbot for further analyses and response synthesis.
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Figure 1: System Design Overview.

The chatbot response is spoken using SpeechT5
(Ao et al., 2022). For the specific speaker embed-
ding, we selected one of the slt clips from the
CMU Arctic speech databases(Kominek and Black,
2004) manually. When choosing the speaker em-
bedding, we aimed for a female voice that can
sufficiently induce perceived empathy.

3.2 Data Used

To create data for testing various modules, we uti-
lized audio clips of native Mandarin speakers con-
versing with a chatbot collected from an English
practice platform (Li et al., 2022). 3,200 audio clips
from 613 conversations and 163 users remained af-
ter filtering. The filtering process removes audio
clips containing only Mandarin, duplicates, and
a subset of self-introductions from the users. We
were not able to eliminate all identifying informa-
tion from this stage of filtering, but we will remove
all identifiable information before publicizing our
data. Each audio clip ranges from one second to
two minutes. We did not collect demographic in-
formation for user identity protection.

We transcribed all audio clips with Whisper
medium for training the text-based models in our
pipeline. Whisper is not always sufficiently robust
to handle heavily accented speech in our data; how-
ever, to realistically simulate the environment for
our models, we choose not to correct these tran-

scriptions, although we will release the data after
manually correcting the transcripts to ensure qual-
ity. Realistically, our system should improve as
more accent-robust real-time ASR systems emerge.

3.3 Grammatical Feedback

Grammar Correction Model: Following the
framework in Liang et al. (2023), we train a gram-
mar correction model to modify user utterance tran-
scripts. We originally prompted ChatGPT for gram-
mar correction feedback. However, responses were
often hallucinated or malformed, including using
the original utterance as the correction despite cor-
rectly identifying grammatical mistakes. Therefore,
we train a Llama-2-7b (Touvron et al., 2023) model
on ErAConD (Yuan et al., 2022), which contains
high-quality error-correction pairs collected from
human-chatbot written dialogues. Since grammar
correction is a sequence-to-sequence task, we train
additional Flan-T5 models (Chung et al., 2022) on
the same data. We include more details about the
training process in Appendix D.

To evaluate the models, we compute the exact
match scores between model predictions and the
ground truth corrections in the ErAConD test set.
Llama occasionally extends its output (See Table 1),
so we include another criterion, substring match,
to indicate whether the ground truth is included in

36



Input Correction Llama

I like to read book and study En-
glish.

I like to read books and study
English

I like to read books and study
English. I also like to spend time
with my friends.

Love story Love story. Love story. Maybe I will write a
book one of these days.

Table 1: Examples of the trained Llama model extending the original output.

Model EM SM Corr.

Flan-T5-base 0.56 0.65 N/A
Flan-T5-XL 0.6 0.68 0.53
Flan-T5-XXL 0.62 0.72 0.58
Llama-2-chat-7b 0.30 0.68 0.58

Table 2: Exact match scores, substring match scores,
and GPT correction scores for different grammar cor-
rection models.

the prediction. We also evaluate grammar correc-
tion quality on transcribed spoken utterances for
Flan-T5-XL, XXL, and Llama. Our trained mod-
els correct 100 transcribed spoken utterances. Due
to the lack of ground truth grammar corrections,
we use AI feedback from GPT-4-Turbo to assess
if each prediction is grammatically correct. The
results of the evaluation are shown in Table 2.

We observe an increase from exact match to sub-
string match across the board because the ground
truth grammatical corrections do not always ap-
pend periods, while most trained models do. As
we transition to out-of-domain data (from written
to transcription), we see a decrease in correction
accuracy. However, this drop is the smallest for
Llama, suggesting higher generalizability to out-of-
domain data. We, therefore, choose Llama for our
grammar correction model for its relatively higher
robustness and smaller size than Flan-T5-XXL.

Grammatical Feedback Format: We would like
to present grammar model corrections to the stu-
dents. Upon considering our design survey results,
we choose conversational recasts (Lyster et al.,
2013). This involves reformulating student utter-
ances, often including confirmation checks (e.g.
"Did you mean [corrected sentence]?"). We im-
plement the recast by pre-pending the corrected
sentence with a random confirmation check phrase
(e.g. "I think you meant"). When the corrected sen-
tence is longer than 20 words, we instead identify a

dependency parse constituent containing the error
to avoid repeating the entire sentence when pos-
sible. Since the sentences are sentence-tokenized
before being corrected, we ignore Llama correc-
tions longer than one sentence. This addresses the
previous Llama extension issue.

In addition to a conversational recast, we want
to explain how the student’s utterance is incorrect.
We utilize the conversational grammar correction
feedback templates proposed in Liang et al. (2023)
and append the templated feedback to the utter-
ance. See examples of our grammatical feedback
in Appendix G.

3.4 Negative Emotion and Pause Detection

Data Labeling: Since no accented speech emotion
classification dataset exists, we labeled our audio
clips to create evaluation data for our pipeline. We
used four labels: Negative, Pauses, Neutral, and
Unusable. Two Mandarin native speakers with high
English proficiency annotated approximately 10%
of the data with a Kappa of 0.893. We only include
audio clips whose labels both annotators agreed
upon. Our audio dataset’s data distribution and la-
bel definitions are in Table 3. The label definitions
were presented to the annotators as the annotation
scheme. The annotators also labeled clips featuring
both negative affect and pauses as “Negative” to
promote better label balance, since students rarely
display negative emotions in our data.
Negative Emotion Detection: Because of the
shortage of emotion-labeled accented speech data,
we could not train new audio classification models
for our specific task. Instead, we manipulate a pop-
ular out-of-the-box speech emotion classification
model2. We test different configurations and set-
tings for this model on the small emotion-labeled
dataset from the previous segment. Specifically,
given the output probabilities for different emo-

2https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-
speech-emotion-recognition
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Label Definition Counts

Unusable The audio is either completely silent, the speaker(s) are conversing in
Mandarin, or the utterance is completely unintelligible.

8

Negative The speaker displays negative sentiments: e.g. anger, frustration, or sad-
ness. Include instances in which the speaker displays an unwillingness to
communicate. Include instances where the speaker asks for clarification,
as it is an implicit display of confusion.

39

Pauses The speaker makes many pauses during their utterance. These pauses
make it sound like the speaker is struggling to construct the sentences.

54

Neutral This includes all usable clips that are labeled neither negative nor pauses. 200

Table 3: Definitions for different labels in our data labeling process and their corresponding counts in our labeled
audio dataset. These label definitions were presented to the annotators.

Metric Clip Label Mean Diff

Ratio Pauses 0.41
Neutral 0.32 0.09

Pause Rate Pauses 0.60
Neutral 0.55 0.05

Pause Length Pauses 0.68
Neutral 0.49 0.19

Table 4: The three metrics for the clips labeled as
“Pauses” and “Neutral” in our audio data. We include
the average values for the metrics, as well as the differ-
ences between the different clip labels.

tions, we first combine a subset of them to form our
estimated probability of negative affect. Threshold-
ing is then applied to provide the final prediction.
Our results indicate that the optimal configuration
is the predicted probability for only “anger” and a
threshold of 0.4. Using this information, we reach
a weighted F1 score of 0.78 on our Negative and
Neutral audio clips. See Appendix C for details.

The current speech emotion recognition models
do not perform well on our task, as speculated.
Anecdotally, when directly running classification
on our audio clips using the model, many clips
classified by us as “Neutral” are often classified as
sad or disgusted.
Pause Detection: As established, prolonged
pauses indicate the presence of foreign language
anxiety and should be considered as a cue in our
framework. We aim to develop automated metrics
that identify user utterances with these pauses.

We devise three metrics for determining whether
an audio clip fulfills the criteria for “Pauses”:

1. Silence Ratio: The quotient of the total
amount of silence in a clip and the clip length.

2. Pause Rate: The result of dividing the num-
ber of pauses by audio length.

3. Average Pause Length: The average length
of pauses.

For computing these metrics, we equip our sys-
tem with Silero-VAD (Silero, 2021), a fast and
enterprise-grade voice activity detection package.
Silero-VAD identifies and locates speech segments,
and it allows speech extraction from the original au-
dio such that the resulting clip is speech-only. We
can therefore compute the total lengths of silence
and pauses in an audio, as well as the number of
pauses in an audio clip.

Other features, such as pause location, can also
be used to indicate the level of anxiety. We leave
the exploration of these features to future work.

To compare the ability of these metrics to differ-
entiate between “Neutral” and “Pauses” clips, we
calculate the values of these three metrics on these
clips. We further measure the differences between
the metric values for the two categories (Table 4).
The “Average Pause Length” metric yields the high-
est difference, which suggests it effectively sepa-
rates “Neutral” and “Pauses” clips. In addition, we
experiment with various thresholds for differenti-
ating the two types of audio using “Average Pause
Length” (See Appendix B) and select a threshold
of 0.5.

3.5 Empathetic Response Generation
Data Construction: Given the ASR transcripts
of user utterances in a conversation, we added all
instances of three consecutive utterances to our
data (i.e., utterances 1+2+3, 2+3+4, etc). This cre-
ated 2014 segments for optimizing our ChatGPT
prompts. Due to cost constraints, we only used
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625 conversation segments for prompt optimiza-
tion: 125 for optimization, 200 for evaluation and
iteration, and 300 for held-out testing.
Implementation: Our desiderata for the empa-
thetic response generation module include the fol-
lowing: 1. Tailored to the user; 2. Empathetic and
encouraging; 3. Including actionable feedback or
specific examples the user can learn from. Because
there are no sufficiently large datasets that precisely
fulfill these requirements, we rely on prompting
ChatGPT to generate such responses.

Unfortunately, large language models are sen-
sitive to how they are prompted. Simple trial-
and-error did not achieve consistently satisfac-
tory responses in our preliminary experiments
(ZEROSHOT stage).

We employed the DSPy framework (Khattab
et al., 2023) to optimize for prompts while satis-
fying our desiderata (OPTIMIZED stage). We first
tasked GPT-4 to check whether each requirement
is satisfied in a given response (e.g. is the utterance
empathetic and encouraging). This is a form of AI
feedback (Bai et al., 2022). GPT-4 appears suc-
cessful in this text annotation task, consistent with
results established in Gilardi et al. (2023). Using
the AI feedback as our metrics, we aimed to opti-
mize our prompts to maximize the metrics. DSPy
supplies the BayesianSignatureOptimizer, which
references simple descriptions of our desiderata to
suggest sample instructions and few-shot examples.
Using this Bayesian-model-powered optimization
process, we improved the metrics on a held-out
test set from 68.3 (at the ZEROSHOT stage) to 89.8.
We discuss whether the improvement aligns with
human intuition in Section 5.1.

We observe that the outputs of our optimized
prompt are often formal, while most of our design
survey participants prefer colloquial feedback. To
address this, we insert a final rewrite call to rewrite
the optimized prompt output to a more colloquial
version (REWRITE stage). GPT-4 evaluates this
stage’s outputs as 88.7.

During inference time, when we detect that the
user requires empathetic feedback, the user’s three
most recent utterances are concatenated and fed
into ChatGPT with the optimized prompt. The
output undergoes the REWRITE stage to produce
the final output. All ChatGPT prompts and GPT-4
feedback prompts used for this module are included
in Appendix I. See Appendix J for examples of
outputs at different stages.

3.6 Connecting Feedback and Conversation

User Query Response: Our feedback modules
are currently intended for single-turn feedback (i.e.
the bot provides the feedback without anticipating
that the user will ask clarification questions), but in
preliminary user studies, we noticed that users do
inquire about the feedback. Therefore, we handle
this case by constructing a ChatGPT call with the
immediate conversation context and asking for a
response to the user’s query. We classify a user
response to feedback as a relevant query with a
rule-based approach. We use this rule-based ap-
proach instead of forwarding all post-feedback user
queries to ChatGPT because prior users would ask
about the bot’s creator and training data, resulting
in unintended behavior (e.g. the bot claiming it is
created by Google or OpenAI engineers).
Transition: We employ templates for a smooth
transition between feedback and the original con-
versation. Before entering the feedback stage, we
cache the original bot response to return to the con-
versation afterward. More details about templates
and ChatGPT prompts are provided in Appendix E.

3.7 Conversation

Unlike the other modules that only need to be ac-
tivated sporadically, the conversation module is
invoked for almost every turn. This poses addi-
tional needs for inference speed and costs, which
motivates using a locally stored model.

We selected a Vicuna model fine-tuned for
curriculum-driven conversations (Li et al., 2023).
The model allows for customization of topics, chat-
bot personas, and vocabulary to incorporate into the
conversation. Li et al. (2023) noticed that brevity
instructions are sometimes ignored by ChatGPT.
This further makes ChatGPT not ideal for our spo-
ken conversation use-case, as run-on utterances
may be difficult to comprehend in a speech setting.
Users found the Vicuna model more helpful for
developing conversational skills, providing natural
and realistic utterances, and aligning with users’
English proficiency levels.

The topic of “Name a movie that has had an
enduring impact on you” was chosen for relatabil-
ity. We randomly selected a vocabulary and one of
the female personas to match the TTS voice. Bot
feedback and user responses to feedback are not in-
cluded in the conversation history when prompting
the Vicuna model to keep the components modular
and prevent out-of-distribution behavior.
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Quality Conf. Useful Enc. Listen Care Praise PAS

Average 3.75 3.33 3.83 3.16 3.58 3.08 3.25 3.27
Std 1.05 1.07 1.19 1.64 1.16 1.24 1.60 1.16

Table 5: Post-survey results. "Conf." stands for confidence, "Enc." stands for encourage, and "PAS" stands for
perceived affective support.

4 User Study

Fourteen native Mandarin speakers were recruited
from social media and the authors’ connections.
Each participant conversed with the chatbot for at
least 10 turns (a turn is one round of exchange be-
tween the chatbot and the user). A pre-survey for
participant English proficiency and a post-survey
for user experience were administered. In the pre-
survey, we obtain an approximate assessment of
the participants’ English proficiency including their
standardized test scores, self-reported proficiency,
and the frequency at which they speak English daily.
After the participants interacted with our system,
they were presented with a post-survey which in-
cludes a modified version of the teacher affective
support scale (the last four items below) (Sakiz,
2007) adapted for our context and general evalua-
tions of conversation quality.

Our Likert-scale post-survey includes:
Quality: How was the conversation quality?
Confidence: Do you feel that you are more confi-
dent after conversing with the chatbot?
Useful: Do you think the chatbot’s grammar feed-
back is useful?
Encourage: The chatbot encourages me when I
am having difficulties in the conversation.
Listen: The chatbot listens to me when I have
something to say.
Care: My opinion matters to the chatbot.
Praise: The chatbot recognizes and appreciates
when I am good at something.

Details for the surveys can be found in Ap-
pendix H. Example conversations between the par-
ticipants and the bot can be found in Appendix G.

5 Results and Discussion

5.1 Empathetic Generation Evaluation
We asked each participant to rank the different
stages of empathetic feedback (ZEROSHOT, OPTI-
MIZED, REWRITE). Participants ranked responses
generated in these three stages on the same seg-
ment for 30 randomly selected segments. At least
3 participants ranked each triple. We also asked the

Stage vs. ZE-
ROSHOT

vs. OPTI-
MIZED

vs.
REWRITE

ZEROSHOT - 0.52 0.45
OPTIMIZED 0.47 - 0.45
REWRITE 0.54 0.54 -

Table 6: Win rates between each pair of empathetic
feedback generation stages.

participants how they would improve the utterance
they ranked at #1 for each conversation segment.

In Table 6, REWRITE wins more often against
both ZEROSHOT and OPTIMIZED, suggesting that
the REWRITE improves OPTIMIZED stage outputs.
OPTIMIZED outputs are often not preferred due
to their formality and length. Since REWRITE

rephrases OPTIMIZED outputs without modifying
core content, it appears that the participants are
ranking the content from OPTIMIZED relatively
higher than the content from ZEROSHOT. Another
result is that ZEROSHOT is often ranked as #1 or
#3, illustrating that ZEROSHOT outputs are less
consistent in quality. Despite being scored higher
by GPT-4, OPTIMIZED does not significantly out-
perform ZEROSHOT. This could be due to DSPy
optimization focusing on fulfilling metrics without
considering human preferences, or due to raters
having various standards.

As for improving the feedback, participants re-
ported that the best responses are still too verbose
(one wrote "the shorter the better") and requested
better feedback examples. They mentioned that
generic praises can sound disingenuous, detrimen-
tal to the intention to encourage. Some suggested
that praise may not be necessary for every piece of
feedback, especially when participants receive mul-
tiple feedback during a conversation. One future
direction would be to develop more context-aware
mechanisms for more naturalistic and long-term
empathetic feedback.
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5.2 Conversation Statistics

Two participants did not receive empathetic feed-
back and were excluded from analyses. For the
other twelve participants, each conversed for an
average of 14.5 turns and received 1.9 grammatical
feedbacks and 1.3 empathetic feedbacks.

5.3 Survey Results

On average, our participants have approximately
14.25 years of experience learning English. They
all rated themselves above three out of five for self-
reported English proficiency (higher is more pro-
ficient) with an average of 3.92. The participants
who disclosed their IELTS and TOEFL scores had
7.3 and 109.3 averages respectively. For the ques-
tion on English usage frequency, the average was
3.41 (one being for English only, five being for
Mandarin only). Our participants have intermedi-
ate English proficiency but do not speak English
frequently.

The post-survey results are shown in Table 5. In
addition to the survey items, we include PAS as
an aggregate metric by averaging the four adapted
PAS survey items. The participants often consider
the conversation quality to be high. They reported
gaining moderate confidence after the conversation,
and consider the bot’s feedback useful. As for the
survey items involving PAS, the results contain
higher variance. While users believe that the bot
appears to listen to them fairly attentively (poten-
tially as an effect of the grammatical feedback),
they are more ambivalent about whether the bot
encourages them or praises them appropriately. We
suspect that the reason for lower “Encouragement”
ratings stems from our imperfect detection mecha-
nism; empathetic feedback might have been given
when the user was not exactly struggling. The par-
ticipants also could not have struggled at all during
the conversation. A potential reason for the high
variance in “Praise” ratings is the disingenuous-
sounding encouragement mentioned in Section 5.1.
Additionally, user motivation for using our system
can affect their self-reported results. Participants
who only intend to test the system rather than im-
prove their English might rate it poorly.

5.4 Dialogue Inspection and User Feedback

We inspect conversations with low PAS to identify
failure modes of our system. The conversation with
the lowest PAS includes both technical issues in
the system (the user was baffled by the frequent

interruptions in the system) and the chatbot for-
getting the conversation history due to the limited
context length of our model. Another conversation
features significant ASR errors and the error prop-
agation led to nonsensical grammatical feedback
which confused the user. Due to current limita-
tions in user query processing after bot feedback,
some user queries were occasionally ignored, but
the presence of these does not dictate low PAS.

We requested feedback from our participants.
They praised the ASR accuracy and feedback qual-
ity, mentioning that they feel encouraged after re-
ceiving feedback. Some users stated that the goal
of spoken English is to keep the conversation go-
ing, and therefore only egregious grammar errors
should be corrected. Others would solicit gram-
mar feedback from the system and exhibit dismay
when it did not recognize their errors. One user
mentioned that they would stammer and have dis-
fluencies that would be recognized as grammat-
ical errors. Some users disliked the stiffness of
the feedback formats as they felt the conversation
flows were interrupted. A subset of responses are
presented in Appendix F.

These observations highlight limitations in our
current system. To improve user experience, we
will develop more seamless feedback mechanisms
and robust user query classification. Additionally,
we aim to create better grammar models suited for
transcribed utterances and resilient to disfluencies
and fillers. Additional goals include detecting tech-
nical difficulties so the chatbot can apologize for
any interruption, as well as conversation summariz-
ers to inform our model of previous discussions.

6 Conclusion and Future Work

In this work, we propose the negative emotion de-
tection task in the context of English learning to
capture learner frustration and anxiety. We also
introduce the first English-teaching chatbot that
provides adaptive, empathetic feedback to students
using our negative affect detection pipeline. Initial
trials with end users demonstrate the potential of
our system. For future work, we intend to scale up
our user evaluations and verify our hypothesis that
our system can effectively improve student L2 grit.

For future work, apart from addressing partic-
ipant feedback, we intend to expand our experi-
ments to include more thorough comparisons be-
tween the different experimental conditions to es-
tablish more robust results. Specifically, we want
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to determine whether our adaptive empathetic feed-
back improves L2 grit more than no empathetic
feedback or fixed feedback upon multiple chatbot
interactions. Another interesting topic to examine
more closely would be whether humans behave and
react similarly when conversing with chatbots and
real-life English teachers. We intend to include
participants from an ESL course in our next study.

7 Limitations

Our current system serves as a proof-of-concept for
a chatbot system capable of adaptive empathetic
feedback, and it is by no means perfect. While our
modular design allows for more rigorous control
for future experiments, there can easily be error
propagation between modules, and none of the
modules are completely error-proof, as we have
illustrated in our paper. To begin with, our speech
emotion recognition pipeline does not successfully
capture all instances of negative affect in our la-
beled data. The Llama model used for grammar
correction still cannot correct all instances in the
ErAConD test set. Our user query detection mecha-
nism can miss relevant queries. All of these should
be improved in future iterations of the system.

The current user study results are preliminary
and do not offer sufficient statistical strength for
solid conclusions. In future, we will aim for larger
user studies by recruiting broadly on social media
and at our institution.

Our data is currently labeled only by two label-
ers, which renders our labels less valid. We will
aim to include more labelers to improve the validity
of our emotion-labeled data.

8 Ethical Considerations

Any applications interfacing with humans, espe-
cially students, need to consider accidental psy-
chological harm done to the students as a result of
generations. To address this, we performed rigor-
ous testing prior to our user study.

There is potentially self-identifying information
present in our audio data. We will filter out self-
identifying information before releasing the data to
protect user identity.
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A Chatbot Design Discussion

A total of 12 Mandarin native speakers were re-
cruited through the authors’ personal connections
to provide feedback on our chatbot design. We
provided a Google Form for them to complete. We
later released a version on social media that gained
many more responses, but since we do not utilize
the results from that survey directly in this work, we
reserve the discussion and incorporation of these
results for future work.

We translated a subset of relevant questions
and response options from Mandarin. We have
abridged preambles in the questionnaire for brevity.
The questions and responses of our survey are as
follows (the percentage in the parentheses corre-
sponds to the percentage of participants who se-
lected that option):

1. How would you like an English teacher to give
you feedback?

• Formal (25%)
• Colloquial (75%)

2. How long should the feedback be?

• 1 - 2 sentences (8.3%)
• 2 - 3 sentences (41.7%)
• 3 - 4 sentences (50%)
• 4+ sentences (0%)

3. If you have made a grammatical error, what
specific attributes should a teacher’s feedback
for you have? Please select all that are appli-
cable.

• Correct your mistakes directly (58.3%)
• Correct your mistakes interactively

through Q & A (33.3%)
• Give you examples so that you can

learn from the example and avoid mak-
ing the same mistakes again (75%)

4. What is your ideal form of encouraging and
empathetic feedback? Please select all that
apply.

• Give you encouragement (e.g. "You are
doing great!", "I am proud of you!")
(58.3%)

• Tell you what you are good at in terms
of your spoken English (75%)

• Tell you what you can improve in your
spoken English (58.3%)
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Threshold Neutral% Pauses%

0.1 100.0 3.5
0.2 98.1 22.5
0.3 72.2 53.0
0.4 44.4 72.5
0.5 26.0 85.5
0.6 7.4 92.0
0.7 3.7 97.0

Table 7: Classification accuracy for Neutral and Pauses
audio clips using the Silence Ratio pause detection met-
ric.

Threshold Neutral% Pauses%

0.1 100.0 0.0
0.2 98.1 1.5
0.3 96.3 9.5
0.4 88.9 18.5
0.5 74.1 39.5
0.6 50.0 61.0
0.7 29.6 85.0

Table 8: Classification accuracy for Neutral and Pauses
audio clips using the Pause Rate pause detection metric.

• Tell you how you can improve through
examples (75%)

• Provide you with plausible and action-
able advice for improving your English
(41.7%)

B Experiments for Pause Detection

After computing the pause length metric values
for all audio clips labeled as either “neutral” or
“pauses”, we compared the effect of varying pause
detection mechanisms and thresholds. We com-
puted the classification accuracy values when us-
ing different pause detection metrics and different
threshold values. We aim to obtain the highest pos-
sible classification accuracy values for our metric-
threshold combination.

We present the results for varying threshold val-
ues for Silence Ratio, Pause Rate, and Average
Pause Length in Tables 7, 8, and 9, respectively.

C Experiments for Negative Emotion
Detection

The wav2vec model we have selected outputs prob-
abilities for the following emotions given a speech
segment: angry, calm, disgust, fearful, happy, neu-

Threshold Neutral% Pauses%

0.1 98.1 21.5
0.2 98.1 24
0.3 96.3 34.5
0.4 88.9 54.4
0.5 70.4 73.0
0.6 61.1 81.5
0.7 38.9 89.5

Table 9: Classification accuracy for Neutral and Pauses
audio clips using the Average Pause Length pause de-
tection metric.

tral, sad, and surprised. This model is a fine-tuned
version of Grosman (2021), which is a widely popu-
lar automatic speech recognition model. The model
is then fine-tuned on the RAVDESS dataset (Liv-
ingstone and Russo, 2018) for the speech emotion
recognition downstream task.

We explored the following methods for combin-
ing the output probabilities from the model to pro-
duce the negative affect estimate. Here, we include
anger for each of our methods because frustration
and anger can manifest themselves in a similar
manner in speech.

1. Anger + Disgust + Fearful + Sad (ADFS) - 0

2. Anger + Disgust + Fearful (ADF) - 1

3. Anger + Disgust (AD) - 4

4. Anger + Fearful (AF) - 5

5. Disgust + Fearful (DF) - 3

6. Anger (A) - 2

For the values of the threshold, we experimented
with 0.1 through 0.9 with an increment of 0.1.

We evaluated the different setups on all audio
clips labeled as Neutral or Negative in our labeled
data subset. The weighted F1 score was computed
to account for class imbalance. We included the
best F1 scores achievable by each setup, along with
their corresponding thresholds for obtaining the
best F1 scores, in Table 10.

D Training Details for Llama and
Flan-T5 Models

All models were trained on a single 40 GB GPU.
Models were trained for 10 epochs and the best
models were selected using validation set loss.
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Setup Threshold Best F1

ADFS 0.9 0.57
ADF 0.8 0.76
AD 0.8 0.76
AF 0.4 0.76
DF 0.8 0.76
A 0.4 0.78

Table 10: The best achievable weighted F1 scores and
their corresponding threshold values for each of the
speech recognition model output aggregation methods.

Flan-T5-base was trained without any parameter-
efficient fine-tuning, but all other models were
trained using PEFT and Lora. We will release
model training and inference code if accepted.

E Details on the Connecting Feedback
and Conversation Component

E.1 Identifying Query

We utilized a simple rule-based approach to de-
termine whether an utterance provided by a user
after bot feedback is a question about the feedback
or the English learning process. Namely, we (1)
checked that a "?" is in the transcribed utterance;
(2) checked whether one of the words in this list
belongs in the utterance: "grammar", "grammat-
ical", "vocab", "English", "mistake", "example",
"sentence". If both conditions were fulfilled, we
then interfaced with ChatGPT to respond to user
queries.

E.2 Responding to Query

Since we anticipate that the user will only be re-
sponding to the bot feedback, we would not need
to include too much context in our ChatGPT call.
We supplied the following prompt to ChatGPT to
obtain a response to give to the user.

f"""Based on the following conversation
history:\n\n{convo}, answer the user's
following query: "{user_query}" Answer
in a spoken utterance. Provide specific
feedback, but be succinct."""

E.3 Transitioning

If the user does not respond to the bot feedback
with a query, or when the bot has finished respond-
ing to the user query, the system would then return
to the original conversation flow. This transition
was obtained by prefixing the cached original bot

response with one of the randomly selected phrases.
There are two general scenarios here:

1. The user expresses gratitude by including
"thank" in their utterance.

2. The user does not explicitly express gratitude.

The code for constructing the prefix to prepend
to the original bot response is as follows:

if "thank" in text.lower():
prefix = random.choice(["Of course!",

"No problem at all.", "Yeah, no
problem!", "No problem!"]) + " "
+ random.choice(["Back to the
conversation.", "Back to our
convo.", "Let's go back to
chatting.", "Now we circle back
."])

else:
prefix = random.choice(

["Sounds great.", "Alright, let's
continue our conversation.",
"Great, let's get back to it
!",

"Okay let's go back to our
conversation.", "Now back to
our conversation.", "Okay!",

"Lets' go back to our chat.", "
Let's keep chatting."])

F User Feedback

We asked participants to share their experience with
the chatbot, and received the following responses.
All responses have been paraphrased and translated
from Mandarin:

User A: I like the chatbot and I look forward to
the finished product... When the chatbot corrects
my grammar, the way it corrects me is very stiff
and clunky, and it can interfere with the immer-
sive experience... Additionally, when I use filler
words or discourse markers or perform self-repair
in the conversation, the bot would catch these as
grammatical errors even though they should not be
treated as such.

User B: Your chatbot has high ASR accuracy,
and the quality of the conversation is quite good!
However, it may be challenging to provide English
learners with sufficient help, because I asked for
more specific feedback after receiving a feedback
and it went back to talking about movies.

User C: One thing I really like about the chatbot
is that the feedback is very timely! When using
ChatGPT I don’t always get very prompt feedback.
We have a foreigner English teacher coming next
week and your bot is definitely a life-saver.
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User D: I don’t think some trivial grammatical
errors, like mixing is and was when discussing
movie plots, should be corrected. I also asked for
the bot for word choice improvements but it didn’t
give me any.

User E: The conversation has high quality, and
although the feedback can lag behind one or two
sentences, the feedback is always correct and help-
ful. The bot clearly understands what you are try-
ing to convey and can continue the conversation
despite grammar errors. Sometimes it uses sen-
tences that can be too complex for beginners, but
providing Mandarin translations for bot utterances
can be helpful.

G Example Conversations

The following are conversation excerpts between
our bot and different users. Here, blue indicates
empathetic feedback, orange indicates a transition
between feedback stage and the conversation, and
red indicates a grammatical feedback.

We first examine a successful conversation exam-
ple. Note that the empathetic feedback is activated
when the user experiences hesitation:
User: Actually, I hardly ever watch movies, so
could I describe opera?
Bot: Sure! What’s the name of the opera that you’d
like to describe?
User: Okay, that’s Turandot, which describes a
love story between a Chinese princess and a foreign
prince.
Bot: I believe you wanted to say "Okay, that’s Tu-
randot, which is a story about a love between a
Chinese princess and a foreign prince.". In this sen-
tence you used the verb "describes", but it doesn’t
sound natural. I’d recommend using the word "is a
story about". Does that sound good?
User: you
Bot: Okay let’s go back to our conversation. Inter-
esting! I can’t say that I’m familiar with it. Could
you tell me more about the story?
User: This Chinese princess whose grandma is...
Wait a minute.
Bot: You’ve got a good grasp of the topic and can
explain yourself clearly, which is awesome! Just
tweak your grammar and sentence structure for a
more natural flow. For instance, instead of saying
"I hardly ever watch movies, so could I describe
opera?", try "Since I rarely watch movies, can I
talk about opera instead?" Keep at it, and you’ll see
improvement in no time! Does that sound alright

to you?
User: Yes, and now I will go to talk about the
context of the opera.
Bot: Okay! Yes, go on. What’s the story about?
User: This story is about the Chinese princess,
Truong Du, whose grandma was bullied by the for-
eigners. So Truong Du set a rule to the man who
want to marry him that he must answer three ques-
tions and then he can marry her or dad. The cover
of the, answered the three questions and finally
married with Torandu.
Bot: Perhaps what you meant to say was "who
wants " and not want In this sentence you made a
mistake on the verb "want". The correct verb form
here is "wants". Remember to make your verbs
agree with their subjects. How does that sound?
User: That sounds great, okay I understand.
Bot: Alright, let’s continue our conversation.
That’s certainly a unique story! What did you like
most about the opera?

Here we see a failure of recognizing user query
due to the rule-based nature of our query recogni-
tion mechanism.
Bot: I’m doing alright, thanks. Have you watched
any good movies lately?
User: No, not really. I don’t watch any movie.
Bot: Really? You don’t watch any movies? Not
even the classics?
User: then it won’t be lately. I do watch classics.
Which one you want to talk about?
Bot: Well, I was thinking about the movie "Citizen
Kane". What do you think about it?
User: That is a very very classical one. I had it
some time ago I couldn’t really remember the plot
could you rephrase it for me?
Bot: Sure, it’s about a journalist who becomes a
powerful newspaper publisher and his journey to
find the meaning of "rosebud" which holds the key
to his soul.
User: Yeah, I sort of like that idea. You know,
start being a nobody and then with one’s effort you
became a big shot in the industry.
Bot: Exactly, it’s a great story of how one’s perse-
verance and hard work can lead to success. I also
love the way the director used different narrative
techniques to tell the story.
User: I couldn’t remember exactly. Could you give
me an example?
Bot: Sure, one of the techniques used is the use of
different reporters telling the story of Kane’s life.
Each one provides a different perspective on who
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he was as a person and the events that shaped his
life.
User: Yeah I would say that was quite innovative
at that time when the movie was first released. Any-
way what else you want to talk about?
Bot: You’re doing great with understanding and
expressing the topic clearly! Just brush up on gram-
mar and sentence structure, like saying "I can’t
remember exactly." Keep practicing to keep getting
better!
User: All right, anything else for me?
Bot: Lets’ go back to our chat. Well, I was also
thinking about "The Godfather". Have you seen it?
User: Oh yes, I really love the music. The Godfa-
ther theme in both 1 and 2. I didn’t really watch
Godfather, the third part.
Bot: I believe you wanted to say "I didn’t really
watch The Godfather, the third part.". You seem
to be missing a determiner in this sentence. You
should probably add "The" to make the sentence
sound more natural. Does that sound alright to
you?

H Pre Survey and Post Survey

The surveys have been translated from Mandarin.

H.1 Pre-Survey

1. How many years have you been learning En-
glish?

2. How would you rate your English proficiency
(1 star for beginner, 5 stars for proficient)?

3. What is your IELTS score?

4. What is your TOEFL score?

5. How much English do you speak every day
(1 star for English only, 5 stars for Mandarin
only)?

H.2 Post-Survey

1. How was the quality of your conversation on
a scale of 1 to 5?

2. Do you feel that you are more confident after
conversing with the chatbot? Rate on a scale
of 1 to 5.

3. Do you think the chatbot’s grammar feedback
is useful? Rate on a scale of 1 to 5.

4. The chatbot encourages me when I am having
difficulties in the conversation (1-star for "Not
like me at all", 5-stars for "Very much like
me").

5. The chatbot listens to me when I have some-
thing to say (1-star for "Not like me at all",
5-stars for "Very much like me").

6. My opinion matters to the chatbot (1-star for
"Not like me at all", 5-stars for "Very much
like me").

7. The chatbot recognizes and appreciates when
I am good at something (1-star for "Not like
me at all", 5-stars for "Very much like me").

I Empathetic Feedback Generation
ChatGPT Prompts

I.1 Zero-shot Prompt

A student is learning English. You are assessing
a spoken utterance. In at most two
sentences, summarize (1) their specific
strengths in English skills and (2) things
they can work on to improve. Address the
student in the second person. Include
specific examples that the student can learn
from. Be colloquial, as if in spoken
conversation.

---

Follow the following format.

Convo: \$\{convo\}
Reasoning: Let's think step by step in order to

\${produce the output}. We ...
Output: Treat this as a spoken conversation, so

be succinct, colloquial, and empathetic.

---

Convo: - Yeah, I always talk to my parents about
the student. - Yeah, so the person that I
met, you know, that I've met, that I want to
study with is one of my classmates, Tom,
and how I met this, met Tom is when I was in
high school and he's in my next classroom
and he is one of the best students in the
other class and I really admire his
intelligence and I learn a lot from him and
I've known him since, you know, 2016 and he
is one of the best students in the other
class so that's why I want to study with him
.

Reasoning: Let's think step by step in order to
assess your spoken utterance. We can see
that you have a strong grasp of English
vocabulary and grammar, as evidenced by your
ability to express complex ideas and use a
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variety of sentence structures. However, you
may want to work on your pronunciation and

intonation, as some of your words were not
clear and your speech lacked natural rhythm.
For example, you said "met" instead of "

meet" and "classroom" instead of "classmate
." Practicing with a native speaker or using
online resources can help you improve in

this area. Keep up the good work!
Output:

I.2 Optimized Prompt

Proposed Instruction: You're playing the role of
an encouraging English tutor for a student

who is actively learning and practicing
their English through conversation. Your
task is to listen attentively to their
spoken utterances and provide constructive
feedback. In your response, kindly highlight
(1) one specific strength they showed or an
aspect they did well in during the

conversation, complimenting their effort or
skill in English, and (2) offer one focused
suggestion on how they can improve further,
making it actionable and clear. Use
colloquial language to maintain the
conversational tone, directly addressing the
student with "you", and where possible,

reference specific examples from their
speech to illustrate your points. Your
feedback should feel like a supportive nudge
towards their language learning journey,

keeping it concise and personalized.

---

Follow the following format.

Convo: ${convo}
Reasoning: Let's think step by step in order to

${produce the output}. We ...
Feedback: Treat this as a spoken conversation,

so be succinct, colloquial, and empathetic.

---

Convo: - Sorry, I have not get some information
about the personal medical data sharing.
Well, I think it's maybe something related
to digital. Like, it's different from the
traditional medical system. Like, all
medical systems transfer from the
traditional one into the digital one. And
maybe the digital systems will help the
hospital to organize the patients and to
regulate some patient's information with
high efficiency and better orders. So it may
saves a lot of time for some... - Yeah,

maybe like if you go to one hospital and if
the doctor keeps a capital record on his on
the paper then you left this hospital go to
another hospital the new doctor have no idea
about your situation if all information of

patients can put on the website or in other
words those are online information that
whether we change the hospital the doctor
can get access to our information and we can
show our situation to to those doctors yeah

it's a good idea - Yeah, if we put some
information online, it means we lose our
Privacy or our information is easy to be
steered by some Bad person. Yeah, maybe some
people they have some Some disease which
they don't want to be known They want to
keep at a secret if we upload their disease
Their information about this disease some
people there will feel uncomfortable maybe
we can like set some System which only
allowed the The doctor can see all this
information Information something like the
bank so people cannot get a sex to the
system if they are not Permated permitted to
do these things

Reasoning: Let's think step by step in order to
assess your spoken utterance. You have a
strong understanding of the topic and are
able to explain it clearly. However, you can
work on your pronunciation and grammar to
improve your fluency. For example, you can
practice pronouncing words like "information
" and "permitted" more clearly and work on
using proper verb tenses. Keep practicing
and you will continue to improve!

Feedback: You have a good grasp of the topic and
can explain it well. However, you can work
on your pronunciation and grammar to improve
your fluency. For example, try practicing
words like "information" and "permitted" and
using proper verb tenses. Keep practicing
and you'll get even better!

---

Convo: - The people who influence me the most
was my primary teacher, Ms Wong. She made me
follow the English teaching class on the
road to the next level. She is so gentle, so
calm, so professional. And the method she
is teaching, she is interesting. So in her
English class, my attention is always
focused. She makes me feel that English is a
very interesting subject. And she always
shares with me the experience in English
that she is in the world, her life, her
study life and the normal life in the world.
And that made me think that English is a
necessary and important skill. And it played
an important role in our life. - Yes, I
told her, I always, when I chat with my
friends, I will always mention this teacher.
She, although she is the primary English
teacher for me, is nearly 17 years ago. Yeah
, it's a long time and we haven't had a long
time to say that. I still remember her and
always remember what she did for us. - I
think the childhood is the most... It's the
most pure and carefree days. In that time
happiness is the very easy. And we always do
what we like. We don't need to concern our
life, concern how to make money for living.

Reasoning: Let's think step by step in order to
assess your spoken English skills. You have
a strong foundation in English, as evidenced
by your ability to express yourself clearly
and fluently. However, you can work on your
pronunciation and intonation to make your
speech more natural and engaging. For
example, you can practice speaking with a
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native speaker or listen to English podcasts
to improve your pronunciation and

intonation. Keep up the good work and
continue to practice, and you will see
improvement in no time!

Feedback: You have a great foundation in English,
and it's clear that you have a strong grasp
of the language. However, you can work on

your pronunciation and intonation to make
your speech sound more natural and engaging.
For example, you can try practicing with a

native speaker or listening to English
podcasts to improve your pronunciation and
intonation. Keep up the good work and keep
practicing, and you'll see improvement in no
time!

---

Convo: - Yes, of course. I usually focus on my
test work. - When I was reading books or I'm
doing some hard work. - I will find some

help, maybe from another people or from
folks.

Reasoning: Let's think step by step in order to
assess this spoken utterance. We can see
that you have a good grasp of basic English
skills, such as using the correct verb tense
and sentence structure. However, you may

want to work on your vocabulary and
pronunciation, as some words were
mispronounced and you used "folks" instead
of "people" or "others."

Feedback: You have a good understanding of basic
English skills, like using the right verb

tense and sentence structure. However, you
may want to focus on expanding your
vocabulary and improving your pronunciation.
For example, instead of saying "folks," you
can use "people" or "others." Keep

practicing and seeking help from others to
improve your skills.

---

Convo: - Well, as a way of recording things, I
think it's much simpler and easier for you
to take photos than writing a journal or
something like that. - No, not really,
because back then a few decades ago I think
going to cinema was really expensive and we
cannot afford it when I was a kid. - I
prefer go to cinema with my friends because
I don't have quite the same taste for movie
or films with my parents so our friends is
much better.

Reasoning: Let's think step by step in order to
assess your spoken English skills. We can
see that you have a good grasp of vocabulary
and can express your thoughts clearly.

However, you can work on your grammar and
sentence structure to make your speech more
fluent and natural. For example, instead of
saying "I prefer go to cinema", you can say
"I prefer going to the cinema". This will
make your sentence more grammatically
correct and sound more natural. Keep
practicing and you will improve in no time!

Feedback: You have a good grasp of vocabulary
and can express your thoughts clearly, which

is great! However, you can work on your
grammar and sentence structure to make your
speech more fluent and natural. For example,
instead of saying "I prefer go to cinema",
you can say "I prefer going to the cinema".
Keep practicing and you will improve in no
time!

---

Convo: - Small businesses like small pop and man
shops that people would open, small
restaurants. I think those are pretty, you
know, the go-to small business that one can
think of on top of their minds. - I think I
would prefer big companies because big
companies are more insured, the quality is
more controlled and if you have any issues
with the product you have easier time to get
a refund or replacement for small companies
. I do understand that they have higher
operation costs so sometimes they would try
not to have refunds and replacements and so
on. So it's understandable but as a consumer
I would prefer big companies with their
insurance policies so I think that is my
choice. - Well, I think it's better to live
it to work in a big company because in big
companies you have a bigger platform. You
have chances to learn from people who came
before you, who were also working in the
company. You have chances to work across
companies because you have a lot of business
dealing with them. And big companies often
give their staff training with something
that most small companies lack. So at least
at the beginning stage of your career, I
think working in a big company is definitely
a better way. They're the better choice for
most people.

Reasoning: Let's think step by step in order to
assess your spoken utterance. You have a
strong understanding of the differences
between small and big businesses, and you
provide specific examples to support your
points. However, you can work on your
pronunciation and intonation to make your
speech more clear and engaging. For example,
try to enunciate each word clearly and vary
your tone to emphasize important points.
This will help you communicate your ideas
more effectively.

Feedback: You have a good grasp of the
differences between small and big businesses
and you give good examples to support your
points. But you can work on your
pronunciation and intonation to make your
speech more clear and engaging. For example,
try to say each word clearly and change
your tone to emphasize important points.
This will help you communicate your ideas
more effectively.

---

Convo: - I like to listen to popular music. It
is easy to follow. It's easy to sing. I like
to share those favorite songs with my
friends together. And when I listen to some
music or some songs that sound so good, I
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like to listen to it again and again. - My
favorite singer is Joe Shen. He is a male
singer. His voice is similar to a female
singer's voice. His songs are clean and
clear and he can sing all kinds of songs. He
can speak eight languages. It's amazing. I

really like his songs. - Yeah, I do like art
. I like to, I like those pictures,
paintings. I really want to draw some
pictures by myself but I'm not good at it. I
'd like to see them.

Reasoning: Let's think step by step in order to

I.3 Rewrite Prompts

There are two stages to the rewrite process. In the
first stage, we employed the following prompt:
Shorten and rewrite this utterance to sound

simple, natural, and engaging; remove any
assessment of speech including pronunciation
and intonation:\n\n{empathetic_output}

Here, empathetic_output refers to the output
from the OPTIMIZED stage. We then continued
appending the following message to the current
session with ChatGPT:
Make your response different and casual, and

shorten to 3 - 4 sentences

The output from ChatGPT after this additional
prompting was used as the final output.

J Example Outputs at Different Stages

The following conversation segments are selected
at random and may contain ASR errors.

Conversation Segment:

1. To be honest, I don’t want to live on another
planet because I think the earth is comfortable
and it is suitable for us.

2. A little. I have some knowledge about the
moon and the moon.

3. When I was a student in primary school, I
went to... I often go to a picnic with my
friends.

Zeroshot: You have a good grasp of the topic and
can express your thoughts clearly. However, you
can work on your fluency and pronunciation to
make your speech more natural and easy to un-
derstand. For example, you can practice speaking
more slowly and enunciating your words clearly.
Also, try to listen to native speakers and imitate
their pronunciation to improve your own. Keep up
the good work!

Optimized: You have a good understanding of the
topic and can express your thoughts clearly, which
is great! However, you can work on your gram-
mar and sentence structure to make your speech
more fluent and natural. For example, instead of
saying “I went to... I often go to a picnic”, you
can say “I used to go on picnics with my friends
when I was a student in primary school.” This will
make your sentence more grammatically correct
and sound more natural. Keep practicing and you
will improve in no time!
Rewrite: You’ve got a good handle on the topic
and express yourself clearly, which is awesome!
Just tweak your grammar and sentence structure
for a smoother and more natural flow. For example,
instead of saying “I went to... I often go to a picnic,”
try “I used to go on picnics with my friends back
in primary school.” Keep at it, and you’ll get even
better in no time!

Conversation Segment:

1. Well, probably like less diet, less fat tissues
would really be beneficial to your health and
to your general functions.

2. What’s the word again? I’ve never heard of it.
Could you explain the terminology to me?

3. Okay, that sounds... Well, I’m asking you
the word you’re talking about the triple action
capillates. Yeah, but what’s that?

Zeroshot: You have a good understanding of vo-
cabulary and sentence structure, but you may need
to work on your pronunciation and listening skills.
For example, when you didn’t understand the word
“capillates,” you asked for clarification, which is
great. To improve, try practicing speaking and
listening to English more often. Keep asking for
clarification when needed, and you’ll continue to
improve.
Optimized: You have a good understanding of the
topic and can express your thoughts clearly, which
is great! However, you can work on your vocab-
ulary and pronunciation to improve your fluency.
For example, instead of saying “less diet,” you can
say “a healthier diet” and instead of saying “capil-
lates,” you can say “capillaries.” Keep practicing
and expanding your vocabulary to improve your
skills.
Rewrite: You’ve got a good grasp of the topic
and can explain things clearly, which is awesome!
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Just work on your vocab and pronunciation for
smoother conversation. Try swapping “less diet”
for “healthier diet” and “capillates” for “capillaries.”
Keep at it and keep expanding your vocab to get
even better!

Conversation Segment:

1. Hmm, actually it depends. If I’m concentrat-
ing on the things that I’m interested in, I won’t
feel bored. But if the things just go so embar-
rassed or so boring, I will distract by some-
thing else. And another situation is that I may
fall asleep.

2. Well, I actually do not have a memory of that.
Because I think sitting on the floors may be
the things that the boys do. And however, you
know, I’m a girl who likes a tiny and quiet
place to sit.

3. Of course, while speaking of a person with
these strong impression, I would say that was
my Chinese teacher in my primary school.
I remember she taught us in my fifth grade.
At my first sight, she looked really irradible,
which made me have the feeling of this teacher
is the person you can’t get along well with. So
I always keep the distance with her. However,
what upset me the most was right there. These
schools always don’t allow the students to
bring any entertainment things. I was just a
kid, so I bought some comics to my friend as
well as some classmates and spread it. Well,
the comics are really interesting. After my
Chinese teacher, who is also my class class
teacher, knew that she just threw it out of my
classroom window in front of all my class-
mates. And that was really embarrassing. So
that memory kept kept a long time in my mind
and I don’t really like that teacher. Even now,
I can still remember her with not really good
memories.

Zeroshot: You’re doing great in English, you can
express yourself well and your thoughts are clear.
But you can work on your pronunciation and into-
nation to make your speech more engaging and nat-
ural. Try practicing in front of a mirror or recording
yourself to identify areas for improvement. Keep it
up!
Optimized: You have a good understanding of the
topic and can express your thoughts clearly, which

is great! However, you can work on your grammar
and sentence structure to make your speech more
fluent and natural. For example, instead of saying
"I remember she taught us in my fifth grade", you
can say "I remember she taught us when I was in
fifth grade." Also, try to use more descriptive words
to make your story more engaging. Keep practicing
and you will continue to improve!
Rewrite: You’ve got a good grasp of the topic and
express yourself clearly, awesome! Just tweak your
grammar and sentence structure for a smoother
flow. For example, instead of saying "I remember
she taught us in my fifth grade," you could say "I
remember she taught us when I was in fifth grade."
Keep practicing, and you’ll keep improving!

Conversation Segment:

1. People are often willing to get to know new
people in various situations. Firstly, when
individuals join new social or professional en-
vironments, such as starting a new job or mov-
ing to a new city, they are more open to meet-
ing new people as they seek to establish social
connections and build a support network. Sec-
ondly,

2. People go to various places to meet new peo-
ple and expand their social circles. One com-
mon place is social events and gatherings such
as parties, social clubs and community events.
These provide opportunities for individuals to
interact with others who share similar interests
or are part of the same community.

3. Studying a conversation can be approached
in various ways depending on the context and
the individuals involved. One common way
is through initiating a topic of mutual interest.
This could involve asking open-ended ques-
tions or making observations about the current
situation. For example, at a social gathering,
one might start a conversation by comment-
ing on the events, complimenting someone’s
attire, or discussing a shared hobby.

Zeroshot: You’re great at starting conversations
and finding common interests with others, which is
a valuable skill in making new connections. How-
ever, you can work on being more confident and
assertive in your approach, as well as actively lis-
tening and asking follow-up questions to keep the
conversation going. For example, instead of just
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commenting on the events, try asking others about
their experiences or opinions. This will show your
interest and help you build deeper connections with
people.
Optimized: You have a good understanding of the
topic and can explain it clearly. However, you can
work on your pronunciation and intonation to make
your speech more engaging and natural. For exam-
ple, try to vary your tone and emphasize important
words to make your speech more interesting. Keep
practicing and you will continue to improve!
Rewrite: You’ve got a good grip on the topic and
explain it well. To spice up your speech, try varying
your tone and emphasizing important words. Keep
practicing, and you’ll keep getting better!

Conversation Segment:

1. Well, I’m afraid that I can’t give you the
straight answer. But in the city where I live
now, the weather is always raining because
it’s located in the southeastern part of China
and it’s also close to the sea. Sometimes I like
to stay in the sunny days because I really like
the moment when I read some books in the
afternoon in the sunny days.

2. Well, there are some different kinds of styles
in terms of weather situations in my home-
town. For instance, in spring, the air is mild
and fresh. In summer, the weather is so hot.
In autumn, the weather started to become a
little cold compared with the weather in sum-
mer. In winter, the weather in my hometown
is quite cold.

3. Well, I’m afraid that I can’t give you the
straight answer. This mainly depends on dif-
ferent situations. When the weather is so dry,
so when it’s raining, I really like the rainy
days. On the contrary, as I mentioned before,
I really like the time when I spent in the sunny
days like reading a book when I felt very tired.

Zeroshot: Hey there! Your pronunciation and in-
tonation are on point, making it easy for me to
understand you. But to make your speech more
interesting, try using different words and sentence
structures. For example, instead of saying "I re-
ally like", you can say "I’m fond of" or "I’m a big
fan of". Also, use more descriptive adjectives like
"scorching" or "sweltering" to paint a clearer pic-
ture. Keep practicing and you’ll see improvement
in no time!

Optimized: You have a good understanding of
different weather situations and can describe them
clearly, which is great! However, you can work
on your grammar and sentence structure to make
your speech more fluent and natural. For example,
instead of saying "I really like the time when I spent
in the sunny days", you can say "I really enjoy
spending time in the sunny days." Keep practicing
and you will continue to improve!
Rewrite: You’re good at understanding differ-
ent weather situations and describing them clearly,
that’s awesome! Just work on grammar and sen-
tence structure to make your speech flow better. For
example, say "I love spending time on sunny days"
instead of "I really like the time when I spent in
the sunny days." Keep practicing to improve even
more!
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Abstract

Using large language models (LLMs) for educa-
tional applications like dialogue-based teaching
is a hot topic. Effective teaching, however, re-
quires teachers to adapt the difficulty of content
and explanations to the education level of their
students. Even the best LLMs today struggle
to do this well. If we want to improve LLMs
on this adaptation task, we need to be able to
measure adaptation success reliably. However,
current STATIC metrics for text difficulty, like
the Flesch-Kincaid Reading Ease score, are
known to be crude and brittle. We, therefore,
introduce and evaluate a new set of PROMPT-
BASED metrics for text difficulty. Based on a
user study, we create PROMPT-BASED metrics
as inputs for LLMs. They leverage LLM’s gen-
eral language understanding capabilities to cap-
ture more abstract and complex features than
STATIC metrics. Regression experiments show
that adding our PROMPT-BASED metrics sig-
nificantly improves text difficulty classification
over STATIC metrics alone. Our results demon-
strate the promise of using LLMs to evaluate
text adaptation to different education levels.

1 Introduction
Large language models (LLMs) today can answer
wide-ranging questions and explain complex con-
cepts with high accuracy (Chung et al., 2022; Ope-
nAI, 2023). This development has motivated ex-
plorations into their uses for education, ranging
from automated student assessment and person-
alised content to dialogue-based teaching (Upad-
hyay et al., 2023; Sallam, 2023; Yan et al., 2023;
Hosseini et al., 2023).

Effective teaching requires that the difficulty of
content and explanations is tailored to the education
level of the students. Human teachers are trained to
do this, and adjust their material and style without
much prompting. However, this adaptation is not
just the adjustment of one variable. It is a com-
plex undertaking, touching upon lexicon, syntax,

Figure 1: Schematic overview of our approach to text
difficulty classification. We calculate relevant STATIC
and PROMPT-BASED metrics for a given input text. Ei-
ther or both metrics are then fed into a regression classi-
fier that makes a final classification.

pragmatics, and semantics. Improving the ability
of LLMs to adapt their outputs to different levels
of education is therefore crucial to unlocking their
usefulness for education. One of the most basic re-
quirements to achieve this goal is a way to measure
adaptation success.

Measuring whether a given output is appropriate
for a given level of education, however, is a very
difficult task. Existing STATIC metrics, like the
Flesch-Kincaid Reading Ease score (Flesch, 1948),
are based on simple formulas, heuristics, and word
counts. They share the brittleness of all heuristic
approaches and are known to be noisy measures
of text difficulty at best. Also, these metrics were
developed for longer-form explanations, like those
found in textbooks, rather than dialogue-style teach-
ing. Due to their reliance on counts, their estimates
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are unreliable in shorter formats. We need better
metrics to make improvements on the adaptabil-
ity of LLMs to education levels measurable. Only
when we can measure improvements can we make
tangible progress in leveraging LLMs for educa-
tional applications.1

As an alternative to STATIC metrics, we can use
classifiers to predict the educational level of a given
text. They generalize better and can be applied to
texts of varying lengths. However, these classifiers
are expensive to train and require more training
data than we usually have for a niche domain like
educational purposes. Similarly, human assessment
of difficulty may provide a gold standard, but it is
expensive to collect and, like all annotation tasks,
suffers from disagreement.

In this paper, we introduce and evaluate a new
set of PROMPT-BASED metrics for text difficulty as
complements to existing STATIC metrics. PROMPT-
BASED metrics are LLM prompts that exploit
the general language understanding capabilities
of LLMs to capture more abstract features of ed-
ucational texts than STATIC metrics. For exam-
ple, LLMs can flexibly classify the topic of a text,
which is one adaptation technique used by teachers
to adjust the content which called curriculum com-
pacting in pedagogy (Stamps, 2004). This would
be difficult to do with STATIC approaches.

We develop our selection of PROMPT-BASED

metrics based on a user study, where we ask a
group of university students to 1) assess the dif-
ficulty of educational texts and explain their rea-
soning, and 2) come up with prompts for an LLM
to change the difficulty of a given text. We then
translate the qualitative findings from both parts of
the study into concrete LLM prompts that serve as
PROMPT-BASED metrics. We incorporate prompts
from other studies to manage text readability with
LLMs (Imperial and Madabushi, 2023; Gobara
et al., 2024). We evaluate the ability of our new
PROMPT-BASED metrics to measure text appropri-
ateness for different education levels with a series
of regression experiments.

While PROMPT-BASED metrics perform on par
or better than zero-shot and few-shot LLM classi-
fiers, they are less useful for text difficulty classifi-
cation by themselves than STATIC metrics. How-

1Similarly, metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BLANC (Recasens and Hovy, 2011),
among others, kickstarted and sustained the development of
automated approaches to machine translation, summarization,
and coreference resolution, respectively.

ever, combining PROMPT-BASED and STATIC met-
rics significantly improves performance. This sug-
gests that PROMPT-BASED metrics capture relevant
signals beyond those captured by the large number
of STATIC metrics.

A combination of STATIC and PROMPT-BASED

metrics also provides a deeper understanding of
the key metrics or features that influence complex-
ity than classifiers could. Additionally, the fac-
tors that contribute to complexity in a scientific
text differ from those in a medical or a legal doc-
ument. By considering a range of metrics, we can
develop more accurate domain-specific measures.
Our multifaceted approach allows us to break down
complexity into its basic components, such as its
appropriateness for different education levels, lex-
ical or syntactic complexity, thematic topics, and
text readability.

Overall, PROMPT-BASED metrics empower edu-
cators to develop more effective content develop-
ment strategies with LLMs to engage learners of
all levels and backgrounds. We could have directly
trained classifiers; however, this approach would
not have enabled us to identify the most relevant
metrics.

Contributions

1. We conduct a user study to motivate the cre-
ation of novel PROMPT-BASED metrics of text
difficulty for educational texts (§2).

2. We show in a series of regression experiments
that these PROMPT-BASED metrics hold addi-
tional value for text difficulty classification be-
yond what STATIC metrics can capture (§4.3).

3. By leveraging the interpretability of our re-
gressions, we highlight the relative impor-
tance of individual STATIC and PROMPT-
BASED metrics (§4.5).

2 User Study
Our PROMPT-BASED metrics for text difficulty are
prompts based on the results of a one-day user
study we ran with a group of university students in
November 2023.

2.1 Study Design

The user study consisted of two main parts.
In the first part of our study, we asked partici-

pants to review 60 educational texts randomly sam-
pled from the ScienceQA dataset (Lu et al., 2022).
Each text consists of a question (e.g., “What is
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the mass of a dinner fork?”) with answer choices
(“70 grams or 70 kilograms”) and a longer-form
explanation of the solution. All texts we select here
are authentic educational materials from the social,
natural, or language sciences in schools. Partici-
pants were tasked with a) labeling the education
level of each text as appropriate for either elemen-
tary school, middle school, or high school and b)
explaining the reasoning behind their choice in a
short, free-text answer.

In the second part of our study, we asked partic-
ipants to rewrite scientific text explanations, also
sampled from ScienceQA, to be appropriate for
different education levels, with the help of an LLM
– in this case, ChatGPT. For example, participants
were asked to rewrite a middle school explanation
of thermal energy at the elementary and high school
levels with the help of prompts. We recorded
the prompts they used to get ChatGPT to accom-
plish the adaptation for them. Thus, we collected
prompts that are used both for text simplification
and for text complexification.

2.2 Study Participants

We ran our study as part of a hackathon at the Uni-
versity of Zurich. There were seven participants
aged between 21 and 31 years. Four participants
were female, three male. All participants were
students at Department of Computational Linguis-
tics from University of Zurich, enrolled at the time
in programs specializing in computational linguis-
tics, computer science, and AI. Five were study-
ing for a bachelor’s degree and two for a master’s
degree. The participants held prior educational
degrees from school systems across five different
countries. Their native languages include English,
Italian, German, Greek, and Ukrainian. They self-
reported their English language proficiency at C1
and C2 levels. Participants were compensated in
study credits that could be counted towards com-
pleting their program.

2.3 Study Results

The first task of our study yielded 276 classification
labels together with their corresponding descriptive
justifications. These include 120 label-explanation
pairs for middle school texts, 89 for high school,
and 67 for elementary school texts. In the second
task of our study, we collected 103 prompts for text
simplification and complexification. We share il-
lustrative examples of classifications, explanations,
and prompts in Appendix A.

In the next section, we use the qualitative results
from our study to motivate the construction of novel
PROMPT-BASED metrics for text appropriateness
for various education levels.

3 Metrics for Text Difficulty

3.1 Prompt-based Metrics

Since the metrics we introduce are based on the
prompts of language models rather than discrete
heuristics, we refer to them as ‘PROMPT-BASED’ to
distinguish them. The goal of the PROMPT-BASED

metrics we develop is to capture more abstract fea-
tures of educational texts than would be possible
with STATIC metrics, which typically focus on in-
dividual words and their statistics.

Figure 2: An illustrative example of the PROMPT-
BASED metric process. The green box contains the
education text from the ScienceQA dataset. The blue
box shows the predicted educational level and the ex-
planation. The red box contains the PROMPT-BASED
metrics based on the sample.

We derive our PROMPT-BASED metrics from the
results of our user study. Figure 2 shows an il-
lustrative example of our derivation process. We

unigrams

bigrams

trigrams

E
xp

la
na

tio
ns

‘basic concept’

‘example simple language’

‘simple’

N
eu
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l M

et
ric

s

label=’Elementary’

Figure 3: High-level view of the derivation process for
the PROMPT-BASED metrics using n-gram frequencies.
Function words are excluded.
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consider users’ explanations for why they consider
a specific educational text to be of elementary, mid-
dle, or high school level difficulty. Then, we iden-
tify recurring attributes and other explanation fea-
tures that several users mention to reflect them in
PROMPT-BASED metrics. We examine the distribu-
tions of unigrams, bigrams, and trigrams across all
three labels, excluding function words (see Figure
3). Some of the most frequent unigrams for the
elementary level include simple, basic, elementary;
for the high school level, high, complex, concepts;
and for the middle school level, explicit, explana-
tion, middle.

We qualitatively assessed the n-gram distribu-
tions, considering both frequencies and topic appro-
priateness, before finalizing the query construction.
Each PROMPT-BASED metric is a simple yes-no
question, which we use to prompt the LLMs. These
metrics encompass the most frequent unigrams and
less common bigrams and trigrams derived from
the findings of our study.

While, Gobara et al. (2024) demonstrate a
correlation between readability scores of LLM-
generated texts in education and human assess-
ments, Imperial and Madabushi (2023) indicate
challenges in LLMs effectively adjusting the read-
ability of text. We construct 63 PROMPT-BASED

metrics using this process. Each PROMPT-BASED

metric relates to either education level (30 metrics),
lexical or syntactic complexity (8 metrics), and
the topic of the text at hand (10 metrics). In addi-
tion, we include metrics about the text’s readability
score (15 metrics) based on the work by Imperial
and Madabushi (2023). The complete list of all our
PROMPT-BASED metrics is in Appendix C.

3.2 Existing Static Metrics

STATIC metrics are the baseline we want to im-
prove on. All STATIC metrics are based on simple
formulas, heuristics, or counts of words and other
textual features. These properties make them sim-
ple to apply but limit the conceptual complexity of
what they can reasonably measure. In total, we in-
clude 46 STATIC metrics, selected from those com-
piled in prior work (Flekova et al., 2016; Yaneva
et al., 2019; Xue et al., 2020; Baldwin et al., 2021).

These metrics encompass a variety of linguistic
characteristics, spanning from basic text-level mea-
sures like vocabulary size and word frequency to
sentence-level attributes such as sentence length
and syntactic complexity. Additionally, they
take into account the question-answering structure

within the input text. In the ScienceQA dataset,
each question is paired with its respective solution
and corresponding lecture. This segmentation of
information across educational levels facilitates the
computation of STATIC features for each section of
the question-answer solution and lecture indepen-
dently. For the complete list of 46 STATIC metrics,
see Appendix C.

4 Experiments
We conduct a series of classification experiments
to evaluate the usefulness of our novel PROMPT-
BASED metrics for measuring text difficulty. We
use a subset of the ScienceQA dataset, which con-
tains question-answer pairs across several topics
and education levels. Specifically, we run multino-
mial logistic regressions based on STATIC metrics,
PROMPT-BASED metrics, and the combination of
the two to evaluate the marginal benefits of our
new PROMPT-BASED metrics. We also compare
these regression approaches to using an LLM for
zero-shot and few-shot classification.

4.1 Dataset

All our experiments are based on the ScienceQA
dataset (Lu et al., 2022). There are 21,208 texts in
ScienceQA. Each text consists of a question with
answer choices, and a longer-form explanation of
the solution. Texts in ScienceQA are classified ac-
cording to their grade level using the K12 system
from the US education system. We simplify this
classification by collapsing the 12-grade levels into
just three: elementary school (grades 1 to 5), mid-
dle school (grades 6 to 8), and high school (grades
9 to 12).2 From the 21,208 texts in ScienceQA,
we sample only those that do not use images in
questions or explanations. We then deduplicate
and sample 1,516 texts for each education level to
create a balanced dataset of 4,548 texts. Of these
4,548 texts, we use 3,638 (80%) for training and
910 (20%) for evaluation. To our knowledge, ours
is the first use of the ScienceQA dataset for training
and evaluating text difficulty classifiers.

4.2 LLMs for Prompt-based Metrics

We use LLMs to compute the 63 PROMPT-BASED

metrics described in Section 3.1. In principle, any
LLM can serve this purpose. With 63 metrics for
4,548 texts, we get 286,524 prompts from each
LLM. This amount is prohibitively expensive for

2https://usahello.org/education/children/
grade-levels/
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paid services like GPT4. Hence, we concentrate
on state-of-the-art open LLMs, which we can exe-
cute at a low cost: Llama2 (Touvron et al., 2023),
Mistral (Jiang et al., 2023), and Gemma (Google,
2024). Llama2, launched in July 2023, comprises
both pre-trained and fine-tuned LLMs, ranging in
size from 7 billion to 70 billion parameters. It
has been reported to outperform other open-access
LLMs and exhibits capabilities comparable to Chat-
GPT across various tasks. In this paper, we use
Llama2-7b and Llama2-13b. The next model is
Mistral-7B, released in September 2023, another
open LLM surpassing similar-sized open LLMs.
We use Mistral-7b-Instruct-v0.2, which was pub-
lished in December 2023.

The last model we use is Gemma7b-it, based on
the Gemma base model and trained on open-source
mathematics datasets.

We set the model temperature to zero to make
responses deterministic. The maximum response
length is 256 tokens. Otherwise, we use stan-
dard generation parameters from the Hugging Face
transformers library. We collected all responses in
February 2024.

4.3 Multinomial Logistic Regression

We use simple multinomial logistic regression to
classify the difficulty level of texts. The task is
to predict the difficulty level Ci of a given edu-
cational text Si. Ci can take three ordinal values:
elementary, middle, or high school difficulty. In-
stead of including Si directly, we include sets of
STATIC and PROMPT-BASED metrics Mi that are
computed based on Si. We regress Mi on Ci on the
3,638 training texts and then evaluate on the 910
test education texts.

We vary which metrics we include across exper-
imental setups to evaluate the marginal benefits of
different metrics. There are three main setups of in-
terest: 1) PROMPT-BASED metrics only, 2) STATIC

metrics only, 3) the combination of the two, which
we refer to as COMBO.

4.4 Baseline: Zero- and Few-Shot
Classification

We exploit the general language capabilities of
LLMs to compute PROMPT-BASED metrics, which
we then use as inputs to a logistic classifier for text
difficulty. A natural follow-up question is whether
LLMs could directly predict text difficulty related
to education levels. Therefore, we incorporate a
baseline for zero-shot and few-shot text classifica-

tion. We test zero-shot and few-shot classification
with the same LLMs that we use for calculating our
PROMPT-BASED metrics. As an additional compar-
ison point, we test GPT-4 Turbo.

Note that while the logistic classifier is fitted
to our training data, the zero-shot LLM has not
seen any examples at inference time. In the few-
shot setting, we provide two examples for each
education level and prompt the model to assign one
of the desired labels without explanations.

To investigate the effect of different prompting
styles, we test five distinct prompt templates in our
zero-shot setup, each consisting of 25-30 words.
Additionally, each prompt contains a textual seg-
ment describing the text of the science question
answering for educational-level classification. We
compare performance across the five prompt tem-
plates to determine the most effective prompt, i.e.,
the strongest baseline for our experiments. We
evaluate the models’ responses on a subset of ran-
domly selected samples (n=100). The lowest per-
formance stands at 29%, while the highest achieve-
ment reaches 42%. We proceed with our experi-
ments under zero-shot and few-shot setups, using
the best performance style as our baselines. The se-
lected prompt for zero-shot experiments is: “Your
task is to predict the education level corresponding
to a given text. You are provided with three labels
to choose from: 1) elementary school 2) middle
school 3) high school. Text: [text] Educational
level: ”

We instructed LLMs to return one of the edu-
cation levels. Due to the difficulty of LLMs in
directly predicting the levels and complexity of the
text, we have responses without the desired edu-
cational level. In this case, we assigned a default
level to this invalid response, which is the “elemen-
tary level”. For example, Llama2-13b has 2.86%
invalid in zero-shot and 4.07% in few-shot. The
most-predicted class is elementary school level,
with 75.93% in zero-shot and 80% in few-shot.
The number of invalid responses for other models
is available in the Appendix D.

4.5 Results

Overall Performance Table 1 reports the over-
all results of our different logistic classifier se-
tups along with the ZERO-SHOT and FEW-SHOT

LLM classification baselines. We use Gemma-7b,
Mistral-7b, Llama2-7b, and Llama2-13b across all
referenced classification methods. GPT-4 is exclu-
sively used in the baseline due to the high cost of
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experiments.
The findings highlight the consistent superior-

ity of the COMBO approach in achieving the high-
est macro-F1 score, surpassing all other models.
Specifically, while the Llama2-7b model exhibits
comparatively lower performance when employing
the Prompt-based method, the Llama2-13b model
demonstrates the best performance across PROMPT-
BASED metrics. Notably, the Gemma-7b model
stands out as the best-performing model when us-
ing the COMBO metric. In terms of Prompt-based
regression, the average macro-F1 score across all
models stands at 0.62, with all PROMPT-BASED

metrics obtained directly through LLMs’ binary
classification prompts. The best performance over-
all is achieved by COMBO, which combines both
sets of metrics, resulting in a macro-F1 score of
0.86.

Nearly all models encounter difficulty in predict-
ing the educational level across both ZERO-SHOT

and FEW-SHOT methodologies. However, in these
experiments, the FEW-SHOT approach notably en-
hances the macro-F1 score. Additionally, Table 1
highlights that the best performance among base-
line approaches is achieved by GPT-4, attaining a
macro-F1 score of 0.63 in the FEW-SHOT setting.

Performance by Education Level To delve into
the performance more comprehensively, we split
out the results for each regression setup by label,
i.e., education level, in Table 2. Here, we dis-
play only the top-performing model based on the
PROMPT-BASED metric and provide the details of
the other models in Appendix D.

The overall picture of PROMPT-BASED regres-
sion shows that it faces difficulty in the classifica-
tion of educational level, while STATIC performs
much better, and COMBO performs best, which
indicates that there is an additional benefit to in-
cluding the PROMPT-BASED metrics.

We collect 1,000 bootstrap samples to train and
test the logistic regression models for each ap-
proach. This method helps in understanding the
variability and reliability of the model performance.
We use t-tests to determine if the observed differ-
ences in accuracies are statistically significant over
COMBO vs. STATIC. Results in Table 2 indicate a
statistically significant improvement.

Feature Importance One big benefit of our re-
gression approach over, for example, classification
with an LLM, is that we can easily measure the
feature importance of each metric that goes into

the classification result. For this purpose, we calcu-
late univariate F-tests between each metric and the
difficulty level variable. Table 3 shows the top-five
most important features, each among the PROMPT-
BASED and the STATIC metrics, based on these
F-tests for Llama2-13b model.

Most notably, the PROMPT-BASED metrics are
generally less important than the STATIC metrics.
On average, the top five most important STATIC

metrics are at least twice as significant as the top
five PROMPT-BASED metrics. The STATIC metrics
mainly focus on readability and lexical diversity,
while PROMPT-BASED metrics capture topic rele-
vancy and the inclusion of simple examples. Al-
though they may not carry the same weight, all of
the top metrics are highly statistically significant.

5 Discussion

5.1 The Value of Prompt-based Metrics

PROMPT-BASED metrics by themselves may not be
a good-enough basis for classifying text difficulty
(Table 1). STATIC metrics are much more effective
by comparison. However, our results also show that
PROMPT-BASED metrics do indeed capture relevant
features of the text that are not captured by STATIC

metrics since models that combine both kinds of
metrics clearly perform best overall. This is despite
the fact that the STATIC metrics we include are
many and highly diverse.

The practical usefulness of the particular
PROMPT-BASED metrics outlined in this paper
is evident. Moreover, the broader application of
PROMPT-BASED metrics holds promise for evaluat-
ing text complexity. Our experiments indicate that
the COMBO approach outperforms other models
consistently. Notably, most models exhibit supe-
rior macro-F1 scores in predicting elementary-level
texts, suggesting that distinguishing science ques-
tions at the elementary level is more discernible
compared to other educational levels.

Furthermore, we present the feature importance
of PROMPT-BASED metrics, noting that the primary
PROMPT-BASED metrics pertain to readability, un-
derstandability, and suitability of text for particular
educational levels. Additionally, topic relevance
(e.g., math or natural science) emerges as a sig-
nificant feature. In top 5 best features of STATIC

metrics are summarized through readability scores
ranging from the Gunning Fog Index to the Flesch-
Kincaid Index, along with a metric evaluating the
lexical diversity of the text.
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Method Gemma-7b Mistral-7b Llama2-7b Llama2-13b GPT-4

PROMPT-BASED Reg. 0.73 0.54 0.45 0.77 -
STATIC Reg. 0.81 0.81 0.81 0.81 -
COMBO Reg. 0.95 0.82 0.81 0.88 -

ZERO-SHOT LLM 0.35 0.34 0.35 0.35 0.51
FEW-SHOT LLM 0.37 0.37 0.45 0.47 0.65

Table 1: Macro-F1 for difficulty classification on test. PROMPT-BASED metrics, zero-shot, and few-shot (two
examples) performance are specific to each LLM. STATIC metrics are the same across models. Zero-shot and
few-shot classification use GPT4. Best performance per model in bold.

Level Precision Recall F1-Score

P
R

O
M

P
T Elem. 0.84 0.82 0.83

Middle 0.84 0.64 0.73
High 0.68 0.84 0.75

S
TA

T
IC Elem. 0.86 0.85 0.86

Middle 0.75 0.71 0.73
High 0.84 0.88 0.84

C
O

M
B

O Elem. 0.95* 0.93* 0.94*
Middle 0.89* 0.77* 0.83*
High 0.82 0.93* 0.87*

Table 2: Difficulty classification performance on test.
∗ = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Llama2-13b. Best performance per level in
bold.

Better PROMPT-BASED metrics identified in fu-
ture work may be even more effective complements
to Static metrics.

5.2 Limitations

Limited Scope of User Study The user study we
conducted provides a clear empirical motivation for
the PROMPT-BASED metrics we selected. This in
itself is a core contribution of our work. However,
due to resource and time constraints, the sample of
participants in the study is fairly small and of lim-
ited diversity. Future work could improve on our
approach by conducting larger studies or recruiting
participants from even more relevant professions
(e.g. teachers) to motivate the selection of even
better PROMPT-BASED metrics.

Limited Availability of Relevant Data Our ex-
periments are mostly constrained by the availabil-
ity of relevant data for text difficulty classification.
The ScienceQA dataset that we use is, to our knowl-
edge, the only dataset that fits our experimental

setup in terms of size and detail on education level.
Therefore, we cannot make any strong claims about
the generalisability of our results. Future work
could invest into building new datasets and test-
ing cross-domain performance of both Static and
PROMPT-BASED metrics, which would give useful
insights into which text features are most generally
indicate of text difficulty.

6 Related Work

6.1 Question Answering Datasets in
Education

The review study by AlKhuzaey et al. (2023) about
the literature on item difficulty classification re-
veals a significant shortage of publicly accessi-
ble datasets with items that are labeled according
to their difficulty levels. For example, Hsu et al.
(2018) gathered their dataset from national stan-
dardized entrance tests that often concentrate on
the medical and language fields, annotated with
the performance data of 270,000 examinees. This
study includes the necessity for a publicly accessi-
ble collection of standardized datasets and the need
for further exploration into alternative methods for
feature elicitation and classification modeling. The
lack of publicly available datasets for measuring
difficulty has led researchers toward the domain of
Automatic Question Generation (AQG) in recent
years. Typically, questions generated by AQG tend
to be more straightforward in structure and cogni-
tive demand than questions written by humans.

Most of these automatically generated questions
are basic, primarily addressing only the first level
of Bloom’s taxonomy, which is focused on re-
call (Leo et al., 2019). Another source of edu-
cational datasets is retrieved from online learning
platforms or websites specific to the study’s do-
main. An example includes the collection of 1,657
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Rank Metric F
Pr

om
pt

M
et

ri
cs 1 Based on the ARI, is this text suitable for ES readers? 251.77*

2 Is this text relevant to curriculum topics for ES students? 249.07*
3 Is this text about math? 248.17*
4 Is this text about natural science? 240.07*
5 Does this text contain simple examples? 235.96*

St
at

ic
M

et
ri

cs 1 Gunning Fog (measures readability) 817.86*
2 Coleman-Liau index (measures readability) 785.60*
3 Flesch-Kincaid Reading Ease (measures readability) 725.15*
4 Automated Readability Index (measures Readability) 686.87*
5 Number of unique Words (measures lexical diversity) 613.89*

Table 3: Five most important features for PROMPT-BASED and STATIC metrics in Llama2-13b. Feature importance
is measured using univariate F-tests. Larger F indicates higher feature importance. (ES: Elementary School, ARI:
Automated Readability Index) * indicates significance at >99.999% confidence.

programming problems from LeetCode3, labeled
with the number of solutions submitted and the pass
rate for each problem. Additionally, fewer datasets
are from domain-specific textbooks and preparation
books, particularly prevalent in the language do-
main for their role in training students for language
proficiency exams. Domain experts developed the
remaining sources to meet specific study goals, and
according to AlKhuzaey et al. (2023), only 7%
from school or university-level assessments.

The Stanford Question Answering Dataset
(SQuAD), developed by Rajpurkar et al. (2016),
features 150,000 questions in the form of
paragraph-answer pairs sourced from Wikipedia ar-
ticles. This dataset was utilized by Bi et al. (2021)
to develop and test their models for predicting the
difficulty of reading comprehension questions. Lu
et al. (2022) created a multimodal science question-
answering datasets, which includes 21,000 English
passages from school reading exams, each accom-
panied by four multiple-choice questions. The Sci-
enceQA dataset provides metadata fields for each
question, including extensive solutions and gen-
eral explanations which made it suitable for this
study (Lu et al., 2022).

6.2 Automatic Evaluation of Educational
Content

The difficulty level classification of questions pre-
sented to students is crucial for facilitating more
effective and efficient learning. Pérez et al. (2012)
shows teachers usually fail to identify the correct
difficulty level of the questions according to their

3https://leetcode.com

students’ answers and final scores. The student’s
perception of the difficulty also changes across
grades and subjects. AlKhuzaey et al. (2023) dis-
covers that linguistic features significantly influ-
ence the determination of question difficulty levels
in educational assessments. They have explored
various syntactic and semantic aspects to under-
stand the complexity of these questions. Crossley
et al. (2019) shows the value of using crowdsourc-
ing methods to gather human assessments of text
comprehension, coupled with linguistic attributes
derived from advanced readability metrics. This
approach aids in creating models that explain how
humans understand and process text, as well as
factors influencing reading speed. Crossley et al.
(2023) examined the effectiveness of new readabil-
ity formulas developed on the CommonLit Ease of
Readability (CLEAR) corpus using more efficient
sentence-embedding models and comparing them
to traditional readability formulas. They did not tru
LLMs directly for difficulty classification task. In
their respective studies, Imperial and Madabushi
(2023), Rooein et al. (2023), and Gobara et al.
(2024) leverage Large Language Models (LLMs)
for content generation, focusing specifically on
controlling readability scores. Their research il-
luminates the inherent challenges and limitations
encountered when attempting to effectively adapt
LLMs for this purpose.

7 Conclusion
Good teachers succeed in making the material un-
derstandable for their respective audiences. This
adaptation is a complex process that goes well be-
yond replacing individual words and phrases. How-
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ever, existing STATIC metrics for text difficulty,
like the Flesch-Kincaid Reading Ease score, still
focus on precisely those elements. As a result,
these metrics are crude and brittle, failing to adapt
to new domains and working mainly on long-form
documents.

Our experiments reveal the promising poten-
tial of LLMs in predicting educational difficulty
through using the PROMPT-BASED metrics rather
than prompting the model directly. These met-
rics were derived from a small-scale user study
involving students. Empirically, we demonstrate
that when combined with traditional static metrics,
these PROMPT-BASED metrics enhance text diffi-
culty classification.

Our study paves the way for novel applications
of LLMs in educational contexts. By involving
more educational stakeholders, such as teachers,
we can gather more representative PROMPT-BASED

metrics, facilitating future advancements in diffi-
culty classification.

Ethical Considerations
The participants in the user study we used in our pa-
per were student volunteers for a course on related
topics. They could leave the study at any point and
were compensated in course credits that could be
counted towards their study program. The study
was conducted in accordance with the rules of the
host university and passed its ethics assessment.
The risk for harm to the participants in this setting
was assessed as minimal.
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A Selected Prompts from the User Study
We collect the top prompts of the students from
the chat history with analytical, manual, and AI
Assistant (ChatGPT).

A.1 Elementary School:

- Simplify a text for elementary school, using sim-
ple language for 6-12 years olds. - Create an el-
ementary version of a high school lecture text. -
Simplify a high school text for elementary school.
- Explain in a way an 8-year-old would understand.
- This is a text meant for high school students. Can
you help me make an appropriate version for ele-
mentary school students with very simple language
and comprehensive, easy-to-understand examples?

A.2 Middle School:

- Give examples from middle school lectures. -
Adapt a high school text for middle school, using
less advanced language. - Be more textbook-like
and more to the point for the level of middle school.
- Adapt content for a student in middle school. -
Simplify a lecture text for middle school using
illustrative examples.
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A.3 High School:

- Enhance scientific accuracy and add comprehen-
sive examples for the high school level. - Adapt a
middle school text for high school, using advanced
language. - Increase difficulty for high school, with
advanced vocabulary and scientific concepts. - Can
you make it more scientific and less story-telling-
like? - Increase the difficulty level with compre-
hensive examples.

B Parameter settings
The Static metrics are collected by Python pack-
ages such as nltk(3.8.1), pandas(2.2.0),
textstat(0.7.3, spacy(3.7.4). We
use nltk.download to get data for ‘stop-
words’, ‘cmudict’, ‘wordnet’, and ‘aver-
aged_perceptron_tagger’.

We performed 8-bit quantization for collecting
prompt-based metrics and baselines, with a maxi-
mum input length of 2048 tokens and a maximum
output length of 256 tokens. This process was re-
stricted to a single run due to our utilization of
pre-trained models readily accessible in Hugging-
Face Transformers.

For Regression model, we use scikit-learn pack-
age and SelectKBest with f_classif score func-
tion.

C List of Metrics

C.1 Static Metrics

Table 4 shows all static metrics.

C.2 Prompt-based Metrics

Is this text readable for an elementary school stu-
dent?, Is this text suitable for an elementary school
student?, Is this text easy to understand for ele-
mentary school students?, Is this text relevant to
curriculum topics for elementary school students?,
Is this text relevant to the knowledge and experi-
ences of elementary school students?, Could an
average elementary school student engage with the
content of this task?, Could most elementary school
students complete this task without significant dif-
ficulty?, Is this text appropriate for the skills and
knowledges of elementary school students?, Is the
length of this text suitable for elementary school
students?, Would the vocabulary in this text be com-
prehensible to elementary school students?, Is this
text readable for a middle school student?, Is this
text suitable for a middle school student?, Is this
text easy to understand for middle school students?,
Is this text relevant to curriculum topics for middle

school students?, Is this text relevant to the knowl-
edge and experiences of middle school students?,
Could an average middle school student engage
with the content of this task?, Could most middle
school students complete this task without signif-
icant difficulty?, Is this text appropriate for the
skills and knowledges of middle school students?,
Is the length of this text suitable for middle school
students?, Would the vocabulary in this text be
comprehensible to middle school students?, Is this
text readable for a high school student?, Is this text
suitable for a high school student?, Is this text easy
to understand for high school students?, Is this text
relevant to curriculum topics for high school stu-
dents?, Is this text relevant to the knowledge and ex-
periences of high school students?, Could an aver-
age high school school student engage with the con-
tent of this task?, Could most high school students
complete this task without significant difficulty?, Is
this text appropriate for the skills and knowledges
of high school students?, Is the length of this text
suitable for high school students?, Would the vocab-
ulary in this text be comprehensible to high school
students?, Does this text contain metaphors and/or
figurative language?, Does this text use complex
language?, Does this text use simple language?,
Does this text contain technical jargon?, Is this
text about science?, Is this text about language sci-
ence?, Is this text about natural science?, Is this
text about social science?, Is this text about math?,
Is this text about physics?, Is this text about chem-
istry?, Is this text about earth science?, Is this text
about world history?, Is this text about geography?,
Based on the Flesch-Kincaid reading-ease score,
is this text suitable for elementary school readers?,
Based on the Flesch-Kincaid reading-ease score, is
this text suitable for middle school readers?, Based
on the Flesch-Kincaid reading-ease score, is this
text suitable for high school readers?, Based on
the Gunning Fog Index, is this text suitable for el-
ementary school readers?, Based on the Gunning
Fog Index, is this text suitable for middle school
readers?, Based on the Gunning Fog Index, is this
text suitable for high school readers?, Based on
the Coleman-Liau Index, is this text suitable for
elementary school readers?, Based on the Coleman-
Liau Index, is this text suitable for middle school
readers?, Based on the Coleman-Liau Index, is this
text suitable for high school readers?, Based on
the Automated Readability Index (ARI), is this text
suitable for elementary school readers?, Based on
the Automated Readability Index (ARI), is this text
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Table 4: List of Static metrics

Feature Description
n_words_q Number of words in the question
n_words_a_solution Number of words in the solution of an answer
n_words_a_lecture Number of words in the lecture
Text_Length Length of the text
Word_Count Total word count
Nouns Number of nouns
Verbs Number of verbs
Adjectives Number of adjectives
Adverbs Number of adverbs
Num_Numbers Number of numeric characters
Num_Commas Number of commas
Num_Complex_Words Number of complex words
Num_Unique_Words Number of unique words
Num_Content_Words Number of content words
Num_Content_Words_No_Stopwords Number of content words excluding stopwords
Word_Length_Syllables Average word length in syllables
Avg_Sentence_Length Average sentence length
Num_Prepositional_Phrases Number of prepositional phrases
Num_Negated_Words_Stem Number of negated words stemmed
Num_Negated_Words_Lead_In Number of negated words leading in
Num_Main_Noun_Phrases Number of main noun phrases
Avg_Main_NP_Length Average length of main noun phrases
Num_Verb_Phrases Number of verb phrases
Prop_Active_Voice_Verbs Proportion of active voice verbs
Prop_Passive_Voice_Verbs Proportion of passive voice verbs
Ratio_Active_to_Passive_Verbs Ratio of active to passive voice verbs
Num_Words_Before_Main_Verb Number of words before the main verb
Num_Agentless_Passive_Constructions Number of agentless passive constructions
Word_Length_Std_Dev Standard deviation of word lengths
Num_Polysemic_Words Number of polysemic words
Num_Word_Senses Number of word senses
Num_Word_Senses_For_Content_Words Number of word senses for content words
Num_Word_Senses_For_Nouns Number of word senses for nouns
Num_Word_Senses_For_Verbs Number of word senses for verbs
Num_Word_Senses_For_Non_Auxiliary_Verbs Number of word senses for non-auxiliary verbs
Num_Word_Senses_For_Adjectives Number of word senses for adjectives
Num_Word_Senses_For_Adverbs Number of word senses for adverbs
Distance_To_Root_Nouns Distance to root for nouns
Distance_To_Root_Verbs Distance to root for verbs
flesch_kincaid_grade Flesch-Kincaid grade level
flesch_kincaid_ease Flesch-Kincaid ease score
coleman_liau_index Coleman-Liau index
automated_readability_index Automated Readability Index
smog_index SMOG index
gunning_fog Gunning Fog index
traenkle_bailer_index Traenkle-Bailer index
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suitable for middle school readers?, Based on the
Automated Readability Index (ARI), is this text
suitable for high school readers?, Based on the
SMOG Index, is this text suitable for elementary
school readers?, Based on the SMOG Index, is
this text suitable for middle school readers?, Based
on the SMOG Index, is this text suitable for high
school readers?, Does this text contain basic con-
cepts that are easy to comprehend?, Does this text
cover multiple concepts?, Does this text provide a
very explicit explanation?, Does this text contain
simple examples?

D Details over Gemma-7B, Mistral-7B,
and Llama2-7B

We describe the performance of these models in
detail. Gemma7b has 10.33% invalid response in
zero-shot and 9.56% over few-shot. The majority
of the predicted class is high school level 73.41%
in zero-shot and 72.75% in few-shot. Mistral7b has
15.49% invalid response in zero-shot and 6.37%
invalid in few-shot and with majority of classifi-
cation for high school level with 66.04% in zero-
shot and 42.31% for elemetary school in few-shot.
Llama2-7b has 13.08% invalid in zero-shot and
5.49% in few-shot and the majority of elementary
school classification with 66.26% in zero-shot and
also 76.04% in few-shot. Gpt-4 has only 5.93%
invalid in zero-shot and 0.77% in few-shot. Gpt-4
predicted also the high school level as the highest
classification with 41.54% in zero-shot and 40.22%
in few-shot.

Level Precision Recall F1-Score

P
R

O
M

P
T-

B
A

S
E

D Elem. 0.83 0.81 0.82
Middle 0.75 0.57 0.65
High 0.66 0.81 0.65

S
TA

T
IC Elem. 0.86 0.85 0.86

Middle 0.75 0.71 0.73
High 0.84 0.88 0.86

C
O

M
B

O Elem. 0.98* 0.98* 0.98*
Middle 0.98* 0.91* 0.95*
High 0.91* 0.97* 0.94*

Table 5: Difficulty classification performance on test.
∗ = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Gemma-7b. Best performance per level in
bold.

Level Precision Recall F1-Score

P
R

O
M

P
T Elem. 0.46 0.86 0.60

Middle 0.92 0.83 0.88
High 0.34 0.10 0.16

S
TA

T
IC Elem. 0.86 0.85 0.86

Middle 0.75 0.71 0.73
High 0.84 0.88 0.86

C
O

M
B

O Elem. 0.76 0.95* 0.84*
Middle 0.85 0.90* 0.88*
High 0.89 * 0.64 0.75

Table 6: Difficulty classification performance on test.
∗ = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Mistral-7b. Best performance per level in
bold.

Level Precision Recall F1-Score

P
R

O
M

P
T Elem. 0.44 0.47 0.45

Middle 0.62 0.61 0.62
High 0.29 0.28 0.28

S
TA

T
IC Elem. 0.86 0.85 0.86

Middle 0.75 0.71 0.73
High 0.84 0.88 0.86

C
O

M
B

O Elem. 0.88* 0.97* 0.93*
Middle 0.72 0.74* 0.73*
High 0.83 0.73 0.78

Table 7: Difficulty classification performance on test.
∗ = statistically significant improvements of COMBO
over STATIC at p = 0.05 (bootstrap). PROMPT-BASED
metrics use Llama2-7b. Best performance per level in
bold.
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Rank Metric F
Pr

om
pt

1 Based on the Coleman-Liau Index, is the text suitable for MS readers? 105.09*
2 Is this text readable for a MS student? 104.42*
3 Based on the SMOG Index, is this text suitable for MS readers? 103.53*
4 Is this text suitable for a MS student? 94.21*
5 Based on the Gunning Fog Index, is this text suitable for MS readers? 92.35*

St
at

ic
M

et
ri

cs 1 Gunning Fog (measures text readability) 817.86*
2 Coleman-Liau index (measures text readability) 785.60*
3 Flesch-Kincaid Reading Ease (measures readability) 725.15*
4 Automated Readability Index (measures lexical diversity) 686.87*
5 Number of unique Words (measures lexical diversity) 613.89*

Table 8: Top five most important features among the PROMPT-BASED and STATIC metrics. Feature importance is
measured using univariate F-tests. Larger F indicates higher feature importance. (MS: Middle School) PROMPT-
BASED metrics use the Gemma-7B model. * indicates significance at >99.999% confidence.

Rank Metric F

Pr
om

pt

1 Based on the Gunning Fog Index, is this text suitable for ES readers? 209.84*
2 Is this text easy to understand for ES students?? 193.22*
3 Is this text Suitable for ES students 190.61*
4 Is this text about math? 175.72*
5 Is this text relevant to curriculum topics for ES students? 175.08*

St
at

ic
M

et
ri

cs 1 Gunning Fog (measures text readability) 817.86*
2 Coleman-Liau index (measures text readability) 785.60*
3 Flesch-Kincaid Reading Ease (measures readability) 725.15*
4 Automated Readability Index (measures Readability) 686.87*
5 Number of unique Words (measures lexical diversity) 613.89*

Table 9: Top five most important features among the PROMPT-BASED and STATIC metrics. Feature importance
is measured using univariate F-tests. Larger F indicates higher feature importance. (ES: Elementary School)
PROMPT-BASED metrics use the Mistral-7B model. * indicates significance at >99.999% confidence.

Rank Metric F

Pr
om

pt
-b

as
ed

M
et

ri
cs 1 Is this text relevant to curriculum topics for ES students? 139.66*

2 Is this text suitable for an ES student? 136.97*
3 Is this text readable for an ES student 132.89*
4 Based on the Gunning Fog Index, is this text suitable for MS readers?" 125.51*
5 Is this text about natural science? 124.52*

St
at

ic
M

et
ri

cs 1 Gunning Fog (measures text readability) 817.86*
2 Coleman-Liau index (measures text readability) 785.60*
3 Flesch-Kincaid Reading Ease (measures readability) 725.15*
4 Automated Readability Index (measures Readability) 686.87*
5 Number of unique Words (measures lexical diversity) 613.89*

Table 10: Top five most important features among the PROMPT-BASED and STATIC metrics. Feature importance is
measured using univariate F-tests. Larger F indicates higher feature importance.(ES: Elementary School, MS: Middle
School) PROMPT-BASED metrics use the Llamma2-7B model. * indicates significance at >99.999% confidence.
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Abstract

Large Language Models (LLMs) have been re-
ported to outperform existing automatic evalu-
ation metrics in some tasks, such as text sum-
marization and machine translation. However,
there has been a lack of research on LLMs
as evaluators in grammatical error correction
(GEC). In this study, we investigate the per-
formance of LLMs in English GEC evaluation
by employing prompts designed to incorporate
various evaluation criteria inspired by previous
research. Our extensive experimental results
demonstrate that GPT-4 achieved Kendall’s
rank correlation of 0.662 with human evalu-
ations, surpassing all existing methods. Fur-
thermore, in recent GEC evaluations, we have
underscored the significance of the LLMs scale
and particularly emphasized the importance of
fluency among evaluation criteria.

1 Introduction

Large Language Models (LLMs) have surpassed
existing systems in various NLP tasks, showcas-
ing their high capabilities of language understand-
ing and generation (Ye et al., 2023; Bubeck et al.,
2023). These LLMs, which have had a significant
impact on recent NLP research, also demonstrate
the ability to produce high-quality corrections in
grammatical error correction (GEC) (Schick et al.,
2022; Dwivedi-Yu et al., 2022; Fang et al., 2023;
Loem et al., 2023; Coyne et al., 2023).

In recent years, several studies have been con-
ducted on the use of LLMs as an evaluator. In
text summarization, dialogue generation, and ma-
chine translation, GPT-4 has demonstrated superior
performance compared to existing automatic eval-
uation metrics (Liu et al., 2023b; Kocmi and Fed-
ermann, 2023). While there is very little research
on GEC evaluation, considering GPT-4’s ability
to explain grammatical errors with 90% accuracy
in human evaluations (Song et al., 2023), it holds
potential for evaluating corrections. Sottana et al.

Edit-based 
evaluation

Sentence-
based 

evaluation

Correction Evaluation
Prompt

Criteria-focused
Prompt

Difficulty

Impact

Grammaticality

Fluency

Meaning 
Preservation
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Score 4

Score 3
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Figure 1: Evaluation framework using LLMs.

(2023) conducted meta-evaluation using a limited
number of systems, but there has been no com-
prehensive analysis using dozens of systems like
traditional approaches such as Grundkiewicz et al.
(2015) and Kobayashi et al. (2024).

Therefore, we aim to explore the extent to which
LLMs operate as evaluation models in English
GEC. Specifically, we conduct GEC evaluations
using LLMs with prompts at different evaluation
granularities to investigate how evaluation capabil-
ities change with the presence of evaluation crite-
ria and the scale of LLMs, as shown in Figure 1.
Kobayashi et al. (2024)’s work on the evaluation
of metrics (i.e., meta-evaluation) has revealed that
conventional metrics lack the resolution to cap-
ture performance differences in high-performing
GEC systems. Given this current state, to facilitate
proper GEC evaluation moving forward, we inves-
tigate the potential of LLMs by comparing them
with conventional metrics through meta-evaluation.

Our contributions are summarized as follows. (1)
We conducted a comprehensive investigation into
the performance of LLMs as evaluators in GEC,
and the results showed that GPT-4 achieved state-
of-the-art performance, indicating the usefulness
of considering evaluation criteria in prompts (espe-
cially fluency). (2) It was suggested that as LLM
scales decrease, the correlation with human evalua-
tions decreases, and the ability to capture fluency
in corrected sentences diminishes. Smaller LLMs
tend to avoid extreme scores, while larger LLMs

68



tend to assign higher scores.

2 Experiment setup

In this section, we explain the considered GEC
metrics (§2.1) and meta-evaluation methods (§2.2).

2.1 Considered metrics

GEC metrics: We use two types of evaluation
metrics: Edit-Based Metrics (EBMs), which as-
sess only the edits made in the corrected text, and
Sentence-Based Metric (SBMs), which evaluate
the overall quality of the corrected sentences.

For EBMs, we employ four metrics.

• M2 (Dahlmeier and Ng, 2012) dynamically
extracts edits using Levenshtein algorithm to
maximize overlap with gold annotations from
the hypothesis sentences and calculates the
F-score.

• ERRANT (Bryant et al., 2017) is similar to
M2, but it differs in that it uses a linguistically
extended Damerau-Levenshtein algorithm for
edit extraction to enhance the alignment of
tokens with similar linguistic properties.

• GoToScorer (Gotou et al., 2020) calculates
an F-score taking into account the difficulty
of corrections. The difficulty is defined based
on the number of systems that could correctly
correct errors per total number of systems.

• PT-M2 (Gong et al., 2022) combines M2

with BERTScore (Zhang et al., 2019), en-
abling the measurement of semantic similarity
in addition to simply comparing edits.

For SBMs, we utilize four metrics.

• GLEU (Napoles et al., 2015) rewards n-
grams in the hypothesis sentence that match
the reference but are not in the source sentence
while penalizing n-grams in the source that
do not match the reference. We use GLEU
without tuning (Napoles et al., 2016).

• Scribendi Score (Islam and Magnani, 2021)
evaluates based on GPT-2 perplexity, token
sort ratio, and Levenshtein distance ratio.

• SOME (Yoshimura et al., 2020) fine-tunes
BERT (Devlin et al., 2019) using human eval-
uation scores based on three criteria: gram-
maticality, fluency, and meaning preservation.

• IMPARA (Maeda et al., 2022) utilizes a qual-
ity estimation model and a similarity model
based on BERT to consider the impact of ed-
its.

LLMs: We consider three LLMs: LLaMa 2 (Tou-
vron et al., 2023) (13B for chat), GPT-3.5 (Ouyang
et al., 2022) (gpt-3.5-turbo-1106), and GPT-
4 (OpenAI, 2023) (gpt-4-1106-preview), con-
ducting evaluations using prompts to assess both ed-
its and sentences separately. LLMs for edit-based
evaluation are denoted with “-E” at the end, while
ones for sentence-based evaluation have “-S” at
the end. Furthermore, we created prompts focus-
ing on GEC evaluation criteria to investigate the
impact of prompts on evaluation performance, com-
paring them with the base prompt. For simplicity,
this experiment uses only GPT-4 as the base LLM
architecture. GPT-4-E, which evaluates edits, fo-
cuses on the difficulty of corrections (Gotou et al.,
2020) and the impact of edits (Maeda et al., 2022).
GPT-4-S, which evaluates sentences, uses prompts
focusing on grammaticality, fluency, and meaning
preservation (Asano et al., 2017; Yoshimura et al.,
2020). Detailed information on each prompt is
provided in Appendix A.

2.2 Meta-evaluation methods
We conduct system-level and sentence-level meta-
evaluations using SEEDA dataset (Kobayashi
et al., 2024). SEEDA consists of human evalu-
ations at two different granularities: edit-based
and sentence-based, for 12 outputs from neural-
based GEC systems and 3 human-authored sen-
tences. The dataset comprises two components:
SEEDA-E based on edit-based evaluation and
SEEDA-S based on sentence-based evaluation. In
SEEDA, for correction pairs (A, B) sampled from
these corrected sentence collections, three anno-
tators provide 5-point scores for each granularity,
resulting in 5347 pairwise judgments (A>B, A=B,
A<B). Subsequently, human rankings (from 1st
to 15th place) of systems are obtained from pair-
wise judgments using rating algorithms such as
Trueskill (Sakaguchi et al., 2014) and Expected
Wins (Bojar et al., 2013). We conduct two varia-
tions of meta-evaluation: “Base”, which uses the
12 systems excluding outliers, and “+ Fluent corr.”,
which adds two fluent corrected sentences1 addi-
tionally.

1In GEC, there are two types of edits: minimal edits, which
make the minimum necessary corrections, and fluency edits,
which aim to make the sentence more fluent.
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Metric

System-level Sentence-level
SEEDA-E SEEDA-S SEEDA-E SEEDA-S

Base + Fluent corr. Base + Fluent corr. Base + Fluent corr. Base + Fluent corr.
r ρ r ρ r ρ r ρ Acc τ Acc τ Acc τ Acc τ

M2 0.791 0.764 -0.239 0.161 0.658 0.487 -0.336 -0.013 0.582 0.328 0.527 0.216 0.512 0.200 0.496 0.170
ERRANT 0.697 0.671 -0.502 0.051 0.557 0.406 -0.587 -0.116 0.573 0.310 0.511 0.188 0.498 0.189 0.471 0.129
GoToScorer 0.901 0.937 0.667 0.916 0.929 0.881 0.627 0.881 0.521 0.042 0.505 0.009 0.477 -0.046 0.504 0.009
PT-M2 0.896 0.909 -0.083 0.442 0.845 0.769 -0.162 0.336 0.587 0.293 0.542 0.200 0.527 0.204 0.528 0.180
GLEU 0.911 0.897 0.053 0.482 0.847 0.886 -0.039 0.475 0.695 0.404 0.630 0.266 0.673 0.351 0.611 0.227
Scribendi Score 0.830 0.848 0.721 0.847 0.631 0.641 0.611 0.717 0.377 -0.196 0.359 -0.240 0.354 -0.238 0.345 -0.264
SOME 0.901 0.951 0.943 0.969 0.892 0.867 0.931 0.916 0.747 0.512 0.743 0.494 0.768 0.555 0.760 0.531
IMPARA 0.889 0.944 0.935 0.965 0.911 0.874 0.932 0.921 0.742 0.502 0.725 0.455 0.761 0.540 0.742 0.496
GPT-3.5-E -0.059 0.182 -0.844 -0.257 -0.270 -0.245 -0.900 -0.525 0.463 -0.073 0.428 -0.143 0.487 -0.026 0.437 -0.126
GPT-4-E 0.911 0.965 0.845 0.974 0.839 0.846 0.786 0.899 0.728 0.455 0.702 0.404 0.698 0.395 0.687 0.374
+ Difficulty 0.941 0.972 0.909 0.978 0.885 0.860 0.863 0.908 0.719 0.437 0.708 0.417 0.717 0.434 0.703 0.406
+ Impact 0.905 0.986 0.848 0.987 0.844 0.860 0.793 0.908 0.730 0.460 0.710 0.420 0.717 0.434 0.696 0.392

Llama 2-S 0.534 0.427 0.161 0.349 0.482 0.273 0.090 0.235 0.521 0.042 0.527 0.054 0.534 0.068 0.526 0.052
GPT-3.5-S 0.878 0.916 0.302 0.648 0.770 0.636 0.199 0.433 0.633 0.265 0.597 0.195 0.631 0.263 0.608 0.216
GPT-4-S 0.960 0.958 0.967 0.969 0.887 0.860 0.931 0.908 0.798 0.595 0.783 0.565 0.784 0.567 0.770 0.540
+ Grammaticality 0.961 0.937 0.981 0.956 0.888 0.867 0.953 0.912 0.807 0.615 0.804 0.607 0.796 0.592 0.788 0.577
+ Fluency 0.974 0.979 0.981 0.982 0.913 0.874 0.952 0.916 0.831 0.662 0.812 0.624 0.819 0.637 0.797 0.594
+ Meaning Preservation 0.911 0.960 0.976 0.974 0.958 0.881 0.952 0.925 0.813 0.626 0.793 0.587 0.810 0.620 0.792 0.584

Table 1: Results of system-level and sentence-level meta-evaluations. GPT-4-S demonstrated higher performance
compared to existing GEC metrics, showing the most improvement in correlation when focusing on fluency.

System-level meta-evaluation: In the system-
level meta-evaluation, we utilize the system scores
derived from human rankings of systems using
TrueSkill (Sakaguchi et al., 2014). For metrics
like SOME, where system-level scores cannot be
directly calculated, we use the average of sentence-
level scores as a substitute. Additionally, for LLMs,
we employ system scores derived from LLMs rank-
ings (Appendix B) similar to human rankings. To
measure the correlation between human evalua-
tions and metric scores, we use Pearson correlation
(r) and Spearman rank correlation (ρ). To ensure
proper correlation calculation, we use the set of
sentences that humans evaluated to compute the
metric scores.

Sentence-level meta-evaluation: In the
sentence-level meta-evaluation, we use pairwise
judgments from SEEDA. To investigate the
proximity between human evaluations and metric
scores, we employ Accuracy (Acc) and Kendall’s
rank correlation (τ ). Kendall (τ ) is valuable for
assessing performance in common use cases where
corrections are compared to each other.

3 Results

In this section, we analyze the performance of
LLMs as GEC evaluators in system-level (§3.1)
and sentence-level meta-evaluations (§3.2). Addi-
tionally, we conduct further analysis by changing
the system set to investigate the impact of the con-
sidered systems in the meta-evaluation(§3.3).

3.1 System-level analysis
In Table 1,2 GPT-4 tends to achieve high correla-
tions compared to existing metrics, highlighting
their utility in GEC evaluations. These prompts
that focus on criteria tend to enhance correlation
compared to base prompts, implying that GPT-4
can derive valuable insights from evaluation crite-
ria. This observation aligns with recent studies that
report performance improvements by incorporating
additional sentences into the prompt (Barham et al.,
2022; Kojima et al., 2023; Li et al., 2023).

The decrease in correlation as the LLM scale
decreases, such as with Llama 2 and GPT-3.5, sug-
gests the importance of the LLM scale. Especially,
the decrease in correlation when adding fluent cor-
rected sentences (“+ Fluent corr.”) compared to
“Base” implies that smaller-scale LLMs may not
adequately consider the fluency of sentences. Pos-
sible reasons for this include issues such as LLM’s
tendency to produce the same scores (Appendix C)
and the inability to interpret the context of prompts
as expected by users. However, GPT-4 consistently
demonstrated a high correlation and provided more
stable evaluations compared to traditional metrics.

The fact that most system-level correlations for
GPT-4 exceed 0.9 suggests that the conventional
meta-evaluation using a dozen systems may have
reached a performance saturation point for the task.
This poses a significant concern as it could lead to
an underestimation of high-performing metrics in
future meta-evaluations. One possible solution is
to utilize sentence-level correlations with a larger

2Llama 2-E was excluded from this experiment because
its output scores were not stable.
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(a) SEEDA-E

(b) SEEDA-S

Figure 2: Window analysis was performed by selecting any consecutive four systems from the human rankings of
the 12 systems (“Base”). For instance, x=4 involves calculating the Pearson correlation (r) using the systems ranked
from 1st to 4th in the human rankings. In contrast to conventional GEC metrics, which exhibit unstable correlations,
GPT-4 demonstrates relatively stable correlations.

sample size or explore correlations between sys-
tems with similar performance levels, increasing
the difficulty of the task.

3.2 Sentence-level analysis

In the sentence-level meta-evaluation, we ob-
served differences in correlations between metrics
that were not apparent in the system-level meta-
evaluation. In particular, while GPT-4-E and GPT-
4-S showed similar correlations in system-level
meta-evaluation, it was revealed that there was
a notable difference between them. Additionally,
considering fluent corrected sentences (“+ Fluent
corr.”) led to a slight decrease in overall corre-
lation, but GPT-4 still maintained a considerably
high correlation compared to traditional metrics.
This suggests that GPT-4 exhibits strong correla-
tions with human evaluations and that examining
sentence-level correlations is beneficial for compar-
ing high-performance metrics.

Most prompts focused on criteria significantly
improved sentence-level correlations compared to
the base prompt. Notably, GPT-4-S + Fluency
demonstrated the ability to greatly enhance per-
formance, surpassing existing GEC metrics and
achieving state-of-the-art performance. This sug-
gests the need for a detailed examination of flu-

ency beyond grammaticality when evaluating high-
quality corrections. Paradoxically, it implies that
humans also prioritize fluency when comparing
high-quality corrected sentences. Furthermore, the
moderate fluctuations in correlation resulting from
changing a single word in the prompt (GPT-4-S +
Grammaticality vs. GPT-4-S + Fluency) highlight
the impact of prompt engineering on performance.
In other aspects, the results were generally consis-
tent with those in the system-level meta-evaluation.

3.3 Further analysis

To increase the difficulty of the meta-evaluation
task, we computed correlations using a set of sys-
tems with similar performance. Specifically, we
conduct system-level meta-evaluation using only
subsets of consecutive four systems in the human
rankings of systems, and show the transitions of
correlation at positions from 4th to 12th as window
analysis in Figure 23. For example, the point at x=4
represents the Pearson correlation value calculated
using only the outputs of the four systems ranked
from 1st to 4th.

According to the window analysis, GPT-4 main-
tains relatively high and stable correlations, making

3For simplicity, we exclude the results of Llama 2 and
GPT-3.5, which showed low performance.
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them suitable for evaluating modern neural systems
in recent years. In SEEDA-E, the notably high cor-
relations of GPT-4-S + Fluency across almost all
data points emphasize the importance of fluency. In
SEEDA-S, while overall correlations are high, the
significant decrease in correlation at x=10, suggests
the presence of GEC systems that are challenging
to evaluate for the metrics. On the other hand,
conventional metrics frequently exhibit either no
correlation or negative correlation, indicating their
low robustness in GEC evaluation.

4 Related Work

Several studies have investigated the evaluation
performance of LLMs. Chiang and Lee (2023)
conducted the first investigation into LLM eval-
uation performance, demonstrating that GPT-3.5
can achieve expert-level evaluation in tasks such
as open-ended story generation and adversarial at-
tacks. In the summarization task, Liu et al. (2023a)
revealed that GPT-4 has state-of-the-art evaluation
performance by leveraging their proposed methods
like auto-CoT (Chain-of-Thought) and weighted
scores. In the machine translation task, Kocmi and
Federmann (2023) demonstrated that only larger
models exceeding GPT-3.5 can perform translation
quality evaluation, with GPT-4 slightly inferior to
existing metrics at the segment level. Yancey et al.
(2023) utilized LLMs to evaluate second language
writing proficiency through essay grading, discov-
ering that GPT-4 exhibits performance equivalent
to modern automated writing evaluation methods.

5 Conclusion

In this work, we investigated the capability of
LLMs as evaluators in English GEC, and GPT-4
demonstrated significantly higher correlations com-
pared to traditional metrics. Future work should
delve into the impact of few-shot learning and opti-
mize prompt engineering for enhanced evaluation
performance. Furthermore, we plan to explore the
possibility of document-level evaluation, consid-
ering the expansion of the GPT’s context window,
which is not currently focused on by existing met-
rics.

6 Limitations

Some of the LLMs (such as GPT-4) used in this
study are not freely available and may require spe-
cial access or payment to use. This could limit

the applicability of our evaluation method. Addi-
tionally, since many LLMs are constantly updated,
there is a possibility of inconsistent evaluation re-
sults across different versions. To address this issue,
we also conducted evaluations using reproducible
LLMs (such as Llama 2).
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A Prompts for GEC evaluation

The prompts used for edit-based evaluation and
sentence-based evaluation by LLMs are illustrated
in Figures 3a and 3b, respectively. In the # con-
text, [SOURCE] represents the source, and [PRE-
VIOUS] and [FOLLOWING] are the preceding and
succeeding sentences in the essay, respectively. In
the # targets, [CORRECTION N WITH EDITS]
denotes a corrected sentence with explicitly indi-
cated edits, while [CORRECTION N] represents
a regular corrected sentence. Here, N takes val-
ues from 1 to 5. Additionally, the prompts output
scores in JSON format to maintain a consistent
output format. For prompts focused on evaluation
criteria, the following sentence is added to the end
of the first paragraph of the prompt.

• Difficulty: “Please evaluate each edit in the
target with a focus on the difficulty of correc-
tions.”

• Impact: “Please evaluate each edit in the tar-
get with a focus on its impact on the sentence.”

• Grammaticality: “Please evaluate each target
with a focus on the grammaticality of the sen-
tence.”

• Fluency: “Please evaluate each target with a
focus on the fluency of the sentence.”

• Meaning Preservation: “Please evaluate each
target with a focus on preserving the meaning
between each target and the source, which is
the middle sentence in the context.”

An example of a prompt for evaluation using
GPT-4-S + Fluency is provided below:

The goal of this task is to rank the presented targets
based on the quality of the sentences.
The context consists of three sentences from an
essay written by an English learner.
After reading the context to understand the flow,
please assign a score from a minimum of 1 point to
a maximum of 5 points to each target based on the
quality of the sentence (note that you can assign
the same score multiple times).
Please evaluate each target with a focus on the
fluency of the sentence.

# context
These are the advantages that save works most of

the time .
In conclude , socia media benefits people in several
ways but in the same time harms people .
People should avoid the misuse of socia media and
use it in the proper way .

# targets
In conclude , socia media benefits people in several
ways but in the same time harms people .
In conclusion , social media benefits people in
several ways but at the same time harms people .
In conclusion , social media benefits people in
several ways but , at the same time , harms people .
In conclude , social media benefits people in
several ways but at the same time harms people .
In conclusion , socia media benefits people in
several ways but , at the same time , harms people .

# output format ...

B LLM rankings of GEC systems

The LLM rankings based on pairwise judgments
(A>B, A=B, A<B) of corrections (A, B) con-
ducted by LLMs and generated using Trueskill are
shown in Table 2. It can be observed that LLMs
with relatively smaller scales, such as GPT-3.5 and
Llama2, have difficulty in ranking fluent correc-
tions (REF-F and GPT-3.5) higher. Furthermore,
these LLMs tend to assign similar scores to many
systems, suggesting that they may not effectively
differentiate between the quality of corrections. In
contrast, GPT-4 can rank fluent corrections highly,
resulting in rankings that closely resemble human
evaluations.

C Tendency of LLM scoring

The distribution of scores assigned by LLMs to
corrected sentences is shown in Figure 4. As the
LLM scale increases, there is a tendency to assign
higher scores (4 or 5 points). Based on our meta-
evaluation results, which suggest that higher LLM
scales are associated with higher correlations with
human evaluations, smaller LLMs may underes-
timate corrections judged to be good by humans.
Llama 2-S tends to avoid extreme scores such as 1
or 5 points and shows a high degree of score over-
lap, making it difficult to compare more detailed
corrected sentences.
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The goal of this task is to rank the presented targets based on the quality 
of each edit.
The context consists of three sentences from an essay written by an 
English learner.
After reading the context to understand the flow, please assign a score 
from a minimum of 1 point to a maximum of 5 points to each target 
based on the quality of the edit alone (note that you can assign the same 
score multiple times).
For targets without any edits, if the sentence is correct, they will be 
awarded 5 points; if there is an error, they will receive 1 point.
The edits in each target are indicated as follows:
Insert "the": [→the]
Delete "the": [the→]
Replace "the" with "a": [the→a]

# context
[PREVIOUS]
[SOURCE]
[FOLLOWING]

# targets
[CORRECTION 1 WITH EDITS]

…
[CORRECTION N WITH EDITS]

# output format
The output should be a markdown code snippet formatted in the 
following schema, including the leading and trailing "```json" and "```":

```json
{

"target1_score": int // assigned score for target 1
…

"targetN_score": int // assigned score for target N
}
```

(a) Edit-based evaluation

The goal of this task is to rank the presented targets based on the quality 
of the sentences.
The context consists of three sentences from an essay written by an 
English learner.
After reading the context to understand the flow, please assign a score 
from a minimum of 1 point to a maximum of 5 points to each target 
based on the quality of the sentence (note that you can assign the same 
score multiple times).

# context
[PREVIOUS]
[SOURCE]
[FOLLOWING]

# targets
[CORRECTION 1]

…
[CORRECTION N]

# output format
The output should be a markdown code snippet formatted in the 
following schema, including the leading and trailing "```json" and "```":

```json
{

"target1_score": int // assigned score for target 1
…

"targetN_score": int // assigned score for target N
}
```

(b) Sentence-based evaluation

Figure 3: Prompts used for edit-based evaluation and sentence-based evaluation by LLMs

Figure 4: The distribution of scores assigned by LLMs on a 5-point scale. It can be observed that as the LLM scale
increases, there is a tendency to assign higher scores (4 or 5 points). Based on our meta-evaluation results indicating
better correlation with human judgments as the scale increases, it is suggested that smaller LLMs may underestimate
corrections judged to be good by humans.
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# Score Range System
1 0.481 1 INPUT
2 0.287 2 UEDIN-MS
3 0.215 3-3 GECToR-ens
4 0.110 4-6 Riken-Tohoku

0.089 4-8 GECToR-BERT
0.078 4-8 TransGEC
0.066 4-9 PIE
0.032 6-12 REF-M
0.025 7-12 BERT-fuse
0.017 7-13 LM-Critic

-0.005 8-13 BART
-0.008 8-13 T5
-0.011 9-13 TemplateGEC

5 -0.460 14 GPT-3.5
6 -0.916 15 REF-F

(a) GPT-3.5-E

# Score Range System
1 0.409 1 GPT-3.5
2 0.210 2-4 REF-F

0.182 2-4 TransGEC
0.148 3-6 T5
0.127 3-7 REF-M
0.105 4-8 BERT-fuse
0.075 6-9 UEDIN-MS
0.071 6-9 Riken-Tohoku
0.064 6-9 GECToR-BERT
0.003 9-11 PIE
-0.06 10-11 LM-Critic

3 -0.147 12-13 TemplateGEC
-0.150 12-13 GECToR-ens

4 -0.266 14 BART
5 -0.770 15 INPUT

(b) GPT-4-E

# Score Range System
1 0.440 1 GPT-3.5
2 0.304 2 REF-F
3 0.186 3-5 TransGEC

0.169 3-5 T5
0.134 4-7 BERT-fuse
0.102 5-8 Riken-Tohoku
0.095 5-8 REF-M
0.054 7-9 UEDIN-MS
0.021 8-10 PIE

-0.007 9-10 GECToR-BERT
4 -0.138 11-13 LM-Critic

-0.145 11-13 GECToR-ens
-0.179 11-14 TemplateGEC
-0.227 13-14 BART

5 -0.809 15 INPUT

(c) GPT-4-E + Difficulty

# Score Range System
1 0.429 1 GPT-3.5
2 0.237 2-4 REF-F

0.198 2-4 TransGEC
0.167 3-5 T5
0.118 4-8 REF-M
0.107 4-8 BERT-fuse
0.093 5-9 Riken-Tohoku
0.075 6-10 UEDIN-MS
0.064 6-10 GECToR-BERT
0.026 8-10 PIE

3 -0.129 11-13 LM-Critic
-0.130 11-13 GECToR-ens
-0.163 11-13 TemplateGEC

4 -0.293 14 BART
5 -0.798 15 INPUT

(d) GPT-4-E + Impact

# Score Range System
1 0.104 1-4 PIE

0.094 1-5 REF-M
0.084 1-7 GPT-3.5
0.058 2-7 BERT-fuse
0.052 2-8 GECToR-ens
0.042 3-8 TransGEC
0.019 4-10 UEDIN-MS
0.010 5-11 Riken-Tohoku

-0.017 7-11 GECToR-BERT
-0.019 7-11 T5
-0.034 8-12 INPUT
-0.087 10-15 REF-F
-0.099 12-15 BART
-0.102 12-15 TemplateGEC
-0.104 12-15 LM-Critic

(e) Llama 2-S

# Score Range System
1 0.236 1 TransGEC
2 0.170 2-5 T5

0.143 2-6 UEDIN-MS
0.141 2-6 REF-M
0.116 2-7 GPT-3.5
0.095 4-7 Riken-Tohoku
0.048 6-9 GECToR-BERT
0.038 6-9 BERT-fuse

-0.004 8-10 PIE
-0.044 9-11 GECToR-ens
-0.080 10-13 REF-F
-0.093 10-13 LM-Critic
-0.141 12-14 BART
-0.165 13-14 TemplateGEC

3 -0.458 15 INPUT

(f) GPT-3.5-S

# Score Range System
1 0.658 1 GPT-3.5
2 0.542 2 REF-F
3 0.203 3-4 TransGEC

0.187 3-5 T5
0.145 4-6 BERT-fuse
0.091 6-7 Riken-Tohoku
0.074 6-7 REF-M

4 0.009 8-9 UEDIN-MS
-0.032 8-10 GECToR-BERT
-0.085 9-11 PIE
-0.102 10-11 LM-Critic

5 -0.238 12-14 TemplateGEC
-0.258 12-14 GECToR-ens
-0.293 13-14 BART

6 -0.901 15 INPUT

(g) GPT-4-S

# Score Range System
1 0.673 1-2 GPT-3.5

0.636 1-2 REF-F
2 0.194 3-4 TransGEC

0.184 3-4 T5
3 0.121 5-7 BERT-fuse

0.090 5-7 Riken-Tohoku
0.082 5-7 REF-M
0.022 7-8 UEDIN-MS

4 -0.074 9-11 LM-Critic
-0.076 9-11 GECToR-BERT
-0.118 9-11 PIE

5 -0.213 12-13 TemplateGEC
-0.238 12-13 GECToR-ens

6 -0.309 14 BART
7 -0.974 15 INPUT

(h) GPT-4-S + Grammaticality

# Score Range System
1 0.721 1 GPT-3.5
2 0.648 2 REF-F
3 0.230 3-4 TransGEC

0.178 3-5 T5
0.122 4-6 BERT-fuse
0.115 5-7 REF-M
0.063 6-7 Riken-Tohoku

4 -0.007 8-9 UEDIN-MS
-0.058 8-11 PIE
-0.066 9-11 GECToR-BERT
-0.102 9-11 LM-Critic

5 -0.264 12-14 GECToR-ens
-0.271 12-14 TemplateGEC
-0.308 12-14 BART

6 -1.002 15 INPUT

(i) GPT-4-S + Fluency

# Score Range System
1 0.653 1-2 REF-F

0.601 1-2 GPT-3.5
2 0.242 3-4 T5

0.209 3-4 TransGEC
3 0.135 5-6 REF-M

0.106 5-7 BERT-fuse
0.071 6-7 Riken-Tohoku

4 0.011 8 UEDIN-MS
5 -0.067 9-10 GECToR-BERT

-0.106 9-11 LM-Critic
-0.123 10-11 PIE
-0.225 12-13 TemplateGEC
-0.255 12-13 GECToR-ens

7 -0.317 14 BART
8 -0.935 15 INPUT

(j) GPT-4-S + Meaning Preservation

Table 2: LLM rankings generated using Trueskill based on pairwise judgments made by LLMs. GPT-4 ranks fluent
corrections (REF-F, GPT-3.5) highly, resulting in these rankings that closely resemble human ranking.77
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Abstract

Large language models (LLMs) are increas-
ingly used for automated scoring of student
essays. However, these models may perpetuate
societal biases if not carefully monitored. This
study analyzes potential biases in an LLM (XL-
Net) trained to score persuasive student essays,
based on data from the PERSUADE corpus.
XLNet achieved strong performance based on
quadratic weighted kappa, standardized mean
difference, and exact agreement with human
scores. Using available metadata, we per-
formed analyses of scoring differences across
gender, race/ethnicity, English language learn-
ing status, socioeconomic status, and disability
status. Automated scores exhibited small mag-
nifications of marginal differences in human
scoring, favoring female students over males
and White students over Black students. To
further probe potential biases, we found that
separate XLNet classifiers and XLNet hidden
states weakly predicted demographic member-
ship. Overall, results reinforce the need for
continued fairness analyses as use of LLMs
expands in education.

1 Introduction

As Large Language Models (LLM)s are increas-
ingly used for Automated Essay Scoring (AES),
it is crucial that we thoroughly analyze these sys-
tems for biases (Rodriguez et al., 2019). Given
that LLMs are pretrained on large corpora, they
have the potential to inherit biases embedded in the
functions that predict word probabilities (Bhard-
waj et al., 2021). If the potential biases are not
monitored carefully with fairness in mind, they
risk perpetuating and amplifying existing societal
biases against vulnerable populations. Rigorous
demographic analysis of AES systems help ensure
they live up to principles of equity and fairness.

The Persuasive Essays for Rating, Selecting, and
Understanding Argumentative and Discourse Ele-
ments (PERSUADE) corpus provides a valuable re-

source for analyzing bias in AES system (Crossley
et al., 2022). PERSUADE contains over twenty-
five thousand persuasive student essays that were
annotated for argumentative elements in addition
to holistic grades assigned by human raters. What
makes this corpus ideal for the analysis of bias
is the rich metadata about the students including
gender, race, and other demographic indicators.
This allows for in-depth analysis of an automated
scoring system’s performance on essays written by
students of diverse demographic affiliations.

Our goal is to investigate potential biases in
LLMs trained using conventional techniques that
aim to replicate human-assigned holistic scores.
After training the LLM scoring model, we evaluate
whether or not automated scores introduce (or ex-
acerbate) biases relative to human-assigned scores
(Ormerod et al., 2022). After evaluating bias, we
determine whether the set of features that the LLM
uses for scoring also contains information relevant
to demographic membership. In other words, can
the LLM guess certain demographic characteristics
based on the scoring model? Linear modeling us-
ing these features was recently used as evidence of
model validity in AES (Ormerod, 2022). The nov-
elty of this study lies in applying these techniques
and showing their relevance to the analyses of bias
in LLMs.

Broadly, our research aims are as follows:

1. Fine-tune an LLM to score students’ essays
and assess model performance.

2. Evaluate the fine-tuned LLM for biases rela-
tive to human-assigned scores, based on stu-
dents’ demographic affiliations.

3. Determine whether demographic affiliation
can be predicted by the (hidden layer of the)
fine-tuned LLM. As a helpful reference point,
assess whether separate LLMs can be fine-
tuned to predict demographic affiliation.
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These aims help us determine if LLMs are able
to score students’ essays fairly, and if demographic
affiliations are an implicit feature of the scoring
model.

2 Methods

2.1 Data
The PERSUADE dataset consists of a 25,488 essay
responses to 15 prompts written by students from
Grades 6 to 12.1 Each essay was assigned a holistic
essay score according to a rubric available with the
dataset.

The prompts were administered to students
within specific grades or grade-bands. For com-
parability with other studies, we used the same
train-test split as was used in the original Kaggle
competition; we created a development dataset (or
dev set) from a random subset of the training data,
for use in model selection, early stopping, and hy-
perparameter optimization. Table 1 shows sample
sizes of train-dev-test splits, along with the average
word count, for each prompt.

Demographic data was included for all prompts,
but not all prompts included every demographic
characteristic. For most prompts, however, we ana-
lyzed potential biases of the following demographic
affiliations:

• Gender: M = Male and F = Female

• Race/ethnicity: W = White, L = His-
panic/Latino, B = Black/African American,
A = Asian/Pacific Islander

• English Language Learners: ELL = Identified
as an English language learner.

• Economically Disadvantaged: SES = Iden-
tified as economically disadvantaged, based
on eligibility for K-12 federal assistance pro-
grams.

• Disability Status: DS = Identified as having a
disability. Type of disability unspecified.

2.2 Scoring Model
One of the problems in the application of conven-
tional pretrained LLMs, such as BERT (Devlin
et al., 2019), is that the transformer architecture im-
poses a fixed context length (Vaswani et al., 2017;
Mayfield and Black, 2020). There is an extensive

1The PERSUADE corpus is publicly available online at
https://github.com/scrosseye/persuade_corpus_2.0.

body of literature that has addressed this length
limitation, e.g. Longformer (Beltagy et al., 2020),
Transformer-XL (Dai et al., 2019), and XLNet
(Yang et al., 2019). These innovations are particu-
larly suited for AES systems, which require longer
context lengths.

Among the longer-context models, XLNet per-
forms particularly well on AES and argumentation
annotation (Ormerod et al., 2023). The key feature
of XLNet is its recurrent form of attention (Dai
et al., 2019).

Automated scoring generally benefits from us-
ing a regression head (with MSE loss) as opposed
to a classification head (with cross-entropy loss)
since regression parsimoniously retains the ordinal
nature of score points (Ormerod et al., 2021).

We used the Adam optimizer with a weight de-
cay mechanism (Loshchilov and Hutter, 2019). The
learning rate was set to 5×10−6 with a linear learn-
ing rate scheduler, in batches of 8. Models were
trained over 20 epochs, with early stopping deter-
mined by best performance on the dev set. To
prevent out of memory errors, max token length
was set to 2,048.

2.3 Performance Metrics
We assess the system’s performance using the three
standard metrics proposed by Williamson et al.
(2012) for the evaluation of automated scoring sys-
tems. These include Cohen’s quadratic weighted
kappa (QWK, Cohen, 1960), standardized mean
difference (SMD), and exact agreement.

These agreement statistics quantify the proxim-
ity of automated scores to human-assigned scores.
Most operational standards consider model perfor-
mance relative to human-human levels of agree-
ment; however, only final score was included in the
corpus. Nevertheless, Crossley et al. (2022) report
that all essays were scored independently by two
human raters and, across all PERSUADE items, the
QWK was .745. Item-specific QWKs were not re-
ported. SMD was also not reported. In the absence
of double-scored data, a QWK of at least 0.7 and
an SMD of at most 0.15 are commonly-accepted
guidelines for adequate performance.

2.4 Analytic Approach Toward Bias
There are marginal (i.e. first-order) differences in
score point distributions and in expected scores
between demographic groups (Appendix A). For
instance, female students generally score higher
than male students on persuasive writing. It is pos-
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Prompt Prompt Name Grade NTrain NDev NTest

1 Phones and driving N/A 558 140 464
2 Exploring Venus 10 740 185 923
3 Community service 8 608 153 773
4 Seeking multiple opinions 8 1232 309 7
5 Facial action coding system 10 880 221 1062
6 Distance learning 9-12 1192 299 656
7 Summer projects 9-12 696 175 872
8 Cell phones at school 8 663 166 824
9 Car-free cities 10 784 197 973
10 Grades for extracurricular activities 8 648 163 808
11 The face on Mars 8 654 164 764
12 Does the electoral college work? 9 1448 362 228
13 Driverless cars 10 1098 275 496
14 Mandatory extracurricular activities 8 668 167 824
15 "A Cowboy Who Rode the Waves" 6 546 137 682

Overall 6-12 12422 3106 10356

Table 1: A summary of how the data was split for training purposes.

sible that these group differences reflect biases in
human-assigned scores; however, it is also possi-
ble that these group differences reflect legitimate
differences in writing proficiency. Without addi-
tional information (e.g. a set of "unbiased" items,
as would be used in an analysis of differential item
functioning), the source of these differences cannot
be determined.

The ambiguity of interpreting group differences
extends to interpreting differences between auto-
mated and human-assigned scores. In absolute
terms, for instance, differences could indicate that
LLMs are introducing biases or, on the contrary,
eliminating biases. As such, we limit ourselves
to making claims in relative terms, i.e., do LLMs
introduce biases relative to human scores?

2.5 Matching

On average, some groups scored higher or lower
than others (e.g. female students scored higher than
males, on average). To adjust for these marginal dif-
ferences, we compared male and female students
who received 1s to each other, male and female
students who received 2s, etc., which is known as
exact matching (Ho et al., 2011). Exact matching is
ideal in this research context given that our sample
is large, leaving very few students unmatched, even
within specific prompts. As opposed to literally
matching one student with another, we employ ex-
act matching to produce a set of sample weights

which, when taken as a whole, eliminate marginal
group differences. These sample weights are used
in subsequent analyses.

2.6 Group Difference Estimation

To compute human-XLNet scoring differences (i.e.,
relative bias), we estimated pairwise group differ-
ences. Regression estimates were produced using
cluster-robust standard errors (Bell and McCaffrey,
2002; Pustejovsky and Tipton, 2018), as imple-
mented by Blair et al. (2024) in R 4.3.1 (R Core
Team, 2023). We used exact matching weights,
described above, in these analyses.

2.7 Controlling False Discovery Rate

To avoid making spurious claims that are a prod-
uct of random chance, we controlled the false dis-
covery rate using the Benjamini-Hochberg (B-H)
technique (Benjamini and Hochberg, 1995). We
use the term statistically significant when an esti-
mated p-value is below the B-H adjusted p-value.
In practical terms, B-H adjusted p-values place an
upper bound of .025 on "the probability of being
erroneously confident about the direction of the
population comparison" (Williams et al., 1999, p.
49).

2.8 Predicting Demographic Affiliation

We predict demographic affiliation using two com-
plementary methods. The first, more conventional
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method, is to train separate XLNet models to clas-
sify students’ demographic affiliation based on
their text responses. For example, we trained one
model to predict gender, another model to predict
race / ethnicity, etc.

The second method of predicting demographic
affiliation was to use the hidden state from the scor-
ing model for predictions. That is, for each demo-
graphic characteristic, linear models were trained
using the hidden state as features.2 More techni-
cally, the XLNet model used for scoring,M, is a
function of the input text, x, and can be broken into
five distinct components:

M(x) = (σ ◦ L)︸ ︷︷ ︸
Classifier

◦ (S ◦ T ◦ E)︸ ︷︷ ︸
feature
model

(x) (1)

where E is the embedding, T is the function for the
layers of (recurrent) transformers, S is a summary
layer that extracts the information for classifica-
tion, L is a linear layer, and σ is the activation
function. Conceptually, these five components can
be grouped into a feature model and a classifier.
The feature model maps text to a vector space of
features that are subsequently used by the linear
classifier to determine the score.

In predicting demographic characteristics, we
used the following model:

M̃(x) = (σ ◦ L̃) ◦ (S ◦ T ◦ E)(x) (2)

Here, the feature model is frozen and L̃ is op-
timized to predict demographic affiliation. If M̃
can accurately distinguish demographic affiliation,
using the language of Ormerod (2022), we say that
the feature is implicit in the model. For example,
in the ASAP dataset (Shermis, 2014), Ormerod
(2022) demonstrated that essay length was an im-
plicit feature of the model because it was a linear
combination of the scoring features.

3 Results

We organize our findings around three foci. First,
we evaluate the performance of XLNet to ensure
it meets operational standards. Second, we assess
the fairness of XLNet’s automated scores by de-
termining if there are any discrepancies, based on

2To clarify, XLNet (with a regression head) was first fine-
tuned to predict score; after fine-tuning, we replaced the regres-
sion head with a classification head, froze all other layers, and
fine-tuned again (using the same hyperparameters) to predict
demographic characteristics.

students’ demographic affiliations, as compared to
human-assigned scores. Finally, we determine the
extent to which the scoring model has demographic
features embedded within it.

3.1 Model Performance

We determined model performance on a prompt-
by-prompt basis, as well as aggregated over all
prompts. Table 2 summarizes the performance of
the model in terms of three common agreement
statistics: quadratic weighted kappa (QWK), stan-
dardized mean difference (SMD), and accuracy (all
of which are described in greater detail in section
2.3).

Prompt QWK SMD Acc N

1 0.781 -0.066 0.683 464
2 0.856 0.003 0.677 923
3 0.800 -0.109 0.693 773
4 0.674 -0.312 0.429 7
5 0.865 -0.116 0.696 1062
6 0.875 0.042 0.697 656
7 0.813 -0.051 0.634 872
8 0.800 -0.021 0.717 824
9 0.796 -0.087 0.616 973

10 0.779 -0.025 0.699 808
11 0.818 0.063 0.658 764
12 0.863 -0.011 0.649 228
13 0.774 0.215 0.621 496
14 0.815 0.163 0.659 824
15 0.755 -0.040 0.691 682

Overall 0.864 -0.010 0.672 10356

Table 2: The performance of the model trained to the
holistic scores in terms of the agreement with the human
assigned scores.

Based on commonly-accepted operational stan-
dards, three items are in violation of these stan-
dards. More specifically, Prompts 4, 13, and 14
have high SMDs. Results for one of these items
(Prompt 4), however, is unreliable due to the small
test set sample size. Overall, however, XLNet per-
forms well; indeed, in terms of overall QWK, XL-
Net exceeds human-human reliability.

3.2 Automated Scoring Biases

To measure automated scoring biases, we estimated
pairwise differences between reference and focal
groups. Table 3 displays the results of our auto-
mated scoring bias analysis, with standard errors in
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Prompt F-M B-W L-W A-W SES ELL DS

1 0.07 (0.06) 0.03 (0.04) 0.09 (0.05) 0.31 (0.22)
2 0.10 (0.05) 0.00 (0.04) -0.01 (0.05) -0.06 (0.07) -0.04 (0.05) -0.10 (0.07) -0.19 (0.02)
3 0.09 (0.04) -0.15 (0.09) -0.17 (0.03) 0.19 (0.09) -0.11 (0.04) -0.15 (0.07) -0.35 (0.05)
5 0.07 (0.03) -0.12 (0.02) -0.12 (0.04) 0.01 (0.09) -0.06 (0.01) -0.09 (0.04) -0.08 (0.03)
6 0.05 (0.02) 0.03 (0.10) -0.08 (0.07) 0.07 (0.13) -0.15 (0.08) -0.28 (0.10) -0.07 (0.08)
7 0.04 (0.04) -0.29 (0.06) -0.12 (0.04) 0.10 (0.04) -0.06 (0.02) -0.13 (0.09) -0.12 (0.06)
8 0.09 (0.04) -0.19 (0.07) -0.11 (0.02) 0.14 (0.16) -0.12 (0.03) -0.19 (0.03) -0.18 (0.10)
9 0.12 (0.02) -0.13 (0.05) -0.06 (0.05) 0.16 (0.17) -0.16 (0.08)

10 0.13 (0.03) -0.20 (0.09) -0.14 (0.06) -0.04 (0.06) -0.19 (0.05) -0.26 (0.11) 0.03 (0.11)
11 0.09 (0.06) -0.08 (0.04) -0.02 (0.01) -0.06 (0.05) -0.12 (0.07) -0.33 (0.09) -0.11 (0.06)
12 0.07 (0.08)
13 0.14 (0.04) -0.08 (0.03) -0.02 (0.04) 0.05 (0.17) -0.27 (0.05) -0.37 (0.33) 0.04 (0.19)
14 0.12 (0.06) -0.12 (0.06) -0.09 (0.02) 0.04 (0.01) -0.17 (0.03) -0.15 (0.05) -0.09 (0.05)
15 0.04 (0.03) -0.08 (0.07) 0.00 (0.08) 0.11 (0.10) -0.13 (0.07) -0.31 (0.09) 0.08 (0.14)

Overall 0.06 (0.01) -0.07 (0.01) -0.06 (0.02) 0.07 (0.02) -0.10 (0.02) -0.10 (0.04) -0.07 (0.02)

Table 3: Biases in XLNet scores, relative to human-assigned scores. Pairwise group differences are presented as
z-scores. Bold font indicates statistically significant differences.

parentheses. Score differences were normalized so
that units are in standard deviations (i.e. they may
be interpreted as z scores). More specifically, a dif-
ference of 0 indicates that there was no difference
between focal and reference groups; a negative dif-
ference indicates that the focal group received a
lower score, on average, compared to the reference
group; and a positive difference indicates that the
focal group received a higher score. Differences
that were statistically significant are presented in
bold.

Group differences varied across prompts, but
trends were generally consistent. We found no
statistically significant group differences within
specifics prompts.

Overall, however, we found that XLNet gave
higher scores to female students compared to male
students (z = 0.06, SE = 0.01, p = .0012), and
lower scores to Black students compared to White
students (z = −0.07, SE = 0.01, p = .0023).
These differences are consistent with marginal dif-
ferences observed between these groups, based on
human-rater scores (Table 5). That is, XLNet mag-
nified marginal between-group differences; the ef-
fect size, however, was small. Students with low
SES status and English Language Learner status
also scored lower than their respective reference
groups; these differences, however, were not statis-
tically significant.

3.3 Model-Embedded Demographics
To determine if demographic information was em-
bedded within the scoring model, we predicted de-
mographic affiliation from the hidden state of the
model. The right side of Table 4 ("Score Features")

presents the results of these analyses, with QWK
(or κ) as the effect size.

According to McHugh (2012), a κ value within
the range of 0 ≤ κ ≤ 0.2 is considered to have "no
agreement," 0.2 < κ ≤ 0.4 is considered "mini-
mal," 0.4 ≤ κ ≤ 0.6 is "moderate," 0.6 < κ ≤ 0.8
is "substantial," and anything above 0.8 is "almost
perfect."

For nearly all prompts, effect sizes range from
"no agreement" to "minimal agreement." The one
exception is predicting ELL status in Prompt 6
(κ = 0.75), which is a substantial effect size. This
suggests that XLNet was able to distinguish ELL
status quite well based on students’ essay responses
for this prompt.

In interpreting these results, it is important to
bear in mind that we have not controlled for
marginal differences in students’ scores or factors
associated with students’ scores. Some of these
additional factors are listed in Appendix A. For
example, length is associated with students’ scores
and it is well-documented that female students tend
to write more than males. When essay length is
used to predict gender, the strength of the relation-
ship is κ = 0.058. Note that this effect size is only
slightly better than randomly guessing the gender
of the student. Using the average word count, word-
length, number of sentences, and Flesch–Kincaid
as features to determine gender, we obtained a κ
statistic of 0.106, and κ < 0.06 for all races / eth-
nicities, disability status, and ELL status.

We not only predicted demographic affiliation
from the scoring model, but also trained separate
XLNet models to predict demographic affiliation
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directly from students’ essays. The left side of Ta-
ble 4 ("Text") presents these results. These results
serve as a useful comparison, since they serve as
an upper-bound of how well XLNet can predict
student groups based on essay responses. κ values
seem particularly high for SES and ELL.

4 Discussion

4.1 Conclusions

This study makes an important contribution to the
growing body of research on bias in AES sys-
tems based on LLMs. Although XLNet gener-
ally demonstrated strong performance on key met-
rics compared to human raters, it also magnified
marginal differences between groups, relative to
human-assigned scores. In particular, relative to
human-assigned scores, XLNet was found to be
more generous to female students compared to
male students and White students compared to
Black students. Additionally, we found evidence
that these group differences were embedded in the
hidden layer of the model.

Although effect sizes of biases were small, in
large-scale assessments even small differences can
affect many students. Furthermore, in high stake
settings (e.g. high-school exit exams), such dif-
ferences can result in failure to meet graduation
requirements. XLNet magnified marginal differ-
ences, a finding consistent with other research
(Kwako et al., 2023); this indicates that marginal-
ized populations may be particularly at risk of un-
fair scoring.

Overall, this study demonstrates the importance
and feasibility of comprehensive bias evaluations
when deploying AI scoring in high-stakes educa-
tional settings. Responsible use of automated sys-
tems requires evidence that they do not create or
worsen inequities for marginalized student popula-
tions. With careful design and monitoring, LLMs
should help make writing assessment more consis-
tent, reliable, and constructive for all students.

4.2 Limitations

As stated above (Section 2.4), our claims are lim-
ited to evaluating biases relative to human scores.
Yet human scores themselves are often biased (e.g.
Zechner, 2019). Thus, it is possible that XLNet is
more fair than human raters, in spite of it magnify-
ing marginal group differences relative to human
raters. Differential item functioning (DIF, Angoff,
1993) accounts for these potential biases by rely-

ing on an "unbiased" set of anchor items. The
PERSUADE corpus does not include such data,
however, and there is no public dataset currently
available that would permit DIF analyses.

Results showed that demographic affiliations
were embedded in the hidden layer of the XLNet
scoring model. Yet, without further investigation,
we are unable to determine if this information is
used (e.g. as an implicit feature) in generating stu-
dents’ essay scores.

Lastly, we recognize that this study was limited
to analyzing biases within a single LLM model
and dataset. Further research could evaluate other
state-of-the-art models and diverse essay sets to
determine the extent to which findings generalize.

4.3 Further Research

The limitations of this study, noted above, reveal
several promising paths forward. There is room,
for instance, to explore additional LLM models (be-
yond XLNet) and additional datasets. It would also
be valuable to investigate sources of group differ-
ences (e.g. language differences between groups),
and to determine if these group differences are con-
struct relevant or not. Construct (ir)relevance is
important to consider, as it affects which debiasing
strategies would be viable (Kwako, 2023).

Along the lines of debiasing, it would be help-
ful to explore bias mitigation techniques at both
the training and scoring stages. For example, if
demographic affiliation is an implicit feature (i.e.
L(x) = αx + β, and L̃(x) = α̃x + β̃), then we
could potentially use orthogonal projection to op-
timize α on the vector-subspace orthogonal to α̃.
This might mitigate the effect of any features the
model is using to distinguish demographic infor-
mation. This may, however, come at some cost to
model performance.
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A Differences across student groups

This appendix reports descriptive statistics of es-
says written by students, disaggregated by demo-
graphic affiliations. In addition to known discrep-
ancies between the lengths of essays between cer-
tain groups (notably male and female students), we
present the average word length, number of sen-
tences, and the Flesch-Kincaid grade, which is a
common readability measure defined by

G = α

(
total words

total sentences

)

+β

(
total syllables

total words
+ γ

)
+ γ (3)

where α = 0.39, β = 11.8, and γ = 15.59.
These statistical differences in essay texts, by de-
mographic affiliations, are presented in Table 5.
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Averages
Category Subgroup Rep. Score Words Word Len. Sent. F.K.

Gender Male 49.5% 3.20 404 4.40 19.3 9.32
Female 50.5% 3.43 432 4.45 21.9 8.70

Race/ White 44.5% 3.42 427 4.41 21.4 8.60
Ethnicity Hispanic/Latino 25.2 % 3.08 398 4.40 19.0 9.50

Black/African American 19.1% 3.12 393 4.43 19.3 9.26
Asian/Pacific Islander 6.7% 3.37 504 4.59 25.1 9.22
Two or More 3.9% 3.45 429 4.46 21.1 8.87
Native American 0.5% 3.02 369 4.35 19.3 8.31

ELL Identified 8.6 % 2.69 374 4.42 16.5 10.7
Not Identified 86.4% 3.35 421 4.42 20.9 8.87

Economic Identified 37.1 % 2.98 367 4.36 18.0 9.19
Disadvantage Not Identified 42.8% 3.65 446 4.44 22.0 8.9

Disability Identified 10.3% 2.72 360 4.36 17.0 9.6
Status Not Identified 69.8% 3.33 416 4.41 20.6 8.95

Table 5: Some key statistical differences between the nature of the scores and essays, disaggregated by demographic
affiliation.
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Abstract

Scoring clinical patient notes (PNs) written by
medical students is a necessary but resource-
intensive task in medical education. This pa-
per describes the organization and key lessons
from a Kaggle competition on automated scor-
ing of such notes. 1,471 teams took part in
the competition and developed an extensive,
publicly available code repository of varying
solutions evaluated over the first public dataset
for this task. The most successful approaches
from this community effort are described and
utilized in the development of a PN scoring sys-
tem. We discuss the choice of models and sys-
tem architecture with a view to operational use
and scalability, and evaluate its performance
on both the public Kaggle data (10 clinical
cases, 43,985 PNs) and an extended internal
dataset (178 clinical cases, 6,940 PNs). The
results show that the system significantly out-
performs a state-of-the-art existing tool for PN
scoring and that task-adaptive pretraining using
masked language modeling can be an effective
approach even for small training samples.

1 Introduction

A core practice in assessing the clinical skills of
medical students is the use of Objective Structured
Clinical Examinations (OSCEs) – a type of exam,
where test-takers interact with standardized pa-
tients, who are trained to portray a set of clini-
cal symptoms. After examining the patients, the
test-takers are asked to describe their findings in a
clinical patient note (PN), similar to those found
in electronic health records (see an example PN in
Appendix A). The PN serves as a documentation
of the encounter and is used to assess examinee
ability to gather information, record physical ex-
aminations, and interpret clinical data. OSCEs are
widely used in medical schools in various coun-
tries, with around 90% of US schools requiring

their students to pass such exams (Barzansky and
Etzel, 2016).

A major bottleneck for scaling OSCE assess-
ment is the time, cost, and effort associated with
the expert grading of large amounts of PNs, es-
pecially given limited faculty time. For exam-
ple, in the former United States Medical Licensing
Examination® (USMLE®) Step 2 Clinical Skills
exam (discontinued in 2020), more than 100 li-
censed physician raters were needed every year
to grade ≈ 330,000 PNs from ≈ 35,000 US and
international test-takers (Sarker et al., 2019).

While there is interest among medical educators
to address the above limitations using automated
grading methods, the exploration of such methods
has been slow and fragmented due to exam secu-
rity concerns, which limit data sharing. This has
resulted in small-scale, predominantly internal ex-
plorations of automated scoring, with no shared
datasets or code to foster collaborative research.

To address this gap, we organized a Kaggle com-
petition on clinical PN scoring1 as a community
effort to move this field forward. We then used the
most successful approaches for the development of
an interpretable and transparent PN scoring system.
The contributions of this paper are as follows:

• Description of the Kaggle competition on clin-
ical PN scoring, for which we released a pub-
lic dataset and which resulted in a large repos-
itory of publicly available code.

• Analysis of the most successful approaches.
• Description of an Amazon Web Services

(AWS) proof-of-concept for PN scoring based
on the successful solutions; Choice of mod-
els and system architecture are discussed with
a view to operational scalability. Models are

1https://www.kaggle.com/c/
nbme-score-clinical-patient-notes/
overview
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Figure 1: Example of rubric features and their annotated expressions within a patient note excerpt

trained in a real-world scenario of limited PNs
for newly developed cases.

• Baseline comparison to an already opera-
tionalized scoring system with a mean F1
score improvement from .76 to .95. Perfor-
mance is evaluated on both the Kaggle data
and an extended internal dataset.

• Evaluation of a scenario when training is per-
formed using limited annotation.

• Discussion of ethical considerations and im-
plications for fairness, reliability, and validity.

2 Context

The data used in this study originated from the
United States Medical Licensing Examination®

(USMLE®) – a series of examinations used to
support medical licensure decisions in the United
States. Until 2020, the USMLE Step 2 Clinical
Skills examination was a part of the USMLE step
sequence and involved interactions with standard-
ized patients portraying different clinical scenarios.
The resulting PNs were graded using rubrics spe-
cific to each clinical case, which contain a set of
features – important concepts, which should ap-
pear in an appropriately documented PN (Figure
1). For example, for a clinical case about a patient
with anxiety, it may be important that the examinee
discovers that the patient has insomnia, in which
case insomnia would be listed as a rubric feature.
PNs that do not mention that symptom or some ex-
pression of it such as difficulty falling asleep would
receive a lower rater score.

Key challenge for automated scoring is the vari-
ety of ways features are expressed (e.g., evaluation
for coronary risk factors expressed as father with
MI at age 50, or denies depressed mood expressed
as (-) anhedonia). There are cases of ambiguous
negation as in denies nausea, vomiting for the fea-
ture no nausea and or vomiting or temporal aspects
such as recent URI for uri one week ago. To be

operationally usable, a PN scoring system needs
to provide interpretable evidence and be highly ac-
curate. These requirements are crucial to ensure
exam fairness and protect the health of the public.

3 Related Work

The vast majority of work on automated scoring
has been done in the field of writing evaluation (see
Klebanov and Madnani (2020) for an overview).
Studies on scoring clinical text include Latifi et al.
(2016), who use a feature-based system for scoring
short responses to clinical decision-making ques-
tions, Ha et al. (2020) who predict examinee pro-
ficiency from responses to clinical short-answer
questions, and Suen et al. (2023) who use trans-
former models for scoring short answers to clinical
questions. For PN scoring specifically, Yim et al.
(2019) use features and BERT embeddings for scor-
ing a corpus of 338 PNs and Zhou et al. (2022) use
weakly supervised approaches and transfer learning
for scoring two clinical cases of 30 PNs each.

The work most relevant to ours is the INCITE
system (Sarker et al., 2019; Harik et al., 2023),
which was developed for operational scoring of
PNs from the USMLE Step 2 CS exam and which
we use as a baseline. The system is a modular
pipeline which outputs a binary score of "found"
or "not found" for each rubric feature, utilizing
custom-built lexicons and annotations. The first
two modules perform direct and fuzzy matching be-
tween a feature or a lexicon variant and the PN text
using a fixed or dynamic Levenshtein ratio thresh-
old. Any features whose expressions are found
using this method are removed from the pipeline
to optimize running time. Next, matching is per-
formed against combinations of lexicon variants
and annotations, which "often leads to an explosion
of the number of eventual entries" (Sarker et al.,
2019) as terms in the annotations are replaced with
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variants from the lexicons. To limit this search
space, there is a cap of 10,000 randomly sampled
combinations per feature. Matching is then done us-
ing these phrases as sequences and as bag-of-words
to cope with fragmented entries 2.

Advantages of the INCITE system include its
high performance, ability to be tuned for precision
and recall by varying the thresholds, as well as
its speed – it is capable of processing over 50,000
PNs per day on a desktop computer. However, the
rule-based nature of the system limits improvement
from more training data, especially because more
annotations would greatly increase the search space
for supervised concept detection.

4 Task description and evaluation

The task of developing an interpretable system for
automated scoring of PNs is one where features
from the rubric are mapped to expressions from the
PN. If an expression of the feature is identified in
the PN then the feature is considered "found", else
it is "not found". The more features are found, the
higher the score for that PN. We perform two types
of model evaluation, as described below.

Token-level evaluation: This type of evaluation
answers the question "What phrase spans in the
PN correspond to a given rubric feature?". This
evaluation is identical to the one used in the Kaggle
competition and comparable to its leaderboard.

For each instance, the system predicts a set of
character spans that it considers to correspond to
that feature, where a character span is a pair of
indexes representing a range of characters within a
text. These predicted spans are then compared to
ground-truth spans from the annotation and scored
as: a character is considered true positive if it is
within both a ground-truth and a prediction; false
negative if it is within a ground-truth but not a
prediction; and false positive if it is within a predic-
tion but not a ground truth. An overall F1 score is
computed from the TPs, FNs, and FPs aggregated
across all instances3.

Binary evaluation: This type of evaluation an-
swers the question "Was an expression of a feature

2E.g., "Antibiotics taken in recent times for his symptoms
– negative". As Sarker et al. (2019) note, window-based fuzzy
matching would fail to include the negation and the rest of the
description in one window.

3For specific examples, see https:
//www.kaggle.com/competitions/
nbme-score-clinical-patient-notes/
overview/evaluation

found (1) or not found (0) in the PN?". This eval-
uation corresponds to the way PNs are scored in
practice.4 If at least one span is identified as corre-
sponding to the feature, the feature is considered
"found". For the neural models, binary scores are
obtained by applying a function over the token-
level predictions using a threshold of 0.5.

5 Data

Training and evaluation are performed in two
datasets of PN history portions5 – public and pro-
prietary – from the USMLE Step 2 CS exam.

Public dataset: This dataset was used in the
Kaggle competition (so henceforth referred to as
"the Kaggle dataset") and contains the history por-
tions of 43,985 PNs from 10 clinical cases and the
corresponding features for each case. Data were
collected between 2017 and 2020 from 35,156 US
or international test-takers who took the exam un-
der standardized conditions in one of five testing
locations in the US. The average number of PNs
per case is 4,398 (min = 992, max = 9,936), to-
tal number of tokens is 5,958,464, and the aver-
age length of each history portion is 135.47 tokens
(SD = 24.27). The average number of features per
history portion is 14.3 (SD = 3.34). Of these, a
total of 2,840 PNs (284 per case) were annotated
by 10 experienced US medical practitioners who
were asked to identify the spans of each phrase
that is an expression of a rubric feature and link
it to that feature. The annotators were divided in
pairs of two and 20% of the PNs from each case
were double-rated (see detailed annotation guide-
lines and procedure in Appendix B). F1 agreement
scores were computed using the token-level evalua-
tion procedure described above and showed a sub-
stantial agreement across all cases (F1 = .84 (SD
= 0.075); Cohen’s κ of 0.89 (SD = 0.057)). Binary
F1 denoting whether an expression of a given fea-
ture was found in a PN was F1 = 0.97 (SD = 0.014).
Detailed information about the corpus can be found
in Yaneva et al. (2022). The data is available via a
data sharing agreement at https://www.nbme.
org/services/data-sharing.

Proprietary dataset: This dataset consists of a
much larger number of clinical cases – 178 – with

4Raters are not typically required to mark the exact expres-
sions that correspond to a feature. As a result, human scores
are not explicitly traceable to specific evidence in the PN, un-
less this is specifically required (e.g., if a score is contested).

5The history portion is where all relevant clinical informa-
tion obtained from an interview with the patient is described.
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fewer PN history portions per case (µ = 39; min
= 32; max = 43). Total number of PNs in the set
is 6,940, and total number of tokens is 1,121,236.
Average document length is 161.56 tokens (SD =
29.42), and the average number of features is 13.92
(SD = 4.84). All PNs were annotated following
the same procedure as above, resulting in binary
inter-annotator agreement of F1 = .95 (SD = 0.09),
computed over 10% double-rated notes per case.

6 Kaggle competition: Key lessons

The Kaggle competition on scoring clinical PNs
resulted in a total of 28,049 code entries from
1,471 participating teams. After the end of the
competition, many teams posted their notebooks in
the competition’s code repository, making them
publicly available. In this section, we analyze
the top 15 publicly shared solutions 6 (the teams
ranking from 1st to 11th place, and those that
ranked #13, #14, #18, #19, and #20), as well as in-
sights from other notebooks and key forum discus-
sions. The final leaderboard rankings can be seen at
https://tinyurl.com/p9mwfu8c and cor-
responding code contributions can be accessed at
https://tinyurl.com/3h8p5a67.

Results Many of the top-performing teams
reached a token-level F1 score of .89, with mi-
nor differences between solutions (e.g., #1 F1 =
.89456, #2 F1 = .89432, and #3 F1 = .89384), in-
dicating that there are different, equally success-
ful ways of addressing this task. This result also
suggests potential ceiling effects arising from anno-
tation inconsistencies such as not capturing every
instance of a phrase that can be mapped to a fea-
ture7 or not identifying the correct character span
of a phrase (average inter-annotator agreement F1
= .84). Such inconsistencies resulting from human
error are inevitable in spite of rigorous training and
data cleaning efforts, further showcasing the need
for improved reliability in scoring.

Key approaches Most high-performing solu-
tions used some version of DeBERTa (He et al.,
2021) as the backbone and performed task-
adaptive pretraining (Gururangan et al., 2020) by
using masked language modeling (MLM) over the

6Detailed solution descriptions for first place: https:
//tinyurl.com/2p8afa94, second place: https://
tinyurl.com/yc77s4rk, and third place https://
tinyurl.com/3yf4u6hr.

7The 2nd place winner hypothesised that annotators were
more likely to miss repeated annotations than first occurrence
and noted that the use of recursive neural networks (RNNs)
could be useful to capture such sequence dependencies.

unannotated portion of the data. One solution (#2)
additionally pretrained on the SQuAD 2.0 question
answering dataset (Rajpurkar et al., 2018), drawing
a parallel between the two tasks: the feature text
in PN scoring corresponds to the question in the
SQuAD data, the patient history is the context, and
the annotations are all answers to the question.

Another approach shared by almost all of the
analyzed solutions was the use of pseudo labeling
(Arazo et al., 2020) to create more training data
from the unannotated notes. One team (ranking #3)
also utilized meta pseudo labeling (Pham et al.,
2021). Some teams reported that hard labels work
better than soft labels [solutions ranking #8, #70],
while others reported the opposite [#1].

While these techniques were used in most high-
performing solutions, one approach that distin-
guished the Top 3 winners was the use use of multi-
task learning. In this case, the main task of token
classification is combined with an auxiliary task
of predicting annotation span boundaries, putting
more weight on tokens that are the beginning or
end of a phrase. In the model architecture, this
is expressed as a primary head for token classifi-
cation and two auxiliary heads for span boundary
detection (one for starts and one for ends).

A focal point for most successful solutions
was the prevention of overfitting. This was done
through careful ensembling and detailed experi-
mentation with various dropout rates, as well as
extensive use of cross validation.

7 Models

Two key differences between real-world applica-
tions and the competition are that: i) newly de-
veloped cases do not come with large amounts of
unannotated PNs (which makes pseudo-labeling
not suitable), and ii) the trade-off between per-
formance gain and resource requirements such as
speed and compute power is an important aspect of
model selection (making the ensembling of a large
number of models impractical). With these pre-
requisites in mind, the following approaches were
trained and evaluated.

INCITE baseline: The INCITE system is an op-
erationally used benchmark. The case-specific data
in its lexicons is from the training set for each case.

DeBERTa baseline: The pretrained DeBERTa
v3 (He et al., 2021) was used as the backbone
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Token-level results for the public (Kaggle) dataset
Public test set Private test set

P R F1 P R F1
DB .846 .882 .864 .85 .885 .867
DB + MTL .844 .882 .862 .849 .887 .868
DB + MLM .845 .889 .866 .849 .89 .869

Token-level results for the proprietary data (178 cases)
Training set (80%) Test set (20%)

P R F1 P R F1
DB .836 .782 .808 .681 .768 .722
DB + MTL .845 .808 .826 .773 .7 .745
DB + MLM .94 .95 .945 .856 .834 .845

Table 1: Token-level results. DB = DeBERTa; MTL =
multi-task learning; MLM = masked language model-
ing; P = precision, R = recall. Note that INCITE does
not output token-level information.

model8, where each token was assigned a label
of 1 if inside the annotation span and 0 otherwise.
The output of the model was the probability of each
token being inside the annotation span. After ex-
perimentation with various probability thresholds
in both datasets, a threshold of 0.5 was determined
sufficient (i.e., a token with a probability greater
than 0.5 was considered to be inside the span). The
model was trained with cross-entropy loss.

DeBERTa + Masked Language Modeling
(MLM): 15% of the tokens in the input sentences
were randomly masked and ran through the model,
where the model’s objective was to predict the
masked tokens. For the Kaggle dataset, the pretrain-
ing was performed on the unlabeled data. For the
proprietary dataset, there were no unlabeled data,
so the pretraining was performed on the labeled
data from the training set. The MLM model was
pretrained for one epoch. The pretrained model was
then trained the same way as the baseline model.

DeBERTa + Multi-task Learning (MTL): Two
auxiliary tasks were trained jointly with the model,
predicting whether the token was at the beginning
(Task 1) or the end (Task 2) of the annotation span.

8 Results

Token-level results: Table 1 presents the results
from the token-level evaluation. For the Kaggle
data, we kept the exact training, private test, and

8Learning rate: 1e-4; Optimizer: AdamW; Weight decay:
0.01; Learning rate scheduler: Linear (warmup for 10% of the
training steps); Training epochs: 5; Training batch size: 4 per
device x 2 GPUs = 8; Gradient accumulation steps: 4.

public test sets,9 so the results are directly compa-
rable to the competition leaderboard. As shown in
the table, the best-performing model is DeBERTa +
MLM, with a private test set F1 score of .869 (P =
.849, R = .89). This compares to F1 = .89456 for
the #1 Kaggle solution. A drop in performance of
only .03 points shows that the exclusion of pseudo-
labeling and the use of a single model instead of
an ensemble of multiple models did not lead to a
loss that has a practical significance (although such
difference is important in a competition context).

For the internal dataset the results are consistent
with Kaggle – the best model is again DeBERTa +
MLM (F1 = .845, P = .856, R = .834). The model
generalizes over a much larger set of cases and is
robust when trained on fewer notes (as a reminder,
the internal dataset contains 32 to 49 annotated
notes per case (80% used for training), compared
to 100 training notes per case in Kaggle). Impor-
tantly, this result shows that MLM pretraining can
be fruitfully applied to small training sets, leading
to an increase over the DeBERTa baseline (.845
vs. .722). The DeBERTa and DeBERTa + MTL
results did not generalize as well, exemplifying the
importance of task-adaptive pretraining.

Note that token-level evaluation was only per-
formed with the neural models. INCITE cannot
output specific phrases if the matching was done
by some of its more advanced modules (e.g., bag
of words from lexicon variants + fuzzy matching).
This is an important distinction between INCITE
and the neural approaches that has implications
for both interpretability and intended use (e.g., in
providing feedback to learners).

Binary evaluation results and comparison to
INCITE: The binary evaluation results are pre-
sented in Table 2. For Kaggle, the neural models
outperform INCITE (F1 of .958 for DeBERTa +
MLM; .888 for INCITE on the public test set). This
difference is more pronounced for the proprietary
dataset, where DeBERTa + MLM’s robust F1 of
.952 compares to an F1 of .761 for INCITE and
.946 for inter-annotator agreement. As shown, the
main difference with INCITE is that DeBERTa +
MLM has a much higher recall (e.g., R = .954 vs.
R = .642 for INCITE). Precision is high for both
DeBERTa + MLM (.95) and INCITE (.953).

The binary evaluation results on the internal
9In Kaggle, the public test set serves as a validation set

for the development of the approaches. The final leaderboard
is determined after the end of the competition by the perfor-
mance of the submitted models on the private test set.
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Binary evaluation for the public (Kaggle) dataset
Public test set Private test set

P R F1 P R F1
INCITE .962 .818 .883 .961 .828 .888
DB .95 .962 .956 .951 .963 .957
DB + MTL .947 .961 .954 .953 .963 .958
DB + MLM .952 .961 .957 .961 .956 .958

Binary evaluation for the proprietary data (178 cases)
Training set (80%) Test set (20%)

P R F1 P R F1
INCITE .966 0.85 .902 .953 .642 .761
DB .927 .933 .93 .896 .862 .879
DB + MTL .933 .947 .94 .898 .877 .888
DB + MLM .979 .979 .979 .95 .954 .952

Table 2: Binary evaluation results. DB = DeBERTa;
MTL = multi-task learning; MLM = masked language
modeling, P =precision, R = recall.

dataset for DeBERTa + MLM (F1 = .952) are com-
parable to human-rater performance as computed
on the set of double-rated PNs per case (inter-rater
agreement F1 = .946).

Out of the total of 19,465 instances, INCITE
and DeBERTa + MLM agreed in 14,532 or 75%
of the instances (κ = 0.51, indicating moderate
agreement); INCITE vs Annotation agreement was
κ = 0.52; Finally, DeBERTa + MLM vs Annotation
agreement was κ = 0.89.

Limited annotation setting: For the internal
dataset we also experiment with a limited annota-
tion setting, since the question of how much an-
notation is required before a model can be trained
has strong practical implications. For a limited an-
notation scenario where we train on 30% of the
data (i.e., ≈ 12 PNs per case) and evaluate on 70%
held-out data, the F1 score for DeBERTa + MLM
is .836 (binary F1 = .94) compared to .69 (binary
F1 = .83) for DeBERTa + MTL and .64 (binary
F1 = .86 ) for DeBERTa baseline. These results
show that task-adaptive pretraining leads to robust
models even in a limited annotation scenario.

9 Error Analysis

For DeBERTa + MLM, there were 990 errors (594
FNs and 396 FPs), distributed across all 178 clin-
ical cases10. However, the errors were only dis-
tributed across 36% of the 1815 features. We hy-

10The average number of errors per case was 10.5 (SD =
9.15), with 4 cases scored without any errors, 16 cases with
one, and 22 cases with two errors; highest number of errors
in a case was 18 (1 case), followed by 17 (1 case), and 15 (3
cases). The number of errors per case (µ = 10.5 (SD = 9.15))
was best explained by the number of features in a case, where
cases with higher number of features had more errors.

pothesize that this may be due to differences in
annotation length for different features. Indeed, the
mean annotation length differs between the correct
predictions and the errors: it is µ = 19.6 (SD =
20.7) for correct and µ = 13.2 (SD = 17.2) for the
errors (Mann-Whitney U = 7183226, p < 0.001).
This is somewhat counter-intuitive, as it suggests
that the shorter features and shorter annotations are
more difficult to detect. Further content-specific
analysis is needed to illuminate the potential causes
for this phenomenon. Annotation length affected
INCITE inversely and to a much greater extent,
where the annotations for the correct class (µ =
15.9, SD = 19.8) are on average twice as short as
the errors (µ = 29.12, SD = 19.9), (U = 19231079.5,
p = 0.0), potentially due to limitations from its
window-based approach. Spearman correlation be-
tween annotation length and correct/incorrect pre-
dictions further supports this finding: r = 0.08 for
DeBERTa + MLM model and r = -0.36 for IN-
CITE. A likely explanation for this result is that
INCITE’s window-based approach is challenged
by long phrases, while DeBERTa’s multi-head self-
attention layers, where the encoder reads the entire
sequence bidirectionally, enables it to cope well
with these. In addition, since the objective of the
neural models was to decide whether a given char-
acter belongs to a relevant phrase, the higher char-
acter count of longer phrases increases the avail-
able information for making a prediction. Further
analysis of the differences between correct and er-
roneous predictions did not reveal a specific pattern.
This extended analysis is presented in Appendix D
together with examples of specific features.

10 Deployment

A system based on the DeBERTa + MLM model
was deployed on the Amazon Web Services (AWS)
platform. A graph depicting the AWS architecture
can be seen in Appendix C. Figure 2 provides a
visualization of the system output. Speed, resource
efficiency, and scalability are ensured by the use of
SageMaker and eliminating the need for human in-
terference via event triggers: placing incoming data
in an initial S3 bucket triggers a series of Lambda
functions, which initiate preprocessing, training,
and scoring.

11 Discussion

The results presented above showed that the best
model, DeBERTa + MLM, led to significant im-

92



Figure 2: System output for an example PN

provements over INCITE for a diverse set of 178
clinical cases (binary F1 = .95 for DeBERTa +
MLM compared to .76 for INCITE), as well as
the Kaggle data (.96 vs .89). INCITE was signifi-
cantly more challenged by lengthy phrases and the
smaller number of training instances in the propri-
etary dataset. By contrast, as shown when evaluat-
ing in the limited annotation scenario, DeBERTa
+ MLM continues to yield meaningful gains when
trained on as few as 12 PNs. These experiments
add evidence that task-adaptive pretraining can be
beneficial even for small training samples, making
the approach applicable to a wide range of practical
scenarios.

While the INCITE system struggled to identify
lengthy expressions (i.e., the annotations of the er-
rors were twice as long as those of the correctly
identified instances), the DeBERTa + MLM model
coped well with long sequences. This is likely due
to the multi-head self attention layers of DeBERTa,
where the encoder reads the entire sequence in a
bidirectional manner. In addition, since the task
was to decide whether a given character belongs
to a relevant phrase or not, the higher character
count of longer phrases increases the available in-
formation for making a prediction. At the same

time, INCITE’s window-based approach limits the
length of the text spans being considered at a time,
making the capturing of long dependencies less
feasible.

The ability of the neural approaches to output
the relevant PN phrases that correspond to each
feature greatly improves the interpretability of the
scoring process by making explicit the relation-
ship between the assigned score and its supporting
evidence. Importantly, this is an improvement not
only upon INCITE but also upon human scoring, as
raters rarely have the time capacity to mark specific
expressions. As each human rater scores hundreds
of patient notes, it is not practically feasible for
them to link specific phrases to rubric features for
a large volume of data. In addition to improving
interpretability, outputting the phrases enables ap-
plications of these tools that go beyond summative
assessment. Such information can serve to pro-
vide pointed learner feedback in OSCE assessment,
especially in cases where students are still learn-
ing how to document their clinical findings in an
appropriately detailed and organized manner.

When discussing the development of this system,
it is important to mention community competitions
as an important source of innovation. The benefits
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from sharing data for such purposes are not limited
to the organization or the data science community,
but extend to improving transparency – a crucial
prerequisite for building stakeholder trust. When
applying these creative approaches to a real-world
scenario, important considerations such as speed
and scalability limit the use of large model ensem-
bles that are typically widely used in competitions.
Other practical considerations include data avail-
ability for training (e.g., newly developed cases
rarely have large numbers of PNs associated with
them) and the need for weak supervision.

12 Limitations and ethical considerations

Some of the limitations of this research relate to
the small within-case sample size of the annotated
notes (which is somewhat mitigated by the large
number of clinical cases) and the fact that not all
notes could be double-rated due to resource con-
straints. While the scoring method is interpretable
in that it can be traced to specific phrases within the
PNs, the neural algorithms that identify the phrase
boundaries are black-box models which needs to be
carefully scrutinized for bias. In addition, it is still
not fully apparent why certain features are easier
to detect than others. Future work includes devel-
opment of scoring approaches for other segments
from the PNs such as the Physical Examination and
Data Interpretation sections, deeper exploration of
challenges related to specific features, experimen-
tation with adversarial training, as well as further
investigation of the operational use of the system.

Like many other products, automated scoring
tools are socio-technical systems, whose impact is
determined not solely by their technical capabili-
ties but also by their use and output interpretation.
Misuse and incorrect interpretation of the model
outputs can lead to unethical practices of serious
consequence. In a summative setting, the models
described here are intended to be used as hybrid
systems, where borderline cases and the notes from
examinees below the passing standard are always
reviewed by human raters. In a formative setting, it
is paramount to carefully examine the relationship
between use of the system and learning outcomes
as necessary validity evidence.

Another ethical consideration for this study is
the transparency of the approaches when develop-
ing technology for highly consequential decisions.
As Spadafore and Monrad (2019) write: “decision-
ing software with the potential to profoundly affect

the career of a medical student should be exam-
ined closely. Transparency of implementation is
critical for such a high-stakes application". This is
particularly important in automated scoring, where
the scores only have value if all stakeholders (e.g.,
faculty, students, and residency selection programs,
to name a few) trust that they are fair, reliable, and
valid. Having public datasets and code such as the
ones shared in the Kaggle competition go a long
way in building trust by increasing transparency
and accountability. As per the rules of the Kaggle
competition11, all code shared publicly is licensed
under an Open Source Initiative-approved license.
It is important to note that the benefits of system
transparency go hand-in-hand with risks associated
with using that knowledge to "game" the system.
These include reverse-engineering a strategy that
would result in a higher score, as well as the oc-
currence of negative “washback" (Green, 2013) –
over-focus on developing only those skills that are
currently covered by the scoring tool. Limiting
these negative consequences while also building
trust through transparency requires a delicate bal-
ance. In the case of this study, we foster trans-
parency via organizing the competition, describing
the main approaches, and evaluating our system on
a dataset we made public. At the same time, we
do not publish the code behind the system, limiting
potential efforts reverse-engineer it or "game" it.

The data used in the Kaggle competition was
released following strict adherence to ethical prac-
tice. It contains PNs only from examinees who
explicitly indicated that they agreed to have their
data used in research as part of the official exam
registration process; Use of the anonymized data
was considered “exempt" following an IRB review.
The PNs were assigned a new set of IDs that cannot
be linked to operational IDs used in scoring. None
of the PNs include names, affiliations or personal
descriptions (note that the names and clinical data
associated with the standardized patients do not
belong to real people; they are part of carefully
constructed clinical cases that aim to resemble real-
world clinical practice). In addition, the dataset
does not feature complete PNs (only history por-
tions are included), and no identifying information
is given on which PNs were written by an individ-
ual examinee. According to Kaggle’s terms and
conditions, data can only be accessed for partici-

11https://www.kaggle.com/competitions/nbme-score-
clinical-patient-notes/rules

94



pating in the competition. For purposes unrelated
to the competition, access to the data is subject to
an application process and a data use agreement as
a way to ensure ethical use.

A few important aspects remain to be examined
before the system can be used in practice. This
includes analyses related to differential functioning
of the system for users with different backgrounds,
e.g., ensuring that non-native English speakers are
not disproportionally penalized due to differences
in language proficiency, as well as continuous mon-
itoring for issues such as drift or latency.
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A Example of a patient note

See Table 3 below.

B Annotation Guidelines

For each case, two of the notes were annotated
jointly by a pair of annotators as part of an ini-
tial discussion to resolve discrepancies in the ap-
proach, with the next 5 notes annotated indepen-
dently and discussed in a follow-up meeting. After
that each annotator would proceed to independent
work, where a subset of the notes were double-rated
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History: Describe the history you just obtained from this patient. Include only information (pertinent positives
and negatives) relevant to this patient’s problem(s).

Karin Moore is a 45 yo F here for nervousness. She recently noticed that she was feeling more nervous than usual
and that this feeling has been progressively worsening. Nothing seems to help her nervousness. It is exacerbated by
family and work. She feels especially nervous on Sunday night and Monday morning when as she is planning for the
week. Unable to fall asleep and doesn’t have appetite, though she does makes sure to eat. She denies significant
changes in appetite, weight loss, or overall wellbeing. No fevers, chills, nausea, constipation, diarrhea, skin changes,
racing heart, shortness of breath, dizziness, headaches or rashes.
ROS: otherwise negative
PMH: None; PSH: None
Meds: Tylenol for occasional HA
FHX: Father died at 65yo, had an MI
Allergies: NKDA
SH: Lives at home with husband, mother, and youngest son. Teaches literature at a local college.
Has 2 drinks/mo, no tobacco or drug use.
Physical Examination: Describe any positive and negative findings relevant to this patient’s problem(s).
Be careful to include only those parts of examination you performed in this encounter.

VS: Blood Pressure: 130/85 mm Hg
Heart Rate: 96/min
Gen: No acute distress, conversational, thin
Neck: No thyromegaly, no lymphadeopathy
Heart: RRR, no murmurs, rubs or gallops. Radial pulses +2 bilaterally
Lungs: Clear to ascultation bilaterally, no wheezes
Psych: Well-groomed. Non-pressured speech, linear though process.
Data Interpretation: Based on what you have learned from the history and physical examination, list up to
3 diagnoses that might explain this patient’s complaint(s). (...)

General anxiety disorder
Panic disorder
Hyperthyroidism

Table 3: Illustration of a PN. The dataset features only the history portions of the PNs.

for measuring agreement ( 10% for the proprietary
data and 20% for the public data).

The annotators were given the following instruc-
tion:

• Identify all phrases that are expressions of a
feature from the History portion of the PNs
and link them to their corresponding feature.

• Include fragmented annotations by excluding
the text that is not relevant to the feature (e.g.,
if the feature is No relief with Imodium or
Cipro, only the underlined text of the follow-
ing excerpt should be annotated: Has tried
Immodium (aggrevated condition), and Cipro
250mg BID (has taken 9 tablets) from prior
episode of diarrhea in Kenya of lesser severity
(no effect))

• Each feature should be marked up as a sep-
arate annotation, and the annotation should
include all, but not more than, the text that
captures the meaning of the corresponding en-
try in the feature (e.g., if the key essential is
No blood in stool, only the underlined text

of the following excerpt should be annotated:
No blood or mucus in stool).

• Annotations should include quantifiers (e.g.,
twice, four times, some), intensifiers (e.g.,
mild, severe), and temporal modifiers (e.g.,
two weeks, several years) that are specified
in the corresponding entry in the feature, as
well as the object that is being described (e.g.,
pain, cough).

• Annotations should not include articles (e.g.,
a, the) or references to the patient (e.g., her,
he) that occur at the beginning of note entries,
or end punctuation (e.g., periods); however,
it is not necessary to fragment annotations
if words or characters, such as these, occur
within relevant text and do not modify the
meaning of the feature entry.

• Annotations may overlap; that is, they may
share text with other annotations. For exam-
ple, negations (e.g., negative for, no, denies)
frequently will be shared among several anno-
tations. In the phrase Negative for fever, chills,
nausea, vomiting, hematochezia, the negated
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nouns refer to different features and should be
annotated as Negative for fever, Negative for
chills, Negative for nausea, etc.

• Mark up every instance of the feature whether
it is identical to an existing annotation or not.
For example, if the feature is NSAID-use and
the examinee wrote Uses NSAIDs as well as
took ibuprofen, both snippets of text should be
annotated. If the exact snippet Uses NSAIDs
appeared more than once in a note, it should
be annotated every time it appears in the note.

• Gender is a special case of a feature and
should only be annotated once for the first
mention. Subsequent phrases that may be
linked to gender such as she or his should
not be annotated.

C AWS System Architecture

See Figure 3 below for a visualization of the system
architecture.

D Extended Error Analysis

Examples of features that were always correctly
identified include ‘no previous uti’, ‘occasional
morning headaches’, ‘no temperature intolerance
or no weight change or no bowel changes or
no hair changes or no skin changes’, ‘on depo
provera’, and ‘decreased energy or fatigue’. The
top 5 features with most FPs were getting worse (7),
hand stiffness (5), subjective fever (5), chest pain
with cough (5), and overdue for colonoscopy (5).
The top 5 features that were most difficult to detect
automatically with highest numbers of FNs were 1
day urinary frequency (4), radiating down back of
neck (3), constipation x 4 5 months (3), acute onset
(3), nausea (3). There was no apparent pattern as
to what made certain features easy or challenging
to detect, with both groups containing negation,
temporal aspects, and features with varying length
in characters.

The case with the highest number of errors (n =
18) contained 31 features to look for. Out of the
18 errors, 10 were FPs, and out of these, 4 features
looked for negated terms (no change in diet, no
oral contraceptives, no abdominal surgeries and
no radiation). Interestingly, some negated expres-
sions from the PNs were erroneously mapped to
these negated features such as denies eating under
cokked [sic] foods being mapped to no change in
diet, showing that the model is aware that it needs

to look for negation but processing it incorrectly.
The remaining eight FNs did not reveal a pattern.

Of all errors, 594 were false positives (FPs)
across 166 cases and 396 were false negatives (FNs)
across 151 cases. The highest number of FPs per
case was 12 (2 cases), with the majority of cases
containing one or two FPs per case (34 and 35
cases, respectively). For FNs, the highest number
of FNs per case was 9 (1 case), with the majority
of cases also containing one or two FNs (48 and 37
cases, respectively).
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Figure 3: AWS System Architecture. When a new dataset is placed in the S3 bucket, a Lambda function triggers
preprocessing and a subsequent Lambda function triggers the training process. Training is performed via SageMaker
and Huggingface; final predictions are stored in CloudWatch.
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Abstract 

This paper introduces the Common Lit 

Augmented Student Summary Evaluation 

(CLASSE) corpus. The corpus comprises 

11,213 summaries written over six prompts 

by students in grades 3-12 while using the 

CommonLit website. Each summary was 

scored by expert human raters on analytic 

features related to main points, details, 

organization, voice, paraphrasing, and 

language beyond the source text. The 

human scores were aggregated into two 

component scores related to content and 

wording. The final corpus was the focus of 

a Kaggle competition hosted in late 2022 

and completed in 2023 in which over 2,000 

teams participated. The paper includes a 

baseline scoring model for the corpus based 

on a Large Language Model (Longformer 

model). The paper also provides an 

overview of the winning models from the 

Kaggle competition. 

1 Introduction 

Many educational applications are interested in 

assessing student-generated knowledge to assess 

learning and development. In terms of assessing 

student comprehension of text, generation effects 

(Slamecka & Graff, 1978) that result from students 

writing about what they have read have been shown 

to substantially improve learning (Bertsch et al., 

2007; McCurdy et al., 2020). A number of 

educational applications have taken advantage of 

generation effects to enhance students’ reading 

comprehension skills, including Summary Street 

(Wade-Stein & Kintsch, 2004), the Interactive 

Strategy Training for Active Reading and Thinking 

(iSTART) tool (McNamara et al. 2004), the 

CommonLit online reading program 

(commonlit.org), and the intelligent Textbooks for 

Enhanced Lifelong Learning (iTELL) framework 

(Morris et al., in press). 

The most common approach to assessing 

students’ reading comprehension through text 

generation is likely through text summarization. 

Text summarization is a valuable tool to build and 

assess student knowledge (Graham & Harris, 2015; 

Head et al., 1989) because the process of 

summarization helps students build and 

consolidate their knowledge about reading 

materials (Silva & Limongi, 2019). Text 

summarization has also been shown to lead to 

stronger learning gains than other forms of 

comprehension assessment, including constructed 

responses (Carroll, 2008), long-form essays (Gil et 

al., 2010), and traditional assessments like 

multiple-choice and fill-in-the-blank questions 

(Mok & Chan, 2016). 

While effective, many teachers hesitate to 

integrate summary assessments of reading in the 

classroom because manually grading summaries is 

resource-intensive (Lagakis & Demetriadis, 2021; 

Li et al., 2018). However, student text 

summarization can also be assessed automatically 

through the use of Natural Language Processing 

(NLP) techniques such as semantic similarity 

metrics (Crossley et al., 2019; Li et al., 2018; 

Wade-Stein & Kintsch, 2004) or contextualized 

word embeddings like those found in Transformer-

based language models (Botarleanu et al., 2022; 

Morris et al., 2023). 

To assess student summarization strength 

automatically, NLP models depend on the 

availability of large corpora of summaries that have 

been scored for quality. Unfortunately, previous 

research has depended on closed-source collections 

of summaries that are not available to the broader 

research community (Botarleanu et al., 2022; 

Crossley et al., 2019; Li et al., 2018; Wade-Stein & 

Kintsch, 2004), which limits the strength, 
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replication, and generalizability of summarization 

models. Additionally, many of the corpora used in 

previous research have included summaries written 

by crowdsourced workers and not students 

(Botarleanu et al., 2022; Crossley et al., 2019; Li et 

al., 2018) 

The goal of this study is to introduce the 

Common Lit Augmented Student Summary 

Evaluation (CLASSE) corpus. The corpus 

comprises 11,213 summaries written over six 

prompts by students in grades 3-12. All summaries 

were written on the CommonLit website. Each 

summary was scored by expert human raters on 

analytic features related to summarization content 

and wording. The study also introduces a baseline 

NLP summary scoring model for the corpus as well 

as the winning models developed in a large-scale 

data science competition hosted for the corpus. 

1.1 Summary writing 

Summarizing a reading involves two cognitive 

processes: comprehension and content production 

(Li et al., 2018). The reading process leads to the 

reader’s comprehension of the source material. 

This process generally consists of readers 

identifying the text's main themes, the ideas that 

support these themes, and the structures and 

organization of the text (Spirgel & Delaney, 2016). 

After reading, summarization allows the student to 

reproduce the content of the source text that they 

read and involves the reader (now the writer) 

generalizing the main ideas contained in the text, 

synthesizing those ideas, organizing those ideas 

coherently within the summary, and selecting the 

proper words and sentence structures to represent 

the ideas (Brown & Day, 1983; van Dijk & 

Kintsch, 1983; Galbraith & Baaijen, 2018; León et 

al. 2006; Nelson & King, 2022). The cognitive 

demands entailed in summarizing help consolidate 

the knowledge gained from reading into long-term 

memory (Silva & Limongi, 2019). 

Research indicates that reading to writing tasks 

like summarization can increase learning outcomes 

in various content domains (Graham et al., 2020; 

Silva & Limongi, 2019) and for different types of 

learners (Rogevich & Perin, 2008; Trabasso & 

Bouchard, 2002; Shokrpour et al., 2013). A meta-

analysis of 56 experiments on the effect of reading 

on writing tasks found an average weighted effect 

size of Hedges’s g = 0.3 (p < .005) between pre- 

and post-tests for students (Silva & Limongi, 

2019). Additionally, compared to other methods to 

assess reading comprehension and knowledge 

development, like constructed responses, essays, 

and multiple-choice questions, research has found 

that summarizations are more effective (Carroll, 

2008; Gil et al., 2010; Mok & Chan, 2016). 

1.2 Automatic summary evaluation 

Despite the effectiveness of having students 

summarize what they have read, providing 

feedback to students about the quality of 

summaries is time-consuming for educators 

(Gamage et al., 2021; Lagakis & Demetriadis, 

2021; Li et al., 2018), thus making human-driven 

summary assessments difficult to scale. 

Noting the importance of summarization in 

educational settings and the challenges of 

integrating it into the classroom, researchers have 

investigated the potential for automatic summary 

evaluation (ASE) to provide students with 

computational-derived feedback.  

Initial methods for ASE predominantly involved 

assessing a student’s summarization work by 

comparing it with model summaries crafted by 

experts. These methods have the advantage of 

relying on a single expert-derived summary to 

establish a benchmark for quality. Metrics like 

ROUGE (Lin & Hovy, 2003) were utilized to 

assign scores to summaries by examining the 

frequency of shared words and phrases between the 

student and expert summaries. Although ROUGE 

metrics align with the quality ratings given by 

experts and have been widely adopted in 

developing summarization tools (Ganesan, 2018; 

Scialom et al., 2019), the metrics tend to favor basic 

lexical attributes. This shortcoming can be 

overcome by employing more sophisticated NLP 

techniques, such as those involving word 

embeddings (Ng & Abrecht, 2015). 

The earliest attempt at using a word embedding 

approach to score summaries was likely with the 

educational application Summary Street. Summary 

Street allowed students to produce multiple 

summary drafts and provided feedback to students 

based on Latent Semantic Analysis (LSA), an early 

word embedding model. Summary Street used 

LSA to uncover typical sentences in each section of 

a text. These sentences were then combined to form 

a typical summary. Semantic similarity between a 

student’s summary and the typical summary was 

used to provide feedback to the student about the 

quality of their summary (Wade-Stein & Kintsch, 

2004). 

100



 

 

Li et al. (2018) also used LSA to provide scores 

for summaries written by crowdsourced workers 

on Mechanical Turk. The crowdsourced summaries 

were scored by graduate students on four criteria: 

thesis statement, content, mechanics and grammar, 

and signal words. Li et al. found that crowdsourced 

summaries were scored as well as summaries 

produced by experts using LSA. Li et al. argued 

that crowdsourced workers could produce a model 

summary similar to the model summaries produced 

by experts, which could make it easier to develop 

model summaries for automated scoring. 

Other summarization scoring models have 

combined more advanced word embedding models 

and other NLP features to predict quality. For 

instance, Crossley et al. (2019) developed a 

summarization model to predict ratings of main 

idea integration in summaries collected on 

Mechanical Turk using lexical diversity features, a 

word frequency metric, and Word2vec semantic 

similarity scores between summaries and the 

corresponding source material. The model 

explained 53% of the variance in ratings.  

With the rise of Transformer-based language 

models, new methods of automated summary 

evaluation have been evaluated. For instance, 

Botarleanu et al. (2022) used the summaries of 

Crossley et al. (2019) to train a Longformer model 

(Beltagy et al., 2020) to predict overall 

summarization scores derived from an analytic 

rubric; their model explained ~55% of the score 

variance. Morris et al. (in press) used an extended 

dataset of the one used by Crossley et al. (2019). In 

addition to crowdsourced summaries, the extended 

dataset also included summaries written by high 

school and university students. Morris et al. used 

the dataset to predict two aspects of summarization 

quality: content and wording. Using a Longformer, 

they explained .82 of the variance in the content 

scores and .70 of the variance in the wording 

scores. 

2 The CLASSE Corpus 

While research ASE has gained traction and shown 

improvements over the last 20 years, the work is 

somewhat fragmented. A major reason for this is 

that researchers do not have a large-scale open-

source summarization corpus to develop, test, and 

validate ASE models. Other reasons include the use 

of different NLP approaches to model 

summarization quality, the sampling of different 

populations of writers, and the use of different 

scoring metrics. 

The Common Lit Augmented Student Summary 

Evaluation (CLASSE) corpus is meant to help 

address this fragmentation by providing 

researchers with a gold-standard corpus of open-

source summaries written by students. The corpus 

is freely available in the following repository: 

https://github.com/scrosseye/CLASSE. 

2.1 Summaries 

The corpus of summaries found in CLASSE was 

provided by CommonLit, an online content library 

and writing platform. The initial corpus comprised 

11,353 summaries. Within the CommonLit 

interface, students read texts and write summaries 

on those texts. Students also have the opportunity 

to write essay responses, complete vocabulary 

quizzes, and answer multiple-choice questions 

about the text. The final CLASSE corpus after 

pruning (see section 2.2) comprises 11,213 

summaries written over six prompts by students in 

grades 3-12.  

 

Grade N Length (M) Length (SD) 

3 2 172.00 49.50 

4 12 77.92 49.19 

5 248 87.51 70.17 

6 1072 82.58 57.61 

7 1177 78.92 58.66 

8 1844 76.30 46.06 

9 2531 71.62 43.82 

10 2247 75.92 50.73 

11 1942 73.61 51.15 

12 138 80.86 57.22 

 
Table 1: Grade Level 

 

Prompt N 

Length 

(M) 

Length 

(SD) 

Third-Wave 1103 73.88 47.31 

Tragedies 2057 63.87 44.93 

Jungle 1996 80.52 56.16 

Greek 2021 73.72 38.31 

Egyptian 2009 85.71 62.58 

Nature Nurture 2027 77.10 48.67 

 
Table 2: Prompt Information 

 

The majority of the summaries were written by 

students in the 6th to 11th grade, with smaller 

numbers of 3rd, 4th, 5th, and 12th grade students (see 
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Table 1 for details). English language learning 

(ELL) status is also available for the students (n = 

661). The six prompts were related to the topics of 

the third wave, poetic tragedies, the novel The 

Jungle, Greek society, Egyptian Society, and the 

nature/nurture debate (see Table 2 for details). The 

mean length of the summaries was 75.90 

(SD = 50.94, min = 22, max = 651). Text length by 

grade and prompt is reported in Tables 1 and 2. No 

demographic information beyond grade and ELL 

status is available for the students. 

2.2 Summary scoring 

Summaries were scored by expert raters using a 

standardized scoring rubric and procedure. An 

outside agency specialized in providing 

performance assessment scoring services was hired 

to score the summaries and initial selection of 

summaries. Two expert raters scored each 

summary using a 0-4 scaled analytic rubric to score 

six criteria important in understanding the quality 

of summarizations. The rubric was developed 

based on research into language elements related to 

essay quality reported by Taylor (2013) and Westby 

et al. (2010). The initial rubric was revised based 

on feedback from a panel of teachers and a panel of 

researchers who specialize in the teaching of 

summaries. The finalized rubric included analytic 

ratings for main point/gist (did the summary 

contain the ideas of the source text), details (did the 

summary contain all the main ideas of the source 

text), organization (were the ideas logically 

presented and linked to each other to support 

comprehension), voice (was language impartial 

and objective in the summary), word/paraphrasing 

(did the summary appropriately paraphrase the 

source text), and language beyond the source text 

(did the summary show a range of lexical and 

syntactic features). The scoring rubric is available 

at this link. Raters also flagged any summaries that 

included offensive or emotionally charged 

language or personally identifiable information 

(PII). While no PII was reported, 127 summaries 

were removed for language use. 

Raters were provided with ground truth example 

summaries that had been previously scored. As 

well, raters went through extensive norming prior 

to independent rating. After norming, each 

summary was read by at least two raters and, in 

some cases, three raters (if there was substantial 

disagreement). Ratings were conducted by prompt, 

and rater final scores were averaged such that 

scores of 3 and 2 were averaged to 2.5.  

Score distributions were generally normal 

except for the details, organization, and wording 

items, which were positively skewed, indicating a 

greater number of 1s than 1.5s. Strong correlations 

were reported among the analytic items, with the 

highest correlation between organization and voice 

and the lowest correlation between detail and word 

(see Figure 1 for a correlation heat map). The exact 

agreement among analytic items hovered around 

70% (see Table 3 for details). Quadratic weighted 

kappa (QWK) scores for inter-rater reliability were 

substantial (QWK < .60) for all items except 

wording, which reported a moderate QWK = .532 

(see Table 4). 

Significant differences were noted between ELL 

students and non-ELL students for both content 

scores (t = 3.993, p < .001) and wording scores 

(t = 5.684, p < .001). Descriptive statistics for 

content and wording scores by ELL and non-ELL 

students are reported in Table 5. No significant 

correlations were reported between grade level and 

content score (r = -0.036, p > .050) and wording 

scores (r = -0.049, p > .050). Descriptive statistics 

for content and wording scores by grade are 

reported in Table 6. 

 

 
Figure 1: Heatmap for correlations among analytic 

item scores 

 

Item 
Adjacent 

Low 
Exact 

Adjacent 

High 

Main Idea 13.2 73.0 13.2 

Details 13.9 72.0 13.9 

Organization 15.1 69.0 15.1 

Voice 15.4 69.0 15.4 

Wording 16.9 65.0 16.9 

Language 11.8 76.0 11.8 

 

Table 3: Exact and adjacent percentages 
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Item QWK 

Main Idea 0.617 

Details 0.673 

Organization 0.694 

Voice 0.683 

Wording 0.532 

Language 0.653 

 

Table 4: Quadratic Weighted Kappa (QWK) for 

inter-rater reliability 

 

Group Content M (SD) Wording M (SD) 

Non-

ELL 0.016 (1.002) 0.023 (0.999) 

ELL -0.136 (0.950) -0.186 (0.910) 

 

Table 5: Descriptive statistics for content and 

wording scores for ELL and non-ELL students 

 

Grade Content M (SD) Wording M (SD) 

3 1.593 (2.015) 1.041 (1.419) 

4 -0.201 (1.131) -0.359 (0.759) 

5 -0.056 (1.115) -0.14 (0.964) 

6 0.036 (1.067) -0.039 (0.939) 

7 -0.063 (1.054) -0.071 (0.953) 

8 0.008 (0.985) 0.076 (0.963) 

9 0.025 (0.923) 0.098 (0.955) 

10 0.081 (1.01) 0.084 (1.057) 

11 -0.061 (1.002) -0.142 (1.04) 

12 -0.073 (1.008) -0.146 (0.967) 

 

Table 6: Descriptive statistics for content and 

wording scores by grade 

2.3 Dimensionality reduction 

Since the rubric consisted of six criteria, many of 

which were related, we conducted a Principal 

Component Analysis (PCA) to assess the potential 

to reduce the dimensionality of the six analytic 

scores into a smaller number of related constructs.  

Before conducting the PCA, the human scores 

were standardized using z-score normalization. An 

initial PCA was performed with all possible factors 

(n = 6). A Kaiser-Meyer-Olkin (KMO) measure of 

sampling adequacy indicated that no variables need 

to be removed (i.e., all KMO values were above .5), 

and the overall KMO score = .918 indicated a 

“meritorious” sample (Kaiser & Rice, 1974). The 

PCA reported a Bartlett’s test of sphericity, 

χ2 = 61,533.87, p < .001, indicating that 

correlations between the analytic scores were 

sufficiently large for the PCA. Within the 

components, there was a break in the cumulative 

variance explained between the second and the 

third components. Considering this break, we 

decided on a 2-component solution when 

developing the PCA. These 2 components 

explained approximately 86% of the shared 

variance in the data from the initial PCA. 

The first component was related to content (i.e., 

Component 1), and the analytic items details, main 

point, voice, and organization were combined into 

a weighted score. The analytic items 

wording/paraphrasing and language beyond the 

source were combined into a weighted score 

designated as wording (i.e., Component 2). The 

component scores were z-score normalized and 

rescaled such that zero represents the mean for each 

principal component, and one unit represents one 

standard deviation.  

2.4 Final dataset 

The final dataset comprises 11,213 summaries and 

metadata in tabular format and is available at this 

link. The dataset contains student ID numbers 

(anonymous), the prompt ID for each summary, the 

text of the summary, the average content and 

wording scores for the summary, the student grade 

level, and ELL classification, along with the data 

split that was used in the Kaggle competition (see 

section 4 for details). The data was split into a 

training set (n = 7,165), a validation set used as a 

test set for the public leaderboard on Kaggle (n = 

2,021), and a test set used for the private 

leaderboard on Kaggle (n = 2,027). The splits were 

selected so that the difference in scores across the 

splits was similar to demographic information 

(grade and ELL classification). The training set 

comprised four prompts (Third Wave, Tragedies, 

The Jungle, and Egyptian Society). The validation 

set included a single prompt (Greek Society), as did 

the test set (Nature versus Nurture). 

3 Baseline prediction model for CLASSE 

corpus  

We developed a simple baseline model for the 

CLASSE by finetuning a Longformer model 

(Beltagy et al., 2020) to predict the content and 

wording scores, given the original text and the 

summary. The baseline model is not meant to 

extend the technical boundaries of summary 

classification models but rather provide a simple 

metric from which to measure scoring gains. 
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3.1 Model description 

An encoder architecture was chosen for the 

baseline model over a decoder model because the 

prediction task is a regression that involves 

continuous values. Since a decoder model is used 

to generate text, the output values would have to be 

expressed in words. This does not imply that a 

decoder cannot be used for this task, but an encoder 

model seemed a better fit for the data. 

The input for the model consisted of both the 

summary and the source text, separated by the 

“sep” token. Given the length of the input 

exceeding 512 tokens, a Longformer model was 

chosen as a baseline encoder. 

Several options were tested for the final 

summary embedding: pooled output, average of all 

tokens, and average of summary tokens. Adding a 

hidden layer between the embedding and the 

decision layer was also considered. The best 

configuration used the average of the summary 

tokens followed by a dropout layer of 20%, no 

hidden layer or output activation, and a learning 

rate of 1e-5 using the Adam optimizer. The mean 

squared error sum for the two tasks was used as a 

loss function. The lowest validation loss was 

obtained after three epochs, and the corresponding 

model was used for evaluation. The model was 

trained on the training set, validated on the 

validation set, and tested on the test set used in the 

Kaggle competition. 

3.2 Prediction performance 

The metric used for the Kaggle competition was 

Mean Columnwise Root Mean Squared Error 

(MCRMSE), which is the average of the RMSE for 

the two scoring components (content and wording). 

RMSE is a general error metric used for numerical 

predictions that punishes large errors in 

predictions. An RMSE score of zero represents a 

perfect fit between the model and the outcome 

variables (in this case, content and wording scores). 

Thus, a lower RMSE represents a better model. 

The results for the baseline model for each 

partition, each component, and the average scores 

are presented in Table 6. The model performed well 

on the training and validation sets for content, but 

it performed less accurately on the wording scores. 

Model performance dipped for the content scores 

in the test set and fell for the wording scores. The 

overall scores for MCRMSE were strong for the 

training set but fell in the validation and test sets. 

The final MCRMSE reported for the test set was 

0.582.  

 

Partition Content 

RMSE 

Wording 

RMSE 

MCRMSE 

Train 0.375 0.427 0.401 

Validation 0.415 0.614 0.515 

Test 0.480 0.683 0.582 

Table 6: Baseline model performance 

4 Kaggle Competition 

The CLASSE dataset was the subject of a 

recently completed Kaggle competition 

(CommonLit - Evaluate Student Summaries). The 

goal of the competition was for data scientists to 

assess the quality of summaries in the CLASSE 

corpus in terms of content and wording. The 

winning models provide state-of-the-art techniques 

for modeling summary scoring in student data and 

demonstrate the potential for the CLASSE corpus 

to inform student learning and interventions. 

The competition started in July of 2023 and 

ended in October of 2023. Over 2,000 teams 

comprising ~2,500 competitors entered the 

competition, creating over 40,000 summary 

scoring models. All winning models are freely 

available for use through an MIT license and 

provided on the Kaggle website. The Kaggle 

website also provides the training and validation 

data used in the competition. 

5 Kaggle competition results 

As mentioned earlier, success in the Kaggle 

competition was demonstrated through a model’s 

mean column-wise root mean squared error 

(MCRMSE), which represented the average Root 

Mean Squared Error (RMSE) across the content 

and wording scores.  

The top 17 teams reported an MCRMSE below 

.46, with the first-place team reporting an 

MCRMSE of .452. These models thus 

outperformed our baseline model 

(MCRMSE = 0.582). Within the top five entrants, 

the most common approach used when modeling 

the summary scores was an ensemble model using 

the DeBERTa encoder. This approach was used 

with the second through fifth place teams, with all 

teams except the fifth place team using only 

DeBERTa models (the fifth place team used 

DeBERTa v3 large and a LightGBM ensemble 

model). The first-place team used a single 
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DeBERTa model (v3 large), but critically, they 

augmented the training set by creating 1000 new 

prompts with associated sources using generative 

AI. For each prompt, they also created 21 

summaries and pseudo-labeled those summaries. 

Other common approaches used to improve the 

models included using a head mask for only the 

student summaries instead of a normal attention 

mask, using generative AI models to generate 

varieties of the existing prompts, hyperparameter 

searches, extending the inference max length, and 

using all of the input (summary, prompt, source, 

and title) in the training models. 

6 Discussion and conclusion 

This paper has introduced the CLASSE corpus, the 

scoring metrics for the corpus, and a baseline 

model for summary scoring based on a DeBERTa 

Transformer-based encoder. The paper also 

introduced the winning summarization models 

from the Kaggle competition held in support of the 

CLASSE corpus. 

The CLASSE comprises 11,213 summaries 

written over six prompts by students in grades 3-12 

while using the CommonLit website. Each 

summary was scored by expert human raters on 

analytic features related to summarization content 

and wording. 

Reliability metrics for the human scoring 

indicated substantial reliability in all items except 

paraphrasing/wording, which reported moderate 

reliability. Paraphrasing is the restatement of a 

passage such that the propositional meaning is 

similar, but the words and structures differ. 

Recognizing when words differ between passages 

is relatively easy, but recognizing the alteration of 

clauses is a difficult task (Barzilay & Lee, 2003), 

which may explain the moderate reliability 

reported by human raters. 

The analytic scores were aggregated into 

components using a principal component analysis 

(PCA) to better represent the underlying structure 

of the human ratings. The PCA reported two 

components related to content and wording. 

Content included features related to main ideas, 

details for those ideas, the organization of those 

ideas, and the objectivity of how those ideas were 

presented. The content component provides an 

overall assessment of how the ideas in the source 

text are distilled into a coherent and objective 

framework in the student summaries. Wording 

includes features related to paraphrasing and the 

use of language beyond the source. This 

component was concerned with the manner in 

which the summary presented the ideas from the 

source text, specifically, did the summary use 

original wording (paraphrasing) and whether this 

wording was lexically and syntactically complex. 

The baseline model introduced in this paper used 

a Longformer model that used both the summary 

and the source text as input for model predictions. 

The Longformer performed well on the training 

data but reported drops in the validation and test 

data. This is the result of the Longformer model 

learning the patterns of successful summarization 

specific to the four prompts in the training set but 

not learning how to extend scoring beyond those 

prompts to the two unique prompts in the validation 

and test sets. 

The results of the subsequent Kaggle 

competition showed a number of innovations that 

helped competitors produce winning models, many 

of which addressed the limitations of the baseline 

model. The winning model used a single 

Transformer encoder (DeBERTa v3 large), but, 

importantly, they augmented their training data to 

include a much larger number of prompts and 

summaries written on those prompts. Extending the 

number of prompts and summaries allowed the 

model to generalize better to the unique prompts 

found in the validation and test set. Other 

innovations in summary scoring that resulted from 

the Kaggle competition included pseudo-labeling 

of AI generated summaries for content and wording 

scores, the use of head masks, and extending the 

inference max length. 

6.1 Limitations 

While the CLASSE corpus is the largest corpus of 

student summaries, with individual human scores 

assigned to each summary, there are limitations to 

the corpus. An important limitation is that there are 

only six source texts and prompts for the corpus. As 

noted, the first-place solution on Kaggle 

augmented the CLASSE dataset by creating 1,000 

new prompts and source text along with pseudo-

labeling these summaries, all of which are available 

in the winning model. However, augmenting data 

is different from collecting real data, and future 

developments of CLASSE or newer 

summarization datasets should include a greater 

number of prompts.  

Another limitation of the CLASSE corpus is 

that certain grades (i.e., 6th-11th grades) were over-
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represented in the corpus. Greater representation of 

lower and upper grades, including college-level 

students, is warranted. Finally, while the CLASSE 

corpus includes some individual difference 

metrics, little information is known about the 

writers in terms of gender, race/ethnicity, or socio-

economic status, all of which are important 

student-oriented variables that may influence 

human ratings. 

6.2 Future directions 

The goals of the Kaggle competition were to 

publicize and make freely available a large-scale 

corpus of student-written summaries and advanced 

models of assessing summarization quality. Future 

directions include integrating the models 

developed in the Kaggle competition into 

educational applications to help students receive 

feedback on summaries written within these 

applications. Knowing the strength of generation 

effects on learning (Bertsch et al., 2007; McCurdy 

et al., 2020) and the strengths of summarization 

tasks in general (Carroll, 2008; Gil et al., 2010; 

Mok & Chan, 2016), the integration of CLASSE 

corpus scoring models into educational 

applications will ensure students quickly receive 

formative feedback about their summaries, 

allowing for deliberative practice during the 

revision process and increased learning. 
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Abstract

The Socratic method is a way of guiding stu-
dents toward solving a problem independently
without directly revealing the solution to the
problem by asking incremental questions. Al-
though this method has been shown to signif-
icantly improve student learning outcomes, it
remains a complex labor-intensive task for in-
structors. Large language models (LLMs) can
be used to augment human effort by automati-
cally generating Socratic questions for students.
However, existing methods that involve prompt-
ing these LLMs sometimes produce invalid out-
puts, e.g., those that directly reveal the solu-
tion to the problem or provide irrelevant or
premature questions. To alleviate this prob-
lem, inspired by reinforcement learning with
AI feedback (RLAIF), we first propose a data
augmentation method to enrich existing So-
cratic questioning datasets with questions that
are invalid in specific ways. Also, we propose
a method to optimize open-source LLMs such
as LLama 2 to prefer ground-truth questions
over generated invalid ones, using direct pref-
erence optimization (DPO). Our experiments
on a Socratic questions dataset for student code
debugging show that a DPO-optimized LLama
2-7B model can effectively avoid generating
invalid questions, and as a result, outperforms
existing state-of-the-art prompting methods1.

1 Introduction

Learning based on a conversation that consists of
questions and answers, where the student responds
to questions posed by a more knowledgeable in-
structor, has been proven to be effective in teaching
students about a particular concept (Wood et al.,
1976). In particular, Socratic questioning, which
refers to a way for the instructor to guide a student
to solve a problem (within their zone of proximal
development) by asking them questions that pro-

1The code for our paper can be found at: https://github.
com/umass-ml4ed/socratic-quest-gen

mote thinking while not directly revealing the so-
lution (Quintana et al., 2018), is a very effective
pedagogical method in conversation-based learning
and tutoring.

Recent advances in large language models
(LLMs) (Bubeck et al., 2023) have led to the rapid
development of chatbots that promote student learn-
ing by automatically generating the instructor’s
utterances (Dan et al., 2023; Kazemitabaar et al.,
2024; Tanwar et al., 2024). One key area of interest
in the development of such chatbots is question gen-
eration, which can help students solve logical prob-
lems in the mathematics and programming domains
(Al-Hossami et al., 2023; Shridhar et al., 2022).
Typically, question generation in educational appli-
cations has focused on generating practice or as-
sessment questions, in biology exams (Wang et al.,
2018), reading comprehension (Ashok Kumar et al.,
2023), math practice (Wang et al., 2021), and pro-
gramming exercises (Sarsa et al., 2022). As a spe-
cific form of question generation, Socratic question
generation has gained attention, owing to its effec-
tiveness in improving student learning outcomes by
eliciting critical thinking and self-discovery during
problem-solving (Paul and Elder, 2007).

Socratic questions generation is a complex
task because it involves mapping out the step-by-
step thought process of students during problem-
solving, locating the cause of their error, and pro-
viding effective questions without revealing the so-
lution. Manually generating Socratic questions can
be a cognitively demanding and time-consuming
task for instructors. Several recent works proposed
to automatically generate Socratic questions using
LLMs: In math education, (Shridhar et al., 2022)
shows that generating a sequence of Socratic sub-
questions and prompting students to answer helps
them solve math word problems more successfully.
In computer science education, (Al-Hossami et al.,
2024, 2023) releases a dataset on Socratic questions
for student code debugging and provides baselines
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based on LLM prompting and finetuning. In partic-
ular, the authors prompt GPT-3.5-turbo and GPT-4
(Bubeck et al., 2023) in a chain-of-thought man-
ner (Wei et al., 2022) to generate Socratic ques-
tions. A human study by the authors shows that
the generated questions can sometimes be invalid
in several different ways, including being irrele-
vant to the problem, repetitive of earlier dialogue
turns, or too direct and revealing the solution pre-
maturely, which may hamper students’ learning
processes. Since GPT models are proprietary and
expensive, the authors also attempt to fine-tune the
open-source Flan-T5 model (Chung et al., 2022);
however, doing so proves to be ineffective due to
its insufficient scale and the pretraining procedure
used.

In this paper, we propose a method to improve
the validity of automatically generated Socratic
questions using open-source LLMs. Our method is
inspired by recent developments in reinforcement
learning with AI feedback (RLAIF) (Lee et al.,
2023); our method consists of two phases, data
augmentation and preference optimization. Specifi-
cally, our contributions are as follows:

• To the best of our knowledge, this work is the
first to introduce a data augmentation method
to create negative samples, i.e., invalid ques-
tions, to help us train LLM-based Socratic
question generation methods.

• We use the preference information in the
dataset, i.e., pairs of valid and invalid Socratic
questions, to optimize Llama 2 (Touvron et al.,
2023), an open-source LLM, using direct pref-
erence optimization (DPO). (Rafailov et al.,
2023).

• We show that our method using the Llama
2-7B model outperforms existing state-of-the-
art methods that rely on larger, proprietary
models such as GPT-3.5 and GPT-4 on the
Rouge-L metric and are comparable in terms
of BERTScore. We also use a series of case
studies to illustrate the quality of Socratic
questions we generate and that DPO con-
sistently outperforms supervised fine-tuning
(SFT).

2 Related Work

2.1 Question Generation in Education
In education, question-generation systems are used
to create learning materials and problem sets for

quizzes and exams. (Wang et al., 2021) introduces a
framework for generating math word problems that
incorporates a module for checking the consistency
of the word problem generated in terms of the un-
derlying equations that it solves. Our idea of check-
ing the consistency of the synthetically generated
samples in data augmentation is inspired by theirs.
(Ashok Kumar et al., 2023) proposes a data aug-
mentation and an over-generate and rank method to
fine-tune a language model Flan-T5 (Chung et al.,
2022) to generate questions for reading comprehen-
sion. Their data augmentation method prompts a
larger LLM to augment the dataset with valid ques-
tions (positive examples) corresponding to a pas-
sage in the reading comprehension and then uses
this augmented dataset for standard fine-tuning of
a smaller open-source LLM. Unlike their work, our
data augmentation method involves prompting a
larger LLM to generate invalid questions (nega-
tive examples) to create a preference dataset that
we use for performing preference optimization on
a smaller open-source LLM. In computer science
education, recent works show the effectiveness of
LLMs like OpenAI Codex and GPT-4 (Sarsa et al.,
2022; Kumar and Lan, 2024) on generating pro-
gramming exercise questions, code explanations,
and test cases. (Al-Hossami et al., 2024, 2023)
introduce a Socratic code debugging dataset, to
help a student debug their code along with max-
imizing the students’ learning outcomes. Their
experiments with prompting models like GPT-3.5-
turbo, and GPT-4 show that these models tend to
hallucinate and produce invalid questions. To ad-
dress this issue, our work builds upon theirs to
fine-tune language models to align the generated
questions towards ground-truth human preferences
and discourage the models from generating invalid
questions.

2.2 Reward/ Preference Optimization

Fine-tuning language models to align with human
preferences has proven to be beneficial in various
natural language processing tasks (Kreutzer et al.,
2018; Stiennon et al., 2020; Ziegler et al., 2019;
Ouyang et al., 2022). Traditional methods first
learn a reward model using a dataset of human pref-
erences and optimize the language model for the
downstream task using the rewards obtained from
the reward model with reinforcement learning (RL)
algorithms such as PPO (Schulman et al., 2017).
There are two drawbacks to this method. First, it
is hard to obtain a dataset of human preferences
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as it is an expensive and sometimes cognitively
demanding task. To address this issue, RLAIF pro-
cures rewards from an AI system, such as an LLM,
and has become a scalable and cheaper alternative
(Lee et al., 2023). Second, although preference
optimization of LLMs using RL algorithms like
PPO is effective, it is significantly more challeng-
ing and time-consuming than traditional supervised
learning as it involves tuning multiple LLMs and
sampling rewards in real time. To address this issue,
the DPO method (Rafailov et al., 2023) optimizes
a language model to a preference dataset in an RL-
free manner by formulating the problem as a binary
classification task.

In the domain of education, (Shridhar et al.,
2022) proposes a reward-based method to generate
Socratic sub-questions to solve math word prob-
lems. Similar to our method they define reward
characteristics like fluency, granularity, and an-
swerability to prefer sub-questions that have these
desired characteristics. They use REINFORCE
(Williams, 1992) a popular RL algorithm to op-
timize their model by sampling rewards from ex-
ternal systems in real time. Our method is dif-
ferent from theirs as we first prompt an LLM to
generate invalid Socratic questions (negative exam-
ples) to construct a preference dataset. We then use
this fixed dataset to tune an open-source LLM in
an RL-free method, i.e., using DPO which makes
the training more stable and less complex. (Hicke
et al., 2023) proposes a DPO-based method for
fine-tuning LLama 2 (Touvron et al., 2023) for
question-answering on a dataset of Piazza posts for
an introductory programming course. They create a
proxy preference dataset by using the edit history of
Piazza posts by preferring the final versions of an-
swers as opposed to the earlier versions. However,
the setting of their work is different from ours as we
focus on Socratic question generation and propose
a method to create the preference dataset using data
augmentation. (Scarlatos et al., 2024) propose a
method to perform DPO on LLama 2 for the task
of feedback generation to help students solve math-
ematics word problems. To create preference pairs
they prompt LLMs like Codex (Chen et al., 2021)
and GPT-3.5 turbo to generate bad feedback and
rate the feedback based on a pre-defined rubric us-
ing GPT-4. Our problem setting is different from
theirs as we focus on the programming education
domain and for our task the LLM needs to provide
a series of step-by-step feedback in the form of a
dialogue-based interaction through Socratic ques-

tions instead of just providing the feedback once
for a given problem.

3 Problem Definition and Dataset

We study the problem of Socratic question gener-
ation in conversations between a Student and an
Instructor, where the Instructor’s goal is to guide
the Student through the process of solving a prob-
lem. Concretely, our goal is to generate Socratic
questions at a particular dialogue turn for the in-
structor during the conversation, given the dialogue
history and contextual information about the prob-
lem the Student is trying to solve and their solution.

In this work, we use the dataset for code debug-
ging introduced in (Al-Hossami et al., 2024, 2023).
The dataset is based on didactic conversations be-
tween a Student and an Instructor, where the Stu-
dent is a novice programmer tasked with writing
a program for a given problem. The dataset con-
sists of the Student’s buggy code submissions along
with a dialogue between the Instructor and the Stu-
dent, where the Instructor asks Socratic questions
in the form of a conversation to help the Student
debug their code. The conversation consists of di-
alogue turns with each Instructor utterance being
a collection of several possible “ground-truth” So-
cratic questions at that dialogue turn. The dataset
also contains metadata including the problem state-
ment, the test cases, the bug description, and code
fixes to resolve the bug. In total, there are 38 prob-
lems with more than 50 different bugs in student
solutions, and conversations centered around these
buggy codes containing more than 1900 dialogue
turns. The dataset is split into two subsets, a train
set and a test set which contain 135 and 16 dia-
logues, respectively, spread across different prob-
lems.

4 Proposed method

In this section, we describe our method for the task
of Socratic question generation. Our method in-
volves two phases: First, data augmentation, and
second, preference optimization, as shown in Fig-
ure 1.

4.1 Data Augmentation

Inspired by methods in RLAIF (Lee et al., 2023),
we augment the dataset with invalid Socratic ques-
tions constructed by prompting GPT-4 (Bubeck
et al., 2023), which provides realistic negative
samples for LLM-based question generation meth-
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Figure 1: Illustration of our method for LLM-based Socratic question generation, which consists of two phases,
data augmentation, and preference optimization.

ods to train on. We follow the method described
in (Ashok Kumar et al., 2023) to prompt an
LLM to generate synthetic data and employ an-
other instance of the LLM for checking the qual-
ity/consistency of the generated synthetic data. Fol-
lowing the definition mentioned in (Al-Hossami
et al., 2024), invalid Socratic questions fall into the
four following categories:

• Irrelevant questions that are not useful for
the student, as they shift focus from the actual
bug, which may confuse the student.

• Repeated questions that have already been
asked in previous dialogue turns, which are
meaningless to the student.

• Direct questions that directly reveal the bug to
the student, which do not prompt students to
think and may hinder their learning process.

• Premature questions which prompt the stu-
dent to make code fixes before identifying the
bug, which may confuse the student.

To generate invalid questions via an LLM, we
construct a few-shot prompt that consists of 1) the
definition of the categories as mentioned above and
2) an in-context example for each of the invalid
question categories detailed above. Our prompt
encourages the model to reason using a chain-of-
thought method, by first generating the “reasoning
process/logic” behind an invalid question, followed
by the question (Wei et al., 2022). We generate in-
valid questions corresponding to all four categories
at every dialogue turn where the ground truth is
provided.

Following (Ashok Kumar et al., 2023; Wang
et al., 2021), we use a consistency checking step
where we prompt GPT-4 to check the consistency
of the generated questions to filter out inconsistent
questions from the augmented dataset. Inconsistent
questions are those that do not belong to any of the

invalid categories listed above. We pose the consis-
tency checking step as a classification task where
GPT-4 predicts a label for each generated ques-
tion over six categories, including the four invalid
categories and two additional categories: “good”
and “incorrect”. Good questions are acceptable
Socratic questions at that particular dialogue turn
and cannot be used as negative samples. Incorrect
questions are unrelated to the problem and the di-
alogue itself and are often erroneous due to LLM
hallucination, which provides little value as easy-
to-tell negative samples. To maintain high data
quality of our preference dataset, we discard all
samples that are predicted as “good” or “incorrect”,
to get the final set of synthetically generated invalid
questions.

Finally, we construct a preference dataset con-
sisting of 2500 tuples of valid and invalid Socratic
questions. In the preference pairs, valid questions
are taken from the ground truth questions in the
original dataset, while the invalid questions are
generated synthetically as described above. Each
valid question from the original dataset is paired
with every synthetically generated invalid question
of all categories to form the augmented dataset.

4.2 Preference Optimization

In this step, we fine-tune an open-source LLM,
Llama 2 (Touvron et al., 2023) for Socratic ques-
tion generation using DPO (Rafailov et al., 2023).
The first step is to perform SFT, i.e., we use the
original dataset, D, as is to fine-tune LLama 2 for
Socratic question generation. For a given conversa-
tion in the train set, we first split the dialogue into
constituent dialogue turns. The input to LLama 2 is
a prompt (p) that consists of a systems message that
instructs the LLM to generate a Socratic question,
the problem metadata, and the current dialogue
history (between the Student and the Instructor).
The output is the valid Socratic question (qv) cor-
responding to that dialogue turn in the dataset. In
the cases where multiple Socratic questions were
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given for a dialogue turn, we treat each one as a
different output associated with the same input for
fine-tuning LLama 2. As shown in Equation 1,
the simple SFT step learns a reference policy ⇡ref
by minimizing the loss LSFT , which serves as the
starting point for preference optimization.

The second step is to perform preference opti-
mization where we fine-tune Llama 2 on the pref-
erence dataset, DP , that we obtain from the data
augmentation phase, using the same prompt, p, as
input that was used for SFT, but with two outputs:
the valid question qv and the invalid question qiv,
for that dialogue turn. As shown in Equation 2,
this preference optimization step learns a human
preference-aligned policy ⇡✓, given the reference
policy ⇡ref obtained from Equation 1, by formulat-
ing the task as a binary classification task, minimiz-
ing the negative log-likelihood loss LDPO, where
� is the Sigmoid function. This minimization leads
to learning ⇡✓, by increasing the likelihood of the
valid question and decreasing the likelihood of the
invalid question while remaining close to the ref-
erence policy ⇡ref which is governed by the hy-
perparameter �. Here ✓ is the parameters of the
preference-aligned policy which is simply the pa-
rameters of the neural network, in our case LLama
2.

LSFT(⇡ref) = �E(qv,p)⇠D[log ⇡ref(qv|p)] (1)

LDPO(⇡✓;⇡ref) =

� E(qv,qiv,p)⇠DP


log �(� log

⇡✓(qv|p)

⇡ref(qv|p)

� � log
⇡✓(qiv|p)

⇡ref(qiv|p)
)

�
(2)

5 Experimental Settings

In this section, we detail the implementation setup,
methods compared, and metrics used to evaluate
our Socratic question generation method.
Implementation details. In the data augmentation
phase, we query OpenAI’s2 GPT-4 using a rate-
based API. We set the temperature of the GPT-4
model to 0.5 to encourage moderate randomness in
the outputs. For the consistency checking GPT-4
model, we use a temperate of 0 to maintain deter-
minism. In the preference optimization phase, we

2https://openai.com/

use Code-Llama (7B) (Roziere et al., 2023) pre-
trained for instruction following tasks, particularly
on code data3. We load our Code-Llama model
in an 8-bit configuration and train using QLora
(Dettmers et al., 2023) with the peft4 HuggingFace
library to facilitate efficient fine-tuning. For the
SFT step, we fine-tune the model for 5 epochs with
a learning rate of 3e-5, and a batch size of 2 by
accumulating gradients for creating a virtual batch
size of 64 which takes about 10 hours to train on a
single Nvidia A6000 GPU. For the DPO step, we
fine-tune the model for 1 epoch with a learning rate
of 3e-5 and a � (which denotes the KL-loss (Joyce,
2011) between the preference policy learned and
the reference SFT policy) of 0.1, with a batch size
of 2, which takes about 6 hours to train. For the
DPO experiments, we carry out a grid search using
hyperparameters learning rate as 1e-5, and 3e-5, �
of 0.1, and 0.5 and number of epochs as 1 and 2 to
arrive at the best-performing hyperparameters as
mentioned above.
Methods. As baselines, we perform zero-shot
prompting of the LLama 2 Chat model5 (Touvron
et al., 2023), denoted by LLama, to generate all
possible Socratic questions for the current conver-
sation turn. We also prompt LLama 2 in a chain-of-
thought (Wei et al., 2022) manner to first generate
the current student misconceptions and then gen-
erate the Socratic questions, denoted by LLama
(CoT).

To decode our trained (SFT and DPO) LLM, we
use two decoding techniques, greedy and nucleus
sampling, with a p value of 0.9 temperature of
1, and a number of return sequences of 5. We
refer to these methods coupled with the trained
SFT method as SFT Greedy, SFT Sample-5, and
similarly for the DPO methods. Greedy decoding
takes 30 minutes to complete, whereas Sample-5
takes an hour.
Metrics. To measure the similarity between the
generated Socratic questions and the ground truth
questions, we use two commonly used evalua-
tion metrics in natural language generation tasks:
BERTScore (Zhang* et al., 2020) based on the
DeBERTa language model (He et al., 2021), which
measures the semantic similarity, and Rouge-L
(Lin, 2004), which measures n-gram overlap based

3https://huggingface.co/codellama/
CodeLLama-7b-hf

4https://huggingface.co/docs/peft
5https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
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Table 1: Performance comparison across different meth-
ods. All GPT baseline results are reported in (Al-
Hossami et al., 2024). Boldface represents the highest
value/s for that column.

Method Rouge-L BERTScore
P R F1 P R F1

GPT-3.5 21.0 14.3 17.0 56.0 43.5 48.9
GPT-3.5 (CoT) 20.3 9.7 12.0 61.7 35.8 41.6

GPT-4 14.1 23.3 17.6 35.4 62.6 45.2
GPT-4 (CoT) 5.2 26.6 8.1 12.6 64.8 19.5

LLama 12.8 18.6 13.2 36.0 48.3 35.9
LLama (CoT) 13.7 15.5 13.2 42.3 49.0 41.0
SFT Greedy 29.7 13.4 17.2 61.8 29.3 36.8
DPO Greedy 30.6 13.3 17.1 65.9 32.7 40.3

SFT Sample-5 14.1 26.0 17.1 32.1 62.9 41.1
DPO Sample-5 15.1 27.9 18.3 34.8 64.3 42.0

on the longest common subsequence (LCS). In ad-
dition, the dataset we use (Al-Hossami et al., 2024,
2023) provides multiple ground truth Socratic ques-
tions at each dialogue turn. To measure the similar-
ity between a set of m LLM-generated questions
with a set of n ground truth questions, we adopt the
process used in (Al-Hossami et al., 2024), which
uses Edmond Blossom algorithm (Galil, 1986) to
find the maximum matching in a complete bipar-
tite graph between the two sets with a total of mn
edges, where the weight of each edge is computed
using one of the metrics mentioned above. This
step guarantees that every ground-truth question
corresponds to, at most, one LLM-generated ques-
tion, inhibiting semantically equivalent LLM gen-
erations from artificially inflating the metric scores.
The number of True Positives (TP) is the total sum
of the weights of all edges in the optimal matching.
False Positives (FP) are calculated by summing the
difference between every weight of an edge in the
matching with 1. Any unmatched LLM-generated
question counts 1 towards False Positive. Similarly,
any unmatched ground truth question counts 1 to-
wards False Negative (FN). The TP, FP, and FN
values are used to compute the precision, recall,
and F1 score for a particular metric. The metric pe-
nalizes over-generated LLM questions that do not
match with any ground truth questions by classify-
ing them as an FP, thus decreasing the precision.

6 Results and Discussions

In the consistency checking step of the data aug-
mentation phase, we see that 72% of the generated
questions are considered for the preference dataset
creation as 27% of the generated questions are clas-
sified as “good” and 1% as “incorrect”. This result
shows that GPT-4 is more prone to generate “good”

questions for particular dialogue turns than incor-
rect questions that do not relate to the problem and
the dialogue.

For the task of Socratic question generation, Ta-
ble 1 shows the comparison between different meth-
ods on the metrics defined for our task. All the
GPT-3.5 and GPT-4 results are taken from prior
work (Al-Hossami et al., 2024). We observe that
GPT-4 (CoT) has the highest recall and yet the low-
est F1 score. This observation is because, GPT-4
generates a large number of Socratic questions a
few of which are similar to the ground truth ques-
tions, however, a significant fraction of the gen-
erated questions do not correspond to any ground
truth questions, hence being labeled as false pos-
itive, thus decreasing the precision. (Al-Hossami
et al., 2024) also carry out manual analysis to show
that GPT (CoT) outputs are the best despite having
low F1 scores. This observation can be attributed
to the fact that GPT (CoT) has the highest recall
among all other GPT methods and hence better
corresponds to the ground truth questions.

For the baseline methods that use zero-shot
LLama prompting, we observe that LLama (CoT)
is the best, which shows that chain-of-thought
prompting to first generate the students’ current
misconceptions followed by the Socratic questions
is effective. Among the preference optimization
experiments, we see that DPO consistently out-
performs SFT. We also observe that the LLama
(CoT) performs as well as DPO Greedy in terms of
BERTScore F1 as LLama (CoT) generates a higher
number of Socratic questions whereas the DPO
Greedy method just generates one. Hence, the re-
call of the DPO Greedy method is lower than that
of LLama (CoT). Among decoding variants, we see
that the Sample-5 method is better than the Greedy
method highlighting the importance of sampling
multiple possible Socratic questions instead of just
one.

Overall, we see that our preference-optimized
models with DPO give the best Rouge-L scores
for all precision, recall, and F1 scores with DPO
Greedy having the highest precision and DPO
Sample-5 having the highest recall and F1 score
among all the methods. DPO Greedy has the high-
est BERTScore precision, whereas DPO Sample-5
has a recall comparable to the best GPT method,
GPT-4 (CoT). These results suggest that the DPO-
optimized LLama 2-7B model is better than (or as
effective as) much larger models like GPT-4 (25
times larger) for Socratic question generation.
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Table 2: An example of invalid Socratic questions generated from GPT-4 for a given conversation, which we use to
augment the dataset.

Problem Write a function “top_k(lst: List[int], k: int) -> List[int]” that returns the top k largest
elements in the list. You can assume that k is always smaller than the length of the list.
Example Case: top_k([1, 2, 3, 4, 5], 3) => [5, 4, 3]; top_k([-1, -2, -3, -4, -5], 3) => [-1,
-2, -3]

Bug Description The function removes the element at index ‘max(lst)’ instead of removing an element
equal to ‘max(lst)’. Consequently, the function throws an IndexError on line 5 when a
removed value in ‘lst’ is greater than the length of ‘lst’.

Bug Fixes On line 5, replace ‘lst.pop(max(lst))’ with ‘lst.remove(max(lst))’

Conversation Student: Hi. I am confused. My code doesn’t seem to work. Can you help?
Instructor: Hello. Sure, let’s see. Do you know what might be the issue?
Student: I think the problem is with the ‘.pop()’ method. It seems to have issues with
indexing.

Ground Truth 1. Ok, no worries. Let’s review your code line by line. Could you please explain it to
me?
2. Let’s start with a simple example. What is the output of the following code snippet:
‘top_k([1, 2, 3, 4, 5], 3)’?
3. Could you please explain what line 5 in your code does?
4. Let’s look into the Python documentation. Can you describe what the ‘.pop()’ method
does?

Invalid Generated Irrelevant: What happens if you enter an empty list as the input?
Questions Repeated: Do you know what might be the issue?

Direct: Are you sure you should be using the pop() method to remove the maximum
element from the list?
Premature: Have you considered using the remove() method instead of pop()?

7 Case Study

We now use a case study to illustrate why our
method leads to better Socratic question generation.
First, we show an example of invalid Socratic ques-
tions generated by our data augmentation phase.
Second, we compare different methods for Socratic
question generation.

Table 2 shows an example of the augmented data,
i.e., invalid questions generated by GPT-4 for an ex-
ample problem, which asks students to write code
to return the largest k elements in a list. The stu-
dent’s code (Table 4 Code 1) incorrectly removes
elements at index max(lst) as opposed to remov-
ing elements equal to max(lst), thereby causing
an IndexError. The potential fix to the code is to
replace the .pop() function with .remove(). In
the conversation, we see that the student knows the
problem lies in their use of .pop(). The ground
truth Socratic questions for this dialogue turn are
highly generic, asking the student to review the
code line by line, apply an example test case, or do
further reading on Python documentation. We see
that the four types of invalid questions generated by
GPT-4 are: the irrelevant question is out of context
and does not help the student understand the bug in
their code. The repeated question has already been
mentioned by the instructor. The direct questions
reveal the problematic function .pop() and do not
give room for the students to discover the prob-
lem themselves. The premature question directly

suggests a code change to replace the .pop() with
.remove() function even before the student has
realized the actual bug. These diverse examples of
invalid questions serve as good training data to let
an LLM know what kinds of invalid questions it
should avoid generating.

Table 3 shows the questions generated by dif-
ferent methods for an example problem that asks
students to write code that returns the factorial of
a number. The student’s code (Table 4 Code 2)
has some indexing errors with the range function,
resulting in the fact variable being multiplied by 0
when the loop starts, hence resulting in the output
of 0 no matter what the input is. In the conversation,
we see that the ground truth questions encourage
the student to debug the code by printing the value
of lines 5 and 6 to examine the variables fact and
i along with the role of range(n). The LLama
output is very verbose and directly reveals that the
problem is in the updation of the ‘fact’ variable.
The LLama (CoT) output is very vague as it does
not refer to the exact line of the code. The SFT
Greedy output correctly asks the student the value
of i but does not provide more details, such as the
value of n. The DPO Greedy method is more help-
ful since it asks the student to check the value of
fact specifically for n=1. The first and fifth ques-
tions by SFT Sample-5 are invalid and directly ask
the value of fact when i is 0, which directly re-
veals the problem that fact is always 0. The third
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Table 3: Socratic questions generated by different methods.

Problem Write a function ‘factorial(n:int) -> int’ that computes the factorial n! of a natural number n, which is
defined mathematically as: 0! = 1 and n! = n⇥ (n� 1)!. Additionally, if the input integer n is negative
the function should return 0.
Example Cases: factorial(-1) => 0; factorial(0) => 1; factorial(1) => 1; factorial(5) => 120

Bug Descrip-
tion and Fix

On line 6, ‘fact’ is first multiplied with 0 in the first iteration of the for loop and hence remains 0
throughout the loop. To fix the bug, replace ‘i’ with ‘(i + 1)’ in line 6 and replace ‘range(n)’ with
‘range(1, n + 1)’ in line 5.

Conversation Student: Hi! I implemented the factorial function but it doesn’t work and I do not know why. Can you
help?
Instructor: Sure. Can you tell me for what values of n it fails and what values it returns in those cases?
Student: For n = 1 or larger it returns the same value, 0.

Ground Truth 1. Let’s see what happens when ‘n’ is 1. What is the first value that is assigned to variable ‘i’ in line 5?
2. Let’s see what happens when ‘n’ is 1. Before line 6 is evaluated in the first iteration of the for loop,
what are the values of the variables ‘fact’ and ‘i’?
3. Let’s see what happens when ‘n’ is 1. Can you insert a new line between lines 5 and 6 that prints the
values of the variables ‘fact’ and ‘i’?

LLama So, it seems that the issue is that the value of ‘fact’ is not being updated correctly in the loop. Can you
tell me why do you think ‘fact‘ is not being updated?

LLama (CoT) Can you explain why you think the bug is in that specific line?

SFT Greedy What is the value of ‘i’ in the first iteration of the for loop?

DPO Greedy Okay. Let’s start with ‘n = 1’. What do you think ‘fact’ is on line 6?

SFT Sample-5 1. What is the value of ‘fact’ at line 6 when ‘i’ is 0?
2. Let’s take a closer look at the line where ‘fact’ is multiplied. Could you explain the steps you take to
compute that multiplication?
3. 0 is not a factorial, right? What do you think the first step should be?
4. What does this tell us about the implementation?
5. Are you multiplying the initial ‘fact’ value of 1 by ‘i’ at each step?

DPO Sample-5 1. Alright, so for any value of ‘n’ that we pass to the function, what is the output of line 6?
2. Can you tell me what value of ‘i’ is returned in line 6 when ‘n = 1’?
3. Okay. Let’s look at ‘factorial(1)’ and ‘factorial(2)’. What are the values of ‘i’ and ‘fact’ when it goes
into the for loop in those cases?
4. Okay, let’s go line by line. Let’s start from line 5. What do we see?
5. Okay. Can you tell me the steps for computing ‘factorial(n)’ where ‘n’ equals 1?

Table 4: Buggy codes corresponding to the case studies

Code 1:
def top_k(lst, k):
result = []
for i in range(k):
result.append(max(lst))
lst.pop(max(lst))
return result

Code 2:
def factorial(n):
if n < 0:
return 0
fact = 1
for i in range(n):
fact = fact * i
return fact

and fourth outputs are either irrelevant or repeated.
The second question, which asks the student to ex-
amine the value of fact is valid since it does not
directly reveal the bug. In contrast, most of the
DPO Sample-5 questions are valid, since they urge
the student to examine the value of i and fact on
lines 5 and 6 with specific values of n, without di-
rectly revealing the bug that i is always 0. Through
these comparisons, we see that DPO improves So-
cratic question generation compared to SFT and
that DPO Sample-5 is highly capable of generating
valid yet diverse questions.

8 Conclusions and Future Work

In this work, we propose a method for Socratic
question generation in programming problem feed-
back scenarios. Our method consists of a data
augmentation phase to create a preference dataset
by synthetically generating invalid questions ac-
cording to four possible categories. We then
use this preference dataset to fine-tune an open-
source LLM, LLama 2-7B, using direct prefer-
ence optimization (DPO). Our results show that
the preference-optimized LLama 2-7B model of-
ten outperforms existing state-of-the-art prompting
methods (on common text similarity metrics) that
rely on much larger GPT models (25 times larger),
by avoiding invalid questions after training on the
augmented dataset. Our method paves the way to-
ward an open-source, accessible, cheaper, privacy-
preserving, yet effective alternative to generating
Socratic questions which can improve students’
learning outcomes without having to rely on propri-
etary rate-based API-accessed models like GPT-4.
There are several avenues for future work. First,
we can develop a technique to differentiate types
of invalid Socratic questions and not treat them
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equally while performing preference optimization.
This technique would require us to modify the in-
herent objective function of DPO to incorporate
more than one unpreferred question for a single
preferred question, which may give us fine-grained
control over the LLM generations. Second, we
can experiment with open-source LLMs that are
larger than 7B to see whether DPO provides more
significant gains over SFT on larger models on the
Socratic question generation task. Third, we can
perform a systematic human evaluation to compare
the performance of our proposed method with other
baselines. Also, we can focus on designing an auto-
matic metric (based on LLM prompting (Liu et al.,
2023)) other than Rouge and BERTScore which
captures the helpfulness of the Socratic questions
without heavily relying on assigning higher scores
only to questions that have high lexical overlap
with the ground-truth questions. Fourth, we can ex-
periment with alternative preference optimization
methods, such as KTO (Ethayarajh et al., 2024)
which do not need explicit preference data in the
form of pairs of valid and invalid questions. Fifth,
we can also explore if Socratic question genera-
tion helps in improving other tasks in computer
science education like test case generation (Kumar
and Lan, 2024) by posing the problem as answer-
ing several Socratic sub-questions (Shridhar et al.,
2022). Finally, we can also explore how to make
Socratic question generation knowledge-aware, i.e.,
generating different questions for students with dif-
ferent knowledge states, which can be estimated
using the open-ended knowledge tracing method
for computer science education (Liu et al., 2022).

9 Limitations

Our work proposes a method for preference opti-
mizing open-source LLMs like LLama 2 for the
task of Socratic question generation for student
code debugging. We use only LLama 2 as the
base model for carrying out preference optimiza-
tion, and not other open-source models like Mistral
(Jiang et al., 2023). Since our main contribution
is the data augmentation and preference optimiza-
tion method, we use only one of the best models
open-source models (LLama 2) to show that our
method outperforms state-of-the-art models like
GPT-4. Future work can also explore the perfor-
mance of different open-source models using a va-
riety of optimization methods including our data
augmentation and preference optimization method

for Socratic question generation. Also, we do not
formally analyze any biases that exist in the gen-
erated augmenting data or the generated Socratic
questions. Future work can focus on measuring
such biases to make our methods that use these
LLMs more inclusive for all students belonging to
different demographics.

10 Ethics Policy

Since our invalid questions are generated using an
LLM potential linguistic or cultural bias related
to the pre-training of the LLM might be reflected.
However, we hypothesize that this bias would be
minimal as Socratic questions are goal-driven, con-
cise, and framed in the second-person perspective
directed toward the student. Our work focuses
on open-source LLMs like LLama for Socratic
question generation as compared to rate-based API-
accessed models like GPT-4 (which is used only
once during data augmentation) which implies that
our methods are privacy-preserving and there is
minimal chance of leakage of students’ confiden-
tial data. However, training LLMs like LLama on
GPUs like A100 for 10 hours results in the emis-
sion of CO2 which might not be environmentally
friendly.
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Abstract

A possible way to save manual grading effort in
short answer scoring is to automatically score
answers for which the classifier is highly con-
fident. We explore the feasibility of this ap-
proach in a high-stakes exam setting, evalu-
ating three different similarity-based scoring
methods, where the similarity score is a direct
proxy for model confidence. The decision on
an appropriate level of confidence should ide-
ally be made before scoring a new prompt. We
thus probe to what extent confidence thresh-
olds are consistent across different datasets and
prompts. We find that high-confidence thresh-
olds vary on a prompt-to-prompt basis, and that
the overall potential of increased performance
at a reasonable cost of additional manual effort
is limited.

1 Introduction

Whenever a (semi-)automatic process is used to
assist humans in scoring free-text answers, there is
a trade-off between the human workload required
and the resulting scoring accuracy. Without any
human input, the accuracy of the automated rating
is usually quite low (Egaña et al., 2023), however,
already little human input might go a long way
in improving the automation quality. Suen et al.
(2023) score answers in a setting that uses refer-
ence answers and operationalize the confidence of
the model as the similarity to the closest reference
answer. This concept is visualized in Figure 1.
They find that setting a threshold on model confi-
dence, deferring to manual evaluation what falls
short of it, leads to reasonable manual effort and
high scoring accuracy.

We test the applicability of this method in a high-
stakes classroom setting, where items are usually
not re-used. This sharply limits the amount of man-
ual scoring effort that can be spent before automa-
tion becomes uneconomical. We thus use a small
volume of reference answers and examine to what

Figure 1: Confidence-based scoring

extent a sensible pre-set confidence threshold can
be established. As we cannot make the high-stakes
student answers publicly available, we additionally
replicate our results on four widely used datasets.

Our study makes the important step of linking
state-of-the-art natural language processing for rat-
ing free-text items with the practical questions of
start-up costs for building the models.

2 Related Work

The idea to automatically score only parts of all
answers or to defer answers with a particularly low
confidence of the algorithm to human scoring has
been explored before (Funayama et al., 2020, 2022).
The approach that is closest to ours is Suen et al.
(2023), where answers to medical exam questions
are scored using a similarity-based scoring method
(Bexte et al., 2022, 2023) and the confidence of the
classifier is operationalized through the similarity
to the closest reference answer. This method could
be taken further to iteratively improve a classifier
through those human-labeled low-confidence an-
swers, i.e. using Active Learning (Settles, 2009), as
in the scoring domain done by Horbach and Palmer
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Answer averages across prompts
Dataset # Prompts # Labels # % Unique Length Language

UniversityExams 7 2 544 34 18 German
ASAP 10 3 or 4 2,227 100 239 English
Beetle 56 2 93 100 49 English
SEB 140 2 42 97 64 English
Powergrading 10 2 678 35 25 English

Table 1: Answer and label statistics of the datasets used in our experiments.

(2016) and Kishaan et al. (2020). Such a procedure
does however have the disadvantage that human an-
notators have to annotate small batches of answers
over a longer period of time.

Other studies rely on the idea that similar an-
swers should receive the same score. Such a group-
ing of answers could be reached through surface-
level normalization (cf. Zehner et al. (2016)), which
reduces orthographic variance, or unsupervised
clustering methods operating on the surface level
(Horbach et al., 2014; Zesch et al., 2015; Horbach
and Pinkal, 2018; Weegar and Idestam-Almquist,
2023), on the semantic level using, e.g. LSA ap-
proaches (Zehner et al., 2016; Andersen et al.,
2023), or a combination of the two (Basu et al.,
2013).

3 Data

We conduct experiments on five datasets (see Ta-
ble 1). Our high-stakes exam dataset consists of
German answers collected from university students
as part of their final exam in a statistics class. We
refer to this dataset as UniversityExams. It con-
tains 7 prompts that each require a short answer.
An exemplary question (translated from German)
is Name the method that is used to estimate the
required sample size before an experiment, where a
satisfactory answer would be a-priori power analy-
sis. Answers are labeled on a binary scale as either
correct or incorrect. Due to the sensitiveness of this
data, we can unfortunately not publish it.

We thus also run experiments on four existing,
publicly available English datasets, that we use
to put results on the exam data into context: The
ASAP1 dataset consists of answers to ten prompts
from the domains of Biology, Science, and English
Language Arts. Powergrading (Basu et al., 2013)
has answers to ten United States Citizenship Exam
questions that were collected from Amazon Me-
chanical Turk. The Student Response Analysis
(SRA) dataset (Dzikovska et al., 2013) is split into

1https://www.kaggle.com/c/asap-sas/overview

two subsets: Beetle and SciEntsBank (SEB). Bee-
tle has answers to 56 questions about electricity
and electronics, while SciEntsBank contains an-
swers to 1502 prompts that are from a mix of 15
different science domains. We use the two-way
labeled version of the SRA dataset, where answers
are classified as correct or incorrect.

4 Experimental Setup

Data Split We split the answers to each prompt
into reference and test answers. Our reference an-
swers aim to simulate a teacher manually providing
exemplary answers for the different outcome labels.
In practice, this would mean a rather small volume
of unique examples per label. For each prompt, we
thus randomly sample 5 answers per label as refer-
ences, ensuring that there are no duplicates in this
sample. Whenever a similarity metric is fine-tuned
on the reference answers, we split them into four
answers per label to train and one answer per label
to validate.

Classifiers We compare three methods of
similarity-based classification that differ with re-
spect to the employed similarity metric. All use a
set of reference answers to label the test answers:
Based on the respective similarity metric, we pre-
dict the label of the most similar reference answer.
We compare the following metrics: (i) Edit dis-
tance3 and two variants of cosine similarity based
on (ii) pretrained or (iii) fine-tuned SBERT embed-
dings (Reimers and Gurevych, 2019).4 For the En-
glish datasets, we use the all-MiniLM-L6-v2 base
model, and for the German data the paraphrase-
multilingual-MiniLM-L12-v2 one, both taken from
HuggingFace.

2We combine answers from training and unseen questions.
Since our experiments require at least five answers for each
label, we can only use 140 prompts.

3Determined using the python Levenshtein module: https:
//github.com/rapidfuzz/Levenshtein

4We transform edit distance into a noralized similarity for
better comparability by computing 1-edit distance and scaling
by length of the longest answer to the respective prompt.
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Dataset Edit SBERT target
pretrained finetuned

UniversityExams .86 .86 .91 .95
ASAP .46 .43 .50 .60
Beetle .65 .65 .68 .80
SEB .68 .65 .71 .80
Powergrading .87 .92 .93 1.00

Table 2: Weighted F1 results when all test answers are
scored fully automated.

To fine-tune SBERT, we follow the approach by
Bexte et al. (2022): We train with pairs of answers
that are labeled with a similarity label of 1 if both
answers have the same score and 0 otherwise. To
form these training examples, we pair each training
answer with each other training answer. To validate,
we pair each validation answer with each training
answer. At inference, each test answer is compared
to each training and each validation answer, i.e. all
reference answers. We train for 30 epochs with a
batch size of 8, using an OnlineContrastiveLoss
and an EmbeddingSimilarityEvaluator.

Evaluation We evaluate using weighted F1, re-
porting averages across all prompts of a dataset.

5 Experiments

First, we report results of a fully automatic base-
line. In this approach, all test answers are scored au-
tomatically, i.e. assigned the label of the most simi-
lar reference answer. We then explore confidence-
based scoring, only scoring instances where simi-
larity exceeds a given threshold automatically. The
remaining answers are referred to a human for man-
ual scoring. The fully automatic baseline can be
seen as an extreme case of this threshold-based
scoring, where the confidence threshold is set so
that all classifier decisions are accepted. We speak
of a baseline, as introducing a confidence threshold
should discard misclassifications and thus increase
scoring performance.

5.1 Fully-automated Baseline

Table 2 shows performance of our three scoring
methods on the fully-automated baseline, i.e. when
all test answers are labeled automatically. It is ap-
parent that some datasets are easier to score than
others, with a rather consistent pattern across scor-
ing methods. Particularly the UniversityExams and
Powergrading answers are easier to score, which
is in part due to the lower percentage of unique

answers in these datasets. Overall, there is a slight
advantage of the fine-tuned SBERT over the other
methods.

5.2 Confidence-based Scoring
Using a similarity-based approach to score answers
brings about the benefit of being able to take the
similarity on which the classification hinges as a
confidence estimate. Suen et al. (2023) were able to
increase performance by deferring answers where
the model is not confident enough to manual la-
beling. This requires a predefined threshold that
dictates whether to take the predicted label or seek
manual labeling. In a practical setting, there should
not be a requirement of having to determine this
threshold for each new prompt, as this would re-
quire substantial amounts of labeled data for the
new prompt, thereby diminishing the advantage of
automatic evaluation. To assess whether there is
such a threshold that is reasonable to assume for
new prompts, we analyze how much well-suited
thresholds vary between datasets and prompts.

Data-driven Threshold Selection To decide on
a suitable threshold for each prompt, we define
a target performance for each dataset. These val-
ues are listed in Table 2 (under column ‘target’)
and were chosen to push performance around .10
weighted F1 above the fully-automated baseline.
Figure 4 in the Appendix shows that performance
of the individual prompts in a dataset varies: For
some prompts, the target performance was already
reached (or surpassed), while others lie beneath it,
at times substantially. For these, we calculate the
lowest possible threshold value that reaches the tar-
get performance5. Weighted F1 is then calculated
on all answers for which the model’s confidence
exceeds this threshold, i.e. calculated only on those
answers for which the machine-predicted label is
taken. Answers that are deferred to manual label-
ing are excluded from the performance calculation,
as they are by definition assumed to be scored cor-
rectly.

Figure 2 (blue bars) shows the determined opti-
mal thresholds, with each bar corresponding to a
prompt of the respective dataset. The only dataset
where thresholds are somewhat close together is
edit distance-based scoring of Powergrading, where
they range from .92 to .99. Otherwise, thresholds
vary widely, indicating that it is difficult to prede-
fine a threshold to apply to a new prompt. On top

5Prompts already at target level have a threshold of 0.
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Figure 2: Prompt-wise depiction of thresholds that would have to be set in order to achieve the target performance
level (see Table 2). Red bars indicate how much test data falls below the threshold, i.e. has to be scored manually.
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Figure 3: Weighted F1 and amount of answers that
requires manual scoring averaged over all prompts of
the respective dataset.

of the rather wide span of optimal thresholds, the
red bars depict how much of the test data would
be deferred to manual labeling. We see that for
many of the threshold values, this would make up
a substantial amount of answers, often over half
of them. Thus, even if there is a threshold found,
reaching the target performance level comes at the
cost of a large volume of manual annotation effort.

Predefining Threshold Values Instead of a data-
driven search for an optimal threshold value, one
could also make a top-down decision on a reason-
ably seeming threshold. Our next analysis inspects
how threshold values are related to performance
and manual correction effort. Figure 3 shows the
relation between threshold value, performance and
manual effort averaged over all prompts of a dataset.
In general, performance tends to be stable for a
rather wide range of thresholds, and only starts to
increase when substantial manual effort is required.
There is thus no general potential of increasing per-
formance at a reasonable cost of additional manual
labeling.

6 Conclusion

While previous work showed that confidence-based
scoring can be successful (Suen et al., 2023), we
do not find this to hold in our experiments. This
may in part be due to the lower volume of reference
answers and the higher overall scoring difficulty
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of some of the datasets we use. On some prompts,
there may be thresholds that lead to a desirable
tradeoff between manual effort and performance
increase, but we did not find a general range of
threshold values that would be promising to apply
to unseen prompts.

Limitations

Due to the sensitive nature of the exam data, we
can unfortunately not publish it. This limits the
reproducibility of our results.

When we set thresholds on the similarity, we cal-
culate performance based on only those examples
that exceed the confidence threshold. One could
also argue to include the answers that are deferred
to manual labeling as correctly classified examples.
This would increase performance, but it would also
mean that a certain volume of answers might be
scored with substantially inferior performance, as
it would enable for manually labeled answers to
even out misclassifications by a model. In practice
we want to guarantee a certain level of performance
for all students, and hence calculate performance
solely on those answers that are classified by a
model.

Ethical Considerations

The motivation for this work was to assess the use-
fulness of automated confidence-based scoring in a
high-stakes setting. The performance levels on the
SRA and ASAP datasets are however a long way
off from being reliable enough for employment in
an actual classroom. Even on the better-performing
Powergrading and UniversityExams data, the local
legal situation is likely to put significant conditions
on the use of automated decisions, or even prohibit
this entirely.
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Abstract

Comparative judgment (CJ) is a method that
can be used to assess the writing quality of
student essays based on repeated pairwise com-
parisons by multiple assessors. Although the
assessment method is known to have high valid-
ity and reliability, it can be particularly ineffi-
cient, as assessors must make many judgments
before the scores become reliable. Prior re-
search has investigated methods to improve the
efficiency of CJ, yet these methods introduce
additional challenges, notably stemming from
the initial lack of information at the start of
the assessment, which is known as a cold-start
problem. This paper reports on a study in which
we predict the initial quality scores of essays to
establish a warm start for CJ. To achieve this,
we construct informative prior distributions for
the quality scores based on the predicted initial
quality scores. Through simulation studies, we
demonstrate that our approach increases the ef-
ficiency of CJ: On average, assessors need to
make 30% fewer judgments for each essay to
reach an overall reliability level of 0.70.

1 Introduction

The Comparative Judgment (CJ) method is utilized
in diverse educational assessments, and specifically,
some educational institutions employ it for the as-
sessment of student essays. As shown in Figure 1,
this approach involves presenting two essays in a
web-based tool, where assessors compare them to
determine the best one. After a sufficient number
of judgments, all pairwise comparisons are used to
calculate a quality score for each essay. In contrast
to rubric marking, CJ provides distinctive advan-
tages. Assessors can apply their expertise and expe-
rience flexibly, without strict adherence to rubrics
(Bloxham, 2009; Laming, 2003). Additionally, CJ
enhances the reliability and validity of scores by
incorporating multiple judgments from various as-
sessors (Lesterhuis et al., 2022; Verhavert et al.,
2019).

Despite the advantages of CJ, it still requires
many judgments from assessors before quality
scores become reliable enough, typically requiring
between 10 and 14 judgments per essay to achieve
a reliability level of 0.70 (Verhavert et al., 2019),
rendering the assessment method rather inefficient
(McMahon and Jones, 2015). A cause of its ineffi-
ciency is that, at the start of the assessment, there
is no information about the quality scores, as no
judgments have been made yet. In adaptive learn-
ing systems, this problem is commonly referred to
as cold-start problem (Sun et al., 2022a; Pliakos
et al., 2019).

A solution to alleviating this cold-start problem,
and subsequently increasing the efficiency of CJ,
would be to introduce a ‘warm start’ in the as-
sessment by automatically predicting initial quality
scores for essays. Although the prediction of es-
say quality has already been extensively explored
in automated essay scoring (AES) (see a review
by Klebanov and Madnani, 2022), these studies
have mostly focused on what could be defined as
non-comparative, or absolute (Bouwer et al., 2023),
essay scoring, where each essay is scored as a stan-
dalone piece without comparison to other essays.
To the best of our knowledge, there have been few
to no studies that explored the automatic predic-
tion of essay quality scores obtained through CJ
assessments.

To address this research gap, we studied the ex-
tent to which essay quality scores, resulting from a
CJ assessment, can be automatically predicted and
used to alleviate the cold start of CJ with the goal of
increasing the efficiency of CJ for assessing essay
quality. We focused on Dutch essays written for ar-
gumentative assignments. Firstly, we conducted a
machine learning experiment in which deep learn-
ing models were trained on data collected from
CJ assessments to predict quality scores of essays.
Secondly, we ran simulations where we used the
predicted quality scores as initial quality scores to
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Figure 1: Screenshot of the Comproved web application (https://comproved.com), showcasing a comparative
judgment assessment. Here, two Dutch essays discussing the topic ‘Having children, yes or no?’ are randomly
chosen and presented to an assessor, who determines which essay showed the best argumentation.

alleviate the cold start of CJ. These steps were con-
ducted to answer the following research questions:

1. To what extent can current deep learning mod-
els automatically predict essay quality scores
that resemble quality scores obtained from CJ
assessments?

2. If these predicted scores are used as initial
quality scores within CJ, to what extent can
we decrease the number of comparative judg-
ments needed to obtain reliable scores?

2 Background

2.1 Comparative Judgment Assessments
Generally, CJ assessments consist of three steps
that are repeated. In a first step, a pair of two es-
says is selected and presented to one of the multiple
assessors. In a second step, the assessor is tasked
with comparing the two essays and determining
which is of a higher quality given the task descrip-
tion of the assignment, that is, the prompt. In a
third step, statistical models such as the Bradley-
Terry-Luce (BTL) model are used to model the
outcomes of all pairwise comparisons on a quality
scale (Bradley and Terry, 1952; Luce, 1959).

More formally, BTL model relates P(i ≻ j), that
is the probability that essay i is preferred over essay
j, to the difference in their estimated quality scores,
θi and θj (see Equation 1), with i ∈ {1, . . . , n} and
i ̸= j. The smaller the difference, the closer the
probability is to 0.50. The outcome of comparing

essay i with essay j is denoted by Zij ∈ {0, 1},
where Zij = 1 in case essay i is preferred over
essay j, and 0 otherwise. Each quality is a logit
value θi ∈ R where

∑n
i=1 θi = 0.

P(i ≻ j) := P(Zij = 1) =
eθi−θj

1 + eθi−θj
(1)

Zij ∼ Bernoulli (P(i ≻ j)) (2)

Different selection rules for CJ (step 1) have
been proposed to increase the efficiency of the as-
sessment. These selection rules rely on certain char-
acteristics of essays. Most notably, Pollitt (2012)
proposed to select pairs of essays adaptively based
on the closest estimated quality scores. The out-
comes of these judgments are the most uncertain
and, therefore, the most informative for the quality
scores in a statistical sense. However, there are two
drawbacks to adaptive selection: First, it cannot be
used at the start of the assessment, as quality scores
are still unknown, and second, during the assess-
ment, adaptive selection can lead to an overly opti-
mistic view of reliability, causing the assessment
to end prematurely (Bramley and Vitello, 2019;
Crompvoets et al., 2020). Alternatively, pairs of
essays can be selected based on the textual informa-
tion of essays. De Vrindt et al. (2022) proposed to
select pairs of essays that are semantically similar
during the initial phase of the CJ assessment. They
encoded the essay texts as numeric vectors using
doc2vec (Le and Mikolov, 2014) and selected the
pairs with the highest cosine similarity. However,
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the efficiency gain they observed was only limited.
Therefore, it is of interest to investigate other ways
of using textual information of essays to speed up
CJ assessments. We focus on the automatic predic-
tion of quality scores based on previously assessed
essay texts.

2.2 Automated Essay Scoring
In the field of AES, the automatic prediction of
scores has been extensively investigated with as
goal to reduce the workload of assessors. This
field has experienced significant advances driven
by deep learning (Ramesh and Sanampudi, 2022).
The proposed deep learning techniques depend on
the educational setting in which AES is used. In
scenarios where no previously scored essays are
available, the prediction relies solely on the es-
say text itself. This can be achieved, for example,
through unsupervised learning (Mim et al., 2019;
Wang et al., 2023). In AES research, it is typical
to have scored essays on hand. These scored es-
says help researchers understand the connection
between scores and essay content, enabling them
to predict essay scores more accurately. This can
be achieved through supervised learning (Alikan-
iotis et al., 2016; Taghipour and Ng, 2016; Yang
et al., 2020; Li et al., 2022). For supervised learn-
ing, essays that have been scored in the training set
can be written for a different assignment than the
essays in the test set for which scores are predicted.
In such a setting, the prompt for the assignments
is often considered to predict the essay scores in
addition to the essay texts (Li et al., 2020; Do et al.,
2023; Liu et al., 2019).

2.3 Cold-start Problem in Psychometry
The cold-start problem is most commonly termed
in the context of recommender systems to denote
the difficulty of proposing items to users when the
preferences of the users or the characteristics of
the items are unknown due to limited user interac-
tions. Using language models, this issue has been
addressed by extracting characteristics from item
texts (Penha and Hauff, 2020) or by generating
user preferences based on the textual description of
user historical preferences and items (Wang et al.,
2024).

Similarly, in computerized adaptive testing, the
cold-start problem persists. These systems select
test items so that the difficulty of the item matches
the test takers ability, but when responses for items
are lacking, inferring item difficulty becomes chal-

lenging. Therefore, to calibrate the characteristics
of the items, responses for the items need to be col-
lected during a pilot phase. To mitigate the need for
extensive piloting, Settles et al. (2020) extracted the
linguistic features of test items measuring their dif-
ficulty. Alternatively, McCarthy et al. (2021) used
pre-trained embeddings of test items to estimate
their difficulty and discriminatory power.

The cold-start problem for CJ is similar: quality
scores for essays are unknown at the start of an as-
sessment because assessors have not judged them,
requiring assessors to make many judgments dur-
ing the assessment. Analogously to recommender
systems and computerized adaptive testing, we ad-
dress the cold start of CJ by inferring the unknown
measures, namely the quality scores, from essay
texts.

3 Method

3.1 Data

This study was based on data gathered in a previous
study by Lesterhuis et al. (2022). The dataset, de-
scribed in Table 1, comprised three assignments in
which students around the age of 16 wrote argumen-
tative essays in Dutch. The topics for these essays
were: (1) having children, (2) organ donation, and
(3) stress experienced by students. Students were
provided with a prompt detailing the essay topic,
the task requirements, and the source texts they
were required to integrate in the essay.

Assignment Essays Tokens Tokens/Essay
N M ± SD

1. Children 135 42,349 316 (± 93)
2. Organ 136 40,990 304 (± 90)
3. Stress 35 11,286 322 (± 103)

Table 1: Overview of the argumentative writing tasks
gathered by Lesterhuis et al. (2022). Tokenization was
performed using the Dutch tokenizer from spaCy (Ex-
plosion, 2023), which splits the essay texts into mean-
ingful segments.

The essays were assessed by secondary edu-
cation assessors using a comparative judgment
method. Assessors were presented with pairs of
randomly selected essays and had to decide which
one was better in terms of argumentation, as illus-
trated in Figure 1. The number of assessors for
each assignment and the total of judgments per
essay are detailed in Table 2.
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Assignment Judgments/Essay Assessors

1. Children 18 55
2. Organ 13 52
3. Stress 27 42

Table 2: Overview of the number of comparative judg-
ments made per argumentative writing assignment

To study the predictability of initial essay quality
scores and their role in a warm start, it is of course
imperative to have quality scores for each essay.
For each of the three assignments separately, essay
quality scores were derived from the parameters of
a Bayesian BTL model with a cold-start condition.
These model parameters were estimated based on
all comparative judgments within the same assign-
ment. Since these parameters reflect the quality
scores estimated at the end of the CJ assessment,
we will refer to them as the ‘final quality scores’
throughout the remainder of this paper. Additional
details regarding this cold-start model will be pro-
vided in Section 3.5. The distributions of the qual-
ity score for each essay within each assignment
are shown in Figure 2. Given the large number of
comparative judgments per essay (Verhavert et al.,
2019) and the diverse panel of assessors responsi-
ble for these judgments (van Daal et al., 2016), we
can confidently affirm the reliability and validity of
these estimated scores.

2 1 0 1 2
True quality scores

Children

Organ

Stress

Figure 2: Distributions of final quality scores estimated
from a Bayesian BTL model with a cold-start condition

3.2 Models
For predicting essay quality scores, we employed
various pre-trained language models and fine-tuned
them based on the final quality scores. While al-
ternative feature-based and classical NLP methods
exist for this purpose, we focused on fine-tuning
transformer models due to their demonstrated supe-
riority in AES research (Uto et al., 2020; Ormerod
et al., 2021). We specifically avoided multilin-

gual models, concentrating solely on Dutch mod-
els, as prior studies indicate that monolingual mod-
els tend to outperform on tasks involving Dutch
texts (de Vries et al., 2019; Delobelle et al., 2020).
We used three different pre-trained Dutch lan-
guage models, namely BERTje (base, uncased)
(de Vries et al., 2019), RobBERT (v2) (Delobelle
et al., 2022), and RobBERTje (non-shuffled) (De-
lobelle et al., 2021). BERTje is built upon the
BERT architecture trained on 12GB of Dutch texts
containing 2.4B tokens. RobBERT on the other
hand, is based on the RoBERTa architecture, which
boosts BERT’s efficacy by pre-training in batches
on 36GB of Dutch texts containing 6.6B tokens.
RoBERTje employs a DistilBERT architecture, de-
rived from RobBERTje, while preserving compara-
ble efficacy with fewer parameters by using knowl-
edge distillation.

We conducted a machine learning experiment
with two model configurations: (a) fine-tuning the
model solely on the provided essay text as input,
and (b) fine-tuning the model on both the essay
text and the given prompt as input. The models
were imported with the Hugging Face library with
a Pytorch backend and implemented to perform a
regression task.

More details on the specific computing infras-
tructure can be found in Appendix A. For the final
regression layer, we employed a sigmoid activation
function as a way of bounding the scalar values to
enhance the training stability. These bounded val-
ues functioned as predicted quality scores. Consis-
tent with common practice in essay scoring (Alikan-
iotis et al., 2016; Yang et al., 2020; Li et al., 2022),
all quality scores were min-max normalized before
training. These normalized scores, along with the
predicted scores, were used to compute the mean
squared error, which functioned as the training loss.
After training, the predicted scores were reverted
to the original scale.

In the second configuration, the assignment
prompt was taken into account in addition to the
essay texts for the prediction of quality scores. We
hypothesized that prompt information would be
important for the prediction of quality scores, as
the essays in the training set and the test set were
written for different assignments. To incorporate
this information into the model, we encoded the
prompt using the same transformer model as for
the essay text (i.e., a shared encoder). Two addi-
tional cross-attention layers were added to model
the relationship between essays and prompts in
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both directions. This is similar to the configuration
proposed by Liu et al. (2019).

The hyperparameters are given in Appendix B.
These were selected based on preliminary results
on a held-out set, comprising 15% of essays ran-
domly selected from the training set, which were
omitted during training but used for model evalua-
tion.

3.3 Experimental Setup
To evaluate the reliability of the quality scores pre-
dicted by the fine-tuned models, we ran a machine
learning experiment with the following training
and test splits: {1, 2} → 3, {1, 3} → 2, and
{2, 3} → 1. In each fold, the three pre-trained
models were fine-tuned on essays coming from
two assignments (e.g., 1 and 2) and were evaluated
on essays coming from the remaining assignment
(e.g., 3). We employed this setup to emulate a real-
world assessment scenario where we would have
an assignment for which we do not have any scores
yet (e.g., 3) and for which we need to predict initial
quality scores based on scores estimated for other
assignments (e.g., 1 and 2).

It is crucial to note that, despite the scores be-
ing logit values derived from distinct assignments,
there was no complication in joining them within
the training set. This was possible because the as-
signments were very similar, each assessing the
quality of argumentative writing.

3.4 Evaluation Metric
Because our objective was to establish the relia-
bility of predicted quality scores, we utilized the
squared Pearson correlation (Bi, 2003)

ρ2θinit,θ∗ =
Varθ∗

Varθinit

(3)

to assess the reliability between the predicted ini-
tial quality scores θiniti and final quality scores θ∗i
for i = {1, . . . , n} the essays in the test set. The
reliability can be interpreted as the proportion of
variance of the predicted initial quality scores that
is attributed to the final quality scores. The closer
this ratio is to one, the higher the reliability.

3.5 Efficiency Simulation Study
After having fine-tuning and evaluated pre-trained
models, we simulated the impact of integrating
model predictions as initial quality scores in CJ
assessments. For each train-test split, we selected
the model and its configuration (i.e., essay text with

or without prompt) that exhibited the highest reli-
ability. Subsequently, we conducted simulations
to compare CJ assessments under two conditions:
a warm-start BTL model (our experimental con-
dition, where initial quality scores were predicted
using the best model) and a cold-start BTL model
(our control condition, where initial quality scores
were absent).

While likelihood-based techniques (Hunter,
2004) are typically employed for parameter estima-
tion in the BTL model (Equation 1), we adopted
a Bayesian approach to simulate CJ assessments
with both cold-start and warm-start BTL models.
Within this framework, we could establish prior as-
sumptions about the distribution of quality scores.
Bayes’ theorem allowed us to integrate these priors
with judgments in the BTL model, resulting in pos-
terior distributions for all quality scores. Compared
to maximum likelihood estimation, Bayesian infer-
ence provides more stable estimates and a clearer
understanding of the associated uncertainty (Phelan
and Whelan, 2017).

3.5.1 Cold-Start Bayesian BTL Model
Under the cold-start condition, we formulated
for each quality score a normal prior distribution
(Equation 4) having a mean of 0 for all quality
scores.

θi ∼ Normal
(
0, σ2

i

)
(4)

This prior serves to regularize the distribution
of quality scores, rendering it weakly informa-
tive. The lack of specificity about the essays for
which quality scores are estimated characterizes
this Bayesian BTL model as having a ‘cold start’.

For the variance of each quality score, we spec-
ified a normal-truncated prior distribution (Equa-
tion 5), which is a common choice for σ2

i ∈ (0,∞).

σ2
i ∼ NormalTrunc

(
µ0, σ

2
0

)
(5)

The parameters of the distribution of σ2
i determined

the level of uncertainty of the prior quality scores:
the larger the location and scale parameters, the
greater the prior uncertainty of the quality scores.
Based on preliminary results, we chose to fix these
parameters for all quality scores: µ0 = 0.5 and
σ2
0 = 0.1.

3.5.2 Warm-Start Bayesian BTL Model
Under the warm-start condition, we formulated
prior distributions for the quality scores using the
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predicted quality scores. These priors are deemed
informative, as they incorporate information about
each essay’s quality score.

To construct informative priors, we assumed a
normal prior distribution for all quality scores θi
for i = {1, . . . , n} with as mean their predicted
initial quality scores θiniti .

θi ∼ Normal
(
θiniti , σ2

i

)
(6)

All predicted quality scores were first centered,
θiniti −∑n

i=1 θ
init
i , to speed up convergence and

encourage
∑n

i=1 θi ≈ 0. As in the cold-start con-
dition, prior distributions were specified for the
variance of the quality scores, measuring the uncer-
tainty of the estimates (see Equation 5).

3.5.3 Sampling and Simulations
To estimate the posterior distribution of each θi and
σ2
i , samples were drawn according to the Hamilto-

nian Monte Carlo algorithm using Stan (Gelman
et al., 2015), with 4 chains of 2000 steps of which
500 were warm-up steps. These were sufficient to
reach convergence as diagnosed by a r-hat value
of 1 (Vehtari et al., 2021). After convergence, the
averages of the posterior distributions were used as
point estimates.

To simulate a CJ assessment, we repeatedly es-
timated θi and σ2

i using increasingly more judg-
ments; for an example of a simulated CJ assess-
ment, see Appendix C. To account for possible
effects of the order of judgments, we shuffled the
sequence of judgments twenty times, resulting in
twenty simulations of a CJ assessment. We re-
peated this process for each assessment, employing
both a cold and a warm start.

3.5.4 Measuring Efficiency Gain
We assessed the gain in efficiency when introduc-
ing a warm start by observing the decrease in the
average number of judgments required per essay
to achieve a specific reliability level. The relia-
bility of the quality scores was determined by the
squared Pearson correlation (ρ2θ,θ∗) between the fi-
nal quality scores θ∗, estimated at the end of the
assessment, and the quality scores in a Bayesian
BTL model estimated at a certain point during the
assessment θ.

However, the use of this reliability metric
presents a practical challenge. In practice, the relia-
bility cannot be calculated during an assessment, as
the final quality scores that would be estimated at
the end of the assessment are still unknown. Hence,

the reliability has to be approximated based on the
estimated quality scores, which can be achieved us-
ing the Scale Separation Reliability (SSRθ). More
specifically, the SSRθ estimates Varθ∗ in Equa-
tion 3 by Varθ−Eσ2 ; see Equation 7. For a detailed
derivation of the SSRθ, please refer to Verhavert
et al. (2018). Note that we adjusted the reliabil-
ity of the estimated quality scores to account for
the reliability level of the final quality scores; see
Appendix D.

SSRθ =
Varθ − Eσ2

Varθ
→ ρ2θ,θ∗ (7)

4 Results

4.1 Machine Learning Experiment
Table 3 shows the results of the machine learn-
ing experiment. The findings indicate that all fine-
tuned language models effectively predicted qual-
ity scores for a completely new assignment, with
correlation coefficients significantly different from
zero. Notably, RobBERT consistently exhibited
the highest reliability in predicting quality scores,
aligning with its superior performance over other
Dutch transformer models in diverse tasks (Delo-
belle et al., 2022).

Furthermore, when integrating both essay and
prompt information, the RobBERT model consis-
tently achieved the highest reliability with true qual-
ity scores. This observation aligns with previous
AES research, emphasizing the predictive accuracy
of essay scores across various prompts (Li et al.,
2020; Do et al., 2023). As a result of these find-
ings, we opted for the RobBERT model incorporat-
ing additional prompt information to predict initial
quality scores in the simulation study.

It is crucial to note, however, that despite achiev-
ing high reliability, the fact that the reliability levels
did not surpass 0.70 underscores the importance of
assessor judgments to further improve the reliabil-
ity of essay quality scores.

4.2 Simulation of CJ Assessments
The simulation study results, shown in Figure 3,
highlight the comparison between CJ assessments
under warm-start and cold-start conditions. The
outcomes indicate that adopting a warm-start ap-
proach proved more efficient in terms of the num-
ber of judgments per essay needed to achieve a
reliability level of at least 0.70.

In both Assignment 1 (Figure 3.c) and Assign-
ment 3 (Figure 3.a), the desired reliability was
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Fold
ESSAY TEXTS + PROMPT INFORMATION

BERTje RobBERT RobBERTje BERTje RobBERT RobBERTje
{1, 2} → 3 0.56 0.61 0.54 0.60 0.63 0.52
{1, 3} → 2 0.51 0.55 0.43 0.50 0.59 0.45
{2, 3} → 1 0.43 0.56 0.16 0.42 0.57 0.17
Average 0.50 0.57 0.38 0.52 0.59 0.37

Table 3: Squared Pearson correlations computed on the test set, comparing final quality scores and scores predicted
by fine-tuned models, utilizing either only the essay texts or the prompts as well. Maximum scores are boldfaced.
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Figure 3: Results of simulated CJ assessments with a warm and a cold start. The average reliability and the average
SSRθ of the estimated quality scores are given in function of the average number of comparisons made per essay.
These scores are averaged over 20 different orders of comparative judgments used to simulate an assessment.

reached with fewer than six judgments per es-
say. Conversely, employing a cold-start method
required more than nine judgments per essay to
attain an equivalent reliability level. Consequently,
the warm-start approach resulted in efficiency gains
of 35% and 41%, respectively. For Assignment 2
(Figure 3.b), a reliability of 0.70 required less than
nine judgments per essay, while with a cold start at
least ten judgments per essay were needed, which
corresponds to an efficiency gain of 15%.

When exceeding ten judgments per essay, the dis-
parity in reliability between warm and cold starts
decreased across all assignments. This can be at-
tributed to the diminishing impact of prior distri-
butions on posterior distributions as the number of
judgments increases. Additionally, for assignments
2 and 3, the reliability with a warm start begins
to slightly trail behind that of the cold-start condi-
tion after ten judgments per essay. We posit that

this observed difference may be associated with
the choice to estimate final quality scores using a
Bayesian BTL model with a cold start.

In practical scenarios, reliability is not accessible
during assessments, making accurate measurement
with the SSRθ crucial. As shown in Figure 3, the
SSRθ demonstrated a faster approximation of relia-
bility when employing a warm start compared to a
cold start. Specifically, the SSRθ reached the 0.70
reliability level for all assignments under a warm
start. In contrast, the SSRθ approached reliability
at levels of 0.75 for Assignment 2 and 0.80 for
Assignments 1 and 3 under a cold start.

To examine the impact of warm-starting assess-
ments on individual quality scores, we compared
the progression of quality score rankings. For il-
lustration purposes, we show the results of one
simulated assessment for Assignment 3. Figure 4
demonstrates that adopting a warm start led to qual-
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Figure 4: Forest plots of quality scores with 94%-high density intervals estimated at different stages of the CJ
assessment of Assignment 3, with a cold-start condition (plots a–c above) and a warm-start condition (plots d–f
below). The bar plots at the bottom show ranking accuracy based on the absolute differences in rank order of
estimated and final quality scores, with darker shades indicating more incorrect rankings of estimated quality scores.

ity scores being more spread out, yielding a fairly
accurate ranking at the start of the assessment. In
contrast, quality scores under the cold-start condi-
tion clustered around the mean value, resulting in
less precise rankings. This highlights the efficacy
of informative priors in the warm-start condition in
discerning between quality scores. Even after ten
judgments per essay, the warm-start approach dis-
played a wider range of quality scores and a better
ranking compared to the cold-start method.

5 Discussion

Our findings underscore the ability of current deep
learning models, particularly transformer models,
to predict initial quality scores that provide valu-
able information on the argumentative writing qual-
ity of essays. Furthermore, incorporating the as-
signment prompts for fine-tuning enhances the re-

liability of predicted quality scores, which aligns
with prior research in AES (Li et al., 2020; Do et al.,
2023; Sun et al., 2022b). We posit that prompt in-
formation is especially important for the prediction
of initial quality score, since, in this study, the es-
says in the training set were written for different
assignments than the essays in the test set.

When warm-starting CJ assessments with these
predicted initial quality scores, the necessary num-
ber of comparative judgments to obtain reliable
quality scores decreases significantly. This sug-
gests that less effort from assessors is required
while upholding high levels of reliability of the
quality scores. Furthermore, our approach to in-
crease the efficiency of CJ avoids any undesirable
effects with respect to the reliability measures,
which have been noted when employing an adap-
tive selection rule (Bramley, 2015; Bramley and
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Vitello, 2019; Crompvoets et al., 2020). Addition-
ally, our method demonstrates a more substantial
improvement in efficiency compared to the ap-
proach of De Vrindt et al. (2022), who devised
a more efficient selection rule based on similarities
in essay texts.

6 Conclusion

We successfully improved the efficiency of CJ as-
sessments by introducing a warm start for the es-
timation of the quality scores. This involved pre-
dicting essay quality scores, which were then used
to form informative prior distributions within a
Bayesian BTL model. Through an extensive sim-
ulation study, we demonstrated that our approach
led to a reduction, ranging between 15% and 41%,
in the number of comparative judgments needed
to reach a reliability of 0.70 and produced more
accurate rankings of essays at the start of an as-
sessment. Furthermore, our findings indicate that
these efficiency gains can be measured in practical
settings, as the SSRθ approximates the reliability
well.

7 Limitations

To fine-tune the transformer models for the pre-
diction of quality scores, we devised a training set
combining the quality scores from different CJ as-
sessments. This was feasible, as the quality scores
measured the same quality of argumentative writ-
ing. However, if the essays were written in different
text genres, such as informative writing, combining
the quality scores would become non-trivial, since
they measure a different kind of writing quality.
Therefore, we recommend that before combining
quality scores, they are first calibrated on a fixed
scale using, for example, the method of Fair Av-
erages (Linacre, 1989). Furthermore, differences
in the genre of essays in train and test could make
predicting the initial scores more difficult, causing
lower reliability.

In this study, we assumed that the quality scores
of essays written for other assignments were avail-
able to train a deep learning model for score pre-
diction. However, settings may arise where these
quality scores are unavailable, particularly in edu-
cational contexts where privacy concerns may pre-
vent the inclusion of students’ essays in a training
set. In such cases, alternative methods for predict-
ing scores must be explored. One approach is to
train a deep learning model on publicly available

AES datasets, such as the Automated Student As-
sessment Prize (ASAP) dataset published by the
Hewlett Foundation (Hamner et al., 2012). How-
ever, it should be noted that these essays are writ-
ten in English, prompting the need to evaluate how
well a model trained on these can predict scores for
Dutch essays. Alternatively, in case no essay scores
are available for training, unsupervised learning
approaches for AES could be considered (Ridley
et al., 2020; Zhang and Litman, 2021).

To simulate the CJ assessments, we chose to
repeatedly shuffle the order of judgments (see Ap-
pendix C). However, this approach may not re-
flect a realistic CJ assessment process, as, typically,
pairs of essays for judgment are selected in such
a way that each essay is compared (close to) the
same number of times. For example, if an essay is
compared 9 times and the others 10, that essay is
selected and paired with a randomly selected essay.
Based on preliminary results, we observed that our
choice to repeatedly shuffle judgments has a negli-
gible impact on the reliability results, as outlined
in this study.

The current study reports an increase in reliabil-
ity at the start of the assessment, but after more
judgments have been made, the difference in re-
liability between a cold and a warm start became
minimal (see Figure 3). For future research, we
recommend exploring methods that use essay texts
for the selection of pairs in a way that increases the
reliability toward the end of an assessment, while
avoiding the perverse effects that adaptive selec-
tion rules introduce (Bramley, 2015; Bramley and
Vitello, 2019; van Daal et al., 2017).
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essay scoring performance via fine-tuning pre-trained
language models with combination of regression and
ranking. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1560–1569,
Online. Association for Computational Linguistics.

Haoran Zhang and Diane Litman. 2021. Essay Quality
Signals as Weak Supervision for Source-based Es-
say Scoring. In Proceedings of the 16th Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 85–96, Online. Association for
Computational Linguistics.

A Computing Information

We implemented both transformer models for qual-
ity score prediction using Pytorch 2.1.0, Hugging
Face 4.32.1, and Python 3.9.12. We conducted the
experiments on a system running Ubuntu 22.04.2.

B Hyperparameters

The AdamW optimizer was used (Loshchilov and
Hutter, 2017), with a polynomial learning rate
scheduler and a starting learning rate of 1e − 5.
The warm-up ratio was set at 10% of the steps,
with a batch size of 5. The weight decay was set
to 0.09. Furthermore, a 5% dropout was used to
prevent overfitting. The transformer models were
fine-tuned for 40 epochs with the possibility of
early stopping based on the evaluation metric mea-
sured on the held-out set.

C Example of Simulated CJ Assessment

For the CJ assessment of Assignment 3, 27 judg-
ments were made for each essay, as detailed in
Table 2. This means that each essay was involved
in 27 pairwise comparisons. Given that there are
35 essays part of the assessment, assessors had to
make 35 × 27/2 ≈ 473 judgments in total. To
simulate the CJ assessment of Assignment 3, all θi
and σ2

i parameters in a Bayesian BTL model were
iteratively estimated using 1 to 473 judgments. Fol-
lowing each estimation, the SSRθ and reliability
were computed. Recognizing that the order of judg-
ments selected could influence the estimates and
reliability levels, we shuffled the sequence of judg-
ments twenty times and repeated the procedure
mentioned above.

D Adjusting the Reliability Measure

In studies on the reliability of CJ, the ‘true qual-
ity scores’ are obtaining using a all-play-all design
(Bramley, 2015; Crompvoets et al., 2020), where
every pairwise combination essays has been judged.

Since the data in this study were not gathered us-
ing an all-play-all, we assume that the final quality
scores are, in fact, the true scores. However, these
final quality scores possess their own level of relia-
bility, as given by the SSR of the estimated quality
scores at the end of a CJ assessment: SSRθ∗ . To
account for this, we adjusted the reliability of the
estimated quality scores, ρ2θ,θ∗ , by multiplying it by
SSRθ∗ . Consequently, SSRθ converges to SSRθ∗ ,
when the estimated quality scores align with the
final quality scores at the end of the assessment
(i.e., when ρ2θ,θ∗ ≈ 1).
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Abstract

This paper presents a cutting-edge method
that harnesses contextualized language models
(LMs) to significantly enhance the prediction
of early academic performance in STEM fields.
Our approach uniquely tackles the challenge
of transfer learning with limited-domain data.
Specifically, we overcome this challenge by
contextualizing students’ cognitive trajectory
data through the integration of both distal back-
ground factors (comprising academic informa-
tion, demographic details, and socioeconomic
indicators) and proximal non-cognitive factors
(such as emotional engagement). By tapping
into the rich prior knowledge encoded within
pre-trained LMs, we effectively reframe aca-
demic performance forecasting as a task ideally
suited for natural language processing.

Our research rigorously examines three key as-
pects: the impact of data contextualization on
prediction improvement, the effectiveness of
our approach compared to traditional numeric-
based models, and the influence of LM capacity
on prediction accuracy. The results underscore
the significant advantages of utilizing larger
LMs with contextualized inputs, representing a
notable advancement in the precision of early
performance forecasts. These findings empha-
size the importance of employing contextu-
alized LMs to enhance artificial intelligence-
driven educational support systems and over-
come data scarcity challenges.

1 Introduction

Modern artificial intelligence (AI) methods, such
as deep learning (DL), have increasingly been de-
ployed as cost-effective solutions to develop early-
warning systems across various sectors, including
health (Adler et al., 2022; Mamun et al., 2022; Zhao
et al., 2019; Horwitz et al., 2022; Liu et al., 2023a;
Collins et al., 2023; Xu et al., 2023; Adler et al.,
2020) and education (Wang et al., 2016, 2014; Li
et al., 2020; Xu and Ouyang, 2022). These systems

leverage forecasting-based interventions to preemp-
tively address potential issues, from medical condi-
tions to academic performance. In the educational
domain, specifically, AI-based interventions uti-
lize cognitive data, like students’ course-related as-
sessment scores, to predict and improve academic
outcomes (Greenstein et al., 2021; Arnold and Pis-
tilli, 2012; Liu et al., 2023b). The efficacy of these
interventions hinges on the precision of early fore-
casts—predicting course performance as early as
possible (Hasan and Aly, 2019; Hasan and Khan,
2023). However, this poses a significant challenge
when training data is scarce, leading to suboptimal
model performance. Transfer learning could offer a
solution, yet the approach is hampered by the lack
of relevant pre-trained models or sufficiently large,
domain-specific datasets for pre-training (Tsiak-
maki et al., 2020).

In this paper, we address the challenges asso-
ciated with limited training data by introducing a
novel transfer learning methodology specifically
tailored for domain-specific data within STEM
(Science, Technology, Engineering, and Mathe-
matics) education contexts. We propose leverag-
ing Transformer-based (Vaswani et al., 2017) pre-
trained language models (LMs) for early prediction
of academic performance in undergraduate STEM
courses. Our method exploits the extensive knowl-
edge base (Raffel et al., 2020; Roberts et al., 2020)
and reasoning capabilities (Chowdhery et al., 2022;
Wei et al., 2023; Bhatia et al., 2023) of LMs, trans-
forming end-of-the-semester performance forecast-
ing into a natural language text generation task.

To enhance knowledge transfer using limited do-
main data, we contextualize students’ cognitive
data by integrating both distal background factors
and proximal non-cognitive factors. This multi-
dimensional approach encompasses demographic,
socioeconomic, and academic background factors,
as well as non-cognitive features like emotional
engagement, to enrich the predictive model. By
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transforming the ordinal (numeric or real-valued)
features of our data into natural language text se-
quences, we tailor pre-trained LMs to our specific
task. Additionally, we augment these sequences to
increase the dataset size, thereby improving predic-
tive accuracy through a more balanced representa-
tion of various performance outcomes.

Contextualizing Academic Trajectories. Our ap-
proach integrates students’ background and engage-
ment data to provide a comprehensive view of their
academic journey. Based on Social Cognitive Ca-
reer Theory (Bandura, 2001), we hypothesize that a
student’s course performance correlates with their
background, suggesting that LMs can learn indi-
vidualized academic patterns. Furthermore, longi-
tudinal non-cognitive data, reflecting aspects like
motivation and engagement, are posited to have a
strong correlation with students’ academic trajec-
tories, potentially enhancing the LMs’ predictive
accuracy (Fogg, 2009; Fredricks, 2014).

Our contextualization process divides into four cat-
egories:

• Demographic Contextualization: Includes
inherent personal and social identity factors,
such as race and gender. These are critical for
understanding the diverse identities students
bring to their educational experiences and how
these aspects influence their academic out-
comes in the course.

• Socioeconomic Contextualization: Encom-
passes factors related to the economic status
and background of the student’s family, like
parent’s total yearly income. This contextual-
ization helps to understand the resources and
socio-economic pressures that might influence
a student’s academic performance and oppor-
tunities.

• Academic Contextualization: Pertains to the
specifics of a student’s educational path, in-
cluding their class standing year (freshman,
sophomore, junior, senior) and their chosen
major. This type of contextualization is vital
for understanding how students’ educational
choices and progression affect performance.

• Emotional Engagement Contextualization:
Centers on students’ emotional and perceptual
dimensions of academic engagement. Specifi-
cally, it aims to explore how students’ anticipa-
tions of academic outcomes (expected grades)

and their satisfaction with their academic per-
formance influence their engagement, motiva-
tion, and overall educational journey.

Using the contextualized academic trajectory
data, we address the following research questions.

• [RQ1]: How does contextualization of aca-
demic trajectory data impact the efficacy of
transfer learning from pre-trained LMs in
early academic performance forecasting?

• [RQ2]: How does a natural language text
generation approach compare with numeric
feature-based models in early performance
forecasting?

• [RQ3]: What impact does the capacity of pre-
trained LMs (i.e., the number of parameters)
have on forecasting accuracy?

Our primary contributions are threefold.

Innovative Methodology: We introduce a novel
methodology that employs natural language text
generation for the early forecasting of academic
performance, showcasing a unique blend of linguis-
tic and educational insights.

Contextualization as a Catalyst for Transfer
Learning: We demonstrate that contextualizing
academic trajectory data significantly enhances the
transfer learning process from pre-trained LMs. By
embedding both cognitive and non-cognitive fea-
tures within a rich contextual narrative, our ap-
proach unlocks the vast potential of LMs to under-
stand and predict academic outcomes with remark-
able accuracy.

Exploitation of Pre-trained LM Knowledge: Our
research underscores the pivotal role of leveraging
the inherent, comprehensive knowledge encapsu-
lated within LMs. Through our method, we illus-
trate how the nuanced understanding and versa-
tility of LMs can be effectively harnessed for the
domain-specific task of predicting student perfor-
mance, thus marking a significant advancement in
the field of educational AI.

The remainder of the paper is organized as fol-
lows: Section 2 outlines our methodology, encom-
passing a description of the dataset and its collec-
tion. In Section 3, we present the experiments and
provide a detailed analysis of the results, followed
by our conclusions and suggestions for future work
in Section 4. Finally, Section 5 offers a discussion
of pertinent literature.
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Figure 1: An overview of the approach for enhancing transfer learning from pre-trained language models for early
academic performance forecasting.

2 Method

To harness the nuanced understanding pre-trained
LMs offer regarding students’ academic expe-
riences, we assembled a detailed longitudinal
dataset that examines the interplay among vari-
ous factors, including background, cognitive, and
non-cognitive elements in student learning. Figure
1 illustrates the LM-based transfer learning frame-
work, featuring the contextualization of proximal
cognitive data followed by the preprocessing of the
contextualized academic trajectory. Data contex-
tualization involves integrating distal background
and proximal non-cognitive factors with cognitive
trajectory data. Below, we outline the process of
compiling a language dataset, encompassing data
collection and pre-processing methods, and con-
clude with a formal description of transfer learning
through fine-tuning of LMs.

2.1 Data Collection

Our dataset comprises information obtained from
48 first-year college students enrolled in an intro-
ductory programming course at a public univer-
sity in the United States, following approval from
the University’s Institutional Review Board. The
dataset encompasses three key dimensions of the
students’ academic journeys.

Background Data (5-dimensional): At the out-
set of the semester, critical 5-dimensional back-
ground data was collected through a Qualtrics-

based multiple-choice web survey. This numeric
dataset includes students’ academic details (such
as class standing year and major), demographic
information (including gender and race), and a so-
cioeconomic indicator (family yearly income).

Non-Cognitive Data (2-dimensional): This di-
mension includes longitudinal measures of stu-
dents’ emotional engagement throughout the
semester, comprising 2-dimensional data reflecting
students’ anticipated end-of-semester performance
and their current performance satisfaction, both in
numeric format.

The data is collected via a privacy-preserving
smartphone application, designed to prompt con-
textually relevant, study-specific multiple-choice
questions daily. This ensures that participants’
anonymized responses are securely compiled on
cloud servers for subsequent analysis. Each partici-
pant is assigned a unique randomly generated ID
upon enrollment, with no personally identifiable
information collected via the app. All data col-
lected is tagged solely by the participant’s random
ID, with no linkage maintained between the ID and
participant identity. Geolocation and Bluetooth
sensors are utilized in the app to ascertain instanta-
neous context for question triggers, although sensor
data is not persistently stored. By transparently in-
forming students about the privacy-preservation
mechanisms, we mitigate potential psychological
and academic incentives for artificial performance
or dishonest responses during experience sampling.
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Furthermore, this privacy-preserving mechanism
serves to mitigate potential biases in the data col-
lection process. By anonymizing participants’ re-
sponses and ensuring that no personally identifiable
information is collected, we minimize the risk of
participants feeling pressured to provide socially
desirable responses. This approach promotes more
authentic and unbiased data collection, contributing
to the reliability and validity of our findings.

Cognitive Data (21-dimensional): The dataset
also includes 21-dimensional numeric cognitive
data derived from students’ assessment scores (both
formative and summative) over the first 8 weeks
of the semester. This cognitive data was obtained
from the course’s learning management system,
Canvas, providing insights into students’ academic
performance, engagement, and progress within the
course curriculum.

2.2 Data Contextualization

We enriched students’ cognitive trajectory
data—comprising their course-related formative
and summative scores—by incorporating four
contextual dimensions: demographic (gender
and race), academic (class standing year and
major), socioeconomic (family yearly income),
and behavioral (emotional engagement). The
dynamic cognitive and non-cognitive data were
intertwined to preserve their temporal sequence,
while the static background data was added at the
end of the trajectory.

2.3 Data Pre-processing

The contextualized numeric trajectory data un-
derwent preprocessing to adapt it for LM use,
which included handling missing values in the non-
cognitive data, verbalization of the data, and data
augmentation for enhanced model training.

Data Imputation. The proximal non-cognitive
data exhibited missing values, resulting from par-
ticipants either skipping questions or temporarily
uninstalling the app. We encountered two dis-
tinct patterns of missing data: complete absence
of responses for an entire day and partial absences
within a day. To address days with entirely missing
data, we employed the Last Observation Carried
Forward (LOCF) imputation method (Liu, 2016).
This method involves carrying forward the last ob-
served value for each participant to replace missing
values at subsequent time points. While LOCF is a
commonly used approach due to its simplicity, it as-

sumes that the missing data points would have fol-
lowed a similar trajectory as the last observed value.
In situations where no prior data were available, the
Next Observation Carried Backward (NOCB) ap-
proach was employed (Jahangiri et al., 2023), using
data from a subsequent day that contained relevant
responses. The challenge of partially missing data,
particularly for follow-up questions, necessitated
a more nuanced approach. When the preceding
day’s trigger question response did not match, di-
rectly applying LOCF for the follow-up question
was deemed unreliable (Lachin, 2016). Instead, we
filled these gaps with responses from days where
the trigger question responses aligned. If no match-
ing previous day could be identified, a future day
with corresponding answers was utilized.

Data Verbalization. To transform the numeric
dataset into natural language, we designed a tem-
plate for verbalizing both the input (X) and out-
put (Y ) data sequences (refer to the Appendix for
details). Input sequences were prefaced with con-
textual messages, such as “A student obtained the
following assessment scores in an introductory pro-
gramming course ...” for cognitive data, and “Some
background information about the student: ...” for
distal data. Chronological order was emphasized
by prefacing data with the week number, e.g., “In
week [WEEK_NUMBER]”. The output sequences,
categorized into four performance groups (at-risk,
prone-to-risk, average, outstanding), contextual-
ized the final letter grade in a natural language
expression, e.g., “At the end of the semester, the
student will be at risk.” . This verbalization process
yielded three datasets based on 8-week, 4-week,
and 2-week long input sequences.

Data Augmentation. Given the initial dataset’s
unbalanced distribution across performance cate-
gories (24 instances of outstanding, 12 average, 6
prone-to-risk, and 6 at-risk), we employed a two-
fold approach for data augmentation. Firstly, we
utilized oversampling techniques (Haixiang et al.,
2017; Hernandez et al., 2013) to duplicate instances
from minority classes, thus balancing the dataset.
Secondly, we incorporated synonym replacement
methods (Li et al., 2022), which involved substitut-
ing words with their synonyms to introduce token
variations. This comprehensive approach aimed to
not only address class imbalance but also enrich
the dataset with diverse token variations.

As a result of our data augmentation strategy, the
augmented dataset showcased a more equitable dis-
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tribution among performance categories, totaling
144 samples, comprising 48 instances of outstand-
ing, 36 average, 30 prone-to-risk, and 30 at-risk.

These methodologies provide a robust founda-
tion for applying transfer learning to LMs, facilitat-
ing a deep understanding of students’ academic per-
formance through a multi-dimensional data lens.

2.4 Fine-tuning LMs
Each sequence in X and Y contains standard
lexical literals used in English (e.g., words and
phrases), which is used to fine-tune a pre-trained
encoder-decoder LM. The encoder fE(.) maps the
input sequence (x1, x2, ..., xl) to an intermediate
latent embedding sequence (z1, z2, ..., zl).

z = fE(x1, x2, ..., xl; θE) (1)

where θE are the weights of the encoder.
The decoder fD(.) takes the latent embed-

dings (z1, z2, ..., zl) to generate an output sequence
(ŷ1, ŷ2, ..., ŷm) in an auto-regressive fashion, i.e.,
at each step the decoder fD(.) uses previously gen-
erated symbols ŷ<m as additional input for generat-
ing the next token ŷm.The probability of generating
the m-th token ŷm is given by

p(ŷm|ŷ<m; z1, z2, ..., zl)

= softmax(fD(ŷ<m; z1, z2, ..., zl; θD)) (2)

where θD are the weights of the decoder. For
fine-tuning the encoder-decoder LM, the multi-
class cross-entropy loss function is used. The num-
ber of classes in the loss function is set by the total
number of tokens in the vocabulary. For a batch
size B, the loss function is:

L = −
B∑

b=1

M∑

m=1

ybmlogŷbm (3)

3 Experiments

To thoroughly investigate the research questions
outlined in Section 1, we performed a series of ex-
periments focusing on the learning capabilities of
LMs. These experiments involved fine-tuning pre-
trained LMs across multi-dimensional language
datasets spanning 8 weeks, 4 weeks, and 2 weeks.
This selection of timeframes facilitated an in-depth
examination of LM adaptability over various peri-
ods. The effectiveness of the adapted LMs was as-
sessed through their ability to identify performance
types based on matching keywords in the predicted

output sequences. Moreover, we explored the im-
pact of LM size—small, medium, and large—on
their performance.

Experimental Setup. For the encoder-decoder
LM, we used pre-trained FLAN-T5 (Chung et al.,
2022), which is a variant of the T5 model (Raf-
fel et al., 2020). The FLAN-T5 model is instruc-
tion fine-tuned, making it suitable for our purposes.
We employed FLAN-T5 with three different ca-
pacities, determined by the number of parameters:
FLAN-T5-Small (80M), FLAN-T5-Base (250M),
and FLAN-T5-Large (770M). These LMs have a
context window limited to 512 tokens. As base-
line comparisons, we utilized four models that
work with only numeric features: three neural net-
works (NNs) and one non-NN machine learning
model. The neural networks include a Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), a Convolutional Neural Net-
work (CNN) with a one-dimensional (1D) convolu-
tional kernel (Kim, 2014), and a Transformer net-
work (Vaswani et al., 2017). The non-NN machine
learning model employed was a Support Vector
Machine (SVM) with a linear kernel (Boser et al.,
1992), which demonstrated superior performance
over the Gaussian Radial Basis Function kernel.

The baseline models were trained using 3
variably-length numeric datasets containing only
the cognitive features. Exploring baseline models
with all three feature types is planned as future
work. To ensure compatibility with the LM-based
experiments, the numeric datasets were created
from the augmented verbalized datasets by decod-
ing the cognitive feature part of text sequences into
numeric values.

We used the same test sets to evaluate both model
types, employing the following metrics: accuracy,
precision, recall, and F1 score. A detailed descrip-
tion of the experimental setup is provided in the
Appendix.

3.1 Results

[RQ1]: How does contextualization of academic
trajectory data impact the efficacy of transfer
learning from pre-trained LMs in early academic
performance forecasting? The core objective
of this study is to evaluate how the contextualiza-
tion of academic trajectory data influences the fore-
casting effectiveness of pre-trained LMs. To this
end, we fine-tuned LMs of varying sizes with aca-
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Table 1: Evaluation of the large LM (FLAN-T5-Large) fine-tuned with four combinations of the 3 feature types
using the 8-week, 4-week, and 2-week datasets. The best results are in bold.
Legends: C=Cognitive, NC=Non-Cognitive, B=Background, AR=At-Risk, PR=Prone-To-Risk, AV=Average,
OU=Outstanding, P=Precision, R=Recall, F1=F1 Score, A=Accuracy

Features Class
8-week 4-week 2-week

P R F1 A P R F1 A P R F1 A

Full
Contextualization

(C + NC + B)

AR 0.78 1.00 0.88

0.89

1.00 1.00 1.00

0.84

0.64 1.00 0.78

0.77PR 0.89 0.80 0.84 0.89 0.80 0.84 1.00 0.50 0.67
AV 0.92 1.00 0.96 0.71 0.91 0.80 0.73 1.00 0.85
OU 0.93 0.81 0.87 0.86 0.75 0.80 0.85 0.69 0.76

Partial
Contextualization

(C + NC)

AR 0.70 1.00 0.82

0.82

0.70 1.00 0.82

0.77

0.62 0.71 0.67

0.68
PR 1.00 0.60 0.75 0.86 0.60 0.71 0.71 0.50 0.59
AV 0.73 1.00 0.85 0.69 1.00 0.81 0.62 0.91 0.74
OU 0.92 0.75 0.83 0.91 0.62 0.74 0.77 0.62 0.69

Partial
Contextualization

(C + B)

AR 0.78 1.00 0.88

0.77

0.88 1.00 0.93

0.77

0.60 0.86 0.71

0.64
PR 0.89 0.80 0.84 0.71 1.00 0.83 0.71 0.50 0.59
AV 0.67 0.73 0.70 0.69 0.82 0.75 0.70 0.64 0.67
OU 0.79 0.69 0.73 0.89 0.50 0.64 0.59 0.62 0.61

No
Contextualization

(C)

AR 0.60 0.86 0.71

0.73

0.62 0.71 0.67

0.70

0.36 0.57 0.44

0.52
PR 0.86 0.60 0.71 0.67 0.60 0.63 0.88 0.70 0.78
AV 0.60 0.82 0.69 0.67 0.91 0.77 0.54 0.64 0.58
OU 0.92 0.69 0.79 0.83 0.62 0.71 0.42 0.31 0.36

(a) FLAN-T5 Base

.
(b) FLAN-T5 Small

Figure 2: Impact of contextualization on the FLAN-T5 Base and Small models.

demic trajectory data enriched with three types of
features: cognitive (C), non-cognitive (NC), and
background (B). This investigation includes com-
paring the performance impact between fully con-
textualized LMs (utilizing all three feature types)
and partially-contextualized or non-contextualized
LMs. For partial contextualization, we explored
combinations of C+NC and C+B features, whereas,
in the non-contextualization scenario, only cogni-
tive (C) features were employed for model fine-
tuning.

According to the performance metrics provided
in Table 1 for the best-performing large LM, FLAN-
T5-Large, it is evident that models utilizing a con-
textualization approach, whether fully or partially,
significantly outperform those without any contex-
tualization. Specifically, the fully contextualized
LMs demonstrate superior forecasting abilities.
For instance, such a model can predict student per-
formance with an accuracy of 77% by the end of
the 2nd week of the semester. This early prediction
capability is vital for implementing effective early
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(a) 8-week (b) 4-week (c) 2-week

Figure 3: Comparison with baseline models on cognitive features.

Table 2: Evaluation of the three baseline models trained with cognitive features using the 8-week, 4-week, and
2-week datasets. The best results are in bold.
Legends: AR=At-Risk, PR=Prone-To-Risk, AV=Average, OU=Outstanding, P=Precision, R=Recall, F1=F1 Score,
A=Accuracy

Model Class
8-week 4-week 2-week

P R F1 A P R F1 A P R F1 A

CNN

AR 0.50 0.86 0.63

0.59

0.44 0.57 0.50

0.50

0.45 0.71 0.56

0.45
PR 0.83 0.50 0.62 1.00 0.30 0.46 0.44 0.70 0.54
AV 1.00 0.09 0.17 0.33 0.55 0.43 0.22 0.18 0.20
OU 0.56 0.88 0.68 0.37 0.56 0.58 0.75 0.38 0.50

LSTM

AR 1.00 0.14 0.25

0.34

0.00 0.00 0.00

0.25

0.15 0.29 0.20

0.34
PR 0.27 0.40 0.32 0.00 0.00 0.00 0.00 0.00 0.00
AV 0.33 0.27 0.30 0.26 0.73 0.38 0.00 0.00 0.00
OU 0.37 0.44 0.40 0.33 0.19 0.24 0.42 0.81 0.55

Transformer

AR 0.78 1.00 0.88

0.59

0.54 1.00 0.70

0.57

0.56 0.71 0.63

0.55
PR 0.57 0.40 0.47 1.00 0.60 0.75 0.80 0.60 0.71
AV 0.41 0.64 0.50 0.40 0.18 0.25 0.00 0.00 0.00
OU 0.73 0.50 0.59 0.50 0.62 0.56 0.46 0.81 0.59

SVM

AR 1.00 0.71 0.83

0.68

1.00 0.86 0.92

0.59

0.54 0.78 0.64

0.59PR 0.88 0.78 0.82 1.00 0.33 0.50 1.00 0.20 0.33
AV 0.41 0.88 0.56 0.38 0.38 0.38 0.67 0.50 0.57
OU 0.67 0.46 0.55 0.38 0.62 0.47 0.57 0.76 0.65

intervention strategies.
Moreover, identifying students at risk (AR) or

prone to risk (PR) early is crucial for timely sup-
port. The 2-week model, when fully contextualized,
exhibits a remarkable recall rate of 100% for the
AR group. As more data becomes available, the
4-week model maintains this 100% recall for the
AR group and also achieves an 80% recall for the
PR group, both of which are essential for early in-
tervention efficacy. Expanding the data window to
8 weeks further enhances the model’s accuracy to
89%, underlining the benefits of full contextualiza-
tion in improving early detection and intervention
outcomes.

Partial Contextualization was explored in two

variations: one combining cognitive and non-
cognitive features (C + NC) and the other cognitive
and background features (C + B). The C + NC
configuration demonstrated moderate success, with
overall accuracy ranging from 68% to 82%, indicat-
ing a somewhat effective use of student information
minus the background context. In contrast, the C
+ B setup, omitting non-cognitive traits, showed
a slight decrease in performance, particularly for
the 2-week predictions, where accuracy dropped
to 64%. These outcomes highlight the nuanced
contribution of non-cognitive factors in short-term
risk assessment.

No Contextualization (C alone) presented the
most significant drop in performance, with ac-
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curacy falling to 52% for the 2-week predictions.
This stark decrease underscores the critical role of
contextualization in enhancing the predictive power
of the model.

In addressing RQ1, the evaluation of the FLAN
T5 Base model also underscores the importance of
academic trajectory data contextualization (see Fig-
ure 2(a)). When fine-tuned with a comprehensive
set of features (C + NC + B), it demonstrates a clear
advantage, achieving accuracies of 86%, 84%, and
68% across 8-week, 4-week, and 2-week forecasts,
respectively. This trend highlights the efficacy of
full contextualization in enhancing model perfor-
mance, despite a slight performance dip compared
to the larger model variant, affirming the signifi-
cance of a rich feature set for improved predictive
accuracy.

The investigation with the FLAN T5 Small
model further supports the value of contextual-
ization (see Figure 2(b)), achieving peak accura-
cies of 82%, 75%, and 64% across the same time-
frames with full feature integration. Despite facing
challenges in short-term risk prediction, the Small
model’s performance emphasizes the critical role
of a comprehensive feature blend in maintaining
predictive accuracy, even with constrained compu-
tational resources. These findings collectively vali-
date that full contextualization substantially bene-
fits the forecasting capabilities of pre-trained LMs
across different model sizes.

[RQ2]: How does natural language text gener-
ation compare to numeric feature-based models
in forecasting early academic performance, using
only cognitive features? Our analysis contrasts
the efficacy of three varying-capacity LMs against
four numeric feature-based baseline models, focus-
ing solely on the cognitive features of our dataset.
As illustrated in Figure 3 for datasets spanning 8-
week, 4-week, and 2-week intervals, the results
demonstrate distinct performance dynamics. In the
4-week and 8-week forecasts, LMs consistently
outperform the numeric baseline models. Yet, in
the initial 2-week forecast, numeric models, specif-
ically the SVM and Transformer, with accuracies
of 59% and 55% respectively, outdo the large LM,
which records a 52% accuracy. Remarkably, the
SVM’s performance plateaus at 59% accuracy for
the 4-week datasets, in contrast to the large LM,
which notably enhances its accuracy to over 70%
consistently across the 4-week duration. Detailed
comparisons of baseline model performances are

provided in Table 2.

[RQ3]: What impact does the capacity of pre-
trained LMs (i.e., the number of parameters) have
on forecasting accuracy? Analyzing the test accu-
racies among the three differently sized LMs (refer
to Table 1, Figures 2 and 3) reveals a clear trend:
larger models demonstrate enhanced forecasting
capabilities. Notably, even after implementing full
contextualization, the recall for the at-risk group
in the smaller and medium-sized models stands at
86%, while the large model achieves a recall of
100%. This pattern strongly indicates that achiev-
ing optimal early forecasting through the con-
textualization of LMs is more effective with the
deployment of large language models (LLMs).

4 Conclusion

In this paper, we ventured into the realm of lever-
aging modern AI, particularly deep learning and
transfer learning methodologies, to tackle the criti-
cal challenge of early performance forecasting in
the educational sector. Our investigation centered
on the innovative use of Transformer-based pre-
trained LMs for predicting undergraduate STEM
course outcomes, marking a significant departure
from traditional numeric feature-based models. By
integrating a novel transfer learning approach tai-
lored for small-domain data within STEM educa-
tion, we aimed to overcome the limitations posed
by sparse training datasets, a common hurdle in the
educational domain.

Our methodology hinged on the contextualiza-
tion of academic trajectory data, incorporating a
rich tapestry of both cognitive and non-cognitive
factors. Through this multi-dimensional approach,
we enhanced the LMs’ capacity to understand and
predict academic performance, achieving a notable
improvement in forecasting accuracy. Specifically,
we demonstrated that:

• Contextualizing academic trajectory data sig-
nificantly enhances the transfer learning pro-
cess from pre-trained LMs, as evidenced by
our responses to [RQ1].

• Compared to numeric feature-based models,
our natural language text generation approach
shows superior performance in early academic
forecasting, addressing [RQ2].

• The capacity of pre-trained LMs, in terms of
their number of parameters, plays a crucial
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role in forecasting accuracy, with larger mod-
els outperforming their smaller counterparts,
as explored in [RQ3].

These insights underscore the transformative po-
tential of AI-driven tools in proactively identifying
and supporting students at risk, thereby enhanc-
ing educational outcomes. By leveraging the vast
knowledge encapsulated within LMs and enrich-
ing it with detailed contextual data across demo-
graphic, socioeconomic, academic, and emotional
engagement dimensions, we not only tailored the
pre-trained LMs to our specific task but also en-
riched the predictive model with a comprehensive
understanding of students’ academic journeys.

Looking ahead, our work opens the door to fu-
ture research in several key areas. Integrating more
detailed contextual signals such as real-time aca-
demic engagement and behavioral data could en-
hance LM predictive accuracy, leveraging advances
in natural language processing and sentiment analy-
sis to understand students’ emotional and cognitive
states better. Expanding our approach to a wider
range of educational contexts and disciplines would
help validate its scalability and adaptability. Ad-
ditionally, exploring continual learning techniques
for LMs might illuminate how to improve fore-
casting systems’ accuracy and reliability over time
without extensive retraining. Addressing the ethical
and privacy concerns inherent in using detailed stu-
dent data is also crucial, necessitating robust data
governance and ethical AI frameworks to protect
students’ rights and ensure equitable benefits.

5 Related Work

In advancing educational forecasting, we introduce
a distinct approach by applying transfer learning
from pre-trained LMs to contextualized time-series
data of academic trajectories. This dataset uniquely
incorporates both cognitive and non-cognitive fea-
tures, enriching the forecasting model with a de-
tailed temporal perspective.

Research in time-series forecasting with pre-
trained LMs splits into two main streams: data-
centric and model-centric approaches (Sun et al.,
2023). Data-centric methods focus on transform-
ing time-series data into formats amenable to LMs,
employing innovative embedding techniques to
match time-series data with the textual embedding
space of LMs. These techniques range from embed-
ding alignment and augmentation (Sun et al., 2023)

to two-stage fine-tuning (Chang et al., 2023) and
zero-shot preprocessing for numerical data (Gru-
ver et al., 2023). Model-centric strategies, on the
other hand, adapt pre-trained LMs specifically for
time-series forecasting. This involves fine-tuning
certain LM components while introducing time
series-specific modifications such as decomposi-
tion and soft prompts (Cao et al., 2023), aiming
to formulate forecasting as a question-answering
task (Xue and Salim, 2023), and prompt-tuning
with few-shot learning (prompt engineering) (Liu
et al., 2023c).

Our work diverges by leveraging a model-centric
approach tailored to the contextual data of aca-
demic paths, utilizing discrete prompts. This novel
strategy emphasizes the importance of transfer
learning from pre-trained LMs to enrich forecast-
ing with a deep, context-aware analysis, setting our
research apart in the field of educational forecast-
ing.

6 Limitations

Our study has made important progress in showing
how contextualized language models (LMs) can
predict early academic performance. Yet, we must
acknowledge some limitations that define our re-
search’s scope and point towards future research
directions.

Data Scope and Diversity: The primary focus
of our research on undergraduate STEM courses
may circumscribe the applicability of our findings
across different academic disciplines and educa-
tional levels. The distinct cognitive and engage-
ment challenges inherent to non-STEM subjects
underscore the need for subsequent studies aimed
at adapting and validating our methodology in a
wider educational context.

Model Size and Computational Resources: The
deployment of LMs brings to the fore the exigen-
cies of computational resources. The high com-
putational overhead required for the training and
operational deployment of these models might pre-
clude their adoption in institutions with limited
technological infrastructure, potentially curtailing
the broad-scale application of our approach in var-
ied educational settings.

Ethical and Privacy Concerns: Leveraging de-
tailed personal and contextual data of students ne-
cessitates a careful navigation of ethical and privacy
considerations. While our study has endeavored to

145



adhere to these imperatives scrupulously, the ex-
pansive use of similar methodologies demands a
rigorous commitment to data protection standards
and ethical practices to mitigate the risk of infring-
ing upon student privacy.

Temporal Dynamics: Our forecasting approach
captures a static slice of contextual data, possibly
overlooking the dynamic nature of student engage-
ment and performance, which are subject to change
over the academic term. The challenge of incorpo-
rating continuous data updates into LMs without
necessitating extensive retraining poses a signifi-
cant question for future research.

Interpretability and Explainability: The opaque
nature of LMs, as with many deep learning models,
presents a barrier to interpretability and explain-
ability. To engender trust among educational practi-
tioners and stakeholders, it is imperative to develop
methodologies that elucidate the rationales behind
model predictions in a comprehensible manner.

Bias and Fairness: The risk of propagating biases
through pre-trained LMs, a reflection of their train-
ing datasets, is a critical concern. These biases
have the potential to skew forecasting accuracy and
fairness, impacting various student demographics
disparately. Vigilance to prevent the reinforcement
of existing educational disparities is essential.

Computational Limitations: Our investigation’s
scope was notably constrained by the limited mem-
ory capacity of available GPUs. This limitation
thwarted our ability to fully leverage the spectrum
of distal and proximal non-cognitive features, em-
ploy rich and expressive instructional prompts, and
utilize LMs with ≥ 1 billion parameters. Over-
coming these computational hurdles is crucial for
unlocking the full potential of LLMs in educational
forecasting.

These limitations underscore the imperative for
continued research to surmount these hurdles. Fu-
ture endeavors should focus on broadening the in-
clusivity, ethical integrity, and scalability of AI-
driven educational interventions, ensuring they
serve as equitable and effective support mecha-
nisms across the diverse landscape of learning en-
vironments.
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Abstract
Automated essay scoring (AES) to evaluate sec-
ond language (L2) proficiency has been a firmly
established technology used in educational con-
texts for decades. Although holistic scoring has
seen advancements in AES that match or even
exceed human performance, analytic scoring
still encounters issues as it inherits flaws and
shortcomings from the human scoring process.
The recent introduction of large language mod-
els presents new opportunities for automating
the evaluation of specific aspects of L2 writing
proficiency. In this paper, we perform a series
of experiments using GPT-4 in a zero-shot fash-
ion on a publicly available dataset annotated
with holistic scores based on the Common Eu-
ropean Framework of Reference and aim to
extract detailed information about their under-
lying analytic components. We observe sig-
nificant correlations between the automatically
predicted analytic scores and multiple features
associated with the individual proficiency com-
ponents.

1 Introduction

Automated essay scoring (AES) of second lan-
guage (L2) proficiency is a well-established tech-
nology in educational settings, involving the auto-
matic scoring and evaluation of learners’ written
productions through computer programs (Shermis
and Burstein, 2003).

Originating in the 1960s, the roots of AES can
be traced back to the development of Project Essay
Grade (PEG) (Page, 1966, 1968), an automatic sys-
tem which evaluated writing skills based only on
proxy traits: hand-written texts had to be manually
entered into a computer, and a scoring algorithm
then quantified superficial linguistic features, such
as essay length, average word length, count of punc-
tuation, count of pronouns and prepositions, etc.
Across the following decades, as natural language
processing (NLP) technologies have advanced and
increased their power (Landauer, 2003), the field

of AES has expanded and improved, and more
significant studies have been conducted from the
1990s and early 2000s. The most widely known
automated scoring systems for essays include the
e-rater®, developed by Educational Testing Ser-
vice (Burstein, 2002; Attali and Burstein, 2006),
IntelliMetric™ by Vantage Learning (Rudner et al.,
2006), and the Intelligent Essay Assessor™, built at
Pearson Knowledge Technologies (Landauer et al.,
2002).

In recent years, deep neural network (DNN)
approaches have brought significant improve-
ments (Alikaniotis et al., 2016), and especially the
advent of transformer-based architectures (Vaswani
et al., 2017), such as BERT (Devlin et al., 2019)
which took the world of NLP and, consequently,
AES by storm, outperforming classic feature-based
systems (Rodriguez et al., 2019). Yet, the most
recent breakthrough has been brought by large
language models (LLMs), such as the GPT mod-
els (Brown et al., 2020; OpenAI, 2023), which
might revolutionise the world of AES, not only
from the NLP experts’ and language testers’ per-
spective, but also considering the users’ point
of view due to GPT’s extremely accessible and
intuitive interface. In the context of L2 writ-
ing assessment, previous studies have employed
GPT-3.5 (Mizumoto and Eguchi, 2023) and GPT-
4 (Yancey et al., 2023), obtaining promising results.

Although LLMs have been employed for holistic
scoring (i.e., assessing the overall quality of a com-
position as a whole, considering various aspects
such as vocabulary, grammar, coherence, etc. alto-
gether), to the best of our knowledge, so far they
have not been investigated for the task of analytic
scoring (i.e., breaking down a composition into spe-
cific components or criteria and assigning separate
scores or ratings to each component).1 Offering L2

1Naismith et al. (2023) investigated the use of GPT-4 on
a proprietary dataset annotated with specific scores targeting
coherence only.
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learners specific analytic proficiency scores is cru-
cial for delivering insightful and effective feedback,
emphasising both their strengths and weaknesses
to facilitate improvement.

For holistic scoring, previous works have shown
that state-of-the-art automatic techniques can
reach near-human results (Alikaniotis et al., 2016;
Taghipour and Ng, 2016) or even outperform
them (Rodriguez et al., 2019). This is, at least
in part, ascribable to the fact that holistic scores are
generally easier to obtain for human evaluators (see
Section 2). Conversely, assessing analytic aspects
of language proficiency is generally considered to
be more difficult, time-consuming, and cognitively
demanding for human evaluators, and, as a result,
“noisy” ground truth scores are harder to learn and
predict for automatic systems (see Section 2).

Starting from these premises, in this paper, we
conduct a series of exploratory experiments on a
publicly available dataset annotated with holistic
scores according to the Common European Frame-
work of Reference (CEFR) (Council of Europe,
2001, 2020) using GPT-4 in a zero-shot fashion,
and aim to extract specific information about their
underlying analytic components. Although ground
truth analytic scores are not available, we find sig-
nificant correlations between the analytic scores
predicted by the model and several features related
to the analytic scores.

2 Holistic versus analytic scoring

2.1 Human assessment

Holistic and analytic approaches to assessing L2
proficiency are commonly utilised, differing in scor-
ing methods, underlying assumptions, and practical
application. While holistic assessment consists of
assigning a single overall numerical score to a spe-
cific performance based on a singular set of rating
criteria, analytic assessment involves providing var-
ious sub-scores to the performance based on multi-
ple sets of criteria. As a result, there are conceptual
differences between the two approaches (Barkaoui,
2011). Holistic assessment typically assumes that
the construct being evaluated is a unitary entity
and can be represented on a single scale. While
this approach acknowledges that the construct may
consist of various elements, it implies that devel-
opment across various aspects of proficiency is
uniform. Conversely, analytic assessment views
the construct as multi-dimensional and advocates
for a multi-faceted assessment, recognising that

development across various aspects may be irreg-
ular. For instance, the levels of the CEFR are
structured according to ‘can-do’ descriptors of lan-
guage proficiency outcomes and expect evaluators
to grade proficiency by means of holistic assess-
ments. Nonetheless, the CEFR levels do have a
modularisable structure with multiple underlying
components (e.g., vocabulary range, vocabulary
control, grammatical accuracy, etc.), acknowledg-
ing that a learner may be more proficient in cer-
tain aspects than others (Council of Europe, 2001,
2020).

When we consider assessment strictly from a
human perspective, holistic assessment is consid-
ered highly practical as it is more time-efficient per
se and in relation to rater training (White, 1984),
less cognitively demanding (Xi, 2007), and gener-
ally has a higher inter-annotator agreement (Wei-
gle, 2002) than analytic assessment. On the other
hand, holistic scoring may suffer from lack of clar-
ity regarding how different aspects are prioritised,
which may vary among evaluators (Weigle, 2002;
Xi, 2007), the risk that evaluators might primar-
ily concentrate on candidates’ strengths rather than
their weaknesses (Bacha, 2001), and the potentially
erroneous assumption that various aspects of profi-
ciency develop uniformly over time (Kroll, 1990).

Analytic assessment allows for a more detailed
and systematic evaluation and is supposed to pro-
vide much more detailed feedback to L2 learn-
ers, by highlighting their fortes and their weak-
nesses (Hamp-Lyons, 1995) in addition to enhanc-
ing scoring validity. However, it is not a panacea.
Analytic scores may be psychometrically redun-
dant (Lee et al., 2009) due to a halo effect (En-
gelhard, 1994), whereby raters fail to distinguish
between different aspects of learners’ performances
but assess all or some of them with similar scores.
For example, when assessing grammatical accu-
racy, raters might be influenced by the score previ-
ously assigned to vocabulary range. On top of this,
raters might confuse analytic criteria in the phase
of assessment due to high cognitive load (Underhill,
1987; Cai, 2015) or, more simply, to indefiniteness
of the analytic criteria (Douglas and Smith, 1997).
The difficulty in providing analytic scores — es-
pecially for a large number of written productions
— is evident in the total absence of publicly avail-
able L2 English learner datasets annotated in this
way2 and the fact that the primary emphasis in AES

2To the best of our knowledge, the only formerly publicly
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research has been on holistic scoring.

2.2 Automatic assessment

The introduction of automatic assessment tech-
niques — and especially their recent advance-
ments — have started to change the game. For
holistic scoring, DNN-based systems reached near-
human performances (Alikaniotis et al., 2016;
Taghipour and Ng, 2016), and the application of
transformers-based architectures even beat human
inter-annotator agreement (Rodriguez et al., 2019).
However, a notorious problem lies in the impos-
sibility to enter the black box of neural scoring
models, and this poses a challenge for explainabil-
ity and interpretability of the machine-generated
holistic scores. Even more so, it is important to
explore the ability of automatic models to evaluate
specific aspects of language proficiency through
analytic scoring: if it is not possible to decom-
pose the holistic assessment process by peeking
inside the black box, it may be possible to recon-
struct holistic scores starting from their analytic
components (with the caveat that we should keep
in mind the potential unreliability of human ana-
lytic scores, as discussed above). In this regard,
automatic systems have been found to be generally
better at evaluating specific linguistic phenomena,
whilst humans tend to focus on more general as-
pects of proficiency. For example, Enright and
Quinlan (2010) suggested that human raters might
achieve higher results when assessing ideas, con-
tent, and organisation, whereas automatic systems
might have better performances when evaluating
microfeatures at the grammatical, syntactic, lexical,
and discourse levels. It should be noted, however,
that these limitations attributed to automatic sys-
tems may no longer necessarily be true in light
of the recent advancements involving neural sys-
tems, which can be used quite effectively also to
assess higher-level aspects of proficiency. For ex-
ample, previous studies have focused on specific
traits of written productions, such as organisation,
content, word choice, sentence fluency, narrativ-
ity, etc. (Hussein et al., 2020; Mathias and Bhat-
tacharyya, 2020; Ridley et al., 2021), but they have
used the ASAP dataset, which is problematic for
reproducibility and only features essays written by

available dataset annotated with analytic scores is the ASAP
dataset (kaggle.com/c/asap-aes/data), but the test data
are no longer available for evaluation and comparison with
previous work. Furthermore and most importantly, it contains
essays written by L1 English speakers.

L1 English speakers (see note 2). For L2 speaking
assessment, the initial study by Bannò et al. (2022)
investigated the use of multiple different graders,
each of which focused on a different set of features
related to a specific proficiency aspect.

The introduction of LLMs could be a further
game-changer, considering their outstanding re-
sults in a broad range of tasks.

To sum up, given that:

• holistic scores are generally easier to obtain
both from human and automatic graders and
generally have a higher inter-annotator agree-
ment, hence higher reliability;

• analytic scores are difficult to obtain and
might not always be sufficiently reliable;

• more often than not, L2 learner datasets are
annotated with holistic scores only;

• LLMs have been proven to be extremely pow-
erful tools in many NLP tasks;

we pose the following research question:

is it possible to extract information about
analytic aspects from L2 learner essays
and their assigned holistic scores using
GPT-4?

Figure 1 shows the pipeline adopted in this study,
which will be illustrated in detail in Section 4.

3 Data

3.1 Write & Improve

Write & Improve (W&I) is an online platform
where L2 learners of English can practise their writ-
ing skills (Yannakoudakis et al., 2018). Users can
submit their compositions in response to different
prompts, and the W&I automatic system provides
assessment and feedback. Some of these composi-
tions have been manually annotated with CEFR lev-
els and grammatical error corrections since 2014,
resulting in a corpus of 3,300 texts, partitioned into
a training set of 3,000 and a validation set of 300
essays.3 The proficiency scale ranges from A1 to
C2 but also has intermediate levels, resulting in 12
levels, that we arranged on a scale from 1 to 6.5,
where 1 is A1, 1.5 is A1+, 2 is A2, 2.5 is A2+, etc.,
as shown in Table 5 (see Appendix D).

3The dataset can be downloaded from this link:
huggingface.co/datasets/wi_locness.
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Figure 1: The pipeline presented in this study. Grammatical accuracy is only one of the aspects considered.

3.2 EFCAMDAT
Arguably the largest publicly available4 L2 learner
corpus, the second release of EF-Cambridge Open
Language Database (EFCAMDAT) (Geertzen et al.,
2013; Huang et al., 2017, 2018) comprises
1,180,310 scripts written by 174,743 L2 learners
as assignments to Englishtown, an online English
language school. The compositions are annotated
with a score on a scale from 0 to 100 and a profi-
ciency level from 1 to 16 (mapped to CEFR levels
from A1 to C2).5 In order to align them to the pro-
ficiency levels in the W&I dataset, we normalised
the scores as described in Table 5 (see Appendix D).
For our experiments, we selected a subset of data
consisting of 753,508 essays for the training set
and 7612 for the validation set, following a similar
process to Bannò et al. (2023).

4 Experimental setup

4.1 Longformer-based holistic grader
Following the pipeline illustrated in Figure 1, we
start our experiments from training a holistic grader,
which consists of a Longformer model (Beltagy
et al., 2020) in the version provided by the Hug-
gingFace Transformer Library,6 a dropout layer, a
dense layer of 768 nodes, a dropout layer, another
dense layer of 128 nodes, and finally, the output
layer. The baseline model (W&I) is trained on the
W&I training data and optimised on the W&I vali-
dation data using an Adam optimiser (Kingma and

4ef-lab.mmll.cam.ac.uk/EFCAMDAT.html
5englishlive.ef.com/en/how-it-works/

levels-and-certificates/
6huggingface.co/allenai/longformer-base-4096

Ba, 2014) for 3 epochs with batch size 16, learn-
ing rate 1e-6 and mean squared error as loss, but
our best-performing model — which is the one we
will use in the following steps of our pipeline — is
trained on the EFCAMDAT training set and opti-
mised on the validation data from the same dataset
for 0.5 epochs with batch size 16 and learning rate
1e-5, and subsequently fine-tuned on the W&I train-
ing data and optimised on the W&I validation data
for 4 epochs.

To evaluate the holistic grader performance,
we use Pearson’s correlation coefficient (PCC),
Spearman’s rank coefficient (SRC), and root-mean-
square error (RMSE).

4.2 GPT-4-based analytic graders

Once we obtain the holistic scores from the
Longformer-based model, we move on to feed-
ing them into GPT-4 (“gpt-4-1106-preview”) to
extract analytic scores. Specifically, the analytic
scores are related to 9 proficiency aspects as de-
scribed in Council of Europe (2020), reported in
Appendix A. Five of them compose the linguistic
competence: general linguistic range, vocabulary
range, grammatical accuracy, vocabulary control,
and orthographic control; while the remaining four
form the pragmatic competence: flexibility, the-
matic development, coherence and cohesion, and
propositional precision.

We excluded sociolinguistic appropriateness be-
cause it is not consistently elicited in the W&I
essays, as well as the aspects strictly related to
speaking proficiency (i.e., phonological control,
turntaking, and fluency) for obvious reasons.
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The prompt given to GPT-4 can be found in Ap-
pendix C. To exclude potential biases, the holistic
scores are fed in their numerical form (i.e., from 1
to 6.5) instead of the original CEFR notation (i.e.,
from A1 to C2+), and the analytic CEFR descrip-
tors are provided in random order and, obviously,
without any reference to the CEFR levels. For
completeness, we also try this experiment without
giving GPT-4 the holistic score.

At the end of the process, the option selected
by GPT-4 is mapped back to its respective CEFR
level.

4.3 Explanation of the features
As mentioned in Section 1, the W&I dataset does
not include analytic scores, but we find significant
correlations with relevant features extracted from
the essays (see Tables 3 and 4).
%gram. refers to the grammatical error rate, which
is the number of grammatical error edits divided
by the number of words in the essay. These edits
are extracted by feeding the original and corrected
versions of the W&I essays into the ERRor ANno-
tation Toolkit (ERRANT) (Bryant et al., 2017).
#dif.wds. is the number of unique difficult words
extracted with textstat.7

#unq.wds. refers to the number of unique words.
%l.d.t. is the percentage of text types that are con-
tent words obtained using TAACO (Tool for the
Automatic Analysis of Text Cohesion) 2.0 (Cross-
ley et al., 2019).
#unq.n.chunks refers to the number of unique
noun chunks identified and extracted using spaCy. 8

#unq.q.m.a. refers to the number of unique quali-
fiers, modality markers, and ambiguity indicators
identified and extracted using spaCy.
fl.-kinc. is the Flesch Kincaid readability
score (Kincaid et al., 1975), obtained using
textstat.
w2v is the average word2vec (Mikolov et al., 2013)
similarity score between all adjacent paragraphs,
extracted with TAACO 2.0.9

av.s.ln. is the average sentence length.
The correlations between these features and the

analytic scores are evaluated using SRC since we
do not necessarily expect a linear correlation be-
tween the two. For example, it is well-known that

7github.com/textstat/textstat
8spacy.io/
9Initially, we also extracted the similarity score using La-

tent Semantic Analysis (Landauer et al., 1998) and Latent
Dirichlet Allocation (Blei et al., 2003), which showed similar
figures, but we did not include them due to reasons of space.

certain grammatical errors are absent or rare in the
A1 level, increase after B1, and then decline again
by C2 (Hawkins and Buttery, 2010).

5 Experimental results

5.1 Holistic scoring
Table 1 shows the results of the Longformer-based
holistic graders on the W&I validation set in terms
of PCC, SRC, and RMSE. The model pre-trained
on EFCAMDAT and fine-tuned on the W&I train-
ing set outperforms the baseline across all met-
rics as expected. These results should confirm that
holistic grading is a relatively easy task and, since
the training data are fully publicly available, poten-
tially within everyone’s reach.

Model PCC SRC RMSE
W&I 0.707 0.772 1.267

EFC+W&I 0.866 0.874 0.786

Table 1: Holistic scoring results on W&I validation set.

5.2 Holistic score reconstruction
Once we obtain the holistic scores from the
Longformer-based grader, we are ready to feed
them into GPT-4. However, before moving on
to the analysis of the individual analytic scores,
we first calculate the correlation between the av-
erage of the predicted analytic scores — when
providing GPT-4 with the holistic scores from the
ground truth (GT) or the Longformer-based grader
(EFC+W&I), or with no holistic score (-) — and the
holistic scores, both the ground truth (GT) and the
scores automatically predicted by the Longformer-
based grader (EFC+W&I), as shown in Table 2.

GPT-4 Prompt Reference
Holistic Score GT EFC+W&I

GT 0.904 0.874
EFC+W&I 0.828 0.898

- 0.797 0.827

Table 2: SRC correlation between the average of the
predicted analytic scores and the holistic scores.

The first result that catches the eye is that GPT-4
reaches a significant correlation of 0.797 when it
is not provided with additional information about
holistic scores (-), although this does not neces-
sarily mean that all the underlying analytic scores
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are effectively targeting their respective proficiency
aspects, as we will discuss in the next section.
Secondly, it is interesting to observe that the two
sources of holistic score in the prompts (i.e., GT
and EFC+W&I) result in the information derived
from these scores being used in a non-deterministic
fashion, introducing a certain degree of variability.

5.3 Analytic scoring
We can now move on to discussing the results of an-
alytic scoring. Table 3 shows the correlation results
in terms of SRC between the predicted analytic
scores and several relevant features for each pro-
ficiency aspect. Table 4 does the same but giving
GPT-4 the ground truth holistic scores instead of
the scores predicted by the holistic grader. Partic-
ularly in the latter, when focusing on the results
highlighted in bold, we can observe a broad trend
towards an approximate diagonal which passes
through most of the proficiency aspects of the lin-
guistic (Lng.) and pragmatic (Prg.) competences
on the y-axis and the relevant features on the x-
axis. For completeness, in Table 6 (see Appendix
D), we also report the results obtained without giv-
ing GPT-4 the holistic score, but the correlations
are not as significant as the ones shown in Tables 3
and 4 as the holistic score seems to work as a guide
for analytic scoring. Furthermore, as expected, the
correlations between each individual predicted ana-
lytic score and the holistic scores are significantly
lower than the ones reported in Tables 3 and 4.
Therefore, our analysis in the following lines will
not dwell on these results.

As expected, grammatical error rate (%gram.)
shows the highest correlations with the aspects
of grammatical accuracy and orthographic control
both on Tables 3 and 4.

The number of unique difficult words (#dif.wds.)
seems to be a suitable feature to measure vocab-
ulary control, e.g., if we compare the A2 level
(i.e., “Can control a narrow repertoire dealing with
concrete, everyday needs.”) and the C1 level (i.e.,
“Uses less common vocabulary idiomatically and
appropriately.”), as described in Council of Europe
(2020, pp. 132-133) (see Appendix A). Indeed, this
feature shows the highest correlation with the score
related to vocabulary control.

If we look at the results obtained giving the
ground truth holistic scores to GPT-4 shown in Ta-
ble 4, we can see that the number of unique words
(#unq.wds.), the percentage of lexical density types
(%l.d.t.), and the number of unique noun chunks

(#unq.n.cks.), which are all related to lexicality,
have their highest correlation with the two scores
related to vocabulary. As expected, the same fea-
tures have slightly weaker — but still relevant —
correlations when we use the automatically pre-
dicted holistic scores, as shown in Table 3.

The number of unique qualifiers, modality mark-
ers, and ambiguity indicators (#unq.q.m.a.) is sup-
posed to be a measure for propositional precision
since, for example, as shown in Appendix A, a C1-
level learner “[c]an qualify opinions and statements
precisely in relation to degrees of, for example,
certainty/uncertainty, belief/doubt, likelihood, etc”
and “[c]an make effective use of linguistic modality
to signal the strength of a claim, an argument or
a position”, and a C2-level learner “[c]an convey
finer shades of meaning precisely by using, with
reasonable accuracy, a wide range of qualifying
devices [...]” and “[c]an give emphasis, differenti-
ate and eliminate ambiguity” (Council of Europe,
2020, p. 141). As can be observed in Table 4, this
feature has the second-highest correlation with the
propositional precision score and the highest corre-
lation with the score related to vocabulary control,
with which it is in fact connected. Similarly to
what we observed about the lexical features, the
results of the fully-automated pipeline for this fea-
ture are less evident, but we can still see a rather
high correlation with propositional precision.

Given its emphasis on precision and clarity, we
thought that also the Flesch-Kincaid readability
score (fl.kinc.) would be a suitable feature to mea-
sure these. We found that the highest correlation
was exactly with propositional precision followed
by vocabulary control on both Tables 3 and 4.

Furthermore, we considered two features for the
pragmatic competence, especially in relation to
cohesion and coherence. The first one is the aver-
age word2vec similarity score between all adjacent
paragraphs (w2v), which shows the highest cor-
relations on propositional precision and cohesion
and coherence in Table 4. The second is average
sentence length (av.s.ln.), which should be an indi-
cator of higher use of subordination and cohesive
devices (i.e., longer sentences should generally be
more complex). This feature shows similar results,
as shown in Table 4. When using the scores pro-
vided by the automatic holistic grader, the results
on both features are also slightly weaker (see Table
3), as observed already for other features above.

It is rather difficult to provide a precise and ex-
haustive explanation of the results for the general

154



score
%gram.

#dif.wds.

#unq.wds.

%l.d.t.

#unq.n.cks.

#unq.q.m.a.

fl.-kinc.

w2v
av.s.ln.

holistic

Lng.

gen. lin. 0.695 0.584 0.514 0.400 0.493 0.527 0.259 0.258 0.143 0.765
gramm. 0.698 0.505 0.469 0.370 0.423 0.468 0.189 0.265 0.134 0.737

orth. 0.718 0.395 0.317 0.244 0.291 0.350 0.155 0.206 0.073 0.652
voc. ctrl. 0.652 0.638 0.580 0.445 0.537 0.600 0.263 0.291 0.189 0.779

voc. rg. 0.651 0.621 0.568 0.424 0.548 0.576 0.254 0.339 0.177 0.749

Prg.

propos. 0.601 0.607 0.545 0.389 0.528 0.568 0.294 0.351 0.202 0.702
coh. 0.662 0.621 0.574 0.410 0.551 0.588 0.248 0.336 0.180 0.774

flexib. 0.424 0.414 0.390 0.291 0.367 0.412 0.178 0.195 0.125 0.443
themat. 0.584 0.544 0.527 0.428 0.516 0.534 0.203 0.287 0.145 0.650
holistic 0.732 0.640 0.665 0.451 0.623 0.637 0.178 0.364 0.141 1.000

Table 3: SRC correlation of the GPT-4 predicted scores and relevant linguistic features (using holistic scores
predicted by the Longformer-based grader). The holistic entry refers to the ground-truth holistic scores. In bold
the two highest correlations columnwise.

score
%gram.

#dif.wds.

#unq.wds.

%l.d.t.

#unq.n.cks.

#unq.q.m.a.

fl.-kinc.

w2v
av.s.ln.

holistic

Lng.

gen. lin. 0.726 0.574 0.541 0.414 0.522 0.519 0.197 0.267 0.129 0.814
gramm. 0.731 0.472 0.464 0.363 0.433 0.450 0.100 0.286 0.030 0.791

orth. 0.726 0.436 0.398 0.310 0.354 0.427 0.146 0.203 0.060 0.729
voc. ctrl. 0.674 0.640 0.621 0.453 0.591 0.624 0.243 0.319 0.179 0.854

voc. rg. 0.672 0.624 0.582 0.452 0.563 0.573 0.218 0.280 0.134 0.816

Prg.

propos. 0.600 0.624 0.581 0.417 0.560 0.593 0.261 0.353 0.190 0.771
coh. 0.702 0.555 0.534 0.372 0.511 0.535 0.238 0.339 0.201 0.827

flexib. 0.425 0.370 0.368 0.249 0.357 0.368 0.140 0.163 0.104 0.488
themat. 0.639 0.514 0.504 0.413 0.492 0.483 0.224 0.264 0.179 0.745
holistic 0.732 0.640 0.665 0.451 0.623 0.637 0.178 0.364 0.141 1.000

Table 4: SRC correlation of the GPT-4 predicted scores and relevant linguistic features (using ground truth holistic
scores). The holistic entry refers to the ground-truth holistic scores. In bold the two highest correlations columnwise.

linguistic range score, which is a broad indicator by
definition since it includes elements of grammati-
cal accuracy, syntactic complexity, and vocabulary,
and, as a result, shows strong correlations with
multiple features. On the other hand, the aspect
of flexibility seems to be a little problematic with
respect to both the features and the holistic score,
probably also due to its “longitudinality”, since it
seems to be evaluated in relation to previous perfor-
mances, according to its descriptors (see Appendix
A).

Finally, we selected some essays in which there
was a large discrepancy between two or more an-
alytic scores, and we evaluated them impression-
istically. One example can be found in Appendix
B. If we focus on the highest and lowest scores, we
notice vocabulary range and orthographic control
on one hand, and coherence and cohesion on the
other hand. Although quite extreme, this discrep-
ancy makes sense, considering that the learner uses
almost no connectors at all and mostly uses coordi-

nating clauses (or even parataxis), but has quite a
rich vocabulary and makes no orthographic errors
(except for punctuation).

5.4 Statistical tests

Additionally, we explore the relationships among
analytic scores using a repeated measures design
in order to assess whether there are significant dif-
ferences among them. While the repeated mea-
sures analysis of variance (rANOVA) is a widely
known approach for such designs, our data fail to
meet the assumptions of sphericity and normality
required for its application. Hence, we employ
the Friedman test (Friedman, 1937), known as the
non-parametric equivalent of rANOVA. This test
assesses whether there are significant differences in
ranks among multiple paired groups. With a signif-
icant p-value obtained, we confirm significant dif-
ferences among the analytic scores. To determine
which scores show significant differences, we con-
duct post-hoc multiple comparisons using the Ne-

155



Figure 2: Results of the post-hoc Nemenyi test.

menyi test (Nemenyi, 1963), whose results are re-
ported in Figure 2. The majority of the paired com-
parisons, even those with the holistic score (except
when paired with vocabulary control), show signif-
icant differences (i.e., p-value<0.05) both when we
provide the ground truth and the automatic holistic
scores to GPT-4. In addition to the pairs “general
linguistic range - vocabulary range” and “thematic
development - vocabulary range”, which have some
clear overlaps in their descriptors, there seem be
non-significant differences over the group of as-
pects related to the pragmatic competence (i.e., flex-
ibility, thematic development, coherence and cohe-
sion, and propositional precision) and the aspect of
grammatical accuracy. While we could expect to
see non-significant differences among the aspects
related to the pragmatic competence due to their

frequent overlaps, the non-significant differences
of these with grammatical accuracy might be ex-
plained with the fact that not only do its descriptors
stress the importance of correctness but, as shown
in Appendix A, they also emphasise complexity
(e.g., for A1: “Shows only limited control of a few
simple grammatical structures [...]”; for B2: “Has a
good command of simple language structures and
some complex grammatical forms [...]”), which is
inherently connected to aspects such as thematic
development and coherence and cohesion (Purpura,
2004). In this regard, it is also worth noting that
the coherence and cohesion score is the third most
correlated with grammatical error rate.

To sum up, under ideal conditions, GPT-4 ap-
pears to produce analytic scores that are very rea-
sonably related to the proficiency aspects they are
expected to evaluate. The fully-automated pipeline
is not always consistent with the ideal system but
generates results that are mostly in line with it.
This is especially evident for the scores pertaining
to grammar and vocabulary.

6 Conclusions

In this paper, we have conducted an initial study
on the use of GPT-4 for assessing 9 individual as-
pects of L2 writing underlying the CEFR profi-
ciency levels in a zero-shot fashion. To do this,
we used a holistic grading system on the essays
of the W&I validation set and, subsequently, fed
them with their respective holistic scores into GPT-
4, asking to assess one individual aspect at a time.
Although the ground truth analytic scores are not
available, we have obtained significant correlations
between the predicted analytic scores and various
features linked to the componential aspects of the
CEFR levels. Beyond its immediate implications
for computer-assisted language learning applica-
tions, we believe that our exploratory experiments
may hold promise as valuable contributions to the-
oretical studies on construct validity in the broader
field of language testing and assessment, given the
inclusion of CEFR descriptors in our study.

In order to collect further evidence to support our
findings, we plan to deploy this system, use it in
educational settings, and evaluate its effectiveness
by monitoring learners’ progress in relation to each
specific aspect of proficiency. Future work will also
explore the use of multi-modal systems, such as the
one presented in Tang et al. (2023), for assessing
L2 speech in a similar fashion.
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Limitations

The main limitation of this study is clearly the lack
of ground truth analytic scores. The reader should
keep in mind, however, that, as mentioned in Sec-
tion 2, human analytic scoring is often an extremely
difficult process, which might not produce com-
pletely reliable information. As evidence of this,
the absence of publicly available L2 English learner
datasets annotated with analytic scores speaks loud
and clear and is not only an issue for the objectives
of this paper, but for the whole scientific commu-
nity.
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A Appendix A

LINGUISTIC COMPETENCE
General linguistic range
A1: Has a very basic range of simple expressions
about personal details and needs of a concrete type.
Can use some basic structures in one-clause sen-
tences with some omission or reduction of ele-
ments.
A2: Has a repertoire of basic language which en-
ables them to deal with everyday situations with
predictable content, though they will generally
have to compromise the message and search for
words/signs. Can produce brief, everyday expres-
sions in order to satisfy simple needs of a con-
crete type (e.g. personal details, daily routines,
wants and needs, requests for information). Can

use basic sentence patterns and communicate with
memorised phrases, groups of a few words/signs
and formulae about themselves and other people,
what they do, places, possessions, etc. Has a lim-
ited repertoire of short, memorised phrases cover-
ing predictable survival situations; frequent break-
downs and misunderstandings occur in non-routine
situations.
B1: Has a sufficient range of language to describe
unpredictable situations, explain the main points in
an idea or problem with reasonable precision and
express thoughts on abstract or cultural topics such
as music and film. Has enough language to get by,
with sufficient vocabulary to express themselves
with some hesitation and circumlocutions on topics
such as family, hobbies and interests, work, travel
and current events, but lexical limitations cause
repetition and even difficulty with formulation at
times.
B2: Can express themselves clearly without much
sign of having to restrict what they want to say. Has
a sufficient range of language to be able to give
clear descriptions, express viewpoints and develop
arguments without much conspicuous searching for
words/signs, using some complex sentence forms
to do so.
C1: Can use a broad range of complex grammati-
cal structures appropriately and with considerable
flexibility. Can select an appropriate formulation
from a broad range of language to express them-
selves clearly, without having to restrict what they
want to say.
C2: Can exploit a comprehensive and reliable mas-
tery of a very wide range of language to formulate
thoughts precisely, give emphasis, differentiate and
eliminate ambiguity. No signs of having to restrict
what they want to say.

Vocabulary range
A1: Has a basic vocabulary repertoire of
words/signs and phrases related to particular con-
crete situations.
A2: Has sufficient vocabulary to conduct routine
everyday transactions involving familiar situations
and topics. Has sufficient vocabulary for the expres-
sion of basic communicative needs. Has sufficient
vocabulary for coping with simple survival needs.
B1: Has a good range of vocabulary related to
familiar topics and everyday situations. Has suffi-
cient vocabulary to express themselves with some
circumlocutions on most topics pertinent to their
everyday life such as family, hobbies and interests,
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work, travel and current events.
B2: Can understand and use the main technical ter-
minology of their field, when discussing their area
of specialisation with other specialists. Has a good
range of vocabulary for matters connected to their
field and most general topics. Can vary formulation
to avoid frequent repetition, but lexical gaps can
still cause hesitation and circumlocution. Can pro-
duce appropriate collocations of many words/signs
in most contexts fairly systematically. Can under-
stand and use much of the specialist vocabulary of
their field but has problems with specialist termi-
nology outside it.
C1: Has a good command of a broad lexical reper-
toire allowing gaps to be readily overcome with
circumlocutions; little obvious searching for ex-
pressions or avoidance strategies. Can select from
several vocabulary options in almost all situations
by exploiting synonyms of even words/ signs less
commonly encountered. Has a good command of
common idiomatic expressions and colloquialisms;
can play with words/signs fairly well. Can under-
stand and use appropriately the range of technical
vocabulary and idiomatic expressions common to
their area of specialisation.
C2: Has a good command of a very broad lexical
repertoire including idiomatic expressions and col-
loquialisms; shows awareness of connotative levels
of meaning.

Grammatical accuracy
A1: Shows only limited control of a few simple
grammatical structures and sentence patterns in a
learnt repertoire.
A2: Uses some simple structures correctly, but still
systematically makes basic mistakes; nevertheless,
it is usually clear what they are trying to say.
B1: Communicates with reasonable accuracy in
familiar contexts; generally good control, though
with noticeable mother-tongue influence. Errors
occur, but it is clear what they are trying to ex-
press. Uses reasonably accurately a repertoire of
frequently used “routines” and patterns associated
with more predictable situations.
B2: Good grammatical control; occasional “slips”
or non-systematic errors and minor flaws in sen-
tence structure may still occur, but they are rare and
can often be corrected in retrospect. Shows a rel-
atively high degree of grammatical control. Does
not make mistakes which lead to misunderstanding.
Has a good command of simple language structures
and some complex grammatical forms, although

they tend to use complex structures rigidly with
some inaccuracy.
C1: Consistently maintains a high degree of gram-
matical accuracy; errors are rare and difficult to
spot.
C2: Maintains consistent grammatical control of
complex language, even while attention is other-
wise engaged (e.g. in forward planning, in moni-
toring others’ reactions).

Vocabulary control
A1: No descriptors available.
A2: Can control a narrow repertoire dealing with
concrete, everyday needs.
B1: Shows good control of elementary vocabulary
but major errors still occur when expressing more
complex thoughts or handling unfamiliar topics and
situations. Uses a wide range of simple vocabulary
appropriately when discussing familiar topics.
B2: Lexical accuracy is generally high, though
some confusion and incorrect word/sign choice
does occur without hindering communication.
C1: Uses less common vocabulary idiomatically
and appropriately. Occasional minor slips, but no
significant vocabulary errors.
C2: Consistently correct and appropriate use of
vocabulary.

Orthographic control
A1: Can copy familiar words and short phrases,
e.g. simple signs or instructions, names of every-
day objects, names of shops, and set phrases used
regularly. Can spell their address, nationality and
other personal details. Can use basic punctuation
(e.g. full stops, question marks).
A2: Can copy short sentences on everyday subjects,
e.g. directions on how to get somewhere. Can
write with reasonable phonetic accuracy (but not
necessarily fully standard spelling) short words that
are in their oral vocabulary.
B1: Can produce continuous writing which is gen-
erally intelligible throughout. Spelling, punctua-
tion and layout are accurate enough to be followed
most of the time.
B2: Can produce clearly intelligible, continuous
writing which follows standard layout and para-
graphing conventions. Spelling and punctuation are
reasonably accurate but may show signs of mother-
tongue influence.
C1: Layout, paragraphing and punctuation are con-
sistent and helpful. Spelling is accurate, apart from
occasional slips of the pen.
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C2: Writing is orthographically free of error.

PRAGMATIC COMPETENCE
Flexibility
A1: No descriptors available.
A2: Can adapt well-rehearsed, memorised, simple
phrases to particular circumstances through limited
lexical substitution. Can expand learnt phrases
through simple recombinations of their elements.
B1: Can adapt their expression to deal with less
routine, even difficult, situations. Can exploit a
wide range of simple language flexibly to express
much of what they want.
B2: Can adjust what they say and the means of
expressing it to the situation and the recipient and
adopt a level of formality appropriate to the cir-
cumstances. Can adjust to the changes of direction,
style and emphasis normally found in conversation.
Can vary formulation of what they want to say. Can
reformulate an idea to emphasise or explain a point.
C1: Can make a positive impact on an intended
audience by effectively varying style of expression
and sentence length, use of advanced vocabulary
and word order. Can modify their expression to
express degrees of commitment or hesitation, con-
fidence or uncertainty.
C2: Shows great flexibility in reformulating ideas
in differing linguistic forms to give emphasis, dif-
ferentiate according to the situation, interlocutor,
etc. and to eliminate ambiguity.

Thematic development
A1: No descriptors available.
A2: Can tell a story or describe something in a
simple list of points. Can give an example of some-
thing in a very simple text using “like” or “for
example”.
B1: Can clearly signal chronological sequence
in narrative text. Can develop an argument well
enough to be followed without difficulty most of
the time. Shows awareness of the conventional
structure of the text type concerned when commu-
nicating their ideas. Can reasonably fluently relate
a straightforward narrative or description as a se-
quence of points.
B2: Can develop an argument systematically with
appropriate highlighting of significant points, and
relevant supporting detail. Can present and respond
to complex lines of argument convincingly. Can
follow the conventional structure of the commu-
nicative task concerned when communicating their
ideas. Can develop a clear description or narrative,

expanding and supporting their main points with
relevant supporting detail and examples. Can de-
velop a clear argument, expanding and supporting
their points of view at some length with subsidiary
points and relevant examples. Can evaluate the
advantages and disadvantages of various options.
Can clearly signal the difference between fact and
opinion.
C1: Can use the conventions of the type of text
concerned to hold the target reader’s attention and
communicate complex ideas. Can give elaborate
descriptions and narratives, integrating sub-themes,
developing particular points and rounding off with
an appropriate conclusion. Can write a suitable
introduction and conclusion to a long, complex
text. Can expand and support the main points at
some length with subsidiary points, reasons and
relevant examples.
C2: Can use the conventions of the type of text
concerned with sufficient flexibility to communi-
cate complex ideas in an effective way, holding the
target reader’s attention with ease and fulfilling all
communicative purposes.

Propositional precision
A1: Can communicate basic information about
personal details and needs of a concrete type in a
simple way.
A2: Can communicate what they want to say in
a simple and direct exchange of limited informa-
tion on familiar and routine matters, but in other
situations they generally have to compromise the
message.
B1: Can explain the main points in an idea or
problem with reasonable precision. Can convey
simple, straightforward information of immediate
relevance, getting across the point they feel is most
important. Can express the main point they want
to make comprehensibly.
B2: Can pass on detailed information reliably. Can
communicate the essential points even in more de-
manding situations, though their language lacks
expressive power and idiomaticity.
C1: Can qualify opinions and statements pre-
cisely in relation to degrees of, for example, cer-
tainty/uncertainty, belief/doubt, likelihood, etc.
Can make effective use of linguistic modality to
signal the strength of a claim, an argument or a
position.
C2: Can convey finer shades of meaning precisely
by using, with reasonable accuracy, a wide range of
qualifying devices (e.g. adverbs expressing degree,
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clauses expressing limitations). Can give emphasis,
differentiate and eliminate ambiguity.

Coherence and cohesion
A1: Can link words/signs or groups of words/signs
with very basic linear connectors (e.g. “and” or
“then”).
A2: Can use the most frequently occurring con-
nectors to link simple sentences in order to tell
a story or describe something as a simple list of
points. Can link groups of words/signs with simple
connectors (e.g. “and”, “but” and “because”).
B1: Can introduce a counter-argument in a simple
discursive text (e.g. with “however”). Can link a
series of shorter, discrete simple elements into a
connected, linear sequence of points. Can form
longer sentences and link them together using a
limited number of cohesive devices, e.g. in a story.
Can make simple, logical paragraph breaks in a
longer text.
B2: Can use a variety of linking expressions effi-
ciently to mark clearly the relationships between
ideas. Can use a limited number of cohesive de-
vices to link their utterances into clear, coherent
discourse, though there may be some “jumpiness”
in a long contribution. Can produce text that is gen-
erally well-organised and coherent, using a range
of linking expressions and cohesive devices. Can
structure longer texts in clear, logical paragraphs.
C1: Can produce clear, smoothly flowing, well-
structured language, showing controlled use of or-
ganisational patterns, connectors and cohesive de-
vices. Can produce well-organised, coherent text,
using a variety of cohesive devices and organisa-
tional patterns.
C2: Can create coherent and cohesive text making
full and appropriate use of a variety of organisa-
tional patterns and a wide range of cohesive de-
vices.

B Appendix B

I deal with consulting and sales of financial prod-
ucts and services to an international bank, in the
mass-market and small-business. I follow the re-
lationship with customers from acquisition to the
advise until the realization of contracts, building
and maintaining relationships after-sales in the
aim of customer satisfaction

I also worked with large and small teams in
back-offices, managed many administrative activi-
ties related to mortages, personal loans, contability
and investments too.

I worked for several years to the acquisition of
new customers, to provide them with a complete
service, from the account to insurance products, in-
vestment products, personal loans, revolving credit,
and cross-selling products. In many years of work I
have honed my skills in managing non-standard sit-
uations, analyzing the problem, finding and imple-
menting practical and easy solutions. non-standard
situations, analyzing the problem, finding and im-
plementing practical and easy solutions.

I have faced several situations always work with
serenity and enthusiasm, I like to work in a multi-
cultural and dynamic.

I’m careful to meet the goals of the team in which
I work, cooperating with colleagues to achieve
the goals by providing my skills, always willing
to learn, respecting other points of view together
finding ways to deal. I work for the same large
company for 25 years, now is the time to change
and find new job opportunities. Needs to work my
husband has been living in Zaandam, I want to find
a new job in Holland to rejoin our family.

I like sports such as skiing, riding and swimming.
I’ve also got the rescue licence, I worked as a life-
guard in the summer studying for the patent padi
dive master

The holistic score is 3.5 (B1+), and GPT-4 pro-
vided these analytic scores:

• general linguistic range: 3

• vocabulary range: 4

• grammatical accuracy: 2

• vocabulary control: 3

• orthographic control: 4

• flexibility: 2

• thematic development: 2

• coherence and cohesion: 1

• propositional precision: 3

C Appendix C

When we include the holistic score, the prompt
given to GPT-4 is the following:

Consider the following essay:
[ESSAY]
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It has been given this score on
a scale from 1 to 6.5: [HOLISTIC
SCORE].

I want you to assess it
only considering the aspect of
[ASPECT], for which you have 6
different feedback options, that
you will have to accept or reject:
[ANALYTIC CEFR DESCRIPTORS]

ONLY ONE option can be accepted
and is the option you will have
to output by only selecting
the option letter in the
following format: ’option
A/B/C/D/E/F’10 WITHOUT ANY
ADDITIONAL OBSERVATION, COMMENT,
NOTE, EXPLANATION, CLARIFICATION,
OR JUSTIFICATION OF ANY SORT.

Your answer:

When we do not provide GPT-4 with the holistic
score, the prompt is the following:

Consider the following essay:
[ESSAY]

I want you to assess it
only considering the aspect of
[ASPECT], for which you have 6
different feedback options, that
you will have to accept or reject:
[ANALYTIC CEFR DESCRIPTORS]

ONLY ONE option can be accepted
and is the option you will have
to output by only selecting
the option letter in the
following format: ’option
A/B/C/D/E/F’11 WITHOUT ANY
ADDITIONAL OBSERVATION, COMMENT,
NOTE, EXPLANATION, CLARIFICATION,
OR JUSTIFICATION OF ANY SORT.

Your answer:

D Appendix D

Score alignment
Table 5 shows the holistic score normalisation pro-
cess for EFCAMDAT.

10The aspects of vocabulary control, flexibility, and the-
matic development only have options A-E since no descriptors
are available for the A1 level.

11See note 10.

CEFR W&I EFCAMDAT

A1
A1 (1) 1,2

A1+ (1.5) 3

A2
A2 (2) 4,5

A2+ (2.5) 6

B1
B1 (3) 7,8

B1+ (3.5) 9

B2
B2 (4) 10,11

B2+ (4.5) 12

C1
C1 (5) 13,14

C1+ (5.5) 15

C2
C2 (6) 16 (score<85)

C2+ (6.5) 16 (score≥85)

Table 5: Score alignment.

Additional experimental results
Table 6 reports the results of the experiment con-
ducted when no holistic scores are given to GPT-4.
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score
%gram.

#dif.wds.

#unq.wds.

%l.d.t.

#unq.n.cks.

#unq.q.m.a.

fl.-kinc.

w2v
av.s.ln.

holistic

Lng.

gen. lin. 0.643 0.622 0.547 0.471 0.526 0.565 0.268 0.275 0.148 0.739
gramm. 0.707 0.408 0.365 0.284 0.324 0.364 0.151 0.170 0.099 0.692

orth. 0.730 0.362 0.290 0.234 0.259 0.309 0.133 0.166 0.068 0.653
voc. ctrl. 0.697 0.391 0.363 0.305 0.331 0.369 0.153 0.102 0.107 0.654

voc. rg. 0.529 0.539 0.456 0.410 0.450 0.452 0.247 0.241 0.131 0.616

Prg.

propos. 0.432 0.510 0.442 0.341 0.430 0.492 0.246 0.304 0.145 0.539
coh. 0.602 0.601 0.542 0.379 0.533 0.571 0.244 0.299 0.162 0.729

flexib. 0.307 0.361 0.363 0.282 0.348 0.346 0.202 0.149 0.160 0.330
themat. 0.425 0.612 0.587 0.496 0.576 0.583 0.242 0.333 0.150 0.543
holistic 0.732 0.640 0.665 0.451 0.623 0.637 0.178 0.364 0.141 1.000

Table 6: SRC correlation of the GPT-4 predicted scores and relevant linguistic features (without giving GPT-4 the
holistic score). The holistic entry refers to the ground-truth holistic scores. In bold the two highest correlations
columnwise.
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Abstract

One of the key challenges in programming ed-
ucation is being able to provide high-quality
feedback to learners. Such feedback often in-
cludes explanations of the issues in students’
programs coupled with suggestions on how
to fix these issues. Large language models
(LLMs) have recently emerged as valuable
tools that can help in this effort. In this arti-
cle, we explore the relationship between the
program repair ability of LLMs and their profi-
ciency in providing natural language explana-
tions of coding mistakes. We outline a bench-
marking study that evaluates leading LLMs (in-
cluding open-source ones) on program repair
and explanation tasks. Our experiments study
the capabilities of LLMs both on a course level
and on a programming concept level, allowing
us to assess whether the programming concepts
practised in exercises with faulty student pro-
grams relate to the performance of the models.
Our results highlight that LLMs proficient in re-
pairing student programs tend to provide more
complete and accurate natural language expla-
nations of code issues. Overall, these results
enhance our understanding of the role and ca-
pabilities of LLMs in programming education.
Using program repair as a proxy for explana-
tion evaluation opens the door for cost-effective
assessment methods.

1 Introduction

Large Language Models (LLMs) and applications
leveraging them such as ChatGPT have been em-
braced by both the general public and academia.
The adoption is also visible in the domain of
computing and programming education, where re-
searchers have highlighted a variety of learning
tasks that LLMs can tackle (Denny et al., 2023;
Prather et al., 2023), including their performance
in providing help and feedback to students (Hellas
et al., 2023).

Feedback is a crucial part of learning (Hattie and
Timperley, 2007). While various forms of feed-
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Figure 1: Summary benchmarking results. The quality
of LLMs’ Natural Language descriptions of issues in
students’ code (completeness) tends to increase with
LLMs’ ability to fix the student programs (pass@1).

back exist in programming (Keuning et al., 2018),
explaining code issues in natural language can be
particularly useful. Providing students with natural
language explanations of the mistakes in their code
allows them to gain a better understanding of gaps
in their knowledge.

With the increasing number of LLMs proficient
at providing feedback (Koutcheme et al., 2023a)
to some degree, selecting the best one before de-
ploying it in classrooms (Liu et al., 2024) can be
challenging. Human evaluation can take time, as
it requires either manual assessment or annotated
datasets. While research in the automated eval-
uation of LLM generation is on the rise (Zheng
et al., 2023), also in educational areas (Fernan-
dez et al., 2024), the developed methods often rely
on other language models (e.g., utilizing powerful
yet expensive LLMs such as GPT-4), which can
induce computational or financial costs. A more
cost-effective approach is needed.

Before the advent of LLMs, a stream of work
in programming education has focused on educa-
tional program repair (Gulwani et al., 2018; Parihar
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et al., 2017; Yi et al., 2017), where the goal is to
produce fixes for students’ incorrect programs. Al-
though repairs to student programs are not always
directly provided to students, they serve as a funda-
mental step in generating different types of support,
including next-step hints for Intelligent Tutoring
Systems (McBroom et al., 2021). While direct eval-
uation of feedback with natural language explana-
tions can be challenging, evaluating whether LLMs
can fix programs is much more straightforward.

With this in mind, we hypothesize that the stu-
dent program repair capability of an LLM may
relate to its capability to provide natural language
explanations of code issues. If this would hold, pro-
gram repair capability – which is easier to assess
– could serve as a proxy for evaluating feedback
quality. Our intuition is supported by prior work
that has found relationships between LLMs’ abil-
ities in related domains. For instance, LLMs that
are proficient in solving specific problems are effec-
tive judges of the quality of explanations in those
domains (Zheng et al., 2023). Similarly, there is
some evidence that instruction-tuned LLMs trained
on specific tasks can generalize to unseen parallel
or close tasks (Wei et al., 2022a).

In this article, we investigate whether there ef-
fectively exists a relationship between the ability of
LLMs to repair students’ programs and their abil-
ity to explain code issues in natural language. If
our hypothesis holds, researchers could more easily
benchmark LLMs for other educational purposes,
allowing educators to streamline the selection of
LLMs. Our evaluation focuses on several leading
and popular open-source language models, as well
as proprietary models.

The main contributions of this article are (1) the
benchmarking of several leading language models’
abilities for program repair and (2) natural language
explanation of code issues, as well as (3) the anal-
ysis and identification of the relationship between
the two tasks.

2 Related Work

2.1 Program Repair and Feedback

Propagating feedback. Generating natural lan-
guage explanations of the issues in student pro-
grams has been a long-standing challenge, with
much work leveraging part of human annotations
to bootstrap efforts (Piech et al., 2015; Malik et al.,
2021; Koivisto and Hellas, 2022). In that area,
early pretrained code language models have also

shown useful (Wu et al., 2021) in making human
annotations as data efficient as possible. However,
coming up with such annotations remains a time-
consuming endeavour.

Educational Program Repair. Trying to alle-
viate the need for manual annotation, feedback
on programming assignments has often been gen-
erated with the aid of automated program repair
tools (Hu et al., 2019a), attempting to repair syn-
tax and/or semantic errors in students’ programs.
In this area, LLMs have also shown great promise.
Much of this line of work has mainly used early ver-
sions of the OpenAI Codex model, thus obtaining
both syntax fixes (Zhang et al., 2022; Ahmed et al.,
2022; Leinonen et al., 2023) and semantic fixes
for students’ non-working solutions (Zhang et al.,
2022). Such fixes can inform Intelligent Tutoring
Systems, which could then provide next-step hints
to students (Rivers and Koedinger, 2017). However,
while automatically constructed next-step hints can
tell the students what to do next (in templated nat-
ural language sentences), they are not always able
to explain the reasons why the code does not work.

Natural Language Explanations. The rise of
newer and more powerful LLMs (e.g., CHATGPT)
has opened the possibility of directly generating
high-quality code explanations (Sarsa et al., 2022).
In addition to such progress, research in improv-
ing program repair remains useful. In particular,
recent efforts suggest that generated repairs can be
included in the prompt to allow language models
to provide more accurate natural language explana-
tions of a program’s issues (Phung et al., 2023a).
In parallel, prior work has also explored using
program repair to validate the quality of LLM-
generated feedback. In this space, the quality of
LLM-generated repairs (i.e., whether the repairs
pass all unit tests) would indicate whether the as-
sociated LLM-generated feedback would be given
to students. The repairs could be generated by
the LLM providing the feedback (Shubham Sahai,
2023), or by another, less powerful LLM acting as
an artificial student (Phung et al., 2023b).

In contrast to efforts using program repair as a
means for validating single generations, our work
aims to assess whether the overall ability of a single
language model to provide repair across a larger set
of programs is indicative of the language model’s
overall ability to generate natural language expla-
nations.
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2.2 Evaluating Language Models

Benchmarking code language models. When
new language models are released, their perfor-
mance is often assessed through multiple code
generation benchmarks such as HumanEval (Chen
et al., 2021), APPS (Hendrycks et al., 2021),
MBPP (Austin et al., 2021), or DS-1000 (Lai et al.,
2022). In parallel, prior work has also evaluated
LLMs’ ability to fix buggy programs in bench-
marks such as HumanEval+ (Muennighoff et al.,
2023), CodeXGlue (Lu et al., 2021), or QuixBugs
(Lin et al., 2017). However, while such benchmarks
contain multiple tasks that could potentially inform
us of LLMs’ performance in educational contexts,
it is important to note that students’ submitted in-
correct programs can contain issues/defects that go
beyond mere simple bugs (e.g. implementation of
the wrong algorithm). Hence, educational bench-
marks are needed.

Benchmarking in education. In the educational
context, much work has looked into the perfor-
mance of proprietary models (Codex, and Chat-
GPT) on private datasets and educational datasets
(Finnie-Ansley et al., 2022; Hellas et al., 2023)
both for program synthesis (Finnie-Ansley et al.,
2022; Savelka et al., 2023b) and feedback (Hellas
et al., 2023).

Open-source language models. While there
exist few efforts looking at the performance
of open-language models for generating repairs
(Koutcheme et al., 2023a; Koutcheme, 2023), or
answering student programming questions (Hicke
et al., 2023), only the work of (Koutcheme et al.,
2024) look into the performance of open-source
models for generating educational programming
feedback. Still, none of these works studies the
relationship between program repair abilities and
the quality of LLM-generated natural language ex-
planations.

3 Methodology

We (1) evaluate how LLMs perform in generat-
ing repairs to incorrect programs, (2) evaluate how
LLMs perform in explaining the issues in programs,
and (3) study the potential relationship between
the ability to generate repairs and the ability to
generate natural language explanations. To en-
sure a comprehensive assessment, our study en-
compasses zero-shot evaluations (Yogatama et al.,
2019; Linzen, 2020) of proprietary and state-of-the-

art open-source LLMs having less than 7 billion
(7B) parameters. Our experiments leverage a pub-
licly available dataset comprising real-life students’
submissions to Python programming problems.

Next, we describe the programming dataset, out-
line our evaluation methodology, and list the lan-
guage models included in this evaluation. We re-
lease the code used to perform our experiments as
an additional contribution 1.

3.1 Dataset

We use a subset of the FalconCode (de Freitas et al.,
2023) dataset, a large-scale dataset containing thou-
sands of first-year students’ solutions (over three
semesters) to hundreds of Python programming as-
signments. It is the largest and most comprehensive
publicly available dataset of student programs at
the time of writing this manuscript. Beyond its sub-
stantial scale, this dataset distinguishes free-form
assignments (i.e., not scoped to function writing),
and exercise-level programming with concept an-
notations, enabling a broader evaluation of LLM
feedback.

Dataset processing. Due to the financial and
computational costs of running LLM evaluations,
for our experiments, we curate a smaller subset of
submissions. The dataset contains three semesters
worth of submissions (fall 2021, spring 2021, and
fall 2022). We start by selecting submissions from
the last semester (fall 2022). Each exercise in the
dataset can be categorized based on a type (practice,
or exam) and a level of difficulty (“skill”, “lab”, or
“project”, i.e., easy, medium, hard). We omit exam
exercises and focus on practice exercises (as these
are the ones students require help with). Addition-
ally, we exclude more complex “project” assign-
ments, requiring extensive code writing across mul-
tiple files, and those requiring external files. Fol-
lowing Hu et al. (2019b), we select only the final
incorrect submissions for each student for each as-
signment. Although this selection may not capture
the full range of student difficulties, it aligns with
the idea that a student’s last attempt often reflects
their final understanding. Finally, we remove sub-
missions with identical abstract syntax tree struc-
tures after variable normalization (Koutcheme et al.,
2023a,c). The final dataset contains 370 programs
from 44 assignments.

1https://github.com/KoutchemeCharles/bea2024
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3.2 Repairing Student Programs

Given a student’s incorrect program in our test set,
the first task is for an LLM to produce a repair to
that incorrect program that passes all unit tests. Be-
cause of the wide range of issues found in students’
programs, in contrast to classical program repair
benchmarks (Lin et al., 2017; Muennighoff et al.,
2023), in most educational scenarios, we do not as-
sume the existence of a single unique ground truth
repair to an incorrect program. However, while
such unique ground truth does not exist, repairs that
align with the original incorrect programs are often
preferred. The general assumption is that closely
aligned programs can generate (Phung et al., 2023a)
or are associated with feedback (Koutcheme et al.,
2023a) (e.g. natural language explanations or hints)
that are more understandable to students, as this
feedback would require a lower cognitive load to
understand the issues in the program and the modi-
fications that need to be operated to reach a solution
(Shubham Sahai, 2023). Moreover, we aim to in-
vestigate whether the language model’s ability to
produce repairs that closely resemble the original
incorrect programs correlates with its proficiency in
generating complete and accurate natural language
explanations of the issues in the programs. The
constraints on functional correctness and closeness
are reflected in our evaluation procedure, which we
adapt from the work of Koutcheme et al. (2023a).

Evaluation procedure. To evaluate functional
correctness, for each incorrect program in our test
set, we generate a single repair using greedy decod-
ing (Rozière et al., 2023). To measure the ability
of the language model to generate close repairs, we
compute the ROUGE-L (Lin, 2004) score between
the incorrect program and the candidate repair ex-
tracted from the single greedy generation. While
other distance measures exist and have been used to
measure closeness between programs (e.g., BLEU
(Papineni et al., 2002) and CodeBERT score (Zhou
et al., 2023b)), the ROUGE-L score has been shown
to correlate well with human judgement of high-
quality repairs (Koutcheme et al., 2023b) while
remaining fast to compute, as it does not rely on a
language model.

We report the average repair success rate as the
pass rate (’pass@1’ (Chen et al., 2021)) and the
average ROUGE-L score, abbreviated as ’rouge’,
over the programs in our test set.

3.3 Explaining Issues in Students Programs

The second task is for our language models to ex-
plain all the issues in a given student’s incorrect
program. For each incorrect program, we prompt
our language model to explain the issues using
the prompt shown in Figure 5 (Appendix A.1), a
variant of the prompt used in (Hellas et al., 2023).
Following prior work, we generate a single output
using greedy decoding (Hellas et al., 2023; Savelka
et al., 2023a; Leinonen et al., 2023).

Evaluation criteria. For each natural language
explanation, we focus on two particular quantitative
aspects of quality: (1) ensuring that the feedback is
complete, i.e., it identifies and mentions all issues
in the code, and (2) ensuring that it avoids hal-
lucinations, i.e., it does not mention non-existent
issues (Phung et al., 2023b; Hicke et al., 2023;
Hellas et al., 2023). We highlight that our explana-
tion task is a specific form of feedback that differs
from hints. In the explanation task, the answer
is meant to be given to students, while for hints
(Roest et al., 2024), the feedback helps the students
find the answer themselves. While prior work in
hint generation has investigated other qualitative
aspects, such as the “right level of detail”((Phung
et al., 2023a; Scarlatos et al., 2024)), we believe
these are less likely to be correlated with an LLM
repair ability.

Automated Evaluation. Given the scale of our
dataset and the multitude of language models to
assess, conducting human evaluation would be im-
practical. Therefore, we rely on automated evalu-
ation using language models (Zheng et al., 2023).
Powerful language models like ChatGPT have ex-
hibited near-human performance across various
tasks, sparking interest in their application for eval-
uating other LLMs (Zhou et al., 2023a; Cui et al.,
2023; Tunstall et al., 2023), including in educa-
tional contexts (McNichols et al., 2024; Hicke et al.,
2023). Notably, GPT-4 has demonstrated good
performance in evaluating programming feedback
quality (Koutcheme et al., 2024). In our work, we
ask GPT-4 to grade the quality of the natural lan-
guage explanations for each incorrect program. We
ask the model to provide a binary label of whether
each criterion (completeness, and avoiding high-
lighting non-existent issues) holds for the feedback
generated by each language model. Figure 6 (ap-
pendix A.1) shows our prompt. For each criterion,
we report the average over the test set.
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3.4 Models

We focus our evaluation on instruction-tuned and
chat models. While pretrained language models
can also be useful for multiple tasks, as prior stud-
ies using Codex (Phung et al., 2023a) have shown,
instruction-tuned models alleviate the need for com-
plex queries and allow easier interactions which
benefit educators and researchers.

Closed-source models. We evaluate GPT-
3.5 (gpt-3.5-turbo) and GPT-4-turbo
(gpt-4-1106-preview) on our two tasks.
Due to the financial costs of running GPT-4, we
use the Turbo version for feedback generation, but
we keep the standard GPT-4 for evaluating the
quality of the natural language generations.

Open-source models. While prior work in pro-
gramming feedback using LLMs has focused
mainly on ChatGPT models (i.e., GPT-3.5 and GPT-
4), we aim to cover the wider range of available op-
tions and include a selected number of instruction-
tuned open-source/permissive models. We report
the performance of the following family of models:

• TinyLLama (Zhang et al., 2024), a 1.1B pa-
rameter model following the Llama (Touvron
et al., 2023) architecture.

• CodeLLAMA (Rozière et al., 2023), series of
Llama (Touvron et al., 2023) models special-
ized for code. We report the performance of
the 7B parameters model.

• Mistral 7B (Jiang et al., 2023), a 7B parame-
ters language model released by the MistralAI
team.

• Zephyr (Tunstall et al., 2023) are 7B param-
eters language models fine-tuned by Hug-
gingFace using Direct Preference Optimiza-
tion (Rafailov et al., 2023) on top of Mistral
7B model. We evaluate the performance of
Zephyr 7B β.

• Gemma (Google, 2024), open source model
released by Google DeepMind. We evaluate
the performance of the 2B and 7B parameters
models.

We chose these families of models because they
are fully open-source and well-documented, they
perform competitively on various code benchmarks
(for models of their size), and they are widely

Table 1: Summary of the performance of the models in
program repair and code issue explanation. For the met-
rics pass@1, rouge, and completeness, a higher score
indicates better performance. Conversely, for the hallu-
cination rate metric, a lower score is preferable. Legend:
compl. (completeness), hall. rate (hallucination rate).

model
repair explanation

pass@1 rouge compl. hall. rate (↓)

TinyLlama 0.070 0.062 0.068 0.335
Gemma-2b 0.224 0.175 0.165 0.400

CodeLlama 0.292 0.251 0.343 0.841
Zephyr-beta 0.295 0.236 0.624 0.716
Mistral 0.324 0.241 0.738 0.397
Gemma-7b 0.327 0.298 0.905 0.005

gpt-3.5-turbo 0.530 0.470 0.838 0.368
gpt-4-turbo 0.665 0.536 0.992 0.024

adopted in the community. Additionally, within
these families, we choose language models having
7 billion parameters or less, as such models can
generally fit within one large GPU (without quan-
tization). This choice is reflected by the potential
need for educators to run models on custom hard-
ware, who are unlikely to have the computational
and financial resources to access more than a single
GPU.

Technical details. We query ChatGPT models
using OpenAI’s Python API. We run the selected
open-source language models using the Hugging-
Face Transformers library (Wolf et al., 2020), each
model is run on a single NVIDIA A100 using our
institution research cluster. We run all models us-
ing their recommended precision. The details of
each model (the names) can be found in Table 3
(appendix A.2).

4 Results

First, we describe our general results, then, we out-
line an ablation analysis detailing the performance
of the selected models over a set of programming
concepts.

4.1 Main Results

Table 1 summarizes the performance of the LLMs
in program repair and in explaining issues in code.
We can make the following observations:

LLMs proficient in program repair generate
repairs closer to the original incorrect program.
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Figure 2 highlights the scaling relationship between
the pass rate and the rouge score. We see that as
language models become more and more proficient
in generating repairs, these repairs become closer
to students’ original programs and thus more useful.
One could expect that LLMs which produce more
fixes could generate generic solutions (which are
far away from the student code) (Koutcheme et al.,
2023c) – however, this is not the case.
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Figure 2: Relationship between pass rate and rouge
score.

Hallucination conditionally decreases as a func-
tion of completeness. Figure 3 highlights the
relationship between the ability of a model to iden-
tify all issues in a program (completeness), and
the model’s tendency to hallucinate (hallucination
rate). If we omit language models with less than
2B parameters (i.e., TinyLlama and Gemma-2B),
we observe that the hallucination rate decreases as
completeness increases. This relationship seems
to hold only for large enough language models.
Our interpretation is supported by prior work that
has shown that many emerging behaviours in lan-
guage models appear when sufficiently large sizes
are reached (Wei et al., 2022b) (e.g. their ability
to solve new tasks via chain-of-thought prompting
(Wei et al., 2023)).

The ability to explain moderately scales with the
ability to repair. Figure 1 highlights the relation-
ship between repair performance and explanation
performance (in terms of completeness). Generally,
a language model that is better at program repair
tends to also produce more complete descriptions.
In the set of our LLMs, only Gemma-7B and GPT-
3.5 disrupt this relationship: although Gemma-7B
has a lower pass rate than GPT-3.5 (only slightly

0.2 0.4 0.6 0.8 1.0
completeness

0.0

0.2

0.4

0.6

0.8

ha
llu

cin
at

io
n 

ra
te

model
TinyLlama
Gemma-2b
CodeLlama
Zephyr-beta
Mistral
Gemma-7b
gpt-3.5-turbo
gpt-4-turbo

Figure 3: Relationship between completeness and hallu-
cination rate.

better than Mistral), it produces very complete ex-
planations (and with fewer hallucinations). Interest-
ingly, the performance gap between models’ ability
to repair does not reflect the gap between their abil-
ity to explain in natural language. For instance, the
difference between CodeLLama and Zephyr-7B in
pass@1 (0.003) is almost 10 × smaller than the
performance gap between the models’ abilities to
generate complete explanations (0.281).

Reparing student programs is harder than ex-
plaining issues in natural language. When look-
ing at the maximum value that the pass@1 metric
assumes (0.665), we see that it is smaller than the
one of the completeness (0.992). We believe repair-
ing programs is more challenging than providing
explanations, as the latter requires understanding
the issues while the former requires both compre-
hension and expertise on how to implement the
fixes.

On base models and fine-tuning. We hypothe-
size that pass@1 and completeness are reflective
of the capabilities of the underlying base model,
while the hallucination rate seems to depend more
on the fine-tuning procedure. Our intuition is jus-
tified by the following observations: (1) Mistral
and Zephyr share the same base model (but only
different fine-tuning) and have comparable pass@1
and completeness, but very different hallucination
rates. OpenAI and Google invest significant ef-
forts into curating datasets for fine-tuning to avoid
hallucinations. On the other hand, small language
models (TinyLLama and Gemma-2b) are probably
too inaccurate (i.e., not powerful enough) to even
hallucinate.
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4.2 Concept Level Performance Analysis

The FalconCode dataset contains information about
20 programming concepts or "skills" (e.g., function
definition, assignment, conditionals). The authors
of the dataset manually annotated each exercise
with information on whether each of these skills is
practised (or needs to be mastered) in each exercise.
We refer the reader to the original paper for details
about the concepts (de Freitas et al., 2023).

In the same way that some students exhibit vary-
ing struggles with understanding and practising
specific programming concepts (Liu et al., 2023),
we suspect that language models might face a sim-
ilar challenge. By examining the performance of
language models on a per-concept basis, we aim
to provide insights into their strengths and weak-
nesses in addressing specific programming chal-
lenges, thus informing educators and developers on
their suitable application scenarios.

We thus conduct an ablation study looking at the
per-concept performance of our language models
for repair and natural language explanation genera-
tion.

Methodology. For each of the 20 concepts, we
obtain the list of exercises practising the concept
and subsequently retrieve the incorrect programs in
our test set submitted to these exercises. For each
concept, we then report and compare the perfor-
mance of the language models for program repair
and natural language generation (using the same
evaluation metrics) based on the retrieved subset of
incorrect programs.

It is important to note that because all exercises
practice multiple concepts, knowing which individ-
ual concept is responsible for the language model
failing to fix (or explain) the issues in a program
is impossible. As such, the following results will
give us an overview of the likelihood that an LLM
would struggle to support students if an exercise
involves such a concept. Table 4 (Appendix A.3)
shows the number of exercises and programs that
practice each specific concept. We limit our analy-
sis to concepts practised in more than 3 exercises.

Results. Due to space limitations, we focus our
analysis on the concepts with which language mod-
els struggle the most. Table 2 shows these con-
cepts for all performance metrics, which are de-
rived from Table 6 in Appendix B.2 showing the
detailed scores of all models. We can make the
following observations:

Table 2: Programming concepts performance summary.
We show the programming concept for which each lan-
guage model struggles the most. Legend: IS (input
string), IC (input casting), C (conditionals), FC (func-
tion call), FD (function definition), L (list), LU (loop
until), L2D (list 2D), hall. rate (hallucination rate).

pass@1 rouge completeness hall. rate

TinyLlama IC IC LU IS
Gemma-2b LU IS LU L2D

CodeLlama IC IC L2D L
Zephyr-beta IS IS FD C
Mistral IS IS FD L
Gemma-7b IS IS FC LU

gpt-3.5-turbo IC IC LU FC
gpt-4-turbo IS IS LU L2D

When looking into the worst-practised concepts
for repairing student programs, almost all of them
are related to input manipulation (input string, or
input casting), similar to what has been observed
in LLMs capability to provide suggestions to pro-
gramming help requests (Hellas et al., 2023). More-
over, LLMs that perform poorly at fixing a given
concept are also likely to perform poorly at gener-
ating close solutions for these concepts.

When looking at the worst concepts for natu-
ral language explanations, these concern a wider
range (looping, data structure, functions, basic op-
erations). For completeness, there is not much
variation in the performance in explaining issues
for different concepts, but rather the overall perfor-
mance is correlated with the pass@1 of the corre-
sponding model. For hallucination rate, each model
has its own “base performance”, which doesn’t cor-
relate with pass@1 and it’s roughly constant across
concepts, with the exceptions of Zephyr and gpt-
3.5-turbo, which respectively over- and underper-
form on function-related concepts concerning other
concepts. There is no clear association between the
concepts where LLMs are accurate and those where
they hallucinate. Both small language models (less
than 7B parameters) and proprietary models strug-
gle most to be accurate with the ‘looping until’
concept, while language models of 7B parameters
struggle more with function-related assignments.

It is important to note that “struggling” here is
relative to the model’s performance with other con-
cepts. GPT-4 “struggling” more on completeness
with looping is still accurate 90% of the time.

171



5 Discussion

Repair as a proxy for feedback. Our results sug-
gest that language models’ relative ability to fix stu-
dents’ programs (which is easy to evaluate) tells us
how these language models will compare in finding
all issues in students’ code while avoiding halluci-
nation (for big enough language models). Based on
our discovery, one can devise more efficient LLM
selection pipelines. For instance, a simple strategy
consists of filtering out language models for which
repair performance does not reach a certain thresh-
old, a threshold set based on a few evaluations of
LLM natural language generation performance. As
an illustrative scenario, only evaluating the Mistral
model on our dataset allows us to reasonably as-
sume that language models performing worse than
0.32 in pass rate (pass@1) are unlikely to generate
complete explanations for more than 73.8 % of pro-
grams. Using this pass rate value can thus act as
a selection lower bound. As LLMs are becoming
more widely adopted in education (Prather et al.,
2023; Denny et al., 2024), and as the number of
available models is increasing, these insights can
help in the adoption process as institutions evaluat-
ing LLMs for their context can potentially reduce
the number of LLMs to consider or limit the num-
ber of tasks conducted during the evaluation.

Open-source language models strike back. An-
other important finding emerging from our results
is that while high-performance program repair must
rely on proprietary models, recent 7B parameters
models such as Gemma-7B can generate high-
quality feedback competitive with SOTA models
(Koutcheme et al., 2024). This has positive impli-
cations for educators interested primarily in giving
students feedback rather than repairing solutions,
as such feedback can also be generated via privacy-
preserving open-source models.

However, it’s important to acknowledge that run-
ning such models requires custom computational
resources. In the literature, 7B parameter models
are sometimes termed “small” due to their relative
size compared to many large language models (e.g.
Falcon-180B model (Almazrouei et al., 2023)). Yet,
a 7B parameter is not small in terms of computa-
tional resources as it requires a large GPU to fit
entirely into memory (without quantization). There
is currently a trend in developing small language
models (less than 3B parameters) such as TinyL-
lama and Gemma which can run on more modest

hardware (e.g., consumer laptop GPU, or acceler-
ated hardware). However, the performance of such
LLMs, as our results suggest is still lagging behind
their 7B parameters counterparts.

Identifying specific knowledge gaps. Unfortu-
nately, our results do not yet allow us to identify
which programming concepts LLMs will struggle
to explain in natural language from their program
repair performance. While individual repair perfor-
mance depends on the concept being practised, a
language model’s performance in explaining issues
does not (i.e., the performance is constant across all
concepts). We hypothesize that the per-concept per-
formance gap is only revealed for the harder task
of fixing students’ programs. Uncovering LLM
knowledge gaps with automated measures might
require us to rely on harder automatically evaluable
tasks (e.g. QLCs (Lehtinen et al., 2024)).

Interplay of programming feedback types. Our
primary research objective is to deepen our under-
standing of LLMs’ feedback capabilities in educa-
tional contexts. Specifically, we seek to explore the
relationship between different forms of feedback
and program repair. While we treated feedback
(identifying and explaining issues in programs) and
program repair as distinct tasks in this study, we
acknowledge their inherent interdependence. Pre-
vious research suggests that high-quality repairs
can induce high-quality feedback when provided
in context (Phung et al., 2023b,a). However, gen-
erating high-quality repairs is inherently challeng-
ing, as our results suggest, requiring the language
model to comprehend what is wrong in a program
and how to address the issues. In contrast, we be-
lieve explanations of issues in students’ programs
could serve as reasoning steps (Wei et al., 2023), en-
hancing the subsequent generation of repairs (Chen
et al., 2023). These refined repairs, in turn, could
facilitate the generation of high-quality next-step
hints (Roest et al., 2024). Research investigating
the interplay between different types of feedback
is thus pivotal in unlocking the full potential of lan-
guage models to support programming education.
By studying the performance of generating repairs
without conditioning on feedback, nor generating
feedback based on repairs, our work establishes
a foundational understanding that will allow the
research community to assess the extent to which
various prompting techniques enhance feedback
performance.
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6 Conclusions

In this article, we have uncovered an intriguing
relationship between LLM performance in pro-
gram repair and the capability to explain issues
in code. Our evaluations encompassed both open-
source and proprietary models, examining their
generic performance as well as concept-specific
proficiency.

While selecting and deploying a specific lan-
guage model may not be challenging, identifying
the most suitable one for a particular purpose can
be complex, particularly when considering finan-
cial, hardware, or other limitations. At a time
when there are calls to rethink how programming
is taught (Denny et al., 2024), the insights gleaned
from our work can provide valuable guidance for
educators in choosing LLMs that align with their
instructional contexts.

Future work. Our future work will involve two
specific directions. First, we’ll continue our inves-
tigation of the relationships between various types
of programming feedback and program repair. all
these efforts remain an attempt to streamline the
selection process of language models based on au-
tomated evaluation measures.

Besides studying LLM performance, our second
objective is to leverage our computational resources
to improve these LLMs’ ability to provide feedback.
In particular, small language models’ poor explain-
ing performance suggests that these models will
benefit from alignment procedures designed specif-
ically to improve feedback abilities (Scarlatos et al.,
2024).

Limitations

Our work is not free of limitations. We evalu-
ated the LLMs on a subset of solutions from a
single dataset (from one institution with one pro-
gramming language). Moreover, our evaluation
of natural language explanations relied on GPT-4,
which, although a state-of-the-art language model,
is not a perfect evaluator. Human evaluation is
necessary to strengthen our results. Furthermore,
refinement would benefit the evaluation prompt
(e.g., allowing GPT-4 to reason (Wei et al., 2023)
before providing its final answers). Additionally,
the results of our evaluation also depend on the
specific prompts used to interact with each lan-
guage model. Similarly, our benchmarking exper-
iment was not exhaustive – although we included

many popular state-of-the-art open-source and pro-
prietary models, many more exist. Including more
models would be necessary to strengthen the claim
of the relationship between repair and natural lan-
guage explanations. Beyond this, the concept anal-
ysis is only indicative, as many assignments feature
multiple concepts. Finally, we only considered
single-turn zero-shot repair, which does not take
advantage of LLMs’ ability to reason with few-shot
examples (Brown et al., 2020), or LLMs’ ability to
correct their own mistakes (Chen et al., 2023; Xia
and Zhang, 2023).

Ethics Statement

The work in the present article has been conducted
following national and institutional ethics guide-
lines. We recognize the increasing importance of
ethical considerations in artificial intelligence re-
search, particularly concerning data usage and po-
tential societal impacts.

The dataset employed in this research is openly
available to researchers. Our overarching goal
is to contribute to the development and evalua-
tion of open-source language models for providing
feedback in programming education. By focus-
ing on open-source models, we aim to promote
transparency, accessibility, and accountability in
AI research and development, thereby addressing
concerns regarding the privacy implications of us-
ing proprietary language models.

We further acknowledge the broader ethical im-
plications of our work, including issues related to
fairness and accessibility of LLM feedback, how
LLMs might favour certain styles of interaction,
and how LLMs might contribute to inequalities in
the quality of provided education worldwide.
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A Experiment details

A.1 Prompts used

Figure 4 (resp. Figure 5) shows our prompts to
obtain repairs (resp. feedback) from the language
models. Figure 6 shows the prompt used to grade
the feedback generated by the language models us-
ing GPT-4 as our automatic evaluator (we adapt
the prompt from (Koutcheme et al., 2024)). The
reported value for "completeness" corresponds to
the proportion of "yes" responses across our test
dataset to the first criterion, while the reported
value for the hallucination rate corresponds to the
proportion of "no" responses to the second crite-
rion. We note that regarding the issues present
in the students’ incorrect program, we assumed
them to be identified by GPT-4 during evaluation
(without a separate prompt). We acknowledge the
limitations of this prompting strategy (i.e., no space
for reasoning) which we’ll refine in future work.

A.2 Official model names

Table 3 translates each model name into their Hug-
ginface id 2.

2https://huggingface.co/models
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Repair generation
You are a computer science professor teaching introduc-
tory programming using Python. 1

Bellow is a problem description and an incorrect program
submitted by a student. Repair the student program with
as few changes as possible such that the corrected program
fulfils the requirements of the problem description. The
corrected Python code must be between “‘python and “‘."

2

**Problem:**
<handout>

**Incorect code:**
<submitted_code>

3

Figure 4: Our template for prompting the LLMs to
provide feedback. (1) A system prompt specifying the
behaviour of the model. (2) A description of the grading
task. (3) Information necessary to grade the feedback.

Feedback generation
You are a computer science professor teaching introduc-
tory programming using Python. 1

Below is a problem statement and an incorrect program
submitted by a student. List and explain all the issues
in the student program that prevent it from solving the
associated problem and fulfilling all the requirements in
the problem description. 2

**Problem:**
<handout>

**Incorect code:**
<submitted_code>

3

Figure 5: Our template for prompting the LLMs to
provide feedback. (1) A system prompt specifying the
behaviour of the model. (2) A description of the grading
task. (3) Information necessary to grade the feedback.

Table 3: Official model names for HuggingFace models.

name HuggingFace/OpenAI id

TinyLlama TinyLlama/TinyLlama-1.1B-Chat-v1.0
CodeLlama codellama/CodeLlama-7b-hf
Llama meta-llama/Llama-2-7b-chat-hf
Mistral mistralai/Mistral-7B-v0.1
Zephyr HuggingFaceH4/zephyr-7b-beta
Gemma google/gemma-7b-it

Judging
You are a computer science professor teaching introduc-
tory programming using Python. 1

Below is a problem description, and an incorrect program
written by a student. You are also provided with the
feedback generated by a language model. Your task is to
evaluate the quality of the feedback (by saying yes or no)
to ensure it adheres to the multiple criteria outlined below.
For each criterion, provide your answer in a separate line
with the format '(CRITERIA_NUMBER): Yes/No'. Do
not provide comments, but be attentive to the problem
description requirements. 2

## Problem description:
<handout>

## Student Code:
<submitted_code>

## Feedback:
<feedback>

## Criteria:

(1) Identifies and mentions all actual issues
(2) Does not mention any non-existent issue

3

Figure 6: Judging prompt template. We provide (1)
a system prompt specifying GPT-4’s behaviour, (2) a
description of the grading task, and (3) contextual infor-
mation.

A.3 Concept analysis

Table 4 shows the number of exercises which prac-
tice each concept. Additionally, figure 7 shows an
upset plot of the number of incorrect programs for
which each combination of programming concepts
is practised.

B Results details

B.1 Additional performance scores

Some work in program synthesis has evaluated the
ability of language models to generate programs
using another method to estimate pass@1. This
method, originally proposed in the work of Chen
et al. (Chen et al., 2021), is based on generating
multiple samples, and is particularly adapted to
non-instruction tuned models. We report the results
of the program repair performance evaluation based
on this multi-sample strategy.

Multi-sample performance evaluation. For
each incorrect program, we generate n = 20 sam-
ples using top_p nucleus sampling and a tempera-
ture of 0.2 (Chen et al., 2021; Li et al., 2023). We
evaluate functional correctness using the pass@1
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Table 4: Number of exercises and incorrect programs
practised for each concept.

concept # exercises # programs

input string 4 18
input casting 27 257
output 28 249
assignment 26 217
conditional 22 257
function calling 8 63
function definition 9 65
function return 6 43
loop counting 9 105
loop until 5 38
loop elements 1 30
loop nested 1 3
stat calculation 10 38
list 3 38
list 2D 3 17

estimator, which tells us the probability that a lan-
guage model will fix an incorrect program in a
single attempt (Muennighoff et al., 2023).

To evaluate the ability of a language model to
generate a solution close to the student program,
we average the ROUGE-L score between each of
the k(k ≤ n) candidate repairs that pass all unit
tests and the incorrect program.

Results. Table 5 shows the performance results
with the adapted pass@1 and rouge scores for a
subset of the models (those with more than 7B
parameters).

Table 5: We show the pass@1, rouge, completeness,
and hallucination rate (hall. rate).

model pass@1 rouge completeness hall. rate

Gemma-7b 0.267 0.353 0.905 0.005
Zephyr-beta 0.276 0.336 0.624 0.716
Mistral 0.304 0.365 0.738 0.397
gpt-3.5-turbo 0.529 0.561 0.838 0.368
gpt-4-turbo 0.634 0.559 0.992 0.024

In general, we notice an absolute drop in per-
formance from the greedy decoding. Beyond this
absolute difference, the main change is that the
ranking of the model changed. Gemma-7B is now
the least performant of the 7B parameters models.
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The performance of the 7B parameters model are
dependent on these.

B.2 Programming concepts performance
Table 6 shows the detailed per concept performance
results for all models.
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Table 6: Per concept performance results. Legend: IS (input string), IC (input casting), O (output), A (assignment),
C (conditionals), FC (function call), FD (function definition), FR (function read), LC (loop counting), LU (loop
until), SC (stat calculate), L (list), L2D (list 2D).

(a) Pass@1

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.04 0.03 0.03 0.07 0.05 0.21 0.09 0.14 0.03 0.03 0.04 0.03 0.06
Gemma-2b 0.06 0.13 0.13 0.12 0.19 0.44 0.60 0.77 0.13 0.05 0.10 0.11 0.47
CodeLlama 0.22 0.18 0.24 0.24 0.26 0.54 0.52 0.56 0.19 0.29 0.21 0.24 0.59
Zephyr-beta 0.10 0.17 0.17 0.24 0.25 0.60 0.58 0.86 0.23 0.26 0.26 0.26 0.41
Mistral 0.13 0.23 0.22 0.27 0.28 0.56 0.49 0.67 0.19 0.24 0.24 0.34 0.65
Gemma-7b 0.16 0.22 0.25 0.29 0.25 0.52 0.52 0.53 0.21 0.47 0.21 0.26 0.47
gpt-3.5-turbo 0.44 0.41 0.50 0.52 0.46 0.84 0.86 0.91 0.49 0.50 0.55 0.68 0.76
gpt-4-turbo 0.21 0.58 0.63 0.64 0.63 0.86 0.92 1.00 0.39 0.50 0.48 0.42 0.76

average 0.17 0.24 0.27 0.30 0.30 0.57 0.57 0.68 0.23 0.29 0.26 0.29 0.52

(b) Completeness

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.04 0.07 0.07 0.04 0.08 0.03 0.08 0.07 0.04 0.00 0.05 0.08 0.18
Gemma-2b 0.15 0.15 0.14 0.17 0.15 0.21 0.20 0.26 0.16 0.05 0.17 0.18 0.06
CodeLlama 0.31 0.33 0.32 0.37 0.35 0.43 0.35 0.35 0.33 0.45 0.42 0.26 0.24
Zephyr-beta 0.54 0.64 0.65 0.59 0.63 0.60 0.51 0.51 0.55 0.71 0.60 0.76 0.59
Mistral 0.81 0.74 0.71 0.77 0.75 0.79 0.69 0.79 0.73 0.76 0.79 0.79 0.82
Gemma-7b 0.94 0.94 0.92 0.91 0.95 0.76 0.86 0.91 0.90 1.00 0.94 0.95 1.00
gpt-3.5-turbo 0.93 0.82 0.82 0.87 0.84 0.84 0.86 0.81 0.83 0.76 0.89 0.97 0.94
gpt-4-turbo 1.00 0.99 0.99 1.00 0.99 0.98 0.98 0.98 0.99 0.97 1.00 1.00 1.00

average 0.59 0.58 0.58 0.59 0.59 0.58 0.57 0.58 0.57 0.59 0.61 0.62 0.60

(c) ROUGE

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.04 0.03 0.03 0.07 0.05 0.17 0.08 0.13 0.03 0.03 0.04 0.03 0.06
Gemma-2b 0.05 0.11 0.11 0.11 0.15 0.32 0.45 0.57 0.12 0.05 0.10 0.09 0.31
CodeLlama 0.20 0.15 0.20 0.22 0.21 0.46 0.45 0.47 0.17 0.25 0.18 0.21 0.51
Zephyr-beta 0.07 0.13 0.13 0.20 0.19 0.50 0.48 0.71 0.18 0.21 0.21 0.22 0.32
Mistral 0.08 0.15 0.16 0.20 0.20 0.44 0.38 0.52 0.14 0.15 0.16 0.26 0.48
Gemma-7b 0.16 0.20 0.22 0.28 0.23 0.49 0.47 0.49 0.20 0.43 0.21 0.25 0.44
gpt-3.5-turbo 0.41 0.37 0.44 0.47 0.41 0.74 0.76 0.80 0.45 0.45 0.51 0.63 0.72
gpt-4-turbo 0.17 0.46 0.51 0.52 0.50 0.70 0.72 0.77 0.31 0.40 0.38 0.35 0.61

average 0.15 0.20 0.22 0.26 0.24 0.48 0.47 0.56 0.20 0.25 0.22 0.26 0.43

(d) hallucination rate

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.47 0.30 0.25 0.35 0.31 0.41 0.42 0.40 0.43 0.21 0.40 0.39 0.18
Gemma-2b 0.12 0.37 0.42 0.37 0.35 0.32 0.48 0.40 0.24 0.55 0.28 0.13 0.65
CodeLlama 0.87 0.86 0.87 0.82 0.85 0.75 0.82 0.81 0.82 0.89 0.80 0.97 0.88
Zephyr-beta 0.88 0.79 0.78 0.80 0.78 0.46 0.60 0.49 0.86 0.61 0.89 0.87 0.65
Mistral 0.43 0.42 0.42 0.39 0.41 0.32 0.32 0.35 0.41 0.32 0.37 0.45 0.41
Gemma-7b 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.03 0.02 0.00 0.00
gpt-3.5-turbo 0.28 0.31 0.35 0.36 0.35 0.54 0.49 0.51 0.34 0.21 0.29 0.24 0.24
gpt-4-turbo 0.00 0.02 0.02 0.02 0.02 0.00 0.03 0.05 0.00 0.05 0.01 0.05 0.06

average 0.38 0.38 0.39 0.39 0.38 0.35 0.40 0.38 0.39 0.36 0.38 0.39 0.38
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Abstract

Leading students to engage in argumentation-
focused discussions is a challenge for elemen-
tary school teachers, as doing so requires fa-
cilitating group discussions with student-to-
student interaction. The Mystery Powder (MP)
Task was designed to be used in online simu-
lated classrooms to develop teachers’ skill in
facilitating small group science discussions. In
order to provide timely and scaleable feedback
to teachers facilitating a discussion in the simu-
lated classroom, we employ a hybrid modeling
approach that successfully combines fine-tuned
large language models with features capturing
important elements of the discourse dynamic
to evaluate MP discussion transcripts. To our
knowledge, this is the first application of a
hybrid model to automate evaluation of teacher
discourse.

1 Introduction

Scientific argumentation is an essential skill, and
in elementary school classrooms, group science
discussions are a natural modality for providing
students with opportunities to engage in scien-
tific argumentation (Sampson and Blanchard, 2012;
Shemwell and Furtak, 2010). Accordingly, it is
essential that teachers are well equipped to facili-
tate such discussions. But facilitating them is not
straightforward. Many teachers are used to a lec-
ture style of interaction where they deliver the facts
and the students respond only to the teacher (Caz-
den, 1988; Lemke, 1990; Lloyd et al., 2016). In
contrast, in an ideal group science discussion, stu-
dents directly interact with their peers (rather than
just the teacher) and engage with each other’s ideas,
rather than only their own and the teacher’s (Fish-
man et al., 2017; Tenenbaum et al., 2020).

Digitally simulated classroom experiences have
become increasingly used to prepare teachers for
the work of teaching (Dalinger et al., 2020; Dieker
et al., 2014). In a simulated classroom, the teacher-

Figure 1: The Mursion Upper Elementary Classroom
Environment, with an excerpt from a Mystery Powder
discussion transcript. Two blocks of utterances (ex-
plained in section 4.2) are shown in blue and orange,
respectively. Image provided by Mursion, Inc.

in-training, also called a pre-service teacher (hence-
forth, PST), enacts a classroom scenario, interact-
ing in real time with student avatars puppeteered
by a trained human actor equipped with voice mod-
ulating software. In contrast to practicum experi-
ences, simulated classrooms afford development
of targeted skills in an environment that is both
standardized and low-stakes (Dalinger et al., 2020;
Bondie et al., 2021; Cohen et al., 2020; Ersozlu
et al., 2021). Automating as much as possible of
the simulation would help make the learning experi-
ence more affordable and thus accessible to a wider
range of teachers; it would also allow teachers to
engage in multiple rounds of practice to hone their
teaching skills. Of the two bottlenecks—the pup-
peteer enacting the student avatars and the human
expert evaluating the performance—we here ad-
dress the second, leaving the first to future work.

The present paper is a case study of developing
automated evaluation, with supervised learning, of
a PST’s performance in a simulated classroom. We
focus on the Mystery Powder (henceforth, MP)
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task (Mikeska et al., 2021), a particular lesson that
the PST is to teach in a simulated classroom (Figure
1) designed to develop PSTs’ competency in facili-
tating small group argumentation-focused science
discussions at the elementary level. Successful fa-
cilitation of a discussion is complex; in this work,
we address one of its dimensions, namely, the ex-
tent to which the teacher encourages student-to-
student interactions where students engage directly
with each other’s ideas (Mikeska et al., 2021; GO
Discuss Project, 2021).

In line with the manual evaluation process that
produced the training data (Mikeska et al., 2019),
our approach to automated evaluation had models
on two levels: classifiers identifying PST utter-
ances as positive examples of the desired teaching
practices; and regressors scoring the transcript as
a whole on the same practices (Nazaretsky et al.,
2023). Furthermore, we kept in mind two consid-
erations: classifier training must deal with the fact
that rater labels were non-exhaustive (only some
utterances are labeled); and regressors must ag-
gregate utterance-level information in an intuitive
way.

In terms of what features were used, we built
three types of models: (a) models based on the
analysis of the content of what the PST said, im-
plemented using fine-tuned large language models
(henceforth, LLMs); (b) models based on the struc-
ture of the interaction, who speaks when and in rela-
tion to whose utterance; and (c) combined models
using both content and structure. To our knowl-
edge, this is the first demonstration, in the con-
text of automated analysis of teacher discourse,
of a successful combination of fined-tuned LLMs
and shallow features into a hybrid model that out-
performs both components in isolation across the
board, for multiple levels of analysis (utterance-
level and transcript-level) and multiple indicators
of performance.

2 Related Work

2.1 Elements of high-quality teaching
practices

Recent research has addressed automated detec-
tion of high-quality teaching practices in human-
annotated corpora of real classroom transcripts.
Demszky and colleagues (Demszky et al., 2021;
Demszky and Hill, 2023; Alic et al., 2022) detected
features associated with dialogic instruction, such
as teachers’ conversational uptake (Demszky et al.,

2021) and open-ended questions (Alic et al., 2022),
which they found to benefit classroom outcomes
such as student satisfaction and participation. Simi-
lar discourse features were investigated in Jensen
et al. (2020), as part of an effort to bring easy-to-use
and high-quality audio recording setups to ordinary
classrooms. Suresh and colleagues (Suresh et al.,
2019, 2022b) performed a six-way classification of
teacher utterances into discursive strategies, called
“talk moves” (e.g. “Keeping everyone together”),
that promote equitable student participation. Tran
et al. (2023) classified student and teacher contri-
butions into ‘talk moves’ such as ‘teacher links
student contributions’ and ‘students support claims
with evidence’. Nazaretsky et al. (2023) studied
ways to evaluate to what extent participants pro-
vided meaningful contributions that moved the dis-
cussion forward. Most of the prior work, with few
exceptions such as Nazaretsky et al. (2023), con-
sidered transcripts of live interactions; simulated
environments with student avatars aim to extend the
practice earlier into the teacher preparation process,
before the teacher meets a real classroom (Dalinger
et al., 2020). Our work is in the much less explored
context of a simulated classroom.

A common theme in research on automated
models for high-quality teaching practice is the
intended application to providing automated feed-
back to teachers. Feedback may come in the form
of a dashboard summarizing the teacher’s perfor-
mance. The dashboard may report the (relative)
frequency of the target discourse features (Dem-
szky et al., 2023; Jensen et al., 2020). The dash-
board may also cite “positive examples” among the
teacher’s own utterances to reinforce productive
teaching practices (Demszky et al., 2023; Jensen
et al., 2020; Nazaretsky et al., 2023). The efficacy
of such automated feedback for benefiting class-
room outcomes (e.g. proportion of assignments
completed by the student) has been demonstrated in
a setting with 1:10 teacher-student ratio (Demszky
et al., 2023) as well for 1:1 mentoring (Demszky
and Liu, 2023).

2.2 Modeling Approaches

In terms of modeling approaches, prior work ex-
plored pre-trained deep neural embeddings to rep-
resent the content of an utterance and either use
them directly as features for detecting teachers’ dis-
course moves of interest (Suresh et al., 2019) or to
derive features such as similarity scores between
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neighboring teacher and student utterances when
modeling uptake (Demszky et al., 2021). Dem-
szky et al. (2021) reported that simpler lexical fea-
tures quantifying token overlap between student
and teacher words were also competitive. Jensen
et al. (2020) used a combination of linguistic fea-
tures such as parts of speech and markers of com-
parisons or definitions along with features captur-
ing other characteristics of the teacher-student in-
teraction, including utterance length and its nor-
malized position in the session, rate of speech and
pauses, in a supervised machine learning setting.

Fine-tuning an LLM-based classifier for the tar-
get data and task was also explored. Jensen et al.
(2021) found the performance of a BERT-based
classifier to be superior to that of feature-based
baselines on data of self-recorded classroom in-
teractions from English Language Arts teachers.
Nazaretsky et al. (2023) fine-tuned DistilBERT
(Sanh et al., 2020) on simulated classroom data
in the science domain. Suresh et al. (2021) ex-
plored BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) to classify student and teacher
utterances into ‘talk moves’ in the domain of math-
ematics. Tran et al. (2023) used a sequence model
BiLSTEM-CRF (Huang et al., 2015) with BERT
embeddings to classify utterances into a somewhat
different set of ‘talk moves’ in the domain of En-
glish Language Arts and showed that the sequence
model that takes into account neighboring utter-
ances outperformed the BERT-based models that
did not utilize sequence information, for detect-
ing some of the talk moves. Suresh et al. (2022b)
explored incorporating information from the dis-
course outside of the teacher’s and neighboring stu-
dent utterance, showing that taking a much larger
discourse context into account helps improve per-
formance; the best-performing models extended the
context to seven prior and seven subsequent utter-
ances. Kumaran et al. (2023) explored fine-tuning
of DialoGPT (Zhang et al., 2020), a dialog LLM
built on GPT-2 (Radford et al., 2019) on the stu-
dent subset of the ‘talk moves’ data (Suresh et al.,
2022a), utilizing a context of nine prior utterances.
These approaches tend to include elements of the
larger discourse context through incorporation of
larger and larger chunks of prior and/or subsequent
content into the LLM-based framework.

In the present study, we explore an approach that
models discourse dynamics more directly through
a set of features that would be used in tandem with

the fine-tuned LLM to provide the overall model
with information about relevant aspects of the struc-
ture of the discourse. Such hybrid models can also
provide some insights into the task, by separat-
ing the contribution of the fine-tuned LLM based
content models from that of the discourse-dynamic-
based model; different aspects may be more or less
important for modeling different components of
the complex performance task set to the teachers.

3 The Mystery Powder Task

3.1 The performance

In the MP task, the PST interacts with five upper
elementary student avatars in the simulated class-
room (Figure 1). Each avatar is standardized, in
terms of their personality (e.g. Will is soft-spoken)
and preconceptions related to the MP task (ex-
plained below). The human actor, who puppeteers
all five avatars, is well-versed in them and is in-
structed to ensure that they are responsive to the
PST’s instructions throughout the discussion.

The scenario is as follows. Prior to the discus-
sion, the class was shown samples of six pow-
ders: flour, cornstarch, baking soda, baking pow-
der, sugar, and salt. The class investigated several
properties of each sample including texture, color,
weight, reaction with vinegar, and outcome when
mixed with water. Subsequently, the class was pre-
sented a “mystery powder” sample—in fact baking
soda, unbeknowst to the students—and the students
investigated its properties as well. In small groups,
as pre-work to the discussion, the students reflected
in writing on their findings and generated evidence-
based claims about the mystery powder’s identity
and the properties that were useful to identify the
mystery powder. See Appendix for a reference ta-
ble for the powders (Figure 6) and an excerpt from
one of the group’s pre-work (Figure 7).

The PST has up to 20 minutes to facilitate a
discussion to help the five students arrive at a con-
sensus regarding (1) the identity of the mystery
powder, and (2) which properties are important for
this identification. As preparation, the PST has
access to the students’ written reflections and is
provided information about the accuracy of their
initial ideas. For instance, the PST must ensure that
the discussion rectifies the misconception (held by
Mina, Will, Jayla, and Emily) that weight is im-
portant for identifying the MP. See Figure 1 for an
excerpt from a discussion’s transcript.
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Dimension 3: Encouraging Student-to-Student Interactions

Indicator title Level 1
Beginning practice

Level 2
Developing practice

Level 3
Well-prepared practice

3a.
Peer interaction

The teacher assumes the
responsibility for the discussion
by rarely promoting peer
interaction AND frequently
mediates all student contributions.

The teacher occasionally
promotes peer interaction, AND
the majority of student
contributions are mediated
through the teacher.

The teacher frequently
promotes peer interaction,
AND the mediation of student
contributions is shared between
the teacher and the students.

3b.
Engagement with
others’ ideas

The teacher rarely encourages
students to engage with one
another’s ideas, conceptions, or
viewpoints.

The teacher occasionally
encourages students to engage
with one another’s ideas,
conceptions, or viewpoints.

The teacher frequently
encourages students to engage
with one another’s ideas,
conceptions, or viewpoints.

Table 1: Rubrics for Indicators 3A and 3B (Mikeska et al., 2021).

3.2 Rubric and manual evaluation

The MP rubric is made up of several dimension
scores, each of which is supported by several
more specific indicator scores (Mikeska et al.,
2021). The present study focuses on Dimension
3 (“Encouraging student-to-student interactions”)
and two of its indicators, Indicator 3A (“Peer in-
teraction”) and Indicator 3B (“Engagement with
other’s ideas”).1 See Table 1 for Indicator score
definitions.

After evaluation, the PST expects to see a feed-
back report that tells their strengths, areas for
growth, and recommended next steps in each Di-
mension. This report must give not only an overall
(i.e. transcript-level) evaluation but also support-
ing evidence (i.e. utterance-level) to reinforce the
PST’s desirable practices.

Accordingly, manual evaluation occurs on two
levels. First, the human rater cites, for each Indi-
cator, one or more utterances that exemplify the
target behavior (positive examples) or its opposite
(negative examples). Note that the rater is asked
only to provide some examples, not exhaustively
label every utterance in the transcript. Second, the
human rater scores the transcript, continuous on
a scale of 1 to 3 (e.g. a score of 1.40 is possible)
on each Indicator and then an integer from 1 to 3
for each Dimension. To calibrate judgments, raters
undergo extensive training, which includes com-
pleting self-guided webinars and evaluating sample
discussions.

3.3 Automated evaluation approach

Automated evaluation aims to follow the same two-
level process, via classifiers (for utterances) and
regressors (for transcripts). Conceptually, regressor

1Dimension 3 has a third indicator, “Ideas come from
students”, not within the scope of the present study.

features are aggregates of utterance-level informa-
tion, which include utterance class labels. How-
ever, ground-truth labels are not available for new
transcripts, so aggregating them is infeasible. In-
stead, in our approach, after training on the labeled
utterances, a classifier predicts positive probabil-
ities for all utterances, labeled and unlabeled. It
is then these predicted probabilities that are ag-
gregated into transcript-level features (described
in section 4.2). Thus, classifier training and eval-
uation uses ground-truth labels, for the subset of
utterances they are available; but regressor training
and evaluation uses only imputed probabilities.

4 Data, models, and features

4.1 Data

The MP dataset was collected in prior work
(Mikeska et al., 2019).2 A total of 79 PSTs fa-
cilitated discussions: 76 engaged in the simulation
twice; 3 engaged once. Of the 155 transcripts, 56
were coded by two raters. Reliability was measured
with intra-class correlation coefficients (ICCs) and
was sufficient (Cicchetti, 1994) for all three con-
structs: 0.816 for Indicator 3A; 0.679 for Indicator
3B; 0.635 for Dimension 3. For transcripts scored
by two raters, the final scores were the average be-
tween the raters—thus non-integer scores are also
possible for Dimension 3. The MP dataset has a
total of 14,558 utterances. For PSTs (6,713 utter-
ances), the interquartile range for utterance length
was 8 to 30 tokens; for students (7,845 utterances),
it was 4 to 20 tokens. Distributions of transcript-

2The Mystery Powder discussion and scoring data used
in this study was collected and generated as part of previ-
ous grants funded by the National Science Foundation (grant
#1621344, #2032179, and #2037983). Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.
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level scores are in Figure 2.
Allocation of transcripts into train and test parti-

tions was done by PST, so that PSTs in the training
data would not be again seen in the test set (Nazaret-
sky et al., 2023). 121 transcripts (from 62 PSTs)
were allocated to the training set and 34 transcripts
to the test set. For utterance-level analyses, each
utterance was allocated to the same partition (train
or test) as its parent transcript.

Indicator 3A Indicator 3B

Train Test Train Test

Class 0 1411 668 558 179
Class 1 267 86 426 144
(unlabeled) 3496 785 4190 1216

Table 2: Breakdown of PST utterances by class label,
construct, and train/test.

dimension 3 indicator 3A indicator 3B

1
.0
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2
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Figure 2: Distributions of transcript scores (training
set).

Raters’ citations of positive examples were in
free-form text, which was manually coded by the
first author. The test set was coded after model
selection on the training set. Rater comments were
not always timestamps or direct quotes, so some
judgment was exercised. The following rules were
applied:

1. A PST utterance is labeled “1” (positive) if at
least one rater cited it as a positive example.

2. If a PST utterance is not labeled “1”, then it is
labeled “0” (nonpositive) if at least one rater

indicated that the transcript had no positive
examples in it.

3. If a PST utterance is not labeled “1”, then it is
labeled “0” (nonpositive) if at least one rater
indicated that it was a negative example. Since
there were only a few negative examples, they
were not assigned their own class.

4. If a PST utterance cannot be labeled either
“0” or “1” due to the above rules, it is left
unlabeled—excluded from training and evalu-
ation of the utterance-level classifiers.

Note that for training and evaluation of classi-
fiers, only the manually-labeled PST utterances are
used. But for training and evaluation of regressors,
all PST utterances are used, as predicted probabili-
ties are used instead of ground-truth labels.

Since PST performance is the focus of the study,
student utterances were used only to generate fea-
tures pertaining to the adjacent PST utterances, fol-
lowing a process explained in section 4.2. See
Table 2 for breakdown of the PST utterance labels
in the dataset. Only a small proportion of the utter-
ances are positive examples (in the training set, 5%
for Indicator 3A and 8% for Indicator 3B).

4.2 Models and features
As we inspected rater justifications and rubric defi-
nitions, we decided to hand-craft a number of fea-
tures as well as leverage neural language models
shown to be useful in prior work on teacher dis-
course analysis (see Section 2). In all, we consid-
ered 15 models, summarized in Table 3. Models
vary along three factors — level of analysis, target
construct, and type of features, as follows:

• A model is either (C) an utterance level classi-
fier, or (R) a transcript-level regressor.

• A model is concerned with (A) Indicator 3A,
(B) Indicator 3B, or (D) Dimension 3.

• A model is (N) content-based (via fine-tuning
an LLM), (S) structure-based (via handcrafted
features, some of which involve using LLMs
out of the box), or (X) a combination of both.

Note that only Indicators have utterance-level
analysis, so there are no classifiers for Dimension
3. Also note that models “compete” only in the
same cell (e.g. CAN vs. CAS vs. CAX).

Content-only classifiers (CAN and CBN) were
constructed by adding a linear classifier head on
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(A) Indicator 3A (B) Indicator 3B (D) Dimension 3

(C) Utterance-level classifier
CAN: content only CBN: content only

(none)CAS: structure only CBS: structure only
CAX: combined CBX: combined

(R) Transcript-level regressor
RAN: content only RBN: content only RDN: content only
RAS: structure only RBS: structure only RDS: structure only
RAX: combined RBX: combined RDX: combined

Table 3: All models. See the beginning of section 4.2 for an explanation of the rows and columns.

top of DistilBERT (Sanh et al., 2020) (66M param-
eters) using the HuggingFace toolkit (Wolf et al.,
2020). DistilBERT is a lightweight model that has
been used in educational settings (Nazaretsky et al.,
2023; Datta et al., 2023; Butt et al., 2022; Pearce
et al., 2023). Embedding and transformer layers
were frozen. Training was done with learning rate
0.001, batch size 32, and a linear scheduler with no
warmup. The number of epochs (between 1 and 10)
was a hyperparameter. As inputs to DistilBERT,
each utterance was prepended by the speaker (e.g.
“Carlos”), and the context for each PST utterance
was the student utterance immediately following
the teacher’s in the transcript. The intuition is that
how students respond is potentially informative for
whether the PST utterance is positive or not.

Unlike fine-tuning an LLM, which leverages ut-
terance content, classifiers with handcrafted fea-
tures mostly use turn-taking dynamics, that is, the
structure of the interaction. Utterances (student and
PST) are organized in blocks. Each PST utterance
begins a block, which spans the subsequent student
utterances until the next PST utterance. Figure 1
shows two color-coded blocks of utterances. By
computing features per block, features associated
with a PST utterance incorporate the turn-taking
structure in the subsequent student utterances.

For the structure-only classifier for Indicator 3A
(CAS), the following four features were computed

Classifiers Regressors

(LR) Logistic regression
(DT) Decision tree
(MP) Multilayer

perceptron
(RF) Random forest

(LR) Linear regression
(BR) Bayesian ridge re-

gression
(DT) Decision tree
(MP) Multilayer

perceptron
(RF) Random forest

Table 4: Classifiers and regressors to choose from.

per PST utterance based on its block:

• NUM_STUDTURNS: Number of student utter-
ances in the block.

• NUM_TEACHTOKS: Number of tokens in the
PST utterance itself.

• NUM_STUDTOKS: Number of tokens in the
students’ utterances in the block.

• NUM_KW1: “1” if the tokens “turn” and “talk”
both appear in the PST utterance; “1” if the
token “crosstalk” appears in the PST utter-
ance; and “0” otherwise. (“Turn and talk” is
the name of a commonly-used instructional
technique where students are put in pairs to
discuss an issue (Hindman et al., 2022). In the
case of the MP discussion, when this occurs,
the avatars produce mumbling sounds often
denoted in the transcript as “crosstalk”.)

For the structure-only classifier for Indicator 3B
(CBS), the handcrafted features capture student-
to-student uptake. Each student utterance u1 is
paired with the previous student utterance u0 in the
transcript. For every such pairing, the following
five features are computed:

• PROP_IN_LEFT: Proportion of tokens in u0

also found in u1, range: [0,1].

• PROP_IN_RIGHT: Proportion of tokens in u1

also found in u0, range: [0,1].

• JACCARD: Jaccard coefficient between the
two sets of tokens, range: [0,1].

• BLEU: BLEU (Papineni et al., 2002) score for
reference u0 and hypothesis u1, range: [0,1].

• SENTBERT: Cosine similarity between the
sentence-BERT (Reimers and Gurevych,
2019) embeddings of u0 and u1, range:
[−1,1].
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Content only, utterance level (CAN)

Structure only, utterance level (CAS)

Content+structure, utterance level (CAX)

Figure 3: Illustration of utterance-level modeling in
Indicator 3A, for a single PST utterance. Refer to Table
3 for model acronyms. Indicator 3B models (CBN,
CBS, CBX) proceed analogously. Structure features are
highlighted in yellow; content feature is highlighted in
turquoise.

Snowball stemming, as implemented in NLTK
(Loper and Bird, 2002), was used prior to comput-
ing word overlap. Each pair yields a 5-dimensional
feature vector. The feature vector of a PST utter-
ance is the mean-aggregate vector using the pairs
in its block, skipping over utterances with fewer
than 5 tokens. For PST utterances with no eligible
student utterances in the block, we use the lowest
possible value of the feature (e.g. 0 for JACCARD).

Combined classifiers (CAX and CBX) used
both types of features. For Indicator 3A (CAX),
the features were all the structure-only features
(e.g. NUM_TEACHTOKS from CAS) as well as the
DistilBERT-predicted positive probability (from
CAN). Indicator 3B (CBX) followed analogously.
Figure 3 is a cartoon summarizing which features
appear in which classifier.

For structure-only classifiers (CAS and CBS)
and combined classifiers (CAX and CBX), we used
shallow learning models as implemented in the
Scikit-learn toolkit (Buitinck et al., 2013). See
Table 4 for the classifiers considered and Table 7

Content+structure, transcript level (RAX)

Figure 4: Illustration of the transcript-level combined
model on Indicator 3A, for a single PST utterance. Refer
to Table 3 for model acronyms. The Indicator 3B model
(RBX) proceeds analogously.

(in the Appendix) for the hyperparameter grid.
At the transcript level, Indicator regressor fea-

tures are constructed by simple aggregates of
utterance-level information. For content-only In-
dicator regressors (RAN and RBN), there are only
two features: the relevant average DistilBERT-
predicted probability (from CAN or CBN); and
the count of PST utterances (or utterance blocks).
For structure-only Indicator regressors (RAS and
RBS), the features are the averages of the relevant
structure-only features (e.g. NUM_TEACHTOKS

from CAS, or JACCARD from CBS) and the count
of PST utterances. For combined Indicator regres-
sors (RAX and RBX), the features are the averages
from both types of features and the count of PST
utterances. Figure 4 in the Appendix is a cartoon
summarizing how utterances are aggregated. See
Table 4 for the regressors considered. See Table 8
(in the Appendix) for the hyperparameter grid.

As for Dimension 3 regressors (RDS, RDN, and
RDX), features are simply the union of the features
of the Indicator regressors. RDN inherits features
from RAN and RBN; RDS inherits features from
RAS and RBS; and RDX inherits features from
RAX and RBX.

All experiments were carried out on a MacBook
Pro laptop, with Apple M1 Pro chip. Computations
did not use GPU.

4.3 Model selection and evaluation

For model selection, we performed a 5-fold cross-
validation (CV) on the training set. Folds were
split by PST, as described for the train/test partition
(section 4.1).

For classifiers, the metric for model selection
was κ (Cohen, 1960); higher values are better.
For regressors, the metric was mean squared er-
ror (MSE); lower values are better. Since manual
scores range from 1 to 3, the predicted score was
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truncated to this range. For each of the 15 models
in Table 3, the final number of epochs (for LLMs)
or final estimator (for shallow learning models) was
selected using cross-validation in order to advance
to test set evaluation. For choosing the numbers of
epochs, the one-standard-error rule (Hastie et al.,
2017) was used.

Models that used the predicted probability from
DistilBERT as feature (i.e. all except CAS, CBS,
RAS, RBS, and RDS) used the best-performing
number of epochs from the corresponding fine-
tuned LLM classifier.

5 Results

Table 5 shows the test set results for classifiers. For
Indicator 3A, structure-based models dominated
content-based models. For Indicator 3B, the trend
was the opposite. For both Indicators, the combined
models had the best performance. See Appendix
for examples of positive-predicted utterances.

Table 6 shows the test set results for regressors.
For Indicator 3A, structure and content models
show similar performance. For Indicator 3B, the
fine-tuned LLM dominated. For both Indicators,
as well as the Dimension 3 score, the combined
models showed the best performance.

6 Discussion

6.1 Modeling approach
Our results show that classifiers focused on the
content of the PST utterance perform better for In-
dicator 3B, while those focused on the structure of
the discourse perform better for Indicator 3A. Thus,
the results suggest that it is quite difficult to get out
of the content of a PST’s utterance whether or not
the utterance encouraged peer interaction. How-
ever, since the simulated students (a) do not tend to
spontaneously engage in a multi-party discussion,
yet (b) are compliant with the teacher’s instructions,
whether or not multiple students speak following
the teacher is a fairly strong signal of whether the
teacher encouraged them to do so.

In contrast, whether or not the teacher encour-
aged the students to engage with each others’ ideas
is easier to recover from the actual PST utterance
than from evidence of lexical overlap or semantic
similarity between subsequent student utterances.
This may be because, given the highly constrained
topic of the conversation (properties of the six pow-
ders), on the one hand, consecutive student utter-
ances generally tend to have substantial textual

overlap, whether or not the teacher encouraged
that; on the other hand, overlap or semantic simi-
larity as captured in pre-trained models may not be
sufficiently nuanced to distinguish between actual
uptake and mere accidental, topic-induced, seman-
tic similarity or lexical overlap.

We observe that modeling the discourse dynamic
explicitly and separately from the fine-tuned-LLM-
based model of the content yields more explainable
models than models where the content of a large
surrounding context is used within the LLM-based
model. Thus, our design and results allow us to see
clearly the extent to which the fact of the within-
block students’ utterances, irrespective of what is
said, can predict the score on Indicator 3A, as well
as to observe the complementarity of the content
and structure as sources of information.

6.2 Generalization based on select examples

We observed previously that the design of the hu-
man evaluation campaign conducted prior and in-
dependently from the computational modeling was
such that raters were asked to provide justifications
for their scores in the form of specific utterances
that could serve as positive examples of the target
behavior; only 5–8% of the PST utterances were
picked as positive examples. The general preva-
lence of utterances that exhibit the target behavior
was not known a-priori, nor was it obvious that
better performance, based on holistic scores, would
clearly correspond to having more utterances that
exhibit such behaviors.

Figure 5 shows boxplots of the proportion of au-
tomatically predicted positive examples for either
Indicator by human-assigned holistic proficiency
levels according to Dimension 3 scores. First, we
observe that the system was able to detect many
more positive examples than were provided – even
at the lowest level of performance, most PSTs ex-
hibited the target behavior in more than 10% of
their utterances, while most of the best-performing
PSTs did it in more than 40% of theirs.

Second, we observe a strong differentiation be-
tween proficiency levels – boxes containing middle
50% of the performances per level have almost no
overlap. This provides validity evidence not only
for the automated modeling but for the human holis-
tic scores as well, showing that they correspond to
explicit, quantifiable transcript-level aggregation
of relevant evidence.

Third, the emergent differentiation enables easily
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Construct Model
Number of epochs

Accuracy Cohen κ F1
or estimator

Indicator 3A
CAN 3 epochs 0.899 0.283 0.321
CAS MP 0.924 0.604 0.646
CAX RF 0.931 0.641 0.679

Indicator 3B
CBN 6 epochs 0.774 0.531 0.711
CBS RF 0.632 0.260 0.602
CBX MP 0.793 0.571 0.739

Table 5: Test set evaluation results for utterance-level classifiers.

Construct Model Estimator MSE Pearson correlation

Indicator 3A
RAN MP 0.343 0.468
RAS RF 0.354 0.480
RAX RF 0.335 0.513

Indicator 3B
RBN LR 0.238 0.705
RBS MP 0.325 0.530
RBX LR 0.215 0.724

Dimension 3
RDN BR 0.242 0.547
RDS MP 0.202 0.631
RDX BR 0.183 0.678

Table 6: Test set results for transcript-level regressors. Lower MSE is better; higher correlation is better.
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Figure 5: Boxplot of human-assigned Dimension 3 pro-
ficiency level vs. percentage of model-predicted positive
examples (either Indicator) in transcript.

explainable and visually clear feedback whereby
a PST’s performance could be mapped against
teachers at various levels of proficiency, to com-
municate not only current performance level but
also how much more frequently one needs to im-

plement the target behavior in order to move to
the next level. Taken together, our results suggest
that having humans provide select evidence for the
score could be a viable alternative to a more com-
prehensive utterance-level annotation that is the
prevalent approach in the literature on automation
of the detailed evaluation of teacher discourse.

7 Conclusion

The goal of the current study was automated evalua-
tion of teacher discourse when facilitating a discus-
sion in a simulated elementary science classroom.
We showed that models focused on the content
of the teacher’s utterances using fined-tuned large
language models and models focused on the struc-
ture of the discourse modeled using handcrafted
features captured complementary aspects of the
target construct and could be fruitfully combined
into hybrid models that outperformed both con-
tent and structure models. Our results also demon-
strated strong generalization from a small number
of “score justifications" provided by expert human
raters, suggesting a potentially more efficient data
generation paradigm than an exhaustive annotation
of discourse moves.
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8 Limitations

A limitation of the current study is the use of only
one scenario for a simulated discussion, namely,
the Mystery Powder task for an elementary science
classroom and so it is not clear to what extent the
type of models discussed in this paper will gener-
alize to other scenarios. To address this limitation,
we are developing additional scenarios, collecting
discussion transcripts, and conducting human eval-
uations to generate data for additional studies that
would examine the generalization of the technique
proposed in this paper to new scenarios in both
science and mathematics contexts.

Another limitation is that the current data come
from pre-service teachers only; an online simula-
tion could also be useful for early career in-service
teachers. We are in the process of collecting data
from in-service teachers and will be able to exam-
ine generalization to a different user population
as the project progresses and more data become
available for computational analysis.

Our experiments did not vary the size of the con-
text window for DistilBERT. In line with Suresh
et al. (2022b), it is possible that larger windows
might substantially improve the performance of
the fine-tuned-LLM-based models. That said,
larger windows can potentially “encroach" on the
structure-based models’ territory making the dis-
tinction between what is due to the structure and
what is due to the content harder to maintain, and
with it, the explainability that comes from being
able to point to the distinct aspects of the simu-
lated discussions as information sources for the
models. The explainability of the models is impor-
tant not only for the PST buy-in, but also for the
interdisciplinary team that is working on creating
feedback reports based on the models’ output. An
explanation connecting the focus of the rubric to
the performance of models with different types of
information, as in section 6.1, helps the science
teacher educators on the team appreciate the align-
ment between the rubric and the automated models.

Another limitation of the current study is using
only DistilBERT. This model was picked for its
efficiency and prior successful use in educational
settings (Butt et al., 2022; Pearce et al., 2023); how-
ever, larger and more powerful models may support
stronger performance, especially for Indicator 3A,
where there is substantial room for improvement,
with the current best performance of r = 0.513.
Having established the baselines in this study, we

intend to explore additional LLMs, resources per-
mitting.

The data used in the study comes from predom-
inantly White and female PSTs, reflecting the de-
mographic at the data collection sites and in the
teacher population in the USA. In the ongoing data
collection, we are making an effort to reach out to
more diverse demographics. Demographic infor-
mation about the expert raters who provided scores
and justifications was not collected; this will be
rectified in future studies.

All current data come from pre-service teachers
in the USA and all simulated discussions are con-
ducted in English. In principle, actors who speak
other languages could be trained to provide online
practice to pre-service teachers in other cultural and
linguistic environments; however, the detail and nu-
ance of culturally appropriate teacher-student and
student-student interactions might differ. At the
moment, the scope and funding of the ongoing
project do not allow addressing this limitation.

9 Ethics statement

The transcripts, scores and score justifications used
in this study were collected with the approval of
our Institutional Review Board with informed con-
sent of the participants as part of previous stud-
ies. Participants were provided information about
the purpose of the study, the risks and benefits to
participating in the study, and details about what
participation entailed. The raters were paid for the
time they contributed to generating the scores and
score justifications and the PSTs were paid for be-
ing research participants. The PSTs were enrolled
in an elementary methods course at their university
and were recruited based on their professor’s par-
ticipation in the study. Each PST could voluntarily
consent to participate (or not) in the research study
to have their transcript data used for research pur-
poses. The consent form for participants included
the following statement about risks: “Some partici-
pants may experience a small degree of discomfort
when facilitating the discussions in the simulated
classroom environments.” All transcript data is de-
identified, and a PST is represented by a numerical
ID in each transcript. The data does not contain
offensive content. The collected data is used in
compliance with the consent. The consent form
contained an explanation of the intended use: “The
video recordings and transcripts of your sessions
will be used for research purposes . . . anonymized
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data and recordings may be used in future research
studies.”

Since the ultimate goal of the project is to enable
automated feedback to PSTs that would replace hu-
man feedback, there is a risk of incorrect feedback,
since it is unlikely that an automated system will
be accurate 100% of the time. First, human raters
also sometimes make mistakes. Second, at least
some of the use cases of the tool with feedback
are within teacher training programs led by teacher
educators; any feedback that surprised the PST or
seemed unclear or incorrect can be discussed with
the teacher educator. Third, every PST has access
to the video recording of their own simulated dis-
cussion from Mursion; they can review the video to
verify that the feedback makes sense with respect
to their performance. Finally, a PST can engage in
the simulation multiple times and it is possible that
some of the feedback mistakes will be rectified in
successive simulations.

Our use of the toolkits is in accordance with
their licensing terms: Apache 2.0 license for Hug-
gingFace transformers3 and BSD 3.0 license for
scikit-learn.4
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A Combined utterance-level classifier
predictions

Here are some utterance blocks whose PST utter-
ance was predicted positive for Indicator 3A, for
the combined model (CAX).

TEACHER
Okay. I’m trying to figure out how to explain this
the best way possible. Actually, Carlos, do you
want to explain it because sometimes hearing it
from a friend is easier.
CARLOS
Yeah. I didn’t want to look at the weight because
it just tells you how much there is, not what it is.
WILL
Hmm. Well that’s a little confusing.
CARLOS
Well, what I mean is if you have a slice of pizza
or you have a whole pizza, it’s still pizza, right?
It’s just a different size.
WILL
Well, yeah, I guess so. A slice of pizza is still
pizza.
CARLOS
Yeah, exactly and so it’s the same with this. It
doesn’t matter how much you have, It’s still the
same thing.
WILL
I guess the weight doesn’t actually tell you what
it is.
CARLOS
Yeah, exactly.

TEACHER
So in your small groups, and Carlos, you can
join with Jayla and Emily. Talk about how you
feel about the way that you went about the ex-
periment and how you feel that you could’ve
changed it.
EMILY
You know, I guess problem has enough proper-
ties, just not enough of the right properties.
CARLOS
Yeah. I thought I was on the right track with
only using the weight, but I guess I didn’t see it
or realize that what the color in this is also the
same one.
JAYLA
Yeah. I think because we were trying to be like
“Lets test all the properties” but I guess now that
we know that.

Here are some utterance blocks whose PST ut-
terance was predicted positive for Indicator 3B, for
the combined model (CBX).

TEACHER
Okay. Does anybody think that they should have
looked at more properties or less? And why?
CARLOS
Well, I think that they should have looked at
more properties because they only looked at a
couple. And they were also talking about how
they looked at weight and they didn’t need to
look at that one.

TEACHER
Okay. What does everyone else think about what
Jayla just said?
WILL
Well, what she said about why weight is an im-
portant property I didn’t think that. I thought it
was an important property, because you could
measure it. But what Carlos said makes sense.

B Some figures and tables

Figure 6: Reference table of powders and properties for
the Mystery Powder Task (Mikeska et al., 2021, p. 30).
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Figure 7: Pre-work by Jayla and Emily (Mikeska et al.,
2021, p. 30).
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cv_dict_classifier = {
"LR": (LogisticRegression(), {"C":[1,2,3,4,5,10,20], \
"class_weight":[None,"balanced"]}), \
"MLP": (MLPClassifier(random_state=42, max_iter=int(3e3)), {"hidden_layer_sizes": \
[1*(5,),2*(5,),3*(5,),1*(10,),2*(10,),3*(10,),1*(20,),2*(20,),3*(20,),1*(30,)

,2*(30,),3*(30,)], \
"activation": ["logistic", "tanh", "relu"], \
"solver": ["lbfgs", "sgd", "adam"], "alpha": [0.00005,0.0005]}), \
"DT": (DecisionTreeClassifier(random_state=42), { "splitter":["best","random"], \
"max_depth": np.arange(3, 15), "max_features":["log2","sqrt",None],"class_weight": [

None,"balanced"]}),
"RF": (RandomForestClassifier(random_state=42), {"max_depth": [5,10,20,30,None],
"max_features": [1,"sqrt"],"min_samples_leaf": [1,2,4],"min_samples_split":

[2,5,10],\
"class_weight": [None,"balanced"]})
}

Table 7: Classifier hyperparameter grids, for use with Scikit-learn.

cv_dict_regressor = {
"LR": (LinearRegression(), {"fit_intercept":[False, True]}), \
"MLP": (MLPRegressor(random_state=42,max_iter=int(3e3)), {"hidden_layer_sizes":
[1*(5,),2*(5,),3*(5,),1*(10,),2*(10,),3*(10,),1*(20,),2*(20,),3*(20,),1*(30,)

,2*(30,),3*(30,)],
"activation": ["logistic", "tanh", "relu"],
"solver": ["lbfgs", "sgd", "adam"], "alpha": [0.00005,0.0005]}), \
"DT": (DecisionTreeRegressor(random_state=42), { "splitter":["best","random"],
"max_depth": np.arange(3, 15), "max_features":["log2","sqrt",None]}), \
"BR": (BayesianRidge(), {"tol": [1e-4, 1e-3, 1e-2],
"alpha_1": [1e-7, 1e-6, 1e-5, 1e-4, 1e-3], "lambda_1": [1e-7, 1e-6, 1e-5, 1e-4, 1e

-3],
"fit_intercept": [False, True]}), \
"RF": (RandomForestRegressor(random_state=42),{"max_depth": [5,10,20,30,None],
"max_features": [1,"sqrt"], \
"min_samples_leaf": [1,2,4], \
"min_samples_split": [2,5,10]}),

}

Table 8: Regressor hyperparameter grids, for use with Scikit-learn.
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Model Selected Cohen’s κ mean (SE)

CAN 3 epochs 0.475 (0.001)
CAS MP 0.653 (0.026)
CAX RF 0.717 (0.026)

CBN 7 epochs 0.491 (0.007)
CBS RF 0.324 (0.043)
CBX MP 0.622 (0.033)

Table 9: 5-fold cross-validation results for classifiers,
with Cohen’s κ as metric. Higher values are better.

Model Selected MSE mean (SE)

RAN MP 0.332 (0.046)
RAS RF 0.250 (0.035)
RAX RF 0.245 (0.042)

RBN LR 0.242 (0.015)
RBS MP 0.387 (0.017)
RBX LR 0.236 (0.012)

RDN BR 0.251 (0.044)
RDS MP 0.233 (0.034)
RDX BR 0.219 (0.034)

Table 10: 5-fold cross-validation results for regressors,
with mean squared error (MSE) as metric. Lower values
are better.
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Abstract

While machine learning methods have sup-
ported significantly improved results in edu-
cation research, a common deficiency lies in
the explainability of the result. Explainable
AI (XAI) aims to fill that gap by providing
transparent, conceptually understandable expla-
nations for the classification decisions, enhanc-
ing human comprehension and trust in the out-
comes. This paper explores an XAI approach
to proficiency and readability assessment em-
ploying a comprehensive set of 465 linguistic
complexity measures. We identify theoretical
descriptions associating such measures with
varying levels of proficiency and readability
and validate them using cross-corpus experi-
ments employing supervised machine learning
and Shapley Additive Explanations. The re-
sults not only highlight the utility of a diverse
set of complexity measures in effectively mod-
eling proficiency and readability in Portuguese,
achieving a state-of-the-art accuracy of 0.70 in
the proficiency classification task and of 0.84
in the readability classification task, but they
largely corroborate the theoretical research as-
sumptions, especially in the lexical domain.

1 Introduction

As technology evolves at a rapid pace, the field of
education undergoes continuous adaptation. Par-
ticularly in language learning, numerous tools are
being developed with the goal of facilitating the
practice of a second language and providing tai-
lored materials. In order to effectively model natu-
ral language, it’s crucial to identify and empirically
validate the relevant linguistic properties to use.
Linguistic modelling with complexity measures
has been proven to be highly effective in provid-
ing evidence-based insight into the assessment of
both proficiency and readability (Benjamin, 2012;
Crossley et al., 2017).

Second language proficiency and text readability
are often associated concepts in language learn-

ing. Proficiency is usually equated to the notions of
mastery and ability of understanding and produc-
ing another language (Hulstijn, 2015). Readability,
in turn, encompasses the degree of reading diffi-
culty which a text may exert on a reader (Dale
and Chall, 1949). While widely acknowledged as
multidimensional and dynamic constructs, profi-
ciency and readability are commonly assessed us-
ing standardized scales. The Common European
Framework of Reference for Languages (CEFR,
Council of Europe) stands out as one of the most
prominent scales for measuring proficiency, while
readability is usually estimated according to differ-
ent education, proficiency, and literacy levels.

In this context, it is essential to note the limited
empirical evidence supporting the categorization of
the mentioned constructs into levels and the precise
definition of each level (Hulstijn, 2015). The En-
glish Profile Programme (EGP, Hawkins and But-
tery, 2008) is a notable effort to clarify proficiency
levels by identifying linguistic features whose pres-
ence or absence corresponds to specific English
CEFR levels. However, the success of such an ini-
tiative heavily relies on the availability of abundant
data and specialized manpower for data annotation
and analysis, which may not be readily accessible
for languages other than English.

In this paper, our objective is to propose an auto-
matic method that comprehensively captures the nu-
anced characteristics defining language proficiency
and text readability in Portuguese, as well as to
provide a robust multilingual text analysis platform
which will be made freely available online. By
performing linguistic modeling and applying ex-
planatory methods, we seek to validate theoretical
postulations and enhance our understanding of the
linguistic properties which are crucial for language
learning, by answering the following research ques-
tions:

1. How well does a broad set of linguistic com-
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plexity measures model proficiency and read-
ability levels in Portuguese?

2. What are the most discriminative measures
for each proficiency and readability level? Do
they coincide with theoretical suggestions?

3. Can Explainable AI be used with the purpose
of describing proficiency and readability lev-
els?

To address these questions, we use two dis-
tinct datasets: One consisting of European Por-
tuguese learner productions and another consisting
of Brazilian school materials. The constructs under
investigation will be modeled as classification tasks.
By leveraging such measures, language learning
tools and generative models may better capture the
nuances of written language, leading to a deeper
understanding of the intricacies of readability and
proficiency assessment (Housen et al., 2012).

2 Related Work

The extraction and analysis of linguistic complex-
ity measures have been extensively explored in
research. While many studies on automatic pro-
ficiency and readability assessment have primar-
ily investigated the English language (e.g. Ortega,
2003; Lu, 2010; Bulté and Roothooft, 2020), ad-
vancements in Natural Language Processing (NLP)
have facilitated the extension of research to other
languages.

In European Portuguese, del Río (2019b) em-
ployed a supervised-learning approach using a
learner corpus, achieving a 0.72 accuracy and 0.71
F-score by combining 39 linguistic complexity
measures with other types of features, such as
n-grams and readability formulas. Similarly, in
Brazilian Portuguese, Evers (2013) used a corpus
from a Brazilian Portuguese proficiency exam, ex-
tracting 48 linguistic measures for a binary classi-
fication task distinguishing between beginner and
advanced learners, achieving an accuracy of 0.70
with a J48 classifier.

Automatic readability assessment has also been
explored in the context of the Portuguese language.
For instance, Curto et al. (2014) analyzed a cor-
pus of L2 Portuguese texts, extracting 52 linguistic
complexity measures. Their experiments achieved
accuracy scores of 0.86 and 0.79 for three-level and
five-level classification tasks, respectively. Addi-
tionally, Akef et al., 2024 extracted 489 linguistic

complexity measures using the platform herein pre-
sented with machine learning algorithms for read-
ability classification. This study demonstrated that
models which incorporated informative features
exhibited the highest generalization rate across var-
ious samples.

Regarding the use of explainable AI in Por-
tuguese studies, Oliveira et al. (2023) explores the
estimation of textual cohesion across essays in both
Portuguese and English. The study found that al-
though a deep learning-based model demonstrated
superior performance, conventional machine learn-
ing models showed stronger potential in explain-
ability.

The mentioned studies represent a crucial ad-
vancement in the automatic classification of pro-
ficiency and readability in Portuguese; however,
they have limitations. Except for a few, most of the
studies in Portuguese readability and proficiency
assessment suffer from either a lack of a compre-
hensive set of measures, which might not fully cap-
ture the complexity and nuances of proficiency and
readability, or from the absence of interpretability
and detailed insight into feature importance. As
a result, the depth of understanding regarding the
constructs themselves and their categorization into
separate levels may be limited.

3 Data

Two corpora were selected for our experiments and
analyses: NLI-PT (Gayo et al., 2018) and Corpus
de Complexidade Textual para Estágios Escolares
do Sistema Educacional Brasileiro (Gazzola et al.,
2019). The former comprises 3069 L2 Portuguese
learner texts, categorized into three general levels:
A (consisting of the CEFR levels A1 and A2), B
(B1 and B2), and C (C1). The distributions of the
texts in this corpus can be found in Table 1.

Proficiency Level Number of Texts
A - Beginner 1,388
B - Intermediate 1,215
C - Advanced 466
Total 3,069

Table 1: Distribution of texts across proficiency levels
in NLI-PT.

Regarding the latter corpus, it is a collection of
2076 Portuguese texts taken from Brazilian pub-
lic school materials, and are separated into four
school levels (elementary school, middle school,
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high school and university education). Their distri-
bution is displayed in Table 2.

Education Level Number of Texts
Elementary School 297
Middle School 325
High School 628
University Education 826
Total 2,076

Table 2: Distribution of texts across school levels in the
Córpus de Complexidade Textual para Estágios Esco-
lares do Sistema Educacional Brasileiro corpus.

It is important to note that the distribution of
texts into the separate categories in both corpora is
imbalanced. That means that some levels are better
represented than others, possibly influencing the
classification results.

4 Methods

Our experiments consist of three main steps: first,
extracting linguistic complexity measures from the
chosen corpora; then conducting two types of clas-
sification experiments, one for proficiency and one
for readability; and finally, analyzing the results us-
ing an explainable AI method to understand feature
importance.

4.1 Automatic Complexity Measure
Extraction

The Common Text Analysis Platform (CTAP, Chen
and Meurers, 2016),1 which already supports other
languages, was extended to accommodate the ex-
traction of 465 Portuguese complexity measures
covering superficial counts and the linguistic do-
mains of lexicon, syntax, morphology and dis-
course.2 Table 3 displays the current distribution
of measures across these domains.

The extension to Portuguese analysis was made
possible via the integration of the Stanza pipeline
(Qi et al., 2020), which provides a pipeline for to-
kenization, lemmatization, sentence segmentation,
part-of-speech tagging, morphological annotation,
dependency and constituency parsing, followed
by specific methods based on extraction rules and
word frequencies. While the analysis tool is avail-
able online and is free to use, the Portuguese analy-
sis feature is not yet online as of this publication.

1https://sifnos.sfs.uni-tuebingen.de/ctap/
2The complete list of measures can be found as a supple-

mentary material.

The selection of which measures should be
added to the Portuguese complexity measure set
in this work was based on previous related works
(Weiss and Meurers, 2019). Additionally, in order
to understand which of these measures are asso-
ciated with the different proficiency and readabil-
ity levels, a detailed study was performed of the
Camões Institute’s Reference Level Descriptions
(RLD, Referencial Camões, 2017; Vaz et al., 2019),
which outlines the discursive notions, grammatical
structures, and lexical items expected of learners
based on their placement in the CEFR proficiency
scale. The Manual for Syntactic Simplification for
Portuguese (Specia et al., 2008) and the SIMPLEX-
PB 3.0 database (Hartmann et al., 2018) were also
consulted. These are resources which categorize
vocabulary and linguistic structures as easy or diffi-
cult based on their occurrence in different readabil-
ity levels.

Domain Number of Measures
Superficial 26
Lexical 235
Syntactic 108
Morphological 52
Discourse-based 44
Total 465

Table 3: Distribution of linguistic complexity measures
across the five domains.

4.1.1 Superficial Measures

Superficial aspects of the text are some of the most
traditionally analyzed ones. Although these mea-
sures require minimum computational power, they
have consistently shown good discriminative capa-
bilities (Bulté and Roothooft, 2020; Housen et al.,
2012; Norris and Ortega, 2009). These consist of
linguistic element counts, lengths, normalizations
and ratios.

The simplification manual suggests a uniform
increase in the length of texts one can read as they
advance in literacy. Regarding Portuguese as a
second language, while the RLD does not explicitly
mention an increase in superficial aspects of texts,
it suggests that different noun and verb inflections
as well as syntactic constituents are acquired as the
learner moves to more advanced levels, which may
consequently influence the length of their words,
phrases and clauses.
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4.1.2 Lexical Measures
Lexical complexity has been shown to be very rele-
vant in linguistic complexity studies. For instance,
Crossley et al. (2011) reported that older writers
seem to produce more infrequent, less diverse, and
more abstract words. It has been also demonstrated
that the use of infrequent words may exert a nega-
tive impact on reading comprehension (Nation and
Coady, 1988). In addition, McCarthy and Jarvis
(2010) suggest that low values of lexical density
may be indicative of a smaller propositional com-
plexity. McNamara et al. (2010) also report on the
positive correlation between lexical diversity and
linguistic competence.

In this study, we extracted measures related to
lexical density, variation, and sophistication. Lex-
ical density was computed by scaling lexical and
function words by the total number of tokens. Vari-
ation was assessed by dividing the number of lex-
ical types by the number of lexical tokens, and
through edit distance calculations for lemmas, parts
of speech, and tokens. To measure lexical sophisti-
cation, we considered aspects such as age of acqui-
sition (Cameirao and Vicente, 2010), concreteness,
imageability, and familiarity (Soares et al., 2017).
Contextual diversity and word frequencies were
derived from the SUBTLEX-PT lexical database
(Soares et al., 2015). Additionally, we included
frequency-based measures from the Portuguese Vo-
cabulary Profile project (Torigoe, 2017) and a list
of complex words (Hartmann et al., 2018).

4.1.3 Morphological Measures
The morphological measures implemented in this
work prioritize the inflectional system of Por-
tuguese, as they can be easily generalized to other
languages. Measures of derivational and composi-
tional morphology will be eventually added to the
system.

The RLD suggests that verb forms are learned
incrementally starting from the simple present. The
past participle verb form, for instance, is described
as being incrementally learned, starting at A2 level,
with its regular and irregular forms, and is con-
solidated at level B1 with the double participle
with gender and number inflection. Given that this
verb form is prevalent in constructions deemed as
advanced, like passive sentences and the present
perfect tense, it is expected to be more common in
texts for advanced learners rather than beginners.
Both the RLD and the simplification manual affirm
that inflections like the present perfect tense, simple

future tense, present subjunctive, conditional mood,
and passive voice are typically found in advanced
texts.

4.1.4 Syntactic Measures

The syntactic measures are based on both syntactic
element counts and ratios. Clauses, phrases, com-
plements, T-Units, modifiers, subjects and clefts
were taken into consideration. We have measured
clausal elaborateness, by taking clausal subordina-
tion and coordination into account. More specifi-
cally, regarding coordination, we calculate copula-
tive, disjunctive and asyndetic coordinate clauses.
In addition, we measure phrasal elaborateness by
accounting for noun and verb phrases, as well as
different types of subject, such as null and clausal
subjects. Lastly, measures based on the Depen-
dency Locality Theory (DLT, Gibson et al., 2000)
were also included.

Most studies done in English have shown that
measures like sentence length, clausal elaborate-
ness, number of clauses and dependent clauses
per T-unit increase throughout proficiency levels
((Norris and Ortega, 2009; Ortega, 2003; Lu, 2010).
Moreover, the simplification manual suggests that
sentences with a high rate of embeddedness are
more challenging to read, as well as the inverse
order of verb-subject, instead of subject-verb. The
latter, being learned only at the B1 level, according
to the RLD.

4.1.5 Discourse-based Measures

The measures implemented concerning discourse
are based on the list of connectives developed by
Mendes and Río (2018). Additionally, we mea-
sured the use of single and multi-word connectives,
as well as easy and difficult connectives. The latter
are based on two lists created by Leal et al. (2021).
In terms of referential cohesion, measures regard-
ing argument overlap, lemma overlap and lexical
word overlap were calculated. For all these features,
their mean and standard deviation values were also
calculated and included as separate features.

In the simplification manual, it is suggested
that discourse connectives improve comprehension,
meaning they should occur often in earlier levels
and be replaced incrementally by more advanced
linguistic devices. The RLD also suggests that con-
structs like anaphora are acquired by intermediate
learners.
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4.2 Classification Experiments

Based on prior research findings (del Río, 2019a),
we conducted classification tasks implementing
three distinct supervised learning classifiers: Sup-
port Vector Machine, Linear Regression and Ran-
dom Forest. In addition, a Multi-Layer Perceptron
classifier was used in order to verify whether a
simple neural network architecture performs signif-
icantly better or worse.3

For the sake of consistency and in order to war-
rant fair comparisons, all of the experiments herein
performed were implemented in the Python pro-
gramming language, using algorithms provided by
the Scikit-learn library (Pedregosa et al., 2011).

The values for each measure were scaled using
the library’s method StandardScaler, in order to
avoid the effect of high cardinality, due to differing
range sizes among measures. Additionally, Scikit-
learn’s method GridSearch was applied alongside
10-fold cross-validation in order to optimize the
models’ performance and avoid overfitting. Lastly,
to evaluate model performance, separate testing
sets were created using an 80/20 split for training
and testing purposes. Results from both the 10-fold
cross-validation and held-out test sets are presented
below.

4.3 Explainable Artificial Intelligence with
SHAP

Explainable Artificial Intelligence has seen signif-
icant development, offering various approaches
for understanding model outputs (Došilović et al.,
2018). To gain insight into feature contribu-
tions, we adopted the Shapley Additive Explana-
tions (SHAP, Lundberg and Lee, 2017) framework,
which has been recently applied in proficiency and
readability studies (e.g. Korniichuk and Boryczka,
2021; Nguyen and Wintner, 2022).

SHAP was selected over alternative interpreta-
tion methods such as LIME (Ribeiro et al., 2016)
due to its ability to offer insights into feature im-
portance both locally and globally, irrespective of
the underlying model’s complexity. This flexibility
was crucial for our study, given the diverse linguis-
tic measures and the use of non-linear SVMs with
RBF kernels, where interpretation can be challeng-
ing (Sanz et al., 2018). In contrast, SHAP allows
us to delve into each prediction, offering a deeper

3All experiment resources can be accessed through
the following link: https://osf.io/ehdc9/?viewonly =
2e7ee278d187417c82219dc6eab6e29e

understanding of how specific features influence
model outcomes.

Specifically, we employed the KernelExplainer
method from the SHAP package. This method
estimates the importance of each feature in making
a particular prediction. It calculates the SHAP
values, which represent the marginal contribution
of each feature to the prediction across all possible
combinations of features. Positive SHAP values
indicate a feature’s contribution to increasing the
model’s prediction, whereas negative values signify
a decrease in the prediction. These values are then
combined using a weighted sum to determine the
overall importance of each feature.

5 Proficiency Classification Results

While all classifiers showed similar performance,
the SVM classifier exhibited slightly better results
compared to the others, as shown in Table 4. Con-
versely, the sole neural network architecture in-
cluded in the analysis performed the worst. With
10-fold cross-validation, the best-performing clas-
sifier achieved a mean accuracy score of 0.70 and
a weighted F-score of 0.68. Furthermore, on eval-
uation with the held-out test set, it achieved an
accuracy of 0.73 and a weighted F-score of 0.72.

10-Fold CV Test Set
F1 Acc F1 Acc

Logistic Regression 0.68 0.68 0.70 0.69
Multi Layer Perceptron 0.64 0.66 0.66 0.67

Random Forest 0.68 0.68 0.67 0.63
Support Vector Machine 0.68 0.70 0.73 0.72

Table 4: 10-fold cross-validation and test set accuracy
and F1-scores achieved in proficiency classification ex-
periments with all features.

In the confusion matrix (Table 5), proficiency
level A had the highest accuracy, with 219 true
positives, but 41 were misclassified as B. Notably,
51 texts from level B were misclassified as level A,
and 19 as level C. Level C had the fewest true posi-
tives, possibly due to class imbalance, as discussed
by (del Río, 2019b) or due to factor which have not
been currently accounted for.

Figure 1 shows the mean SHAP values for the
top 20 features with the most impact on the model’s
output for each proficiency level, listed in descend-
ing order. Among these features, 10 are related to
the lexical domain. The most impactful feature is
complex word frequency, particularly influential
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A B C
A 219 41 3
B 51 178 19
C 19 32 29

Table 5: Confusion matrix of the test set, obtained from
the classification performed using the SVM classifier on
all features.

for levels A and C. Additionally, two Portuguese
Vocabulary Profile features, the A1 and B1 word
lists, strongly influenced the prediction of level A.

Phrasal and clausal elaboration significantly in-
fluenced the model’s output. The measures of rel-
ative clauses per clause and per T-unit were influ-
ential for distinguishing levels A and C, while the
mean length of noun phrases is most impactful for
predicting level B. The nominative case inflection
emerges as the sole highly discriminative morpho-
logical measure. Additionally, word frequency-
based features, clausal elaborateness, and lexical
sophistication measures contribute to the list.

6 Readability Classification Results

Consistently with the proficiency classification ex-
periments, Logistic Regression, Random Forest,
Support Vector Machine and Multy-Layer Percep-
tron classifiers were implemented. The results
achieved with 10-fold cross-validation and held-out
test sets for each classifier are displayed in Table
6. Similarly to the proficiency experiments, the
SVM classifier showed the best results, achieving
an accuracy of 0.84 from 10-fold cross-validation,
and an accuracy 0.85 with the held-out test set.

10-Fold CV Test Set
F1 Acc F1 Acc

Logistic Regression 0.81 0.83 0.81 0.81
Multi Layer Perceptron 0.83 0.83 0.82 0.82

Random Forest 0.74 0.79 0.76 0.76
Support Vector Machine 0.85 0.86 0.87 0.87

Table 6: 10-fold cross-validation and test set accuracy
and F1-scores achieved in the readability classification
experiments with all features.

Upon reviewing the confusion matrix presented
in Table 7, it becomes evident that the classifier
effectively distinguished the elementary school
school level from the others, with only 6 misclassi-
fications as middle school texts. For the last three

levels, there were minimal misclassifications into
adjacent levels.

1 2 3 4
1 49 6 0 0
2 4 58 12 1
3 0 1 78 12
4 0 1 14 142

Table 7: Confusion matrix of the test set, obtained from
the classification performed using the SVM classifier on
all features.

Figure 2 displays the mean SHAP values for
the top twenty influential features. Thirteen of
these features pertain to the lexical domain, four
to morphology, two to surface features, and one to
syntax.

The imageability of lexical word types had the
strongest impact on the model’s output. Familiar-
ity, age of acquisition, the lexical density of ar-
ticles and determiners and frequency-based mea-
sures were also highly discriminative. Additionally,
superficial measures like the standard deviation of
token length in syllables and letters were predic-
tive. Morphological measures were also influential,
with inflections in case, mood, person, and number
showing strong impacts, particularly in differen-
tiating the first and last levels. Notably, phrasal
and clausal elaborateness seemed less significant
in predicting school levels compared to proficiency
classification.

7 Feature Selection

During the analysis of the measures, we found
that some linguistic features were highly corre-
lated with each other, aligning closely with expec-
tations, for example, the correlation between the
number of letters and the number of syllables, or
the number of determiners and the number of arti-
cles. However, other correlations were less antici-
pated, such as those between subordinate clauses
and corrected Type-Token Ratio (TTR) of verbs.
Although removing correlated features is important
for enhancing a model’s performance, appreciating
their interactions remains crucial for interpretation.
Thus, a trade-off between interpretability, model
complexity and performance emerges as a central
consideration.

To maintain model interpretability, we refrained
from employing feature engineering or dimension-
ality reduction techniques, opting instead for the
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Figure 1: Distribution of the mean SHAP values of the 20 most discriminative features for proficiency level
prediction (in descending order vertically). This figure also shows to what extent each measure, be its presence or
absence, impacted the prediction of each level (on the horizontal axis).

Figure 2: Distribution of the mean SHAP values of the 20 most discriminative features for readability level
prediction.
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CfsSubsetEval and InfoGain methods implemented
by the Waikato Environment for Knowledge Anal-
ysis (WEKA, Hall et al., 2009). CfsSubsetEval
identifies an informative yet uncorrelated subset of
features. Similarly, InfoGain evaluates each fea-
ture’s contribution to reducing entropy, aiding in
the selection of the most informative features.

Reducing the number of features resulted in only
a minor decline in performance, indicating that
fewer features are adequate to achieve satisfactory
classification results. Tables 8 and 9 provide a
comprehensive overview of the SVM classifier’s
performance with both selected and full feature
sets.

10-Fold CV Test Set
F1 Acc F1 Acc

All features 0.68 0.70 0.73 0.72
CfsSubsetEval 0.65 0.67 0.68 0.68

InfoGain 0.66 0.65 0.68 0.67

Table 8: 10-fold cross-validation and test set accuracy
and F1-scores achieved in the proficiency classification
experiments with all the features and the selected feature
sets.

10-Fold CV Test Set
F1 Acc F1 Acc

All features 0.85 0.86 0.87 0.87
CfsSubsetEval 0.83 0.84 0.83 0.83

InfoGain 0.85 0.86 0.86 0.86

Table 9: 10-fold cross-validation and test set accuracy
and F1-scores achieved in the readability classification
experiments with all the features and the selected feature
sets.

8 Discussion

In addition to obtaining the mean SHAP values of
the most discriminative features, the SHAP values
associated with each level were also inspected,4

the measures referring to the superficial and lexi-
cal aspects exhibited the strongest discriminative
power. Advanced learners produced more and

4The generated plots for each separate level can be found
in the following link: https://osf.io/ehdc9/?viewonly =
2e7ee278d187417c82219dc6eab6e29e

longer words and sentences than beginners. A uni-
form increase was present concerning most of these
features. The same is true for the school materi-
als corpus herein utilized. Texts from the highest
education levels demonstrated a higher incidence
of words considered complex, abstract, infrequent
and generally unfamiliar when compared to the
lower ones. The same pattern was identified in
terms of lexical variation. This is in line with the
postulations in the simplification manual.

Regarding the syntactic domain, our data also
corroborates most of the remarks. In the produc-
tions of L2 Portuguese learners, it was verified
that clausal subjects, passive sentences, subordi-
nate and relative clauses, as well as asyndetic co-
ordinated clauses are indicative of more advanced
levels. These grammatical constructions only arise
after the general level B in the analyzed data. Com-
paratively, texts from the different educational lev-
els demonstrated more homogeneity regarding syn-
tactic measures. Although sentences and clauses
are shorter in the early levels, constructions like
subordinate and relative clauses as well as clausal
subjects remained relatively constant across the
levels. More pronounced contrasts regarding this
domain were only found in terms of passive sen-
tences and left embeddedness, which is in line with
both the Portuguese RLD and the simplification
manual.

Morphological measures also demonstrated con-
tributions in differentiating the levels. For instance,
it was observed that L2 learners placed at pro-
ficiency level A produced a distinctively higher
amount of nominative case inflections, and, on the
other hand, they exhibited low amounts of the ac-
cusative case inflection. In terms of verbal mood,
it was observed that beginners also produce high
amounts of indicative mood. This corroborates
suggestions from the Portuguese RLD which sug-
gests most verb tenses in the subjunctive mood are
learned at levels B1 and B2. The same trend re-
garding the high use of the nominative case was
observed in the Brazilian corpus. The elemen-
tary school texts contained a distinctively higher
amount of this inflection when compared to high
school or university ones; however the incidence of
accusative case inflection was not as pronounced.

Concerning discursive measures, it has been sug-
gested that as L2 learners progress, they tend to
use fewer explicit cohesive devices (Crossley and
McNamara, 2012). This trend was observed specif-
ically for causal connectives: Their absence indi-
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cated advanced L2 proficiency. On the other hand,
regarding the school texts, this was the case for
temporal connectives, which may very well point
to a diminished presence of narrative discourse and
higher amounts of expository discourse. Finally, in
terms of referential cohesion, its low values were
decisive for the prediction of the beginning profi-
ciency level, but no impact was identified for the
prediction of other levels or for the school texts.

9 Conclusion

In this paper, we explored Portuguese broad linguis-
tic modeling in relation to L2 proficiency and text
readability. Employing an elaborate NLP pipeline,
we extracted 465 measures of linguistic complexity
from two corpora. Our ultimate objective was to
understand which measures exerted the most im-
pact in each level’s prediction and assess the extent
to which these measures support the concept of
holistic, static, ascending categories of proficiency
and readability by implementing classification ex-
periments and applying explainable AI methods.

Our results show that the consistent performance
across different evaluation metrics suggests that the
SVM classifier, trained on a broad set of linguistic
complexity measures, provides a robust framework
for modeling proficiency and readability levels in
Portuguese texts. In particular, lexical features
were found to have strong discriminative capabili-
ties between different proficiency and readability
levels. These findings provide evidence as to vali-
date these measures and confirm the feasibility of
modeling natural language using a diverse range of
linguistic features. It also shows that XAI methods
can be applied to linguistic complexity analysis.

In line with the Portuguese RLD and the simpli-
fication manual, the texts herein analyzed exhibited
a uniform increase in the use of longer, more ab-
stract, less familiar and less frequent words across
both proficiency and readability levels. Moreover,
an increase in sentence embeddedness and coordi-
nation, as well as tense and voice inflection was
also positively confirmed in our findings. Addition-
ally, trends in discursive measures suggest shifts
in cohesive device usage as proficiency progresses,
with possible implications for different discourse
types.

These findings offer valuable insights for the re-
finement of language learning tools and assessment
techniques. Specifically, they emphasize the sig-
nificance of certain linguistic characteristics, such

as vocabulary type, morphological and syntactic
complexity, in modeling learner language and as-
sessing proficiency and readability. Additionally,
our intention to make CTAP’s Portuguese analysis
feature openly accessible online aims to support
the development of more linguistically informed
analyses through an accessible platform. This ini-
tiative is expected to facilitate the integration of
linguistic insights into educational technologies.

Limitations

Although SHAP offers valuable insights, multi-
collinearity among highly correlated features may
inflate or diminish feature importance, affecting
SHAP interpretation. Despite potential changes
in absolute SHAP magnitudes, relative importance
rankings remain informative. SHAP values evalu-
ate each feature’s marginal contribution, taking into
account feature interactions. Additionally, linguis-
tic analyses lend credibility to SHAP interpretation.

The imbalance in both corpora underscores the
necessity of balanced datasets to ensure reliable re-
sults in proficiency and readability assessment. An
imbalanced corpus may lead to an overemphasis on
dominant class characteristics, neglecting those of
minority classes and affecting model performance.
Another important observation is the influence that
distinct topic and tasks may inflict in the emergence
of specific grammar structures and lexical elements.
These aspects have not been accounted for in these
corpora’s metadata, suggesting a need for future
corpus creation that considers these aspects.
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Abstract

Pursuing educational equity, particularly in
writing instruction, requires that all students
receive fair (i.e., accurate and unbiased) assess-
ment and feedback on their texts. Automated
Essay Scoring (AES) algorithms have so far fo-
cused on optimizing the mean accuracy of their
scores and paid less attention to fair scores for
all subgroups, although research shows that stu-
dents receive unfair scores on their essays in re-
lation to demographic variables, which in turn
are related to their writing competence. We add
to the literature arguing that AES should also
optimize for fairness by presenting insights on
the fairness of scoring algorithms on a corpus
of learner texts in the German language and
introduce the novelty of examining fairness on
psychological and demographic differences in
addition to demographic differences. We com-
pare shallow learning, deep learning, and large
language models with full and skewed subsets
of training data to investigate what is needed
for fair scoring. The results show that training
on a skewed subset of higher and lower cogni-
tive ability students shows no bias but very low
accuracy for students outside the training set.
Our results highlight the need for specific train-
ing data on all relevant user groups, not only
for demographic background variables but also
for cognitive abilities as psychological student
characteristics.

1 Introduction

Educational equity is seen as a foundation for learn-
ing with technology (Warschauer et al., 2004), be-
cause all students need effective instruction. One
of the most effective instructional practices is feed-
back (Hattie and Timperley, 2007), which can sup-
port students in acquiring complex skills like writ-
ing (Graham et al., 2015). Automated essay scoring
(AES) can be used to provide students with feed-
back on their writing at scale (Fleckenstein et al.,
2023).

The foundation of equity in automated feedback
systems is the fairness of the algorithm ((Holstein
and Doroudi, 2021), (Pedró et al., 2019)), i.e.,
the absence of any prejudice or favoritism toward
groups of students based on their inherent or ac-
quired characteristics, including their background
and their psychological variables((Mehrabi et al.,
2019),(Government Equalities Office, 2013)). Al-
gorithmic fairness is widely discussed in various ed-
ucational contexts from normative (Blodgett et al.,
2020; European Commission, Directorate-General
for Education, Youth, Sport and Culture, 2022),
societal (Baker and Hawn, 2022; Kizilcec and Lee,
2020), or methodological (Mitchell et al., 2021)
perspectives, but literature reviews have shown that
it is rarely investigated empirically (Li et al., 2023).
Specifically in the AES context, only six empir-
ical studies have examined algorithmic fairness,
examining differences in algorithmic accuracy and
biases for students with different gender, race, and
language backgrounds in English-language corpora
(Arthur et al., 2021; Baffour et al., 2023; Bridge-
man et al., 2009; Litman et al., 2021; Kwako et al.,
2022; Yancey et al., 2023). This means that while
AES is widely used in education in many countries
(Fleckenstein et al., 2023) including non-English
speaking countries, it is unclear whether the al-
gorithms used are fair to all groups of students
confronted with the results or whether they might
disfavor some student gropus. Compounding the
problem, the few existing studies have shown that,
depending on the algorithms used, students’ essays
were not scored fairly and disfavored groups related
to race/ethnicity, economic status, and English Lan-
guage Learner status (e.g., Baffour et al. (2023);
Litman et al. (2021); Yang et al. (2024)).

So far, previous studies only analyzed fairness in
relation to students’ demographic variables in cor-
pora with students’ essays in English: Extending
this research to a corpus on argumentation essays
in the German language, we address three main re-
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search questions: (1) How fair are AES algorithms
for students with different levels of cognitive abil-
ities as psychological characteristics strongly re-
lated to writing competence? (Zhang and Zhang,
2023). Addressing this question is linked to the
wider equity issue of whether AES systems are
likely to widen or narrow the gap between high and
low-performing students. (2) How fair are AES
algorithms in languages other than English? The
question is especially important when automated
scoring is based on large language models, mostly
trained on English text data. (3) How is the distri-
bution of student characteristics in the training data
impacting the mean accuracy and fairness of the
prediction?

By answering these questions, our paper makes
the following contributions: First, we provide a
set of baseline models, including shallow learn-
ing, deep learning, and generative large language
models (LLM), for the newly released DARIUS
corpus, thus enriching the automatic scoring land-
scape with models for a large German argumenta-
tive writing corpus.

Second, we conduct fairness evaluations on our
results indicating that none of the models trained on
the entirety of training data shows unfair behavior
towards specific subgroups.

Finally, to assess the role of the distribution of
the training data on algorithmic fairness, we train
shallow and deep models with subsets of data from
students of low and high cognitive ability, as well
as a mixed subset based on low, medium and high
cognitive ability, and show that the models are un-
fair to the groups not included in the training set.

We make all of our code publicly available.1

2 Related Work: Fairness in AES
Algorithm

According to a literature review by Li et al. (2023),
there have been 49 peer-reviewed empirical studies
focused on fairness and predictive bias in educa-
tion since 2010, highlighting the growing academic
interest in these issues.

The studies included multiple fairness measures,
including the accuracy for the included groups and
the mean differences between predicted and an-
notated scores for each score (e.g., (Litman et al.,
2021)). Most of these studies were conducted in
contexts other than AES, such as predicting stu-
dents’ course performance or their likelihood of

1https://github.com/darius-ipn/fairness_AES

dropping out of a course. To our knowledge, there
are only two papers that diagnosed the predictive
bias displayed by AES models(Litman et al., 2021;
Arthurs and Alvero, 2020), even though the impor-
tance of this task has been pointed out as early as
in 2012 (Williamson et al., 2012). Litman et al.
(2021) evaluated the fairness of shallow and deep
learning AES algorithms for essays from the up-
per elementary level in the English language using
three measures: Overall Score Accuracy (OSA),
Overall Score Difference (OSD), and Conditional
Score Difference (CSD). They found that shallow
and deep AES algorithms showed systematically
overly positive and negative scoring depending on
students’ gender, race, and socioeconomic status.
Arthurs and Alvero (2020) showed that a shallow
learning AES system for college admissions essays
based on word vectors favored high-income stu-
dents over low-income students (see also (Bridge-
man et al., 2009) for similar results for essays from
the Test of English as a foreign language). Addi-
tionally, the authors trained models on only essays
from the highest quartile of students in terms of
performance, showing that these models are not
suitable for students from the other quartiles. Yang
et al. (2024) further emphasized that the fairness of
AES systems is compromised if such models are
used on students or tasks for which they have not
been trained.

In addition to the studies included in the litera-
ture review, recent studies added an investigation of
fairness in Large Language Models scoring essays
from a high school context Baffour et al. (2023) in
the PERSUADE 2.0 corpus (Crossley et al., 2022).
The authors compared the winning entries of the
Kaggle Feedback Prize competition.2 They show
differences in the model’s accuracy based on demo-
graphic factors such as student race/ethnicity, and
economic disadvantage. Similar fairness issues
based on students’ demographic variables were
shown for large language models in essays in the
English language written by first (Kwako et al.,
2023) and second language students (Yancey et al.,
2023).

In summary, previous studies on fairness in AES
have used shallow learning models, deep learning
models, and LLMs and compared whether the accu-
racy of judgments and systematic over/underrating
can be explained by students’ demographic vari-

2https://www.kaggle.com/competitions/
feedback-prize-2021
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ables. The results showed some fairness problems,
which were exacerbated in the studies where the
AES was additionally trained only on a homoge-
nous group of students.

3 Data

The DARIUS corpus is a collection of 4,589 an-
notated argumentative texts written by 1,839 stu-
dents from German high schools, spread across
114 classes in 33 different schools(Schaller et al.,
2024). Essays that were off-topic, shorter than two
sentences, empty, or contained names or other data
relevant to data protection were removed before-
hand. The final dataset consists of essays from two
writing assignments focused on socio-scientific is-
sues on the topics energy and automotive, contain-
ing 2,307 and 2,282 essays respectively. Students
wrote a draft and revision on one task, followed
by an essay on the other task, resulting in up to 3
essays per student. An example text is listed in the
Appendix 7. Students also provided demographic
data voluntarily, a selection of which is listed in
Table 1.

The dataset has been extensively annotated with
information about argumentative structure on dif-
ferent levels of granularity. In the present study, we
focus specifically on a subset of these annotations,
namely content zone, major claim, position and
warrant. Out of the nine original annotation cate-
gories, we selected those as they reflect different
parts of an argumentative text, e.g. structure and
content, and are annotated on different granularity
levels (token level to whole texts). We used the
demographic data to measure fairness with respect
to gender, profile, school, cognitive ability (KFT),
and languages, which are further explained after
providing more details on the annotations in Sec-
tion 3.1. A more extensive description can be found
in the original paper (Schaller et al., 2024).

3.1 Annotations

Content zone: This annotation category breaks
down the essays into their basic parts: the introduc-
tion, the body, and the conclusion. Each section
can be as short as one sentence or span several
sentences.

Major claim annotation: Central to the argu-
mentative essence of the essays, the Major Claim
annotation identifies the pivotal stance taken by the
author on the discussed issue. In contrast to similar
annotation efforts (Stab and Gurevych, 2014), we

also include claims written not only in the opening
paragraphs but also within the conclusion, offering
a comprehensive view of the argumentative intent.
Such claims form the basis for the author’s further
arguments and the direction of their reasoning.

Position annotation: This annotation extracts
the essay’s directional stance regarding the the-
matic issues presented in the writing tasks —
whether the argumentation aligns with, diverges
from, or remains ambiguous towards the positions
debated within the tasks. This annotation is impor-
tant for understanding the diversity of viewpoints
and the critical engagement of students with the
socio-scientific topics at hand.

Warrant annotation: A warrant is one out
of five argumentative elements annotated in the
dataset as part of the Toulmin’s Argumentation Pat-
tern (TAP) annotations, following the definitions by
Riemeier et al. (2012). TAP describes a structural
framework for constructing logical and compelling
arguments by including a claim, providing sup-
porting evidence (data), explaining the connection
between the claim and data (warrant), and address-
ing counterarguments (rebuttal). For this study, we
focus exemplarily on warrants because the use of
warrants indicates already a higher argumentation
skill(Osborne et al., 2016). TAP elements are not
marked on the sentence level but on the token level,
as a TAP sequence can cover a wide range from
subordinate clauses to entire paragraphs.

3.2 Demographic and Psychological Data
We consider the following demographic variables:
Grade Grade indicates which grade level the stu-
dent is in. The dataset was obtained for students
between Grade 9 and Grade 12.

Gender The students could indicate their gender.
Options were female, male, and diverse.

School The German school system differentiates
between different forms of high school.

• Gemeinschaftsschule: non-academic track

• Gymnasium: academic track

• Berufsschule: vocational training

Profile The German school system allows stu-
dents to choose a profile. The Natural Sciences
profile, for example, has a focus on math and sci-
ence, while the Social Sciences profile can have a
focus on politics or ethics.

Languages The students could indicate the lan-
guage that they speak at home.
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Grade Level Gender Profile Language
Level Students Gender Students Profile Students Language Students

9 423 Female 801 Natural Sciences 414 native 1265
10 346 Male 664 Social Sciences 255 non-native 576
11 547 Diverse 90 Sports 119
12 404 Missing 284 Linguistics 61
13 113 Aesthetics 13
Missing 6 Missing 977

Table 1: Combined Overview: Grade Level, Gender, Profile, and Language of Students

KFT The Cognitive Abilities Test (Kognitiver
Fähigkeitstest or KFT) developed by Heller and
Perleth (2000), measures students’ cognitive abil-
ities through non-verbal figural analogies. These
questions evaluate abstract reasoning and the ability
to apply logical rules to visual information with-
out linguistic content, making them useful for as-
sessing individuals across different linguistic back-
grounds. A typical problem displays a sequence
of shapes that follow a certain transformation (e.g.,
rotation, reflection). The test-taker must identify
and apply the same transformation to a new set of
figures.

4 Method

In the following section, we describe the experi-
mental setup for our evaluation study.

4.1 Classifiers

We experiment with a diverse set of classifiers to
see performance and fairness differences between
instances of different model architectures. Our
machine learning goal is to predict certain spans
in an essay text. For most of these spans, span
boundaries align with sentence boundaries.

Major claim annotations always consist of single
sentences. The other annotation types, i.e. con-
tent zone and position annotations may also span
multiple sentences. Only warrant annotations do
not necessarily align with sentence boundaries and
can consist of segments on the sub-sentence level.
Therefore, we make use of both sentence classifi-
cation and sequence tagging approaches. For sen-
tence classification, we use a Support Vector Ma-
chine (SVM) in standard configuration, provided
by the scikit-learn python package (Pedregosa et al.,
2011) as an instance of shallow learning. The fea-
tures utilized in the SVM classifier are the TF-IDF
vectors of the most frequent 1- to 3-grams. We use
a BERT-based 3 sentence classifier as an instance

3dbmdz/bert-base-german-cased

of deep learning and GPT-4 (OpenAI, 2024) to
represent generative LLMs. For sequence tagging,
we also use the BERT-based classifier and again
prompt GPT-4 this time providing the whole essay
as input.

4.2 Data Split
We use a fixed data split of 80% training data and
20 % test data. From the training data, we used a
subset of 60% as validation data to find the best
epoch for deep learning and for prompt-tuning for
generative LLMs in pre-experiments, i.e. the whole
training data set was used in the main experiments
for training. As we were not interested in the over-
all best performance but rather in the intrinsic fair-
ness differences between models, we did not further
fine-tune any hyperparameters.

4.3 Performance and Fairness Evaluation
The evaluation of our classification results is moti-
vated by the intended use of the classifiers to pro-
vide formative feedback to learners in e.g. an on-
line tutoring system. Although it might also be of
interest to show the specific location of an argumen-
tative element within a learner essay as feedback,
our primary concern for this study is to determine
whether certain argumentative elements are present
in a text or not. Therefore, we first transform any
classifier output into a binary decision on the docu-
ment level indicating whether (at least one instance
of) a certain argumentative element is present in an
essay.

In our fairness evaluation, we follow the frame-
work proposed by (Loukina et al., 2019) and their
implementation provided within the RSMTool soft-
ware package (Madnani and Loukina, 2016). More
precisely, we compute overall score accuracy (osa),
overall score difference (osd) and conditional score
difference (csd), where the first looks at squared
errors (S −H)2 and the latter two at actual errors
S − H . In every case, a linear regression is fit
with the error being the dependent variable and the
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Label Model All Grades Gender Profile School Languages KFT

Introduction Shallow .63 [.35, .68] [.53, .67] [.58, .73] [.48, .68] [.60, .70] [.57, .67]
Deep .81 [.51, .85] [.76, .84] [.74, .83] [.69, .95] [.80, .85] [.75, .85]
LLM .60 [.50, .63] [.46, .62] [.55, .61] [.51, .77] [.59, .59] [.58, .61]

Conclusion Shallow .55 [.44, .71] [.50, .58] [.46, .55] [.46, .61] [.54, .55] [.52, .57]
Deep .70 [.64, .80] [.59, .74] [.63, .81] [.64, .78] [.64, .71] [.64, .78]
LLM .68 [.63, .76] [.68, .81] [.63, .67] [.58, .84] [.65, .68] [.61, .72]

Major Claim Shallow .68 [.62, .74] [.66, .74] [.49, .75] [.42, .81] [.66, .72] [.62, .72]
Deep .88 [.78, .92] [.87, .88] [.80, .95] [.81, .89] [.87, .88] [.84, .90]
LLM .75 [.68, .82] [.66, .81] [.63, .84] [.71, .91] [.71, .86] [.66, .86]

Position Shallow .41 [.34, .46] [.34, .53] [.16, .49] [.29, .56] [.36, .50] [.17, .58]
Deep .44 [.23, .56] [.36, .73] [.23, .61] [.28, .46] [.37, .59] [.27, .54]
LLM .32 [.13, .37] [.29, .54] [.29, .47] [.22, .60] [.31, .33] [.23, .37]

Warrant Shallow .43 [.32, .51] [.39, .51] [.38, .51] [.38, .47] [.39, .55] [.37, .52]
Deep .44 [.27, .53] [.38, .55] [.36, .68] [.36, .65] [.41, .52] [.25, .54]
LLM .00 [-.16, .09] [-.02, .32] [-.18, .02] [-.04, .14] [-.02, .07] [-.13, .08]

Table 2: Kappa values for the individual classifiers evaluated either on all test essays or on essays from a certain
subgroup. We report the minimal and maximal values among the subgroups for each demographic variable.

respective subgroup information being the indepen-
dent variable for osa and osd. For csd, two models
are fitted, one with both the subgroup and human
score as independent variables and one using the
human score only. We use the R2 as a measure of
model fairness for osa and osd and the difference in
R2 for csd. In our analysis we follow Williamson
et al. who established that absolute values above 0.1
suggests unfairness or bias against certain groups.

Fairness should be considered in addition to
mean accuracy because research on teacher judg-
ments has shown that the qualities of judgments
are almost uncorrelated, and teachers who are
very good at judging the average class level can
be very unfair to the high or low-performing stu-
dents((Möller et al., 2022),(Urhahne and Wijnia,
2021)).

We used Cohen’s kappa to account for chance
agreement in evaluating our model. This is cru-
cial when classifiers evaluate argumentative ele-
ments in essays. Percentage agreement alone may
overstate accuracy by reflecting chance, mislead-
ing results. Kappa provides a more accurate mea-
surement of agreement strength. This is crucial in
educational settings, where precise feedback is nec-
essary, as ignoring chance agreement could overes-
timate teacher judgments. By incorporating kappa,
we aim for a more balanced evaluation of our clas-
sifier’s performance and fairness across diverse stu-
dent groups, improving feedback in educational
technologies and reducing biases in teacher assess-
ments.

5 Experimental Study

In the following, we discuss the results of our ex-
perimental studies. We compare the three classi-
fication model types (Shallow, Deep, and LLM)
with respect to both fairness and kappa. In the first
experiment, we trained on the complete dataset and
evaluated the fairness for certain subgroups.

In a second experiment, we trained models on
subsets of the training data that represent only a spe-
cific part of the whole population (in our case, the
upper and lower quartiles of the cognitive ability
values) and examined the fairness of such models.

5.1 Evaluation of Full Models on Fairness and
Performance

Table 2 presents the performance of our trained
models with regard to chance-corrected kappa val-
ues, providing insights into the agreement between
model predictions and human annotators. The
range values in brackets show variances across
the different subgroups. We excluded the sub-
group Aesthetic from the category Profile, as it
had only 9 students and led to extreme outliers.
Our study involved three machine learning models:
Shallow (SVM), Deep (BERT), and LLM (gpt-4-
turbo-preview, GPT). The prompts used for the
LLM are displayed in the Appendix.

For the prediction of the Introduction the Deep
model demonstrated the highest performance with
an overall kappa of .81, indicating a strong agree-
ment with human annotations. In contrast, the Shal-
low and LLM models performed worse, a trend that
persists through all models. The order of the model
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Label Metric Model Grades Gender Profile School Language KFT

Introduction osa Shallow .008 .001 -.002 -.001 .000 -.001
Deep .011 -.002 -.003 .001 -.001 .003
LLM -.000 -.001 -.004 .000 -.001 -.002

osd Shallow .005 .004 -.001 .010 -.001 .007
Deep .001 .005 .000 -.001 -.001 -.000
LLM .014 -.001 .004 -.000 -.000 .001

csd Shallow .019 .026 .038 .013 .001 .012
Deep .009 .022 .037 .004 .001 .000
LLM .032 -.002 .014 -.007 -.000 .008

Conclusion osa Shallow .014 -.001 -.003 -.001 .000 .000
Deep -.003 .000 .007 -.002 -.001 .001
LLM .005 -.001 -.004 .002 -.001 -.002

osd Shallow .004 .001 .004 .002 -.000 -.002
Deep -.002 -.001 .001 .006 .002 -.001
LLM .001 -.000 .000 .003 -.001 -.002

csd Shallow -.003 .005 .019 -.001 .005 .005
Deep -.000 -.004 -.024 .004 -.001 -.002
LLM .003 -.007 .014 .000 -.000 -.000

Major Claim osa Shallow -.002 -.002 -.004 .006 -.001 -.001
Deep .001 -.002 -.001 -.002 -.001 -.000
LLM -.001 .004 -.001 .001 .003 .005

osd Shallow .003 -.001 -.002 .001 -.001 .007
Deep -.001 -.001 -.003 .000 -.001 -.000
LLM .004 -.002 -.002 -.002 .001 -.002

csd Shallow .002 -.010 .011 .007 -.001 .005
Deep -.002 .001 .004 -.001 -.001 .000
LLM .002 .005 .044 .008 .003 -.001

Position osa Shallow -.003 -.001 .003 .015 .001 .008
Deep .003 -.000 -.003 .017 -.001 .005
LLM .005 -.001 .004 .001 .001 .008

osd Shallow .005 -.002 .012 .007 .002 .003
Deep -.000 -.001 -.002 .007 .001 -.002
LLM .004 -.002 .006 .007 -.001 .002

csd Shallow .000 .012 .057 .019 .001 .010
Deep .002 .019 .050 .018 -.000 .014
LLM .008 -.010 -.018 -.005 .002 .022

Warrant osa Shallow .007 -.002 .003 -.001 .007 .006
Deep .007 .001 .018 .008 .004 .016
LLM .012 .004 .005 -.003 .003 .008

osd Shallow .000 .004 .002 .009 -.001 .003
Deep -.001 .002 -.002 -.001 -.001 -.000
LLM -.001 -.002 -.004 .004 -.000 .006

csd Shallow .010 .002 -.036 .003 .000 -.001
Deep -.001 .011 -.008 .005 -.001 -.002
LLM .008 .006 .086 .007 .005 .025

Table 3: Fairness evaluation metrics of all classifiers.

performance is also reflected in the results ordered
by demographic data.

For the Conclusion, the Deep model similarly
outperformed its counterparts again, followed
closely by the LLM. The SVM stays behind. When
evaluating Major Claim, all models display a
noticeably enhanced performance, especially the
Deep model, reaching a kappa value of .88 fol-
lowed by the LLM (.75), and lastly the Shallow
model .68.

For Position and Warrant, kappa values reveal
a drop in performance across all models, with the
Deep model followed closely by the SVM. The
LLM model lags behind, for the Position annota-
tion at a value around zero, showing challenges
in capturing the nuanced expression of stances or
viewpoints within texts. Those results seem to mir-
ror also the inter-annotator agreements of the orig-
inal annotation, in which the annotations for In-
troduction/Conclusion (content zone) and Major
Claim had both an inter-annotator Krippendorffs
alpha of .83, the Position annotation at .68, while
all TAP values (e.g. warrant) showed very low

agreements.
The analysis reveals the strengths and weak-

nesses inherent to each modeling approach. Deep
learning models, particularly BERT, consistently
demonstrated robust kappa scores, affirming their
suitability for complex linguistic tasks. Depend-
ing on the task, the SVM varied between stay-
ing behind between 1 to 18 points from BERT. In
contrast, the generative capabilities of LLM mod-
els, such as GPT, varied extremely in their per-
formance, although never outperforming the Deep
model. These findings underscore the importance
of model selection based on the specific demands
of the task at hand. It is entirely possible that dif-
ferent prompts would have led to different results.
However, it would have to be examined whether
the resources required (time to develop and test the
appropriate prompt, cost of the queries, energy con-
sumption of LLM models) justify this procedure.

Table 3 shows the fairness measures based on the
models, trained on the whole dataset. As reported,
values over .10 are potentially an issue of concern.
None of the calculations on any model resulted in
any value above .10.

5.2 Training Models on KFT Subgroups

As a second step, we estimated the effects it can
have if certain subgroups are not adequately re-
flected in the training data. For this experiment,
we considered specifically cognitive abilities rep-
resented by cognitive ability values. We divided
the training data into four quartiles based on the
cognitive ability values and trained models on data
from the lowest and highest quartiles only. For
a more balanced comparison to general data, we
also sampled a comparable size of training data
from all four quartiles in a stratified way, e.g. from
each quartile we took a randomised sample of 25%.
This subset is further referret to as mixed data. This
experiment was not conducted for LLMs, as our
zero-shot approach does not rely on training data.

Unsurprisingly, the performance of both the
SVM and the BERT model deteriorated in com-
parison to models trained on the full training set
(see Table 4).

In general, the deep model performed still bet-
ter than the shallow one, except for the position
model trained on the low quartile as well as the
warrant models trained on the highest and lowest
quartiles. There is no indication that any of the
quartiles lead to a stronger model. Each category
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Label KFT Model All Grades Gender Profile School Languages

Introduction high Shallow .38 [-.04, .44] [.33, .62] [.29, .39] [.18, .48] [.35, .45]
Deep .56 [.30, .62] [.29, .59] [.45, .56] [.25, .57] [.53, .61]

low Shallow .47 [.26, .48] [.30, .43] [.30, .65] [.41, .57] [.40, .64]
Deep .65 [.59, .67] [.63, .68] [.60, .71] [.62, .70] [.64, .64]

mixed Shallow .46 [.06, .51] [.39, .61] [.40, .47] [.17, .55] [.41, .57]
Deep .71 [.65, .73] [.68, .71] [.70, .76] [.70, .73] [.70, .75]

Conclusion high Shallow .39 [.21, .48] [.37, .53] [.29, .47] [.21, .52] [.27, .40]
Deep .62 [.49, .66] [.56, .65] [.53, .72] [.52, .77] [.58, .62]

low Shallow .25 [.19, .27] [.17, .28] [.21, .23] [.09, .29] [.20, .25]
Deep .44 [.16, .51] [.40, .43] [.29, .47] [.34, .62] [.41, .54]

mixed Shallow .42 [.32, .55] [.41, .56] [.34, .44] [.35, .45] [.34, .42]
Deep .54 [.43, .57] [.49, .69] [.50, .63] [.45, .62] [.54, .54]

Major Claim high Shallow .57 [.47, .63] [.50, .62] [.36, .58] [.35, .57] [.55, .61]
Deep .83 [.67, .87] [.81, .88] [.79, .90] [.78, .92] [.82, .85]

low Shallow .58 [.46, .63] [.52, .62] [.37, .67] [.35, .66] [.57, .61]
Deep .84 [.77, .89] [.80, .86] [.76, .95] [.70, .85] [.82, .87]

mixed Shallow .56 [.49, .62] [.52, .56] [.31, .70] [.35, .58] [.52, .67]
Deep .81 [.58, .86] [.70, .82] [.73, .89] [.61, .82] [.79, .87]

Position high Shallow .02 [.00, .05] [.00, .03] [.00, .00] [.00, .04] [.00, .03]
Deep .29 [-.05, .43] [.23, .49] [-.04, .43] [.17, .43] [.27, .30]

low Shallow .37 [.34, .48] [.28, .69] [.29, .41] [.19, .69] [.28, .52]
Deep .34 [-.07, .40] [.28, .71] [.23, .47] [.08, .61] [.29, .44]

mixed Shallow .16 [.00, .18] [.00, .15] [.06, .15] [.00, .37] [.14, .18]
Deep .37 [-.03, .43] [.33, .53] [.24, .43] [.29, .43] [.33, .43]

Warrant high Shallow .26 [.10, .32] [.21, .29] [.23, .29] [.05, .27] [.23, .36]
Deep .23 [.13, .30] [.18, .31] [.21, .34] [.16, .37] [.21, .29]

low Shallow .23 [.19, .24] [.19, .30] [.20, .28] [.14, .35] [.19, .37]
Deep .20 [.03, .26] [.16, .34] [.19, .41] [.12, .61] [.16, .34]

mixed Shallow .17 [.13, .22] [.16, .28] [.12, .31] [.05, .41] [.16, .22]
Deep .25 [.18, .30] [.20, .39] [.22, .28] [.22, .49] [.24, .29]

Table 4: Kappa values of KFT classifiers and all subtypes.
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Figure 1: Kappa values of KFT classifiers on different KFT subgroups. Q = Quartile.
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Label Metric KFT Model Grades Gender Profile School Language KFT

Introduction osa high Shallow .011 .005 -.004 .003 -.001 .001
Deep .001 .003 -.002 .000 -.001 .001

low Shallow .001 .001 .007 .000 .008 .007
Deep -.003 -.001 -.003 -.002 -.001 .003

mixed Shallow .008 -.001 -.004 .003 .001 .001
Deep -.003 -.000 -.004 -.003 -.001 .000

osd high Shallow .003 .003 -.004 .000 .001 -.000
Deep .001 -.001 .005 .000 -.000 .001

low Shallow .002 .000 .003 .002 -.001 .006
Deep -.002 .007 .004 .002 -.001 .002

mixed Shallow .010 -.002 .000 .009 -.001 .000
Deep -.001 .000 .002 .006 -.001 .004

csd high Shallow .012 .017 .093 .016 .000 -.001
Deep .014 .007 .074 .007 .007 .006

low Shallow .018 .025 .053 .020 .005 .013
Deep .011 .008 .034 -.005 .002 .006

mixed Shallow .022 .017 .065 .022 .002 .009
Deep .009 .011 .015 .004 -.000 .010

Conclusion osa high Shallow .011 .001 .003 .004 -.001 .002
Deep .000 -.000 .002 .001 -.001 .004

low Shallow .010 -.000 -.004 .001 .002 .016
Deep .006 -.002 .000 -.001 .006 -.000

mixed Shallow .011 .001 -.003 -.002 -.001 .001
mixed Deep -.001 .003 -.001 -.001 -.001 -.003

osd high Shallow .016 -.002 .005 .004 -.001 -.001
Deep -.004 .002 -.004 -.003 -.000 -.001

low Shallow .004 -.002 -.002 .000 .003 .012
Deep .005 -.002 .001 -.000 -.001 -.003

mixed Shallow .003 -.002 -.000 .001 -.001 -.003
Deep -.001 -.001 .003 -.002 -.001 -.002

csd high Shallow .010 -.009 -.025 -.007 .006 .010
Deep .004 .003 -.007 -.003 -.001 .004

low Shallow .001 .006 -.033 .006 -.000 -.001
Deep .004 .012 .042 .008 .001 .002

mixed Shallow .001 -.009 -.003 -.011 .004 .003
Deep .004 .006 .034 .004 .001 .007

Major Claim osa high Shallow -.001 .004 -.004 .008 -.001 .000
Deep .001 -.002 -.003 .004 -.001 -.003

low Shallow -.002 .003 -.001 .003 -.001 -.003
Deep .001 -.000 .002 -.001 -.000 -.002

mixed Shallow .000 -.001 -.001 .018 .000 -.001
Deep .006 .001 .003 .003 .001 -.002

osd high Shallow -.001 .000 -.002 -.003 -.000 .005
Deep -.002 -.000 -.004 -.003 -.000 -.002

low Shallow .004 .002 .002 .000 -.001 .000
Deep .003 -.000 -.004 -.002 .000 -.000

mixed Shallow .006 -.002 -.002 -.003 -.001 .003
Deep .002 -.001 -.001 -.001 -.001 -.001

csd high Shallow -.002 -.004 .032 .014 -.001 .005
Deep -.002 .006 -.010 .005 .001 -.002

low Shallow .002 .002 .043 .014 -.001 -.000
Deep .002 -.001 -.003 -.005 -.000 -.000

mixed Shallow .005 .000 .020 .021 -.000 .004
Deep .002 .000 .012 .004 -.001 -.001

Position osa high Shallow .003 .002 .020 .011 .014 .036
Deep -.002 -.002 -.002 .012 .007 .024

low Shallow .002 -.000 .007 .016 .000 .015
Deep -.001 -.001 -.000 .003 .001 .005

mixed Shallow .001 .003 .016 .008 .009 .026
Deep -.001 -.002 .020 .009 .002 .011

osd high Shallow .003 .002 .020 .011 .014 .036
Deep .000 -.000 -.001 .006 .001 .003

low Shallow .000 -.002 .005 .006 -.001 .006
Deep -.003 -.002 -.001 .005 .000 .003

mixed Shallow .002 .003 .017 .006 .010 .024
Deep -.002 -.002 .005 .001 .003 .002

csd high Shallow -.000 -.003 .015 -.003 .000 -.000
Deep .003 -.013 .096 -.014 .001 .004

low Shallow -.001 .030 .027 .039 .005 .013
Deep .001 .008 .017 .016 .001 .003

mixed Shallow -.001 .019 .041 .025 -.000 .001
Deep .002 .005 .059 .005 -.000 .004

Warrant osa high Shallow .010 -.001 -.000 -.002 .006 .004
Deep .003 -.000 .003 .007 .004 .015

low Shallow .014 -.002 .001 -.000 .008 .010
Deep .011 -.001 .012 .013 .008 .023

mixed Shallow .019 -.002 .013 .007 .004 .015
Deep .007 .001 .002 .001 .003 .009

osd high Shallow .005 -.002 -.002 .004 -.001 .001
Deep .000 -.000 -.003 -.002 -.001 -.001

low Shallow .003 -.001 .016 .011 .001 .013
Deep .005 -.002 .002 .001 .000 .001

mixed Shallow .012 -.002 .009 .011 -.000 .007
Deep .005 -.002 -.002 -.001 -.001 .002

csd high Shallow .002 -.003 -.047 -.002 .000 .003
Deep .009 .007 -.020 .002 .002 -.000

low Shallow .003 -.008 -.042 -.001 -.000 .003
Deep -.000 -.005 -.035 -.002 -.001 -.001

mixed Shallow .001 -.017 -.045 -.007 .000 -.001
Deep .000 -.011 -.014 -.008 .002 .001

Table 5: Fairness evaluation metrics of KFT classifiers
and all subtypes.

(low, high, and mixed) can perform best in different
tasks, e.g. mixed deep in Introduction, high deep in
Conclusion, or low shallow/mixed deep in Position.
In terms of fairness, we still found no values above
0.1 (see Table 5).

When examining Figure 1 we can see that mod-
els differed in their performance when tested on
different subgroups. For the Introduction, a shal-
low model trained on the dataset of the students
with the highest KFT quartile (high shallow) was
performing better on the subgroup it was trained on
(e.g. Quartile 4) than on the other subgroups and
the other way around (low KFT model performed
better on the subset with low KFT, e.g. Quartile
1.). The mixed models had the lowest variance in
performance.

There are exceptions in which the model per-
formed better on a different subgroup than the one
it was trained on, e.g., in (d) Position, all models
except high shallow lost performance on Quartile
4. Furthermore, all combinations of algorithm and
training data did have a comparable stable perfor-
mance on (c) Major Claim.

In general, using training data from only one
student group seemed to introduce a bias, disad-
vantaging other student groups. This finding un-
derlines the need to include training data from a
diverse range of students to ensure fairness and
avoid skewed outcomes.

6 Conclusion and Future Work

In our work, we provide three basic models (shal-
low learning models, deep learning models, and
LLM) trained on the annotations of the DARIUS
corpus of learner texts in German. These mod-
els are ready to use in schools, for example, to
create a feedback tool for training argumentative
skills. Evaluation of model fairness showed that
all models produced fair scores for all students,
considering demographic and psychological differ-
ences among students. In a second experiment, we
trained our models on subgroups of students, based
on either low, high, or mixed cognitive abilities,
to investigate the extent to which skewed training
data leads to unfair AES system scores. Our re-
sults showed lower performance for students who
were not in the training data, emphasizing the im-
portance of including samples of the full range
of users in the training data for AES, not only for
demographic background variables but also for psy-
chological aspects such as cognitive abilites. Fail-
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ure to do so risks reducing the predictive accuracy
of the algorithm for those who are not adequately
represented. To mitigate the risk of students receiv-
ing unfair scores based on their demographic and
psychological variables, we advocate that future
AES systems incorporate the goal of fairness in ad-
dition to accuracy into their training data collection
and algorithm optimization function, going beyond
the current state of retrospective analysis of model
fairness.

7 Limitations

This study encounters several limitations that have
to be mentioned. One constraint is the small size of
certain subgroups within the corpus, as seen in Ta-
ble 1, e.g., students with specific family languages,
profiles like Linguistics or Aesthetics. The under-
representation of those subgroups poses a challenge
in drawing robust conclusions for these particular
groups, potentially impacting the reliability and
applicability of our outcomes to these populations.

Additionally, the comparatively homogenous
population in the state of Schleswig-Holstein in
northern Germany, restricts the generalizability
of our findings. The demographic profile of
Schleswig-Holstein may not reflect the diversity
found in other regions or countries, potentially nar-
rowing our study’s insights.

In conclusion, while our study provides insights
into fairness in the subgroups of the DARIUS Cor-
pus, these limitations underscore the necessity for a
cautious interpretation of our findings and suggest
areas for future research efforts to build upon and
address these constraints.
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Jianhua Zhang and Lawrence Jun Zhang. 2023. Exam-
ining the relationship between english as a foreign
language learners’ cognitive abilities and l2 grit in
predicting their writing performance. Learning and
Instruction, 88.

A GPT prompts used in our experiments

Item Description
Conclusion Does this text have a concluding section, a

summary? Answer with 1 for Yes or 0 for
No.

Introduction Does this text have an introduction? An-
swer with 1 for Yes or 0 for No.

Main Thesis Is this text a main thesis, meaning a sen-
tence in a text that takes a clear position?
Answer with 1 for Yes or 0 for No.

Position Does this text discuss all three positions
of the task? Either cars that are pow-
ered by hydrogen, electricity, or e-fuels,
or other task that involves hydroelectric
power plants, solar power plants, and wind
farms. If all three options are discussed,
answer with 1, if not then 0.

Warrant Do the arguments in the text have an expla-
nation, meaning a more detailed explana-
tion of the argument? If yes answer with
1, if not then 0.

Table 6: GPT prompts

B DARIUS corpus example

220

https://doi.org/https://doi.org/10.1016/j.learninstruc.2023.101808
https://doi.org/https://doi.org/10.1016/j.learninstruc.2023.101808
https://doi.org/https://doi.org/10.1016/j.learninstruc.2023.101808
https://doi.org/https://doi.org/10.1016/j.learninstruc.2023.101808


Deutsch Englisch

In Norddeutschland wird die Frage gestellt welche
klimaneutrale Energiegewinnung gebaut werden soll, um
eine Klimaneutralität zu erreichen. Zur Frage kommen
Windparks, Solar und Wasserkraftanlagen. Ich finde, dass
der Bau von Windparks gefördert werden soll. Mit 45%
Wirkungsgrad sind diese schwächer als
Wasserkraftanlagen und stärker als Solarparks. Obwohl
der Wirkungsgrad mit 45% geringer ist als bei
Wasserkraftanlagen, liefert ein Windpark mit 40 GWh pro
Jahr mehr Strom als Solarpark und Wasserkraftanlage.
Ebenfalls ist der Preis relativ zum Jahresertrag günstig
mit 14 Millionen als Solarpark und Wasserkraftanlage.
Ebenfalls muss man in Betracht ziehen, dass der
Windpark weniger CO2 ausstoßt. Solarpark und
Wasserkraftanlage stoßen 35000t und 12000t CO2 und
der Windpark nur 8,800t. Jedoch muss man sagen, dass
der Windpark nur eine Lebensdauer von 20 Jahren hat.
Währenddessen halten Solarparks 30 Jahre und
Wasserkraftanlage 80 Jahre. Auf der Ebene der
Lokalemissionen besitz der Windpark die meisten
Emission mit Hör-, Infraschall und Schattenwurft. Die
Wasserkraftanlage wirft keinen Schattenwurf, aber hat
trotzdem Hör- und Infraschall. Der Solarpark hat keinen
Emissionen jeglicher Art. Zum Schluss komme ich, dass
man Windparks fördern sollte, da die Vorteile die
Nachteile überwiegen. Sie bieten günstig Strom und
verursachen wenig Treibhausgasemissionen, aber man
muss anmerken, dass ein Windpark keine hohe
Lebensdauer hat, sodass diese öfters erneuert werden
müssen, und dass Anwohner und Tiere von diesem
belästigt werden können.

In northern Germany, the question is being asked as to
which climate-neutral energy generation should be built
in order to achieve climate neutrality. The options are
wind farms, solar and hydropower plants. I think that the
construction of wind farms should be promoted. At 45%
efficiency, they are less efficient than hydropower plants
and more efficient than solar parks. Although the
efficiency of 45% is lower than that of hydropower plants,
a wind farm with 40 GWh per year supplies more
electricity than solar farms and hydropower plants. The
price relative to the annual yield is also lower at 14
million than solar parks and hydroelectric power plants. It
must also be taken into account that the wind farm emits
less CO2. The solar park and hydropower plant emit
35,000 tons and 12,000 tons of CO2 respectively, while
the wind park emits only 8,800 tons. However, it must be
said that the wind farm only has a lifespan of 20 years. In
contrast, solar parks last 30 years and hydroelectric power
plants 80 years. On the level of local emissions, the wind
farm has the most emissions with acoustic, infrasound
and shadow flicker. The hydropower plant does not cast
any shadows, but still has audible and infrasound
emissions. The solar park has no emissions of any kind.
In conclusion, I believe that wind farms should be
promoted because the advantages outweigh the
disadvantages. They provide cheap electricity and cause
little greenhouse gas emissions, but it should be noted
that a wind farm does not have a long lifespan, so they
have to be renewed frequently, and that residents and
animals can be disturbed by them.

Table 7: Example essay in the DARIUS Corpus, translated via DeepL4

221



Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 222–231
June 20, 2024 ©2024 Association for Computational Linguistics

Improving Automated Distractor Generation for Math Multiple-choice
Questions with Overgenerate-and-rank

Alexander Scarlatos1˚, Wanyong Feng1˚, Digory Smith2, Simon Woodhead2, Andrew Lan1

University of Massachusetts Amherst1, Eedi2

{ajscarlatos, wanyongfeng, andrewlan}@umass.edu
{digory.smith,simon.woodhead}@eedi.co.uk

Abstract

Multiple-choice questions (MCQs) are com-
monly used across all levels of math education
since they can be deployed and graded at a
large scale. A critical component of MCQs is
the distractors, i.e., incorrect answers crafted to
reflect student errors or misconceptions. Auto-
matically generating them in math MCQs, e.g.,
with large language models, has been challeng-
ing. In this work, we propose a novel method
to enhance the quality of generated distractors
through overgenerate-and-rank, training a rank-
ing model to predict how likely distractors are
to be selected by real students. Experimen-
tal results on a real-world dataset and human
evaluation with math teachers show that our
ranking model increases alignment with human-
authored distractors, although human-authored
ones are still preferred over generated ones.

1 Introduction and Related Work

Multiple-choice questions (MCQs) are commonly
used to assess student knowledge across all lev-
els of education, including math, since they can
accurately assess student knowledge while being
easy to administer and grade at scale (Nitko, 1996;
Airasian, 2001; Kubiszyn and Borich, 2016). An
MCQ is comprised of a question stem and several
answer options. The question stem establishes the
context and presents a problem for students to solve.
Among the options, there exists a key, which is the
correct answer, and multiple distractors, which are
the incorrect answers specifically designed to re-
flect student errors or misconceptions. Although
MCQs offer numerous advantages for assessing
student knowledge, crafting high-quality distrac-
tors poses a significant challenge for teachers and
educators. High-quality distractors should be suf-
ficiently challenging so students do not quickly
identify them as incorrect answers. Additionally,
they should be designed to target specific errors or

*These authors contributed equally to this work.

misconceptions, enticing students who make these
errors or hold these misconceptions to choose them.
This delicate balance makes the creation of such
high-quality distractors a time and labor-intensive
endeavor (Kelly et al., 2013).

Earlier works on automatic distractor genera-
tion for math MCQs use constraint logic program-
ming (Tomás and Leal, 2013) or manually crafted
rules (Prakash et al., 2023) to generate distractors.
However, these methods are restricted to template-
generated MCQs, which have limited applicabil-
ity in a broader context. More recent work (Dave
et al., 2021) trains a neural network to solve math
problems and sample incorrect answers as distrac-
tors. Not surprisingly, the generated distractors fail
to capture student errors or misconceptions. The
most recent works (McNichols et al., 2023a; Feng
et al., 2024) explore this task using state-of-the-art
large language models (LLMs), such as ChatGPT.
The authors experiment with several different ap-
proaches, including few-shot in-context learning
(Brown et al., 2020) and zero-shot chain-of-thought
(CoT) prompting (Wei et al., 2022), showing that
LLMs can often generate distractors that are math-
ematically relevant to the MCQ. However, the over-
all alignment level with human-authored distractors
that are thought to reflect student errors or miscon-
ceptions is not high. These works indicate a need to
understand what errors or misconceptions are com-
mon among students and to use this information to
improve the quality of generated distractors.

1.1 Contributions
In this work, we propose a method to en-
hance the quality of generated distractors through
overgenerate-and-rank.* Our novel ranking model
evaluates the likelihood of each generated distrac-
tor being selected by real students. We train the
ranking model via direct preference optimization

*Our code is publicly available at https://github.com/
umass-ml4ed/distractor-ranking-BEA
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(DPO) on pairwise preference pairs that compare
the relative portion of students selecting one distrac-
tor over the other. This method can be augmented
with existing distractor generation methods.

We validate the effectiveness of this method
through extensive experiments on a real-world
math MCQ dataset. We find that the ranking model
effectively selects distractors that students are more
likely to select. In particular, it can improve the gen-
erated distractor quality of a fine-tuned Mistral
model with 7B parameters to a similar level as that
of GPT-4 with CoT prompting, which is rumored to
have up to 1T parameters. We also conduct human
evaluations where we ask math teachers to rank
and rate both LLM-generated and human-authored
distractors. Results show that our ranking model’s
ranking and human ranking correlate with actual
ranking defined by the portion of students select-
ing each distractor to a similar degree. Despite the
improvements, LLM-generated distractors still do
not match the quality of human-authored ones in
reflecting student errors or misconceptions.

2 Methodology

This section contains the details of the task defini-
tion and our over-generate-and-rank method.

2.1 Task Definition

We define an MCQ Q as comprising a collection
of elements, denoted as Q “ ts, k, ek, D, F, P u.
Specifically, each MCQ includes a question stem
s, a key k, an explanation for the key ek, and a set
of distractors D. Each distractor di P D is asso-
ciated with a feedback message fi P F provided
to students upon selection. Moreover, for the key
and every distractor, we have pi P P as the portion
of students who select this distractor (among all
students who solve the MCQ).* Similar to (Qiu
et al., 2020), we define the distractor generation
task as learning a function gdis that outputs a set of
distractors D̂ for an MCQ given the question stem,
key, and its explanation, i.e., gdisps, k, ekq Ñ D̂.

2.2 Pairwise Ranking

In order to identify high-quality distractors for
overgenerate-and-rank, we propose a ranking func-
tion that aligns with how likely distractors are to
be selected by students. We define the ranking
function as rps, k, ek, diq Ñ αi P R, where αi is a

*All elements within Q, except for P , are formatted as
strings, whereas P is formatted as numbers.

relative score for distractor di. Our goal is to train r
such that higher scoring distractors are more likely
to be selected by students, i.e., αi ą αj Ñ pi ą pj .
We achieve this alignment by setting αi to the log
likelihood of di under a ranking model M, i.e.,
αi “ logPMpdi|s, k, ekq, whereM is an autore-
gressive language model trained to generate dis-
tractors that are likely to be selected by students.

We initially fine-tune a modelMSFT, where all
distractors in the train set are used as labels for
their corresponding questions. WhileMSFT cap-
tures the likelihood of a distractor to appear in the
data, it does not account for student behavior. We
therefore train a model MDPO via direct prefer-
ence optimization (DPO) (Rafailov et al., 2024),
using all

`|D|
2

˘
pairs of distractors for each question

where the distractor chosen more frequently by stu-
dents is the preferred one in each pair. This aligns
the model with student selections, and is motivated
by recent successes of DPO in educational tasks
(Scarlatos et al., 2024; Kumar and Lan, 2024).

We validate the effectiveness of this approach
by calculating the ranking accuracy, i.e., the per-
centage of distractor pairs in the test set where
the predicted ranking agrees with actual student
selection percentages.MSFT andMDPO result in
ranking accuracies of 61.60% and 65.84%, respec-
tively; we use the latter in our experiments. While
these numbers may appear low (random selection
yields 50%), we note that the data is noisy and accu-
racy improves when there is a higher difference be-
tween selection percentages: MDPO gets 74.31%
accuracy on pairs where the difference between
selection percentages is more than 10%. Training
details are in Supplemental Material Section B.

2.3 Overgenerate-and-rank and baselines

We instruct a base distractor generation model
to overgenerate a set of n distractors, D1, such
that n ą |D|. Subsequently, we use our learned
ranking model to score each candidate distractor
di P D1 and choose the |D| distractors with the
highest scores as our final set of generated dis-
tractors (Kumar et al., 2023). In practice, we use
n “ 10 and have |D| “ 3 (Top-3). We compare
our method against two baseline ranking methods:
First, we simply randomly select 3 distractors from
D1 (Rand-3). Second, we instruct the base distrac-
tor generation model to directly generate exactly 3
distractors (Only-3).
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3 Experiments

This section provides a comprehensive overview of
our dataset, outlines the evaluation metrics and the
experimental setup, and details the findings from
experiments and human evaluation.

3.1 Dataset
We use a dataset that comprises 1.4K math MCQs
sourced from Eedi’s content repository*. These
questions, all written in English, target students
aged 10 to 13. Each MCQ includes a question
stem, a key with an explanation justifying its cor-
rectness, and three distractors, each accompanied
by a feedback message clarifying why it is incor-
rect. Additionally, each option is tagged with the
percentage of students choosing that option, com-
puted on an average of 4,000 student responses per
question. We split the dataset into training and test
sets at an 80:20 ratio. The training set is used to
fine-tune the base distractor generation LLM (if
necessary) and train the ranking model, while the
test set is used for evaluation.

3.2 Evaluation Metrics
We adopt the alignment-based metrics previously
introduced in (McNichols et al., 2023a) to assess
the degree of alignment between LLM-generated
distractors and human-authored ones. There are
two binary metrics: Partial match, which checks if
at least one LLM-generated distractor matches the
human-authored ones*, and Exact match, which
checks if all LLM-generated distractors match the
human-authored ones. There is also one scalar met-
ric: Proportional (Prop.) match, which calculates
the proportion of LLM-generated distractors that
match the human-authored ones. Additionally, to
reflect the portion of students selecting each dis-
tractor, we introduce a new scalar metric: Weighted
Proportional (W. Prop.) match (that also has range
r0, 1s), formally defined as

hpD, D̂q “ ř
i IpDj s.t. di “ d̂jq ¨ pi{ ř

i pi,

where I is the indicator function. Intuitively, this
metric re-weights each “match” in the Proportional
metric such that a match on a distractor that more
students select is weighed more heavily than one
that less students select. We calculate the values
for all metrics by averaging them across all MCQs

*https://eedi.com/home
*We use the exact string match criterion to align LLM-

generated with ground-truth, human-authored distractors.

Approach Partial Exact Prop. W. Prop.

Top-3 67.87 2.53 32.25 36.89
CoT Rand-3 47.29 0.00 18.29 19.13

Only-3 66.43 3.25 31.05 35.03

Top-3 67.15 1.44 30.20 34.81
FT Rand-3 35.38 0.36 14.20 15.06

Only-3 60.29 2.89 28.28 31.75

Table 1: Results of distractor generation on alignment-
based metrics. We see that overgenerate-and-rank
(sometimes significantly) improves performance.

in the test set and then scaling these values by a
factor of 100 to convert them into percentages.

3.3 Experimental Setup

Following (McNichols et al., 2023a), we use
zero-shot chain-of-thought prompting (CoT) with
GPT-4 and fine-tuning (FT) with the open-source
Mistral-7B model as our base distractor gener-
ation models. Since our goal is to evaluate the
performance of the ranking model, we do not use
their in-context learning method, “kNN”, because
in-context examples leak student selection informa-
tion into the distractor generation model by show-
ing example distractors that real students frequently
select. Consistent with the best practices identi-
fied in their work, we represent each target MCQ
by concatenating the question stem, the key, and
its corresponding explanation. During the distrac-
tor generation process, the model must generate a
feedback message before the actual distractor. Hy-
perparameters and model details are listed in the
Supplementary Material Section B.

3.4 Results and Discussion

Table 1 shows the performance of both base dis-
tractor generation models with different ranking
methods across alignment-based metrics. The low
Exact match values across methods indicate it is
nearly impossible for the LLM to recover the ex-
act 3 human-authored distractors. However, Top3
outperforms both Rand3 and Only3 on all other
metrics, which suggests that the trained ranking
model is effective at identifying which distractors
are more likely selected by students. The gap on the
Weighted Proportional metric is bigger than that on
the Proportional metric for CoT and FT since the
Weighted Proportional metric incorporates student
distractor selection percentages, which is what the
ranking model trains on. This observation high-
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Comparison Kendall’s Tau

GT Rank vs. Human Rank 0.27
GT Rank vs. Model Rank 0.30

Human Rank vs. Model Rank 0.14

Table 2: Correlation between different rankings on
human-authored distractors. Teachers and the ranking
model correlate with actual student selection percent-
ages to a similar degree.

lights the advantage of overgenerate-and-rank, sug-
gesting that letting the base distractor generation
model to generate a diverse set, casting a wide net,
and then using the ranking model to select good
ones is an effective approach. Perhaps most impor-
tantly, we see that Top3 with FT performs similarly
to Only3 with CoT. This observation shows that
the ranking model can elevate the performance of a
small, open-source LLM (Mistral-7B) and make
it comparable to a much larger, proprietary LLM
(GPT-4), which is a promising sign for the poten-
tial real-world deployment of automated distractor
generation methods in a cost-controlled way.

3.5 Human Evaluation

We conduct human evaluations where we recruit
two math teachers with experience teaching grade-
school-level math to evaluate distractors. We
randomly select 20 MCQs whose Top-3 LLM-
generated distractors are completely different from
the human-authored ones from the test set. In
the first evaluation task, we ask evaluators to
rank the quality of human-authored distractors
to examine the correlation between teacher judg-
ment (Human Rank), the ranking model’s ranking
(Model Rank), and the actual student selection
percentages (GT Rank). In the second evalua-
tion task, we show evaluators 6 distractors for each
MCQ, including 3 LLM-generated distractors and
3 human-authored distractors. We then ask them
to rate the overall quality of each distractor to com-
pare LLM-generated distractors (Top-3 LLM) with
human-authored ones (Human), on a 5-point Lik-
ert scale, from 1 (least likely to be selected by
students) to 5 (most likely). To mitigate potential
bias from distractor ordering, the sequence of the
distractors was randomized for each MCQ.

Table 2 shows Kendall’s Tau correlation (Arndt
et al., 1999) between the ground-truth ranking and
the human/model ranking. We see that human and
model rankings have a weak-to-moderate correla-

QWK Average Ratings

Top-3 LLM Human Top-3 LLM Human

0.66 0.62 2.67 ˘ 0.96 3.26 ˘ 1.02˚

Table 3: Inter-rater agreement and average ratings on
LLM-generated and human-authored distractors. ˚ indi-
cates statistical significance (p ă 0.05) under a t-test.

Head-to-Head Rating Comparison Percentage

Top-3 LLM ą Human 22%
Top-3 LLM “ Human 16%
Top-3 LLM ă Human 62%

Table 4: Head-to-head comparison between LLM-
generated distractors and human-authored ones. Teach-
ers prefer human-authored ones most of the time.

tion with the ground-truth ranking. This observa-
tion reveals the difficulty of this task since even
expert math teachers with years of teaching experi-
ence cannot fully anticipate real students’ behavior.
We also see that human ranking and model ranking
have a weak correlation, likely due to humans and
LLMs approaching the same problem from differ-
ent angles; future work can consider a human-AI
collaboration approach.

Table 3 shows the inter-rater agreement among
math teachers, measured in quadratic weighted
Kappa (QWK) (Brenner and Kliebsch, 1996), and
their average ratings for both LLM-generated dis-
tractors and human-authored ones. We see that
human-authored distractors are preferred with sta-
tistical significance, and the inter-rater agreement
is moderate-to-substantial. However, we note that
since the 20 selected MCQs in our evaluation are
the ones where none of the top-3 LLM-generated
distractors match human-authored ones, this result
may downplay the effectiveness of LLMs because
they must generate plausible distractors that are not
already included in the human-authored ones.

We additionally compare the LLM-generated
and human-authored distractors head-to-head, us-
ing average distractor rating across evaluators be-
tween each LLM-generated distractor and each
human-authored distractor for each question (result-
ing in 9 comparisons per question). Table 4 shows
the percentage of cases where LLM-generated dis-
tractors win, lose, or tie to human-authored ones.
We see that even though human-authored distrac-
tors are preferred the majority of the time, there
is a sizeable portion of LLM-generated distractors
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that are equal to or preferred over human-authored
distractors. This result implies that LLMs can gen-
erate some high-quality distractors that can be used
to enhance the quality of human-authored ones.

4 Conclusions and Future Work

In this paper, we propose an overgenerate-and-rank
method for generating distractors for math MCQs.
We train a ranking model to predict which distrac-
tors students would select more often, and this rank-
ing model can be applied to any existing distractor
generation method. We experimentally validate its
performance on a real-world dataset and test its
limitations through human evaluation.

Avenues for future work include but are not lim-
ited to further improving the ranking model through
a student-specific distractor selection prediction ob-
jective that considers their knowledge state (Liu
et al., 2022), developing a human-in-the-loop ap-
proach for distractor selection percentage predic-
tion, and using the same approach for feedback gen-
eration (Scarlatos et al., 2024). Finally, extending
our work from multiple-choice questions to open-
ended questions is important, since open-ended
student responses contain much more detailed in-
formation on their errors (Zhang et al., 2021, 2022;
McNichols et al., 2023b).

Limitations

First, due to limited resources, we only performed
human evaluation on the human-authored distrac-
tors and the Top-3 LLM-generated distractors.
However, this does not allow us to determine if
our overgenerate-and-rank approach is better than
generation baselines from a human evaluation per-
spective. We also acknowledge that our human
evaluation sample size is small, and should ideally
be increased for future studies. Second, while we
have evidence that our method enhances the quality
of LLM-generated distractors, a notable difference
remains between the quality of LLM-generated
distractors and human-authored ones. To make
LLM-generated distractors viable for deployment
in real educational settings, it is necessary to fur-
ther investigate how to improve their overall quality.
Third, our first human evaluation result shows that
even experienced math teachers cannot anticipate
real student behavior accurately. A more precise
evaluation for LLM-generated distractors would
involve deploying them in actual tests and observ-
ing student behavior. However, this process can

be significantly complicated and time-consuming,
and should only be performed when there is rea-
sonable evidence that generated distractors might
be of similar quality to human-authored ones.

Ethical Considerations

Our work uses the overgenerate-and-rank method
to improve the quality of LLM-generated distrac-
tors. We believe that our work could potentially
reduce the time educators and teachers spend cre-
ating math MCQs, enabling them to focus more
on teaching and engaging with students. However,
we acknowledge that potential biases within LLMs
may exist, which could cause the LLM-generated
distractors to contain incorrect or potentially harm-
ful information. Therefore, we strongly recom-
mend that educators and teachers review the qual-
ity of LLM-generated distractors thoroughly before
deploying them in actual tests for students.
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Supplementary Material

A Distractor Generation Examples

Question Stem
fifty five thousand subtract twenty three thousand equals

Key
32,000

Human-authored Distractors
22,000 23,000 3,200

Only-3 LLM-generated Distractors
52,000 -32,000 78,000

Top-3 LLM-generated Distractors
33,000 -32,000 30,000

Table 5: Representative question with distractors from
humans, GPT-4 generating only 3, and GPT-4 after se-
lecting the top 3 with our ranking model.

B Experimental Details

We take several measures to ensure that generated
distractors are distinct and different from the key.
For CoT, we prompt GPT-4 to generate 15 distrac-
tors and eliminate duplicates and those identical to
the key. For the rest of MCQs lacking 10 distinct
distractors, we prompt GPT-4 again to generate 15
new distractors, instructing it to avoid producing
previously generated distractors by including them
in the prompt. We supplement the existing distrac-
tors with the newly generated distractors, ensuring
the total number of distinct distractors reaches 10.
For the MCQs that still lack 10 distinct distractors
(which are few), we add the word "placeholder" as
distractors. We use greedy decoding for all previ-
ous steps. When overgenerating distractors with
our fine-tuned model, we generate 3 distractors 5
times using nucleus sampling for each MCQ, set-
ting temperature “ 1 and top_p “ 0.9. If we do
not get 10 unique distractors, we generate 5 more
times with top_p “ 1.0 to ensure greater diversity.
When generating only 3 distractors, we use beam
search with num_beams “ 5. If we do not get 3
unique distractors, we then generate with nucleus
sampling twice with top_p “ 0.9 and take the first
3 unique distractors.

For the fine-tuned distractor generation model
and the pairwise ranking model, we use the
mistralai/Mistral-7B-v0.1 model from Hug-
gingFace (Wolf et al., 2019) and load the model
with 8-bit quantization (Dettmers et al., 2022).
We train LoRA adapters (Hu et al., 2021) on the

q_proj, v_proj, k_proj, and o_proj matrices,
setting r “ 32, α “ 16, dropout “ 0.05. We train
using the AdamW optimizer with a virtual batch
size of 64 using gradient accumulation and do early
stopping on a random 20% subset of the train set.
For the distractor generation model we use a learn-
ing rate of 5e-5 and train for 15 epochs, and for
the pairwise ranking model we use a learning rate
of 3e-5 and train for 5 epochs. For DPO training
on the pairwise ranking model, we set β “ 0.5
and useMSFT as the reference model. We train all
models on a single NVIDIA RTX A6000 GPU.

C Human Evaluation Details

In this work, we obtained approval from the ethics
review board for human evaluation. We show the
evaluation instructions to human evaluators in Ta-
ble 9. We do not provide any compensation for
human evaluators because their participation is en-
tirely voluntary and we appreciate their contribu-
tion to this work.
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D Prompt Format

We provide the prompts for CoT, FT, and pairwise ranking model below. We use ăą to indicate that a
variable is filled in dynamically.

Prompt You are provided with a math question, correct answer, and the expla-
nation of correct answer. Your task is to use the following template to
create 15 unique incorrect answers (distractors) to be used as multiple-
choice options for a middle school math multiple-choice question.
Before generating each distractor, include a concise explanation to
clarify for students why that is not the correct answer. Make sure
each distractor is clearly different from the correct answer and distinct
from each other, this is very important!
[Template]
Distractor1 Feedback:
Distractor1:
Distractor2 Feedback:
Distractor2:
Distractor3 Feedback:
Distractor3:
Distractor4 Feedback:
Distractor4:
Distractor5 Feedback:
Distractor5:
Distractor6 Feedback:
Distractor6:
Distractor7 Feedback:
Distractor7:
Distractor8 Feedback:
Distractor8:
Distractor9 Feedback:
Distractor9:
Distractor10 Feedback:
Distractor10:
Distractor11 Feedback:
Distractor11:
Distractor12 Feedback:
Distractor12:
Distractor13 Feedback:
Distractor13:
Distractor14 Feedback:
Distractor14:
Distractor15 Feedback:
Distractor15:
Question: <question>
Explanation: <explanation>
Answer: <answer>

Table 6: Prompt for chain-of-thought distractor generation with GPT-4.
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Prompt You are provided with a math question, correct answer, and the expla-
nation of correct answer. Your task is to generate 3 unique incorrect
answers (distractors) to be used as multiple-choice options for a mid-
dle school math multiple-choice question. Before generating each
distractor, include a concise explanation for students to clarify why
that is not the correct answer. Ensure each distractor is different from
the correct answer and distinct from the others; this is very important!
Question: <question>
Explanation: <explanation>
Answer: <answer>

Table 7: Prompt for fine-tuning with Mistral.

Prompt A teacher assigns the following math question to a class of middle
school students.

Question: <question>
Solution: <solution>
Correct answer: <correct answer>
Generate a distractor for this question that targets some student
misconception.

Distractor: <distractor>

Table 8: Prompt for pairwise ranking model.
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E Human Evaluation Instructions

You are provided with two tasks
The first task (rank) consists of 20 items, each containing a question stem and three distractors. For
each item, you are asked to rank the three distractors based on the assessment of how often they will be
selected by real students, from most frequent to least frequent. The items for this task can be accessed
in the rank.csv file.
Example:
Question: How do you write 4.6 as a percentage?
Distractor 1 (id = 1): 46%
Distractor 2 (id = 2): 0.046%
Distractor 3 (id = 3): 4.6%
Best distractor id: 1
Second best distractor id: 3
Third best distractor id: 2

The second task (rate) also consists of 20 items, each containing a question stem and six distractors.
For each item, you are asked to rate the likelihood of each distractor being selected by students on a
5-point scale independently: 5 - most likely, 4 - likely, 3 - average, 2 - not likely, and 1 - least likely.
The items for this task can be accessed in the rate.csv file
Example:
Question: How do you write 4.6 as a percentage?
Distractor: 46%
Rating: 4

Table 9: Instructions given to human evaluators for evaluating distractors.
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Abstract

Natural language generation tools are power-
ful and effective for generating content. How-
ever, language models are known to display
bias and fairness issues, making them imprac-
tical to deploy for many use cases. We here
focus on how fairness issues impact automat-
ically generated test content, which can have
stringent requirements to ensure the test mea-
sures only what it was intended to measure.
Specifically, we review test content generated
for a large-scale standardized English profi-
ciency test with the goal of identifying con-
tent that only pertains to a certain subset of
the test population as well as content that has
the potential to be upsetting or distracting to
some test takers. Issues like these could inad-
vertently impact a test taker’s score and thus
should be avoided. This kind of content does
not reflect the more commonly-acknowledged
biases, making it challenging even for mod-
ern models that contain safeguards. We build
a dataset of 601 generated texts annotated for
fairness and explore a variety of methods for
classification: fine-tuning, topic-based classifi-
cation, and prompting, including few-shot and
self-correcting prompts. We find that combin-
ing prompt self-correction and few-shot learn-
ing performs best, yielding an F1 score of 0.79
on our held-out test set, while much smaller
BERT- and topic-based models have competi-
tive performance on out-of-domain data.1

1 Introduction

Large language models (LLMs) have become ubiq-
uitous in the space of natural language generation
(NLG) due to recent advances in model capability
(Minaee et al., 2024). However, these improve-
ments come with the potential for various negative
societal impacts. These negative impacts include

∗* Work done while at ETS
1Code and dataset available at https://

github.com/EducationalTestingService/
item-generation-fairness.

Q: You went to one of The Eras Tour shows, didn’t you?

Is “Yes—I love Taylor Swift!” the 
right answer? Who is that?

(A)

(B)

Q: You went to the music concert, didn’t you?

Ah, I see the correct answer: 
“Yes—it was a great performance!”

Figure 1: In (A), the generated question requires knowl-
edge of what The Eras Tour is to identify the correct
answer. Even native English speakers would likely not
be able to identify the correct response if they were not
familiar with Taylor Swift. In (B), the generated ques-
tion does not require specific background knowledge, so
test takers would not need to use specialized knowledge
to identify the correct answer. Our goal is to identify
and filter content like (A) to help ensure fair testing.

the generation of misinformation/propaganda, al-
location harms of systems providing benefits only
to certain groups of people, and representational
harms revolving around bias and stereotyping. Nat-
ural language processing (NLP) models–including
LLMs–are known to reflect and repeat harmful bi-
ases and stereotypes (Hosseini et al., 2023; Bender
et al., 2021; Hovy and Prabhumoye, 2021; Nadeem
et al., 2021), and research into how the community
addresses the societal harms engendered by NLP
technology is critical (Wang et al., 2024; Dev et al.,
2022; Blodgett et al., 2020).

Many of these types of bias in language gen-
eration are well-studied. Biases based on gen-
der (Nemani et al., 2024; Devinney et al., 2022;
Strengers et al., 2020; Wan et al., 2023), race (Das
and Balke, 2022; Field et al., 2021), nationality
(Venkit et al., 2023), and disability (Venkit et al.,
2022) have been identified in language models, and
many modern LLMs incorporate deliberate safe-
guarding measures in an attempt to alleviate these
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issues (OpenAI et al., 2023; Anil et al., 2023).
In the area of language assessment, there exists

a tangential set of issues regarding fairness to test
takers and score users (Educational Testing Ser-
vice, 2022). These issues are particularly danger-
ous when applied to language learning and assess-
ment; tests with inherent biases have the potential
to compromise the validity of the test. Therefore,
content that is irrelevant to the skills and abilities
the test is intended to measure should be avoided
(Figure 1). This includes content that could dis-
advantage anyone based on their culture, location,
or experiences (e.g., focusing on barbeques on the
4th of July could disadvantage test-takers who are
unfamiliar with U.S. culture); their emotions (e.g.,
health hazards and diseases can evoke negative
emotional responses among some people); their
worldviews (e.g., luxury cruises or designer cloth-
ing may make some people feel excluded); and
other factors. We refer to these types of issues as
fairness issues. Knowing how to better understand,
detect, and mitigate bias related to fairness in NLG
not only raises awareness of the issue but also en-
ables researchers and developers to create more fair
and inclusive NLP systems, evaluation metrics, and
datasets in the language assessment space.

Our goal is to build a system for identifying
fairness-violating content in automatically gener-
ated texts. It is of course still necessary to have
human review and revision of the content, but by
adding a filtering process after generation and be-
fore manual review, we can significantly reduce
the time taken for reviewing and the chance that
fairness-related content is mistakenly allowed. To
accomplish this goal, we explore four different ap-
proaches: fine-tuning, topic-based classification,
few-shot prompting, and prompt-self correction.

Our methods need to adapt to new contexts: our
definition of fairness is operationally defined by
the particular testing context, and may not apply
to others, so the guidelines, prompts, and models
may not apply generally to new contexts. For this
reason, we assess our methods on two held-out test
sets and analyze how our methods could be applied
to new contexts. We release our resulting dataset,
consisting of 620 samples, of which 19.4% contain
fairness issues2, to facilitate improvements in the
fairness-detection community.

2Each sample we used was rejected for deployment in
actual tests. Using rejected samples for our experiments allows
us to release the dataset: accepted stimuli cannot be made
public.

Our contribution consists of the following:

1. We define a new fairness problem around is-
sues faced in developing fair testing content.

2. We release a dataset of 601 samples for use in
evaluating fairness detection methods.

3. We analyze the relative effectiveness of a vari-
ety of well-known classification techniques.

4. We provide a new mechanism for prompting
self-correction, which yields significant im-
provements over other prompting strategies.

We start with data collection and analysis. We
collect 620 samples over seven different types of
content generated using LLM prompting. We anno-
tate each sample and assess whether it contains a
fairness issue, and if it does, whether that fairness
issue pertains to knowledge, skill, or expertise or
emotion (more on these categories and how they
relate to fairness in Section 3). We then use this
dataset to experiment with a series of models for
classifying fairness issues.

We show that fine-tuning and filtering by topic
can be cheap and effective options, although
prompting strategies with GPT4 tend to be more
effective. Few-shot prompting along with self-
correcting prompt strategies yield strong perfor-
mance with relatively little data, and combining
both yields the best results on our in-domain test
set, with an F1 score of .773. Interestingly, using
a shorter, more generic prompt combined with our
self-correction method yields the best result on our
out-of-domain test set, with an F1 score of .462.

2 Related Work

Bias, fairness, and responsible AI has been at the
forefront of education technology, with contempo-
rary research focusing on automated scoring, writ-
ing assistance, and other nuances of applying NLP
technology to this sensitive domain (Mayfield et al.,
2019; Loukina et al., 2019). Baffour et al. (2023)
find that assisted writing tools may exhibit moder-
ate bias depending on the task, while Wambsganss
et al. (2023) found no significant gender bias differ-
ence in writing done with and without automated
assistance. Wambsganss et al. (2022) explore bias
in educational tools for German peer review, and
Kwako et al. (2023, 2022) propose novel methods
for detecting bias in automated scoring algorithms.

We are specifically interested in applications to
language generation, and there is also substantial
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work in using LLMs and other NLP technology
to generate content for educational assessments
(Laverghetta Jr. and Licato, 2023; Gonzalez et al.,
2023; Heck and Meurers, 2023; Uto et al., 2023;
Tack et al., 2023; Stowe et al., 2022). However,
this work largely fails to address bias and fairness
issues in content generation. Our work is specif-
ically focused on fairness issues in automatically
generated language testing content.

In the context of language models, fairness and
bias have emerged as critical concerns. Existing
detection and mitigation tools generally diverge
from our work: some are overly domain-specific
like the focus on news articles in Raza et al. (2024),
while others are focused on assessing issues within
the language models and datasets (Bellamy et al.,
2018), rather than the outputs. Other works rely on
retrospective metrics that assess a model’s fairness
through aggregated predictions and subgroup anal-
ysis, and/or focus on classification rather than gen-
eration problems (Weerts et al., 2023; Wiśniewski
and Biecek, 2022; Saleiro et al., 2019). Although
these tools enhance transparency and accountability
for evaluating language model issues, they funda-
mentally differ from our bias detection approach
tailored for evaluating generated text in real-time
for a production environment.

3 Problem Motivation

In the language testing context, we face a unique
set of fairness challenges in generating content.
Specifically, fair testing requires content that does
not contain irrelevant factors that negatively impact
the assessment of a test taker.

A primary concern is to ensure that the test con-
tent measures only what it is intended to measure.
For English-language proficiency tests, this means
that the test must measure only the skills and abili-
ties needed to communicate effectively in English,
and not other constructs such as background knowl-
edge of specific jobs, events, or cultures.

Consider the following question and an example
of a response to that question:

• Question: You went to one of The Eras Tour
shows, didn’t you?

• Response: Yes–I love Taylor Swift!

If the task were to identify whether the response
is an appropriate response to the question, even
some native English speakers would likely get it
wrong. This is because, in addition to needing to

know features of English proficiency (in this case,
the ability to infer gist, purpose, and basic context
based on information stated in short spoken texts),
one would also need to know about Taylor Swift
and her concert tour. Thus, those familiar with
Taylor Swift would have an unfair advantage in
identifying the correct answer.

Eliminating the fairness issue for this type of
question would result in the following revision:

• Question: You went to the music concert,
didn’t you?

• Response: Yes–it was a great performance!

In addition to avoiding testing outside knowl-
edge, it is also important that language proficiency
tests do not include content that is offensive or dis-
turbing. For example, the following question and
response refer to serious health issues, which have
the potential to evoke deep negative emotions.

• Question: Did you hear that Luis has been
hospitalized?

• Response: No, but I knew he had a bad case
of Covid-19.

Content like this that could prompt strong feel-
ings of anger, sadness, or anxiety should be avoided
because it could derail a test taker’s concentration,
resulting in lower performance on the test. How a
test taker interacts with this test content may tell
more about their ability to concentrate under emo-
tional strain than about their ability to identify a
response’s linguistic appropriateness. Eliminating
this construct-irrelevant content helps to ensure that
the test measures only the skills and abilities it is
intended to measure.

4 Methods

Our goal is to detect whether a generated stimulus
contains an issue as a binary classification task. We
build a dataset of texts labeled for potential fairness
issues and explore potential detection methods.

4.1 Dataset

Our goal is to identify and mitigate these fairness is-
sues in testing content. We build a dataset spanning
seven different item or task types from standard-
ized English language proficiency tests all gener-
ated using GPT4 (OpenAI et al., 2023). Item and
task types can contain up to four components: the
stimulus (main text the question is based on), stem
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Item/Task Type Total Fairness KSA Emotion
Read a Text Aloud 304 55 24 39

Talks 91 12 6 6
Text completion 84 26 11 19

Respond to
Questions Using

Information Provided
56 10 5 5

*Conversations 41 8 5 4
*Respond to a

Written Request 25 7 6 1

Total 601 118 57 74

Table 1: Item/task types and annotations for fairness
issues. Each has a binary annotation (fairness issue/no
fairness issue) and is tagged as containing a KSA issue
or an Emotion issue. Types marked with ’*’ are held
out for testing as an "out-of-domain" dataset, and not
used for any training/evaluation.

(question asked about the stimulus), key (the cor-
rect answer to the stem), and distractors (a set of
alternative answers that are incorrect).

Fairness issues are possible in all components,
but we focus on only the stimuli, which are typi-
cally the longest, most feature-rich components of
the test content, and thus are most likely to reflect
fairness and bias issues. Issues in the stimuli can
leak through to other components, making the stim-
ulus the source of the majority of fairness issues.

Annotation For each stimulus, we aim to identify
whether or not the stimulus contains fairness/bias
issues, and if so, what type of issue is present. We
start with a dataset of automatically generated stim-
uli. These stimuli were generated using prompting
and different versions of GPT: the prompts were
iteratively improved with the goal of improving the
overall quality of the stimuli. During this process,
each stimulus was evaluated by the test’s content
development experts. For this work, the stimuli
used were rejected by the reviewers, allowing us
to provide them publicly and explore their use for
fairness detection. These rejected stimuli typically
have the relevant language and structure, so our
goal is to identify which of those stimuli were re-
jected (at least in part) for fairness reasons. We
employ content development experts to annotate
these samples, yielding a binary classification be-
tween non-fairness and fairness-related rejections.

However, there are different ways for bias and
fairness considerations to impact individual stimuli.
To better understand and mitigate these issues, we
separated them into two main categories:

• Knowledge, Skill, and Ability (KSA): content

that contains construct-irrelevant information
that may be unavailable to test takers in dif-
ferent environments or with different expe-
riences and abilities. These include content
with reference to specific skills, regionalisms,
or unfamiliar contexts.

• Emotion: content in which language, scenar-
ios, or images are likely to cause strong emo-
tions that may interfere with the ability of
some groups of test takers to respond. These
include offensive, controversial, upsetting, or
overly negative content.

Each sample that is flagged for fairness is an-
notated for one or both of these categories. This
allows further analysis to address these specific fair-
ness categories and to better understand the impact
of specific fairness issues.

Our dataset is comprised of stimuli from seven
different item and task types: a summary of the col-
lected data is shown in Table 1, with examples for
each type in Appendix A. These stimuli represent
various structures, depending on the item/task type:
Read a Text Aloud, Talks, and Text Completion
stimuli are short text paragraphs, while Conver-
sation stimuli involve turns between two or more
speakers. Respond to Questions Using Informa-
tion Provided and Respond to a Written Request
task stimuli are structured content: the generation
process creates text that is filled into a structured
template; we use only the raw text.

Overall we collect 601 samples, of which 19.6%
exhibit evidence of fairness issues, with 9.5% re-
flecting KSA issues and 12.3% Emotion issues. We
build a validation set of 48 samples reflecting a bal-
ance of the item and task types from the training
types (Read a Text Aloud, Talks, Text Comple-
tion, and Respond to Questions Using Information
Provided), and an equal-sized "in-domain" dataset
from these stimuli is held separately for testing.
These datasets contain an even number of positive
and negative classes for fairness evaluations. As
our goal is to be able to identify positive cases
where fairness issues exist, we intend for our vali-
dation and test sets to have a substantial number of
this class. We use the two remaining types (Con-
versations, Respond to a Written Request) as a
separate "out-of-domain" test set to evaluate per-
formance on unseen content.
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4.2 Experiments

We experiment with standard transformer-based
classification baselines, topic detection, and a vari-
ety of GPT4-based prompting, including methods
for automatic prompt-self correction. We describe
each method below: each is tuned on the validation
set, and we report the best model performance on
that set. We then evaluate model performance on
two separate test sets in Section 5.

Classification with Fine-Tuning We fine-tune
standard pre-trained transformer models for
sequence classification. We experiment with
bert-base-cased, bert-large-cased
(Devlin et al., 2019), roberta-base, (Liu et al.,
2019) and deberta-base (He et al., 2021)
models. We perform a hyperparameter search on
our validation set for each model, finding that a
learning rate of 2e-5 over 2-4 epochs generally
performs best, and report results using the model
with the best performance.

Topic-Based Filtering We observe that many
samples are flagged for fairness due to the topic of
the material: many topics contain content that vio-
lates our fairness guidelines directly, while others
are simply more likely to include unacceptable con-
tent. Motivated by this, we explore topic detection
as a method for identifying fairness issues.

We first identify topics found within the data.
We use the topic modeling framework BERTopic
(Grootendorst, 2022) to extract topic representa-
tions from two sources of training data: (1) all
samples from the training partition of our dataset
and (2) our fairness guidelines. In this method,
SentBERT (Reimers and Gurevych, 2019) converts
each training document into a dense vector rep-
resentation which are then grouped by semantic
similarity, creating clusters that represent different
topics. For each of the two training sets, topic de-
scriptions made up of the most important words in
a cluster are generated for the clusters containing
at least five supporting documents. We manually
assess each topic description for themes that should
be avoided based on their relation to known fairness
issues and which topics are acceptable. Finally, for
each unseen sample in test and validation datasets,
we make predictions based on the single nearest
topic cluster. If a sample falls within the boundaries
of restricted topics, it is classified as a violation.

Results for these methods are shown in Table
2. The fine-tuned bert-based models perform fairly

Fine-tuning
Model Prec Rec F1

bert-base-cased 1.00 0.29 0.45
bert-large-cased 0.92 0.50 0.65

roberta-base 0.92 0.50 0.65
deberta-base 1.00 0.63 0.77

Topic-based Filtering
Model Prec Rec F1

Topic-data 0.79 0.46 0.58
Topic-guidelines 1.00 0.04 0.10

Table 2: Results for fine-tuning (above) and topic detec-
tion (below) on the validation set.

well, with F1 scores for bert-large-cased
and roberta-base both around 0.65, and
deberta-base showing exceptional perfor-
mance with an F1 score of 0.77. The Topic-Based
Filtering models are worse, with the data-based
system yielding an F1 score of 0.58. In all cases,
precision is much higher than recall; these models
are conservative with predictions.

4.3 Prompting

We initially experiment with five different “base”
prompts. We pair these with stimuli and use GPT4
to return “True” if the stimulus contains a fairness
issue and “False” otherwise. These prompts repre-
sent different strategies3:

• GENERIC (SHORT) 53 tokens: Drawing
from general knowledge of fairness and bias
in LLMs, we write a generic prompt designed
to combat attested LLM biases. This prompt
is designed as a weak baseline. Our goal is
to determine if a short, simple prompt can
capture relevant issues, and whether or not it
can be easily improved via self-correction or
few-shot learning (Sections 4.3 and 4.3)

• GENERIC (LONG) 191 tokens: This is a
longer, more detailed version of the above,
containing nearly 200 tokens.

• GUIDELINE (SHORT) 197 tokens: We craft
a prompt based on guidelines for writing fair
assessments. Using documentation that de-
fines what constitutes fair assessment items
and how to write them, we build a prompt
capturing the important components of a fair
question. The goal of this prompt is to deter-
mine whether human-written guidelines based
on theoretical issues will accurately capture
these issues in real data.

3Prompts in Appendix B.
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• GUIDELINE (LONG) 1081 tokens: We con-
struct a “long” version of the previous guide-
lines by summarizing the entire fairness guide-
lines with the help of GPT4, asking for con-
cise versions of relevant sections and combin-
ing them into a document that fully captures
all the relevant aspects of the guidelines. This
prompt is our longest, but still fully based on
documentation. The goal of this prompt is
to determine the efficacy of a longer, more
comprehensive prompt.

• DATA-DRIVEN 142 tokens: We craft a
prompt based on annotations in our data. We
identify which topics and language cause fair-
ness issues and build the prompt to reflect
how they might generalize to unseen item/task
types and topics. This method is hypothesized
to be the most effective, as it will address
known issues in the data but may not extend
to unseen data, as it is built specifically around
the given training samples.

These prompts are run through GPT4 via the
Azure interface (OpenAI et al., 2023). Each prompt
was updated manually to correct obvious potential
issues. Our goal here is not to overoptimize prompt
writing, which could lead to overfitting the vali-
dation set, but rather to develop a generic prompt
likely to be effective for both known fairness issues
and novel issues possible in generated content.

Initial experiments on the validation set revealed
two insights: the GENERIC (LONG) prompt per-
forms similarly to the GENERIC (SHORT) in all
cases, and the GUIDELINE (LONG) prompt is inef-
fective. We therefore focus our efforts on the three
other prompts: GENERIC (SHORT) GUIDELINE

(SHORT) and DATA-DRIVEN.
A primary issue in identifying the fairness issues

we are concerned with is that they are only applica-
ble in the context of certain testing environments.
The guidelines and data we use are specific to a
certain test; for other tests, other environments, and
other contexts, different definitions of fairness and
different alignments will be applicable. For this
reason, the ability to adapt to new environments is
critical in applying fairness constraints. We aim
to build a system that can learn to adapt to new
guidelines with minimal information.

We explore several methods to improve the ro-
bustness of prompting: few-shot prompting and
self-correcting prompting techniques.

Few-Shot Prompting We follow few-shot
prompting strategies that have been successful for
LLM classification tasks (Logan IV et al., 2022;
Brown et al., 2020). For each of our base prompts,
we provide a set number n of additional samples
for both the positive and negative classes. Each of
the samples contains the text of the stimulus along
with a brief description of why it does or does not
violate our fairness guidelines.

Prompt Self-Correction We leverage our anno-
tated data using a prompt self-correction strategy
(Figure 2). We start with a base prompt and iterate
through a batch of samples from our training data.
For each sample, we insert text into the prompt,
perform a pass through GPT4, and evaluate the
resulting output. If it is correct, we continue. If
not, we instruct the LLM to make adjustments to
the prompt, either to disallow the sample (when
the error is a false negative) or to allow it (when
the error is a false positive), using the following
prompts:

• Positive sample incorrectly classified as neg-
ative: The previous text was classified as not
having any fairness issues, returning False.
However, it did have an issue. Think about
what topics or issues in the text might be un-
fair. Improve the original fairness instructions
by adding or modifying restrictions so to ac-
count for this text.

• Negative sample incorrectly classified as posi-
tive: The previous text was classified as hav-
ing a fairness issue, returning True. However,
this item has no issue. Think about why this
text was classified as unfair. Improve the orig-
inal fairness instruction to allow this item by
removing or revising restrictions.

This process is run up to e epochs, or stopped
early if accuracy reaches 1 or the predictions are sta-
ble. We run over b batches of n samples randomly
drawn from the training data, using the best-scoring
prompt from the final batch for evaluation.4

Combining Few-Shot and Self-Correction
Few-shot and self-correction are inherently compli-
mentary, as the self-correction method returns an
optimized prompt and few-shot learning reinforces
it by providing in-domain examples. We combine
them by concatenating additional few-shot learning
samples to the self-correcting prompts.

4For an example of the process, see Appendix C.
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Figure 2: Self-correcting prompt strategy. Data is run
through the prompt. If the result is correct, we continue;
otherwise, we instruct the LLM to correct the prompt.

Figure 3: F1 scores on the validation set for each
prompting method. Note that for GENERIC (SHORT)
the F1 score was 0. Full results in Appendix D.

For each of these improvements to prompt-
ing, we perform a hyperparameter search over
the number of total training/few-shot samples and
batch size. We experiment with the GENERIC

(SHORT) GUIDELINE (SHORT) and DATA-DRIVEN

prompts.5 We hypothesize the GENERIC (SHORT)
and GUIDELINE (SHORT) prompts should be able
to benefit quickly from adaptive methods, while the
DATA-DRIVEN prompt should be nearly optimized,
as it is already based on observations from the data.

We use the validation set to tune the prompts
and parameters to optimize the F1 score for each
method. Note that for all prompting strategies, the
temperature is set to zero; the prompts should only
return True or False. Figure 3 shows the best results
on the validation set. We explore each model’s
effectiveness on unseen data in Section 5.

5Experiments with the longer guideline-based prompt were
unsuccessful: the LLM invariably returns either a commentary
on a single testing procedure or rewrites the prompt entirely
to handle a single sample.

The base generic prompt fails, as the traditional
bias and stereotyping issues are less likely to occur
in our generated content, and the fairness issues
we are concerned with are unlikely to be deemed
as problematic out of context. Using a simplified
version of our guidelines yields a 0.36 F1 score
for identifying fairness issues. The DATA-DRIVEN

based on observations in the training data yields
much better results (0.70 F1). However, this may
not extend well to novel cases, as the prompt is
driven purely by our validation data.

Few-shot learning displays some interesting
properties: we see significant improvements across
all three prompts, using three samples. (This
yielded the best results across all validation runs).
Even the minimal GENERIC (SHORT) prompt rises
to over 0.60 F1 with minimal few-shot prompting.

We see small improvements over the baseline
using prompt self-correction for all three prompts.
For the DATA-DRIVEN prompt, results using self-
correction equal those using few-shot learning.
This aligns with previous work showing that lan-
guage models themselves tend to write better
prompts (Fernando et al., 2023): after only a few
iterations of self-correction, the DATA-DRIVEN

prompt surpasses the performance of a human-
written prompt, even in cases where the human
describes the dataset explicitly.

Combining self-correction and few-shot learning
yields improvements over base prompts and few-
shot prompting alone. This approach yields the
best results for all three prompts, with the best-
performing model being the DATA-DRIVEN prompt
with self-correction and few-shot learning. This
may be due to overfitting, however: the prompt is
written to reflect the data. To explore the efficacy
of these methods on unseen data, we evaluate them
on our two held-out test sets.

5 Test Results

The previous experiments describe our attempts
to identify the best-performing model for fairness
classification on our validation set. Our goal is to
develop a system that generalizes. For this, we
evaluate the best-performing of the above model
types on two held-out test sets:

1. In-domain: The 48 held-out samples drawn
from the item/task types used for training.

2. Out-of-domain: All samples (66) from the
two held-out types: Conversations, Respond
to a Written Request.
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Figure 4: F1 scores on two test sets for each proposed method. Note that for bert-large-cased and GENERIC
(SHORT), the scores were 0.00 on the unknown test set. Full results in Appendix E.

Figure 4 shows the results on the test set.
We evaluate the best-performing models of each
type: fine-tuned transformer models, topic-based
classification, base prompts, few-shot learning,
self-correction, and combining few-shot and self-
correction. We here note some key facts about
model performance on our test set.

Best Performance Combining the DATA-
DRIVEN prompt with self-correction and few-shot
learning performs the best on the in-domain test.
This shows this is the best approach if there is avail-
able data and expertise to support hand-crafting a
DATA-DRIVEN prompt and running self-correction.
On the out-of-domain data, the smaller initial
prompts, GENERIC (SHORT) and GUIDELINE

(SHORT) both outperform the DATA-DRIVEN

prompt, perhaps due to their more generic nature:
the DATA-DRIVEN prompt is too specific to this
dataset, and understandably doesn’t generalize
well. The self-correct+few-shot methodology
performs the best in both cases: few-shot learning
alone is better than self-correction alone, but the
combination is typically the best.

Strong Results from Small Models Traditional
transformer-based classification performs remark-
ably well, especially in generalizing to the out-of-
domain data. On the in-domain data, the best per-
forming model deberta-base performs on par
with the best base prompting model (0.58 compared
to 0.60 F1 score), although this is a significant drop
from the validation performance of 0.77, and per-
forms quite poorly on out-of-domain data (0.20),
indicating the model may overfit during training.
On the out-of-domain data, roberta-base per-

forms nearly as well as the best-performing over-
all model, just 0.04 behind the GENERIC (SHORT)
prompt with self-correction and few-shot learning.
If the goal is to quickly and cheaply build a sys-
tem that is applicable to a wide variety of domains,
there appears to be significant value in relying on
these relatively small transformer-based classifi-
cation models. The Topic (data) approach is also
competitive on out-of-domain data, and does not
even require model training; it lags only slightly
behind the roberta-base model.

Self-Correction We found significant success in
our proposed self-correction mechanism. While
it typically does not outperform few-shot learn-
ing in isolation, the methods are naturally com-
plementary, and the combination often yields the
best-performing model. In examining the models’
self-corrections, we find that when asked to become
more restrictive, the model tends to add sentences
with new constraints, which nicely reflect the issue
that was missed. When asked to become less re-
strictive, the model tends to add hedges to currently
existing constraints.

In our experiments, we noted some issues. First,
when run using too many samples or batches, the
prompts tend to degrade: once the LLM makes an
error and returns a prompt that doesn’t match the
specifications, the run needs to be aborted. Even
when the LLM sticks to the instructions, after many
iterations the prompts become unwieldy and self-
contradictory, and performance rapidly declines.
We suggest using somewhere between six and 20
total samples for prompt self-correction; it is best
to avoid making corrections indefinitely.
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Model Type KSA Emotion

Fine-tuned
bert-base-cased 0.07 0.57
bert-large-cased 0.00 0.00

roberta-base 0.06 0.56
deberta-base 0.08 0.75

Topic-based Data 0.26 0.59
Guideline-based 0.20 0.06

Base Prompting
GENERIC (SHORT) 0.00 0.00

GUIDELINE (SHORT) 0.29 0.09
DATA-DRIVEN 0.47 0.50

Self-correction
GENERIC (SHORT) 0.35 0.30

GUIDELINE (SHORT) 0.35 0.27
DATA-DRIVEN 0.47 0.41

Few-shot
GENERIC (SHORT) 0.18 0.24

GUIDELINE (SHORT) 0.30 0.24
DATA-DRIVEN 0.36 0.56

Few-shot +
Self-correction

GENERIC (SHORT) 0.18 0.21
GUIDELINE (SHORT) 0.23 0.21

DATA-DRIVEN 0.24 0.59

Table 3: Recall scores for KSA and Emotion-labeled
data across both test sets.

Use-Cases and Metrics We here report F1 score
as a balance between precision and recall. (For full
scores, see Appendix E.) Depending on the end
use case, other metrics may be more appropriate.
In our case, we advocate for always including hu-
mans in the evaluation process to ensure that only
fair content is accepted. We then value both preci-
sion (as we do not want to excessively flag content
for fairness issues, which could reduce diversity)
and recall (as we do not want to let fairness issues
through). Optimizing for recall seems reasonable,
as it is likely more important to prevent fairness
issues from being released, but it is critical to note
that no system is perfect: even optimizing for recall,
these fairness issues are likely to persist, and the
models should not be used as failproof safeguards.

KSA and Emotion We evaluate performance on
the test set for the two subcategories: Knowledge,
Skill, and Ability (KSA) and Emotion (Table 3).
The deberta-base model performs exception-
ally well on the KSA subcategory, capturing 75%
of the fairness-flagged samples. Data-based meth-
ods (the DATA-DRIVEN prompts (0.59) and Topics
from Data (0.59)) also perform well, likely due to
the inclusion of negative emotional issues in the
text. They perform much worse on KSA classifica-
tion, although the DATA-DRIVEN prompts still yield
the best performance (0.47): KSA-related issues
are especially difficult as they generally involve
only specific knowledge, and would not normally
be considered fairness issues in other contexts.

6 Conclusions

This work delivers four key contributions: an explo-
ration of a novel fairness detection task, a dataset
of 601 samples annotated for fairness issues, evalu-
ation of a variety of classification models for this
task, including fine-tuning, topic-based approaches,
and prompting, and a novel prompting strategy,
which, combined with few-shot learning, achieves
state-of-the-art performance on the task.

This work is aimed to explore the space of fair-
ness and bias issues in generated content, especially
in the education context. We aim to highlight the
difficulties of accounting for fairness, particularly
in specific contexts unlikely to be accounted for by
traditional model guardrails. As language model
usage becomes more prevalent, the need for proper
bias and fairness strategies from people training,
deploying, and using these models is paramount.

7 Ethics

Content generation comes with inherent ethical
concerns relating to fairness, bias, factuality, and
sensitivity. We aim to mitigate these issues re-
garding fairness, but there are other considerations
around generating assessment content. Models
may introduce subtle biases against disadvantaged
groups, or produce content that appears to be fac-
tual, but is not. These are critical failures that need
to be accounted for.

In practice, the generation of assessment content
requires human intervention: large language model
generations are not at the point where they are
immune to these negative impacts, and thus for any
content that goes into production, a human with
relevant expertise needs to evaluate it. The methods
we propose support this human intervention, as they
can remove obviously offensive content before the
human review stage, or assist in human reviews by
flagging potentially harmful content.

While our dataset is unlikely to contain any con-
tent that is triggering (our framework of fairness
is focused on more nuanced contexts), it must be
noted that there is potential for it to be used ma-
liciously; for example, by someone designing a
system to adapt to and deceive a fairness detection
system. In releasing this data, we hope to bring
awareness to this issue and better understand the
potential negative impacts. Primarily, we stress that
any fairness detection system should not be used
in isolation or without supervision as a catchall for
potential issues.
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8 Limitations

Our work is limited largely by the type of content
evaluation and the models used. We focus on a
small number of item and task types that fall under
very specific fairness constraints: the evaluation
of the methods used specifically applies to these
items under these constraints. This is apparent in
the evaluation on the "unseen" item types in Sec-
tion 5. Applying these methods to new item and
task types, even those annotated under the same
fairness guidelines, yields significantly reduced re-
sults. This is evidence that the methods and models
we designed work only for the specific contexts in
which they are trained and developed.

Similarly, we explore a small space of models
and approaches. We use relatively basic prompt
strategies; there exist many other approaches and
improvements that are likely to be valuable that we
do not evaluate. The same is true of fine-tuned mod-
els and topic classification. We present relatively
basic, well-known strategies to better understand
the difficulty of our data, with the understanding
that there are substantial improvements that could
be applied.
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Table 4 gives examples for each item type.

B Prompts

Below are the five base prompts used. Each also
contains a slot to insert a stimulus and a suffix
instruction: "Consider the instructions. If the text
violates the instructions, return only the word True.
If not, return only the word False."

B.1 GENERIC (SHORT)

Ensure it is fair to a test taker. It should not contain
biased, toxic, or unethical content. It should not
reflect any special skills, abilities, or culture, and it
should not contain any negative emotion.

B.2 GENERIC (LONG)

Develop a set of criteria to filter out negative test
items that may violate fairness, bias, or sensitivity
requirements. Consider the following aspects:

Fairness: Are the test items equally applicable
and appropriate for all individuals regardless of
their background, demographics, or personal char-
acteristics? Do the test items avoid favoring or
disadvantaging any specific group based on race,
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Item Type Example

Read a Text Aloud
Welcome to our house hunting service. Our priority is to help find your dream home. We offer tours
of houses with gardens, pool facilities, or spacious garages. However, we also tackle paperwork
which can be confusing for first-time buyers. Join us, start your journey towards owning a home.

Talks

Hello, I’m your local council housing officer. I’m reaching out about our new housing construction
plans. We are designing affordable, environmentally friendly homes in our area. For your input on
these proposed designs, please complete our quick survey. It won’t take more than a few questions.
Your opinions are valuable in ensuring these homes meet community needs. Share your thoughts,
let’s create a better living environment together.

Text completion

ORG_1 is a locally owned gym that offers a wide range of fitness classes and equipment. We are
proud to offer two special deals for our members. The first is a one-month membership for only
$50. This includes unlimited access to all our classes and equipment. The second is a three-month
membership for $125. This includes a free personal training session and a 10% discount on all
additional personal training sessions. Come join us today and take advantage of these great deals!

Respond to Questions
Using Information

Provided

N: Hello. I received an email about the annual conference that the Association of Professional
Journalists is hosting, but I can’t seem to find it. I was hoping you could answer a few questions.
Header: [’Annual Small Businesses Conference’, ’Riverside Convention Center’, ’Daily rate: $70]
Event table: [”, ’Day 1, 9:00 A.M.’, ’10:30 A.M.’, ’12:00 P.M.’, ’2:00 P.M.’, ’Day 2, 10:30
A.M.’, ’Workshop: Basics of Data Security’, ’Speech: Role of Entrepreneurship’, ’Lunch Break’,
’Presentation: Advanced Data Protection’, ’Speech: Customer Relations and Service’, ’Hans Pham’,
’Hans Pham’, ”, ’Olga Gomez’]

*Conversations

(Woman) Good morning, Alex. Have you reviewed the department’s salary structure for the upcoming
year?
(Man) Morning, Priya. Yes, I have. There’s a significant disparity, especially when considering the
recent promotions.
(Woman) It seems like those promoted are receiving disproportionately higher raises.
(Man) True. I’ll propose a more balanced salary increase for all levels at the next management
meeting. It should help in retaining our skilled employees.

*Respond to a
Written Request

date: [’January 8’] signature_line: [’Best regards, Shani Flores, Airline Customer Support Specialist’]
from: [’Shani Flores, Airline Customer Support Specialist’] to: [’Hassan Kumar’] body: [’Thank
you for choosing our airline for your recent travel.Your feedback is valuable. Could you share your
thoughts on what we could do better during the flight?’] subject: [’Improving in-flight services’]

Table 4: Item types and annotations for fairness issues. Each has a binary annotation for containing a fairness issue
and then can be also tagged as containing a KSA issue or an Emotion issue. Multiple subcategories are allowed.
*Items are held out for testing, and not used for any training/validation.
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ethnicity, gender, religion, sexual orientation, so-
cioeconomic status, disability, or any other pro-
tected characteristic?

Bias: Do the test items avoid stereotypes or as-
sumptions that may lead to unfair advantages or
disadvantages for certain groups? Are the language,
examples, scenarios, and references used in the test
items neutral and inclusive? Have the test items
been reviewed to ensure they do not unintentionally
favor or discriminate against any particular group?

Sensitivity: Are the test items respectful and
considerate of individuals’ diverse experiences, per-
spectives, and identities? Do the test items avoid
potentially triggering or offensive content?

B.3 GUIDELINE (SHORT)

Consider the following text. The text should avoid
any content or information that would unfairly dis-
advantage someone tested on it. It should not do
any of the following:

1. It should not contain content specific to a
region, including brand names, celebrities, sports,
entertainment, culture, customs, geography, gov-
ernment, history, holidays, or laws. Any of these
topics that are specific to a certain region should be
excluded.

2. It should not include topics that require spe-
cialized knowledge that would be easier for one
group than another.

3. It should not include unnecessarily difficult
language including words, phrases, and concepts
more likely to be known by one group than another.

4. It should avoid contexts that not all people
may have experienced. The contexts should not
require direct, personal experience to understand.

5. It should not mention religion.
6. It should not include contemptuous, deroga-

tory, or exclusionary language. It should not induce
any negative emotions.

7. It should not advocate for particular causes or
ideologies, or include anything divisive.

8. It should avoid sensitive and controversial
topics, including political issues, natural disasters,
accidents, or other negative topics.

B.4 GUIDELINE (LONG)

Below are a set of guidelines. These guidelines
aim to enhance the fairness and validity of tests,
communications, and other materials. These guide-
lines assist users in understanding fairness in as-
sessment, including the right content, eliminating

unfair content, promoting diversity and inclusiv-
ity, addressing accessibility and inclusion issues
and reducing subjective fairness decisions. The
guidelines cover the fairness of various subjects
including the National Assessment of Educational
Progress (NAEP), K–12 tests, artificial intelligence
(AI) algorithms and includes information to help
use plain language and a quick reference guideline
list.

Understanding fairness in testing is crucial for
proper application of guidelines, though its defini-
tion varies. One common definition sees fairness
as absence of any inequity, affecting individuals
and groups alike, such as unfair test questions or
biased content affecting diverse groups. Another
definition argues that tests seeming harder for cer-
tain groups aren’t necessarily unfair, as differences
in results may reflect real differences in knowledge
or ability, not test bias. Group score differences
don’t prove bias, but should be explored to rule
out bias. Furthermore, fairness definitions based
on outcomes are contested and of limited use dur-
ing test design. Fairness is also defined based on
test validity. The test validity indicates quality, and
represents the accuracy of inferences and actions
based on scores, which must be equally valid for all
test-takers for a test to be fair. Therefore, an effec-
tive definition of fairness in assessment is rooted
in validity, creating an interconnected relationship
between the two. Lastly, fairness in testing relates
to the effectiveness of related educational products
and services in fulfilling their intended purposes.

These guidelines should ideally cater to every-
one, particularly focusing on groups discriminated
against due to factors such as age, appearance, citi-
zenship, disability, ethnicity, gender, national ori-
gin, native language, race, religion, sexual orienta-
tion, and socioeconomic status. It’s crucial to also
account for intersectionality, a framework recogniz-
ing how overlapping identities like race and gender
can impact the experiences of individuals with mul-
tiple marginalized identities. For instance, Black
women may perceive test material differently than
Black men or White women.

Principles and Guidelines for Fairness

Fairness in assessment requires adherence to
key principles: Tests should focus on essential as-
pects of the intended construct and avoid construct-
irrelevant hurdles. They must offer design, content,
and conditions facilitating valid inferences about
diverse test takers’ knowledge and abilities. Also,
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they should provide scores that allow valid group-
wise inferences. The subsequent sections offer spe-
cific guidelines related to these principles. In case
of interpretational conflicts, choose the one that
upholds fairness principles.

Construct-Irrelevant KSA Barriers to Success
Construct-irrelevant Knowledge, Skills, and

Abilities (KSA) barriers to test success can arise
when unrelated KSAs are required to answer a ques-
tion correctly. For example, a math item asking for
the conversion of kilometers to meters is construct-
irrelevant to multiplication skills. If a specific
group lacks this irrelevant knowledge, the test’s
validity and fairness are diminished. Construct-
irrelevant sources of KSA often include unfamil-
iar contexts, disabilities, difficult language, region-
alisms, religion, specialized knowledge, translation
issues, unfamiliar item types, and topics specific to
the U.S.

The content and context of test stimuli should
be familiar and accessible to all test takers. Tests
shouldn’t require personal experiences that may
not be available to test takers with disabilities.

Language should be simple and clear, and
shouldn’t require knowledge of jargon or special-
ized vocabulary unless relevant to the test.

Regionalisms, words or phrases specific to a cer-
tain region, should not be required unless relevant
to the test construct.

Tests shouldn’t require unrelated knowledge
about religion.

Construct-irrelevant specialized knowledge
should be avoided unless the test is designed to
assess that specific knowledge.

Tests need to be culturally adapted along with
translations to ensure fairness.

Test takers should be familiar with the technol-
ogy used in assessments.

Tests taken by an international audience
shouldn’t require specific knowledge of U.S. domi-
nant cultures or conventions unless meant to mea-
sure such knowledge.

Construct-Irrelevant Emotional Barriers to Suc-
cess

Construct-irrelevant emotional barriers to suc-
cess occur during testing when certain language,
scenarios or images elicit strong emotions that dis-
rupt a test taker’s ability to answer a question. This
can happen due to offensive content, controversial
material, or content that challenges a test taker’s
personal beliefs. The stress and pressure of test-

ing can heighten these reactions. It’s important to
avoid potentially offensive material, especially con-
tent that may trigger negative reactions in diverse
groups of test takers.

Test content about groups that have been discrim-
inated against should be carefully reviewed for any
offensive or emotionally triggering material. Test
developers should strive for diversity in their team
and aim to use content written by diverse authors.
However, offensive content should be avoided even
in multiple choice items where the wrong answer
may potentially be seen as the viewpoint of the test
creators or institution.

A list of topics likely to trigger negative reac-
tions is provided, including topics like abduction,
abortion, and drug use among others, and should
be avoided in test materials unless they are crucial
for test validity. On the other hand, while some
topics may not trigger negative reactions, they need
careful handling to ensure balance and objectivity.
This includes topics like advocacy, biographical
material, conflicts and others.

The document concludes with a detailed discus-
sion on specific topics that should either be avoided
or handled with care in tests, including religion,
personal questions, role playing, sexual behavior,
stereotypes, and violence among others. It empha-
sizes the importance of fair, balanced and objective
representation in testing material, and the avoid-
ance of content that may trigger strong negative
emotions or construct-irrelevant barriers to test per-
formance.

Plain Language
Tests should contain plain language. Plain lan-

guage benefits all test-takers, minimizing score
differences unrelated to test construct. It is not
designed to override client-specific guidelines or
simplify complex language inherent to the con-
struct being tested. Plain language applies to all
irrelevant elements of tests and associated materi-
als, and examples where it isn’t suitable include
reading comprehension tests, subject-matter tests,
historical documents, and language proficiency as-
sessments.

Plain language includes writing short, clear para-
graphs with one main idea and avoiding complex
sentences and vocabulary unless necessary. Rela-
tive clauses should be used sparingly, nouns should
be clear, transition words used for clarity, and per-
sonal pronouns used when aiding communication.
Testing material layout and formatting should be
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clear, and verb forms simple and in active voice.
Test-specific guidelines also apply, with clear and
precise stem presentation. Avoiding negative stems
or emphasizing them if necessary is advised.

B.5 DATA-DRIVEN

No mention of anything difficult or challenging.
Nothing about luxury or elitist activities such as

cruises or golf, or expensive vacations.
Nothing upsetting or dangerous such as car ac-

cidents, health hazards, disease, or disasters that
might make the test taker nervous.

No topics that might be anxiety-inducing, like
romance, testing, or relationships.

No health-related topics like health codes, health
hazards, or anything negative related to health.
General well-being is okay.

No fitness discussion that is focused on weight
loss or negative health impacts.

No negativity involving overcrowding, housing
shortages, or general bad living conditions or hous-
ing concerns.

No content and vocabulary specific to the US
or other regions such as Fahrenheit units, local
holidays, or local events.

No controversial and political topics such as fake
news.

No mentions of any alcohol, drugs, or other con-
trolled substances.

No specific skills or abilities that wouldn’t be
generally known, such as law or medicine. No
specialized vocabulary, acronyms, or jargon.

No hazardous or potentially dangerous technol-
ogy like viruses or artificial intelligence.

No trademarked or well-known products, places,
or people.

C Self-Correction Prompts

Below is an example of prompt self-correction:

Initial Prompt Consider the following text. En-
sure it is fair for a test taker. It should not contain
biased, toxic, or unethical content. It should not
reflect any special skills, abilities, or culture, and it
should not contain any negative emotion.

After one batch of corrections Ensure the test
content is unbiased, non-toxic, and ethical, with-
out favoring any specific skills, hobbies, or activi-
ties not related to the test’s subject. It should not
evoke negative emotions or assume uniform expe-
riences or opportunities among test takers. The

content should avoid asking about personal finan-
cial decisions or preferences. Questions that ask
for personal opinions or experiences are acceptable
as long as they do not favor a specific group or
assume uniform experiences.

After a final batch of corrections Ensure the
test content is impartial and ethical, not favoring
unrelated skills or activities. It should not assume
similar experiences among test takers or provoke
negative emotions. Avoid questions about personal
finances, specific hobbies, or activities that may
not be universally accessible or common. Personal
opinion or experience questions are acceptable if
they don’t favor a certain group and are not related
to sensitive personal information. Also, avoid ques-
tions that assume a certain life stage or financial
status, such as retirement planning, as not all test
takers may have the same experiences or opportuni-
ties. Return ’True’ if these principles are breached,
’False’ otherwise.

D Validation Results

Precision, recall, and F1 scores for each model on
the validation set can be found in Table 5.

E Test Results

Precision, recall, and F1 scores for all models on
both test sets can be found in Table 6.
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Base Prompting
Prompt Prec Rec F1

Generic (short) 0.00 0.00 0.00
Generic (long) 0.00 0.00 0.00

Guidelines (short) 0.67 0.25 0.36
Guidelines (long) 1.00 0.04 0.08

Data-driven 0.88 0.58 0.70

Few-shot Prompting
Prompt n Prec Rec F1

Generic (short)
3 0.92 0.46 0.61
5 0.92 0.46 0.61

Guidelines (short)
3 0.88 0.58 0.70
5 0.88 0.58 0.70

Data-driven
3 0.81 0.71 0.77
5 0.89 0.67 0.76

Self-Correction
Prompt Prec Rec F1

Generic+correction 0.50 0.29 0.37
Guidelines (short)+correction 0.90 0.38 0.53

Data-driven+correction 0.85 0.71 0.77

Combining Few-Shot and Self-Correction
Prompt n Prec Rec F1

Generic+correction 3 0.81 0.54 0.65
Generic+correction 5 0.79 0.63 0.70

Guideline+correction 3 0.88 0.58 0.70
Guideline+correction 5 0.88 0.58 0.70

Data-driven+correction 3 0.90 0.75 0.82
Data-driven+correction 5 0.90 0.75 0.82

Table 5: Results on the validation set for all prompting
strategies.
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Test (Known) Test (Unknown)
Method Details Prec Rec F1 Prec Rec F1

Fine-tuning
bert-base-cased 1.00 0.29 0.45 0.75 0.20 0.32
bert-large-cased 0.91 0.42 0.57 0.00 0.00 0.00
roberta-large 0.90 0.38 0.53 0.67 0.13 0.22
deberta-base 1.00 0.42 0.58 1.00 0.13 0.24

Topic-based
Topics from Data 0.64 0.29 0.40 0.57 0.27 0.36

Topics from Guidelines 0.71 0.21 0.32 0.14 0.07 0.09

Base prompting
Generic (short) 1.00 0.04 0.08 0.00 0.00 0.00

Guidelines (short) 0.63 0.21 0.31 0.50 0.27 0.35
Data-driven 0.72 0.54 0.62 0.47 0.47 0.47

Few-shot
n = 3

Generic (short) 0.72 0.54 0.62 1.00 0.67 0.13
Guidelines (short) 0.93 0.54 0.68 0.50 0.13 0.21

Data-driven 0.80 0.67 0.73 1.00 0.33 0.50

Self-correction
Generic (short)+correction 0.50 0.33 0.40 0.56 0.33 0.42

Guideline (short)+correction 0.64 0.29 0.40 0.50 0.47 0.48
Data-driven+correction 0.82 0.38 0.51 0.56 0.33 0.42

Self-correction + few-shot
n = 3

Generic+correction 0.75 0.50 0.60 1.00 0.07 0.13
Guideline (short)+correction 0.86 0.50 0.63 0.33 0.07 0.11

Data-driven+correction 0.85 0.71 0.77 0.67 0.13 0.22

Table 6: Results for each of our methods on the two held-out test sets.

250



Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 251–265
June 20, 2024 ©2024 Association for Computational Linguistics

Towards Automated Document Revision:
Grammatical Error Correction, Fluency Edits, and Beyond

Masato Mita1,2 Keisuke Sakaguchi3 Masato Hagiwara4,5

Tomoya Mizumoto2 Jun Suzuki3,2 Kentaro Inui6,3,2
1CyberAgent 2RIKEN AIP 3Tohoku University

4Earth Species Project 5Octanove Labs 6MBZUAI

Abstract

Natural language processing (NLP) technology
has rapidly improved automated grammatical
error correction (GEC) tasks, and the GEC com-
munity has begun to explore document-level
revision. However, there are two major obsta-
cles to going beyond automated sentence-level
GEC to NLP-based document-level revision
support: (1) there are few public corpora with
document-level revisions annotated by profes-
sional editors, and (2) it is infeasible to obtain
all possible references and evaluate revision
quality using such references because there
are infinite revision possibilities. To address
these challenges, this paper proposes a new
document revision corpus, Text Revision of
ACL papers (TETRA), in which multiple pro-
fessional editors have revised academic papers
sampled from the ACL anthology. This cor-
pus enables us to focus on document-level and
paragraph-level edits, such as edits related to
coherence and consistency. Additionally, as a
case study using the TETRA corpus, we investi-
gate reference-less and interpretable methods
for meta-evaluation to detect quality improve-
ments according to document revisions. We
show the uniqueness of TETRA compared with
existing document revision corpora and demon-
strate that a fine-tuned pre-trained language
model can discriminate the quality of docu-
ments after revision even when the difference
is subtle.

1 Introduction

Document revision is a crucial step in the process of
writing essays and argumentative texts. The writing
process consists of two major parts: content organi-
zation and selection planning (henceforth, planning
part) and realization of text improvement (hence-
forth, realization part), which are hierarchical and
recursive. In addition, according to previous stud-
ies on argumentative writing (Flower and Hayes,
1981; Beason, 1993; Buchman et al., 2000; Seow,
2002; Allal et al., 2004), realization part in writing

process typically comprises three main stages: Re-
vising, Editing, and Proofreading. Revising is the
initial editing step used to plan and structure the
overall document at a high level, Editing focuses on
making sentence-level or phrase-level expressions,
and Proofreading is used to identify and correct
errors such as spelling and grammar errors (see
Figure 1, left). While the order of these steps is
not set in stone, the writing process typically starts
with a broad, high-level perspective, and gradually
narrows down the scope of edits.

In contrast to the typical human writing process,
GEC research in NLP field, which is primarily
intended to support writing, initially focused on
a fine-grained scope, e.g., spelling errors (Brill
and Moore, 2000; Toutanova and Moore, 2002;
Islam and Inkpen, 2009) and closed-class parts of
speech (such as prepositions and determiners) (Han
et al., 2006; Nagata et al., 2006; Felice and Pulman,
2008). The research community then expanded
its focus to include edits at the phrase and sen-
tence levels while also considering fluency (Sak-
aguchi et al., 2016; Napoles et al., 2017) (Figure 1,
right). However, significantly less work has been
done on document-level revisions due to two major
challenges. First, document revisions encompass a
broader range of concerns such as coherence and
flow, compared to conventional GEC and fluency
correction, which makes it difficult to find publicly
available corpora that have been annotated by ex-
perts (professional editors). Second, evaluating the
quality of revisions is challenging as it requires
multiple reference points, as there are many ways
to revise a single document. This suggests that
reference-less evaluation metrics (Napoles et al.,
2016; Choshen and Abend, 2018; Islam and Mag-
nani, 2021) are hold significant importance in auto-
mated document revision models.

Considering these challenges associated with au-
tomated document revision, we propose a new high-
quality corpus and explore possibilities for transpar-
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Figure 1: Overview of the scope for automated document revision. Each example is taken from TETRA corpus.
We focus on the document revision process which has been overlooked by GEC. Automated document revision
extends the scope of GEC.

ent evaluation methods that are independent of gold
standards or references. Our corpus, Text Revision
of ACL papers (TETRA), comprises academic pa-
pers from the ACL anthology with document-level
revisions, revision types, and concrete feedback
comments annotated by multiple professional ed-
itors. This corpus was designed based on a new
XML-based annotation scheme that can handle edit
types beyond sentences (e.g., argument flow) in ad-
dition to conventional word-level and phrase-level
edits. TETRA has uniqueness in terms of the number
of references, the expertise level of the editors, and
topic diversity.

As a case study, we use TETRA to investigate
whether it is possible to build an instance-wise
revision classification (IRC) method, in which a
model can distinguish pre-edited or post-edited ver-
sions for a given single revision pair. In recent
years, several studies have been conducted on the
use of large language models (LLMs) as evaluators
in language generation tasks. For example, GPT-
4 (OpenAI, 2023) has demonstrated superior perfor-
mance compared to existing automatic evaluation
metrics in text summarization, dialogue generation,
and machine translation (Liu et al., 2023; Kocmi
and Federmann, 2023). In light of this current situa-
tion, we conduct experiments to evaluate how well
pre-trained language models, such as BERT (De-
vlin et al., 2019) and LLMs such as GPT-4, can per-
form as a (meta-)evaluation method for each edit
type, both with and without fine-tuning. The results
demonstrate that the supervised method can accu-
rately choose post-edited snippets with an accuracy

of 0.85 to 0.96, indicating the feasible potential of
automated evaluation in document revision.

We release TETRA to the public, and hope that
it will encourage the community to work towards
automated document-level revision.1

2 Background

The field of GEC, which has a multi-decade history,
began with the goal of detecting and correcting tar-
geted error types and providing feedback to English
as a second language learners.2 Early GEC systems
primarily focused on a limited number of closed-
class error types, such as articles (Han et al., 2006)
and prepositions (Chodorow et al., 2007; Tetreault
and Chodorow, 2008; Tetreault et al., 2010; Cahill
et al., 2013; Nagata et al., 2014). The scope of GEC
was later expanded to include all types of errors,
including verb forms, subject-verb agreement, and
word choice errors (Lee and Seneff, 2008; Tajiri
et al., 2012; Rozovskaya and Roth, 2014). This
line of research led to the establishment of shared
benchmark tasks (Dale and Kilgarriff, 2011; Dale
et al., 2012; Ng et al., 2013, 2014).

Motivated by the observation that error-coded
local edits do not always sound natural to na-
tive speakers, the scope of GEC has been fur-
ther expanded from word-level closed-class ed-
its to phrase-level and sentence-level fluency ed-

1https://github.com/chemicaltree/tetra
2In this paper, we focus on GEC literature after the 2000s

when statistical were widely adopted. For a comprehensive
history of GEC in the 1980s and 1990s, including rule-based
approaches, please refer to Leacock et al. (2014).
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Grammaticality Fluency Clarity Style Readability Redundancy Consistency

This paper presents empirical studies and closely corresponding theoretical models of a chart parser’s performance whilethe
performance of a chart parser exhaustively parsing the Penn Treebank with the Treebank’s own
context-free grammar (CFG)CFG grammar. We show how performance is dramatically affected by rule representa-
tion and tree transformations, but little by top-down vs. bottom-up strategies. We discuss grammatical saturation, provide an,
including analysis of the strongly connected components of the phrasal nonterminals in the Treebank, and model how, as
sentence length increases, regions of the grammar are unlocked, increasing the effective grammar rule size increases as
regions of the grammar are unlocked, and yielding super-cubic observed time behavior in some configurations.

We expect this approach to yield the following three improvements. Taking advantage of the representation learned by the
English model will lead to shorter training times compared to training from scratch. Relatedly, the model trained using
transfer learning will require requires less data for an equivalent score than a German-only model. Finally, the more layers
we freeze the fewer layers we will need to back-propagate through during training; thus,. Thus we expect to see a decrease
in GPU memory usage since we do not have to maintain gradients for all layers.

We present the results of on a quantitative analysis of a number of publications in the NLP domain on the collectioncollecting,
publishing, and availability of research data. We find that, although a wide range of publications rely on data crawled from
the web, but few publications providegive details ofon how potentially sensitive data was treated. In addition Additionally,
we find that, while links to repositories of data are given, they often do not work, even a short time after publication. We
presentput together several suggestions on how to improve this situation based on publications from the NLP domain,
as well as but also other research areas.

Table 1: Examples of revision. Each edit type is highlighted respectively.

its (Sakaguchi et al., 2016). With this expan-
sion, the community has proposed new benchmark
datasets (Daudaravicius et al., 2016; Napoles et al.,
2017; Bryant et al., 2019; Napoles et al., 2019;
Flachs et al., 2020; Zhang et al., 2023) and eval-
uation metrics (Dahlmeier and Ng, 2012; Felice
and Briscoe, 2015; Napoles et al., 2015; Bryant
et al., 2017; Napoles et al., 2019; Gotou et al., 2020;
Gong et al., 2022; Ye et al., 2023) for sentence-to-
sentence GEC. In addition, GEC models with deep
neural network (DNN) techniques have been devel-
oped. Such models are robust against word-level
and phrase-level local edits in a given sentence and
exhibit human-parity performance on some bench-
mark datasets (Yuan and Briscoe, 2016; Ji et al.,
2017; Chollampatt and Ng, 2018; Ge et al., 2018;
Kiyono et al., 2019; Kaneko et al., 2020; Rothe
et al., 2021; Li et al., 2023; Yang et al., 2023; Fang
et al., 2023; Cao et al., 2023).

In contrast to the significant advancements in the
area of grammar and fluency correction, relatively
few studies have explored revisions for document-
level argumentative writing, which require a greater
investment of time and resources to create appro-
priate corpora or datasets. Lee and Webster (2012)
made an initial attempt to construct a document
revision corpus comprising 13,000 student writ-
ings with feedback comments from tutors in the
Teaching English to Speakers of Other Languages
(TESOL) program. Although the authors devel-
oped labels for paragraph-level revisions (e.g., co-
herence), only 3% of all revisions were annotated

as paragraph-level revisions, 90% of the revisions
were at the word-level, and 7% were at the sentence-
level. This is because the corpus comprises writing
from language learners, and the majority of errors
were simple grammar and fluency errors. This les-
son highlights the importance of using a corpus
for document-level revision that has already been
partially edited for grammar and fluency. How-
ever, due to copyright restrictions, this corpus may
not be publicly available. The data source for a
document-level corpus should be openly licensed
to encourage community-based open research in
the long term.

Another line of work (Zhang and Litman, 2014,
2015; Zhang et al., 2016, 2017; Kashefi et al., 2022)
has created the ArgRewrite corpus, a collection of
86 argumentative essays that include three drafts,
each with two cycles of revisions, and edit labels.
The ArgRewrite corpus (both v1 and v2) contains
roughly half of all edits as surface-level corrections
(e.g., conventional GEC or fluency edits), and the
other half of edits as content-level document re-
visions. While the ArgRewrite corpus has more
document-level revisions than the corpus of Lee
and Webster (2012), all of the essays in the Ar-
gRewrite corpus were written on the same topic.
The first version of the ArgRewrite corpus (Zhang
et al., 2017) discusses the topic of whether the
proliferation of electronic enriches or hinders the
development of interpersonal relationships, and
the second version (Kashefi et al., 2022) focuses
on whether to support or against self-driving cars.
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Lee and Webster (2012) Zhang et al. (2017) Kashefi et al. (2022) Du et al. (2022) Ours (TETRA)

# docs 3,760 60 86 559 64
# sents (avg) - 18.7 25.8 7.19 26.92
# references 1 1 1 1 3
Edit scope Form? Content&Form Content&Form Content&Form Form
% beyondGECs 3.2 49.4 52.6 52.8 56.9
Drafted by ESL Native (*ESL) Native (*ESL) Native (*ESL) ESL/Native
Revised by Author (NonExp.) Author (NonExp.) Author (NonExp.) Author (NonExp.) Exp.
Edit-types by NonExp. NonExp. NonExp. NonExp. Exp.
Feedback ✓
Topic diversity ✓ ✓ ✓
Public availability ✓ ✓ ✓ ✓

Table 2: Characteristics of TETRA corpus compared to existing document revision corpora. The
uniqueness of TETRA is highlighted. Exp. and NonExp. means expert and non-expert, respectively. Edit scope

indicates whether it includes edits regarding content and/or form. % beyondGECs shows the ratio of edits that are
not covered by GEC edit types. Drafted by indicates who wrote the (first) draft, Revised by shows who revised the
draft, Edit-types by shows who annotates edit types. Feedback (✓) presents whether the corpus contains feedback
comments or not. Topic diversity (✓) presents whether the corpus contains two or more topics, or a single topic only
(no ✓). Public availability (✓) shows whether the corpus is publicly available to the community. Native (*ESL)
indicates that most of the documents are drafted by native speakers, but some ESL is included.

This lack of topic diversity can lead to overfitting
when developing and evaluating automated docu-
ment revision models (Mita et al., 2019).

Recently, Du et al. (2022) released a corpus of it-
erative document revisions from Wikipedia, arXiv,
and Wikinews, with edit intention labels annotated3.
Although this work shares the same objective as
ours, there are some differences such as the revision
scope, the number of references, the expertise level
of the editors, and the absence of feedback com-
ments (Table 2). Furthermore, their annotations
are done at a sentence level, whereas our dataset
(TETRA) is annotated at a document (and sentence)
level. Therefore, our dataset (TETRA) complements
their corpus (and vice versa).

3 Automated Document Revision

Given a source document d that consists of para-
graphs, a potentially automated editor f revises (R)
d into d′ (f : d 7→ d′). Here, revision R is a set of
edits e, and an edit e is defined as a tuple e = (src,
tgt, t, c), where src is the source phrase before the
revision, tgt is the revised phrase, t is the edit type
(e.g., grammar, word choice, or consistency), and
c represents (optional) rational comments about
the edit. When src is empty (Ø), this edit indi-
cates insertion, and it indicates deletion when tgt is
empty; otherwise, the edit is considered to be a sub-
stitution. Automated document revision includes

3We are aware that other subsequent studies (Jiang et al.,
2022; D’Arcy et al., 2023) and on text revision have appeared
since the preprint of this study was published.

various edit types (t), e.g., mechanics, word choice,
conciseness, and coherence. This is discussed in
further detail in §4.4. Note that t does not exclude
the scope of conventional (sentential and subsen-
tential) grammatical error and fluency correction.
Rationale comments (c) are a useful resource in the
study of feedback generation, which has become
prominent in the GEC community (Nagata, 2019;
Hanawa et al., 2021; Nagata et al., 2021). Thus, au-
tomated document revision is a natural extension of
sentence-level error correction to document-level
error correction with a wider context.

4 The TETRA Corpus

The validity of a dataset design is contingent upon
the purpose and goals of the study. In line with §1
(and also Figure 1), the primary objective of this
study is to introduce a novel task focused on en-
hancing document-level editing and its automated
evaluation technologies, which is distinct from the
existing GEC task. It is important to note that our
aim is not to contribute to a broader understand-
ing of “human revision” in general, which sets our
study apart from the previous studies on revision
(mentioned in §2).. Hence, it is crucial to create a
dataset that minimizes the inclusion of minor gram-
matical errors and fluency-related edits, which are
already emphasized as requirements in GEC. This
is essential because proposing a new task entails
the need to distinguish the technological aspects
and linguistic phenomena targeted by the existing
task and the proposed task.
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Aspects Edit types (abr.) Definition Scope %

Grammaticality grammar, capitalization edits that aimed to fix spelling/grammar mistakes S 19.4
Fluency word choice, word order edits that aimed to increase sentence fluency S 23.7

Clarity clarity edits that aimed to amplify meaning for clarity S/D 19.4
Style style, tone edits that aimed to adapt the style S/D 8.0
Readability readability edits that aimed to improve readability S/D 16.8
Redundancy redundancy, conciseness edits that aimed to reduce redundancy S/D 7.2
Consistency consistency, flow edits that aimed to increase paragraph fluency D 5.5

Table 3: Definition of edit types. S and D (in the scope column) indicate the sentence and the document, respectively.
We highlight edit types that rely on beyond sentence-level context to edit.

4.1 Data Source

To meet the aforementioned requirement, we uti-
lized the ACL anthology 4 papers as our source
data. These papers are generally well-written, peer-
reviewed papers on NLP. This choice was made
based on the hypothesis that addressing minor er-
rors, such as grammatical errors, is necessary to
observe global edits that improve coherence and
consistency. Furthermore, (2) we chose the abstract
and introduction sections since these sections tend
to contain fewer embedded math and complex cita-
tions than other sections , and they are more likely
to induce global editing specific to the document
level due to their greater linguistic freedom.

We selected the source documents from the ACL
anthology as follows. First, we created eight groups
(=23) based on the possible combinations of three
different attributes: (1) whether the paper was pub-
lished at a conference or a workshop, (2) whether
the paper is affiliated with a native vs. non-native
English speaking country, and (3) whether the first
author was a student (at the time the paper was
published). We randomly sampled papers until we
obtained eight unique papers for each group (i.e.,
64 papers in total).

4.2 Annotation Scheme

The scope and granularity of edit types vary widely
in previous studies, and there is no standard set of
labels. Thus, we define categories of edit types (Ta-
ble 3) based on previous literature on argumentative
and discourse writing (Kneupper, 1978; Faigley
and Witte, 1981; Burstein et al., 2003; Zhang et al.,
2017). Table 1 provides concrete examples of each
type of edit in TETRA.

To create the proposed TETRA, we selected an
XML format for the following reasons. First,
XML is easy to parse using standard libraries (e.g.,

4https://aclanthology.org

Python ElementTree and the Java DOM parser)5

compared to other formats that frequently require
exclusive scripts. Such exclusive scripts incur
higher maintenance costs to keep up with the up-
dates of additional dependencies. Second, XML
is more flexible than other formats in terms of em-
bedding additional information, such as edit types,
edit rationale, comments, and other meta informa-
tion. For example, as shown in Table 1, document
revisions include edit types based on various eval-
uation aspects, and can be further annotated for
each edit with their rational comments using a flex-
ible XML scheme (See Appendix C). Furthermore,
edits beyond a single sentence, including sentence
merging, splitting, and reordering, can be annotated
in a flexible manner (See lines 5-7 in Table 7).

4.3 Annotators

We recruited three professional editors with years
of experience editing and proofreading English aca-
demic writing, who are native English speakers,
to independently revise all 64 documents on the
Google Docs platform. They added an edit ratio-
nale whenever appropriate, and the revised docu-
ments were converted to XML format by the first
two authors.6 Information on how to recruit anno-
tators and instructions for them can be found in the
Appendix A and B, respectively.

4.4 Statistical Analysis

Table 2 summarizes the characteristics of
TETRA corpus compared to existing document revi-
sion corpora. We can first emphasize the quality
of the TETRA corpus since it is the only document

5We made the nest of XML tags as shallow as possible
for users to parse documents even more easily. In TETRA, the
maximum depth of nested XML tags is two. We have estab-
lished an annotation policy for cases of intersecting edit spans,
but we did not encounter any such cases made by professional
editors.

6During the conversion process, minor corrections and
remapping of edit types were made only as necessary.
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Student Non-student Native Non-native Conf. WS

Aspects # % # % # % # % # % # %

Grammaticality 79 19.5 106 21.5 60 16.5 125 21.3 110 22.7 75 16.2
Fluency 115 25.2 110 22.4 74 20.4 151 25.8 99 20.4 126 27
Clarity 100 21.9 84 17.1 88 24.2 96 16.4 84 17.3 100 21.6
Style 39 8.5 37 7.5 29 8.0 47 8.0 46 9.5 30 6.5
Readability 74 16.2 85 17.3 75 20.7 84 14.3 92 19.0 67 14.4
Redundancy 32 7.0 36 7.3 22 6.1 46 7.8 25 5.2 43 9.3
Consistency 18 3.9 34 6.9 15 4.1 37 6.3 29 6.0 23 5.0

Table 4: Distributions of revision aspects by writer’s attributes.

Levels Avg Min Max

detection 0.32 0.27 0.35
correction 0.83 0.75 1.00

Table 5: Two levels of inter-annotator agreement: agree-
ment on detection and correction.

revision corpus that is annotated with revisions
by multiple experts, whereas most existing docu-
ment revision corpora are based on revisions by
authors themselves, leaving the quality of revisions
in doubt. Existing corpora also have the limita-
tion that the editor (Revised by) and the edit type
annotator (Edit-type by) do not coincide, and thus
cannot fully reflect the edit intent, but TETRA cor-
pus overcomes this limitation since the edit type is
provided by the person who made the revision. Fur-
thermore, we find that the TETRA corpus contains
more edits beyond the GEC (% beyondGECs) than
the existing corpora, indicating that our hypothesis
in source data selection (§4.1) is valid.

The right-most column in Table 3 shows the dis-
tribution of edit types found in 16 randomly sam-
pled papers (i.e., 25% of the proposed TETRA cor-
pus). We found that 56.9% of the edits were re-
lated to issues beyond the sentence-level context
(e.g., redundancy), which is greater than other doc-
ument revision corpora (Table 2). This is simply
because TETRA’s source documents are academic
papers that have already been proofread to some de-
gree compared to other existing document revision
corpora where language learner essays are used as
the source material. In terms of the differences
among the three different attributes (§ 4.1), we did
not find any clear trends, which indicates that the
quality of papers in the ACL corpus is uniformly
good across the venue and author attributes. The
details are shown Table 4.

In document-level revision, it is not straightfor-
ward to compute inter-annotator agreement due to

the diversity of potential revisions and the broad
scope of applicable edits. Thus, we measured two
levels of inter-annotator agreement, i.e., (1) agree-
ment on detection and (2) agreement on correction.
The first measurement computes how frequently
edit spans overlap (i.e., agree) among annotators,
and the second measurement computes how fre-
quently edit type labels (e.g., clarity) match when
two or more annotators detect the same (or over-
lapped) span. Table 5 shows the results.

The result demonstrates that the expert annota-
tors agreed on the direction of editing when they
decided an issue was in a certain span (the agree-
ment rate on correction was approximately 0.8);
however, the experts disagreed on where to con-
sider an issue (the agreement rate on detection was
approximately 0.3), which is a unique character-
istic of automated document revision that differs
from traditional GECs.

5 A Case Study: (Meta) evaluation

In addition to creating a corpus for automated
document revision, it is essential to establish an
evaluation that can measure a document’s qual-
ity improvement (and possibly deterioration) rela-
tive to the applied revisions. As a case study, we
use TETRA to investigate reference-less and inter-
pretable methods for a (meta-)evaluation method
to detect quality improvements according to docu-
ment revisions.

5.1 How do we evaluate revisions?

Ultimately, the evaluation of document revision
systems itself is a research challenge that could
be as difficult as building high-quality automated
essay scoring (AES) systems (Dikli, 2006). A
typical scenario for evaluating text generation is
to compute the textual similarity between the hy-
pothesis and references, as in machine translation
(BLEU (Papineni et al., 2002)) and summarization
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,
A pair of snippets that 
contain a single edit

Instance-wise Revision Classification (IRC)

Figure 2: Overview of the IRC meta-evaluation with TETRA.

(ROUGE (Lin, 2004)). However, it is infeasible
to elicit all possible gold references for document
revision because there are infinite ways to edit a
document. In fact, existing work using BLEU and
ROUGE to evaluate document revisions shows that
such reference-based metrics do not work due to
the limited gold references (Du et al., 2022). In ad-
dition, given that the purpose of document revision
is to support writing, simply presenting users (e.g.,
model developers and authors) with a single num-
ber (overall score) would be insufficient in terms
of interpretability and transparency.

In light of the above, a good starting point for
a first evaluation method for document revisions
would be to develop an explanatory reference-free
evaluation model for each evaluation perspective
(e.g., clarity, readability, consistency) and then
conduct a multidimensional evaluation using this
model in an integrated manner.

5.2 Instance-wise revision classification

When using reference-free evaluation as described
in §5.1, it is necessary to conduct a meta-evaluation
of automatic evaluation models (evaluators) to see
how well they correlate with human judgments and
how reliable they are. Here, it is difficult to measure
the quality of a revision automatically based on an
absolute metric because a single document will
contain a variety of edits based on many aspects
of evaluation (Table 3). Thus, it is more straight-
forward to consider a relative metric, where a pair
of documents is subject to a binary classification
choosing the revised one. Such a pairwise compari-
son has been proven effective as a meta-evaluation
method in cases where absolute evaluation is diffi-
cult (Guzmán et al., 2015; Christiano et al., 2017).
Also, note that document revision contains multi-
ple edits; thus, the binary prediction process cannot
identify which edit(s) contributed to the improve-

ment or the degree of improvement.
To address these concerns, we present Instance-

wise revision classification (IRC) as a meta-
evaluation methodology, where a pair of snippets
that contain a single edit is given, and we com-
pare the (reference-less) models according to the
accuracy of the binary prediction (i.e., which of the
snippets is a revision). By focusing on comparing
‘single edit’ differences, we can obtain transparent
and interpretable measures for each type of edit
(e.g., which edit type is more challenging to revise
than other types). This is expected to enable us
to investigate more effective evaluators (evaluation
models) in the future. In fact, recent studies have
demonstrated that such rubric-based interpretable
evaluation correlates better with human judgments
than single overall scoring techniques (Kasai et al.,
2021a,b; Zhong et al., 2022). An overview of the
proposed IRC is shown in Figure 2. The design
philosophy of IRC is to provide users (e.g., model
developers or writers) with analytical reports based
on multidimensional evaluations to facilitate their
understanding of the models, with the goal of mov-
ing away from chasing the highest overall number.

5.3 Experiment

In this subsection, we demonstrate how well ex-
isting large-scale pre-trained language models
perform under the proposed IRC framework as
(reference-less) models.

5.3.1 Data split
We divided TETRA into a training set (75%; 48 pa-
pers) and a test set (25%; 16 papers) to avoid paper
overlap, and we converted the test data into pairs of
snippets containing a single edit for IRC framework.
Here, when multiple edit types were assigned, each
edit type was extracted independently as a single
edit snippet pair. When creating a pair of snippets,
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Grammaticality Fluency Clarity Style Readability Redudancy Consistency

BERT 0.82 0.84 0.85 0.83 0.85 0.79 0.90

GPT-4 zero-shot 0.42 0.57 0.55 0.59 0.46 0.47 0.58
+ explicit prompt 0.65 0.79 0.67 0.57 0.71 0.92 0.62
GPT-4 few-shot 0.47 0.48 0.56 0.51 0.44 0.45 0.40
+ explicit prompt 0.43 0.49 0.56 0.56 0.57 0.80 0.56

Table 6: Meta-evaluation result (Accuracy).

we extracted the entire paragraph as the context. In
total, we extracted 1,368 snippet pairs for IRC meta-
evaluation.

5.3.2 Evaluators
In this experiment, we compared BERT (Devlin
et al., 2019) as fine-tuning and GPT-4 (OpenAI,
2023) as zero/few-shot settings to classify the orig-
inal and single edit revision snippets.

BERT We converted the training set into a
balanced positive/negative example by randomly
swapping the order of snippet pairs in one-half of
the training set. Specifically, we implemented this
evaluator as a classification problem for the [CLS]
tokens, using as input a sequence of tokens con-
necting the original and the single-edited revision
documents with the [SEP] tokens. We used the
PyTorch implementation for these Transformer
models (Wolf et al., 2020). The hyperparameters
used to train the model are shown in Appendix D

GPT-4 We build the model using the GPT-4 API
(2024-02-15-preview) provided by OpenAI 7.
Two settings, zero-shot and few-shot (2-shot by fol-
lowing (Coyne et al., 2023)), were prepared to eval-
uate the performance with and without examples8.
Furthermore, we created prompts focusing on text
revision evaluation criteria (explicit prompt) to
investigate the impact of prompts on evaluation per-
formance, comparing them with the base prompt.
Detailed information on each prompt is provided
in Appendix E.

5.3.3 Results
As can be seen, the proposed IRC framework en-
abled us to evaluate the accuracy of each metric
in terms of each aspect (i.e., edit type) while an-
alyzing their strengths and weaknesses (Table 6).
We also observe a significant disparity between
fine-tuning and zero/few-shot results, highlighting

7https://github.com/openai/openai-python
8The example used for the few-shot was sampled from the

train split.

the crucial role of fine-tuning in achieving auto-
matic evaluation of text revision. Contrary to ex-
pectations, the LLM-based evaluator performed
better in zero-shot compared to few-shot scenar-
ios. One potential explanation is that presenting
only a few cases might not only be insufficient but
also noisy, especially in tasks involving diverse
evaluation aspects and reasonable editing methods,
such as text revision. On the other hand, compared
to the base prompt, performance was significantly
improved for many revision types when using ex-
plicit prompts. In particular, for redundancy, the
GPT-4 evaluator with explicit prompt outperformed
the finetuning model. This suggests the potential
to realize an automatic evaluation model for high-
performance text revision even for zero-shot by
advancing prompt engineering in the future.

6 Analysis

The experimental results discussed in §5.3 demon-
strated that the supervised metric can discriminate
the original and revision snippets with reasonably
high accuracy. However, the following question
should be considered. Is the high accuracy derived
from actually detecting the quality improvement
provided by the revision or annotation artifacts
(spurious correlation) by commonly used words
and phrases by expert annotators?

To investigate this question, we evaluated the per-
formance of the same supervised metric (BERT)
used in §5.3 by applying corruption methods to
TETRA in order to artificially degrade the quality of
the source documents. If the same supervised met-
ric is fine-tuned on the source and the (improved)
revision can still select the original document over
the degraded document, we can conclude that the
metric actually distinguishes the quality of the doc-
ument rather than spurious features.

6.1 Corruption Methods
Automatic Error Generation (AEG) Injecting
grammatical errors as data augmentation has been
studied actively to improve GEC. In this study, we
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used a back-translation model, which is the most
commonly used model in GEC among AEG meth-
ods (Xie et al., 2018; Kiyono et al., 2019; Koyama
et al., 2021), to deteriorate the original documents
in terms of grammaticality and fluency. Here, a
reverse model that generates an ungrammatical
sentence from a given grammatical sentence was
trained in the back-translation model. To construct
the reverse model, we followed the general settings
identified in previous studies (Kiyono et al., 2019;
Koyama et al., 2021). The details of the experi-
mental settings for the AEG model are described
in Appendix F.

Sentence Shuffling As shown in Figure 1, the
document revision process involves reordering sen-
tences to improve the flow and consistency of ar-
gumentation. In this analytical experiment, after
applying the AEG model, we further shuffled sen-
tences with the same ratio as the consistency edit
type (5% of the documents; refer to Table 3) to de-
grade the document relative to the sentence order.

6.2 Results
The binary classification accuracy obtained by
BERT on the original vs. (degrading) corruption
scenario was 0.96. We found that BERT can suc-
cessfully select the original document over the de-
graded document. It should be noted that this is
a simulation experiment with artificial errors and
there are deviations from a realistic setting, but it
suggests that the supervised baseline has the poten-
tial to learn to discriminate documents relative to
quality rather than spurious features in the experts’
annotations.

7 Conclusion

We have proposed the new document revision cor-
pus and highlighted its uniqueness of it compared
with existing corpora. As a case study using this
corpus, we have explored reference-less and inter-
pretable meta-evaluation methods and also demon-
strated that a fine-tuned pre-trained language model
can discriminate the quality of documents, which
indicates the feasibility of automated document
revision evaluation.

Limitations

The first limitation of this study is the scalability
of the annotation. TETRA consists of documents re-
vised by experts and is therefore expensive to scale
up in its nature. This limitation could be mitigated

by the choice of source data, i.e., there is room to
replace experts with crowd workers by selecting
source data that do not require expertise (e.g., gen-
eral essays). We also reiterate that this work does
not aim at proposing specific revision systems and
evaluation models for automated document revi-
sion. Instead, we present a meta-evaluation scheme
as a first step to develop such models and metrics
with more transparency.

Ethics Statement

For developing a new document-level revision cor-
pus, TETRA, we paid market rates to the profes-
sional editors for their annotations. With regard to
the checklist items regarding the use and distribu-
tion of artifacts, none of the concerns apply to the
dataset created in this study, as it was annotated
based on the ACL Anthology materials. 9
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A Recruitment procedure for annotators

We recruited professional editors who are na-
tive speakers of English and have domain ex-
pertise in academic writing, directly via Upwork
(https://www.upwork.com/), a freelance market-
place, through interviews and screening tests to
ensure the quality of the annotators. We paid mar-
ket rates to them. Instead of using the services of
an English proofreading company, which tends to
be uncontrollable in terms of annotator quality, we
directly hired annotators and provided them with
feedback to control the annotation quality, which
contributed to further improving the dataset’s qual-
ity. We will extend the description of this annota-
tion process in the camera ready.

B Instructions for annotators

The full text of the instructions to the annotators is
reported below.

Summary You will be proofreading and editing
the abstracts and the introduction sections of scien-
tific papers published at NLP (Natural Language
Processing) conferences and workshops. Please
make edits to improve the quality of the papers,
along with your comments mentioning what aspect
of the paper the edit is intended to improve, without
changing the meaning of the content (information
contained in the paper).

About the papers

• These papers are randomly chosen from a pool
of papers published at recent NLP conferences
and workshops.

• These papers are written by a diverse set of au-
thors, including native and non-native speak-

ers of English at various stages of their careers
(students, researchers, faculty members, etc.).

• These papers went through peer reviews and
were accepted at conferences and workshops

Edits

• Make edits to the papers in order to improve
their quality without changing the informa-
tion contained in the papers. For each edit,
mention what aspect of the paper the edit is in-
tended to improve. These aspects include, but
are not limited to: Mechanics, punctuation,
grammar, spelling, word order, word usage,
organization, development, cohesiveness, co-
herence, clarity, content, consistency, voice.
Feel free to use your own tags/words to de-
scribe the purpose of your edit

• Refrain from making single edits that improve
more than one aspect of the paper at the same
time. Make two or more separate, overlapping
edits in the same place if you need to improve
multiple aspects.

• Feel free to be creative and make changes
that span over multiple sentences or ones that
rearrange sentences or even paragraphs if nec-
essary. You are encouraged to rewrite the
sentences and paragraphs if local edits aren’t
enough to improve the quality.

• Since these papers are already peer-reviewed,
we expect fewer low-level edits related to
punctuation, spelling, and grammar, although
make sure to correct such errors if you do
encounter them.

• Focus instead on types of edits that improve
higher-level aspects of the paper (such as or-
ganization, development, cohesiveness, coher-
ence, clarity, content, voice, etc.)

C Example of XML annotation

See Table 7.

D Hyper-parameters settings

See Table 8.

E Prompts in the GPT-4 evaluators

The prompt used for GPT-4 evaluator is illustrated
in Table 3. For prompts focused on evaluation
criteria, the following sentence was replaced with
base prompt.
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1 <doc id="Pxx-xxxx" editor="A" format="Conference" position="Non-student" region="Native">
2 <abstract>
3 <text>In this paper, (...) extracted sense inventory. The</text>
4 <edit type="conciseness" crr="induction and disambiguation steps" comments="conciseness - just

tightening it up a little bit.">induction step and the disambiguation step</edit>
5 <text>are based on the same principle: (...) topical dimensions</text>
6 <edit type="readability" crr=". In" comments="readability - this sentence is getting a bit long, so

splitting it in two here.">; in</edit>
7 <text>a similar vein, ...</text>
8 ...
9 </abstract>

10 <introduction>
11 <text>Word sense induction (...)</text>
12 <text>\n\n Word sense disambiguation (...)</text>
13 <edit type="punctuation" crr="" comments="punctuation - comma is not appropriate.">,</edit>
14 ...
15 </introduction>

Table 7: Example of XML annotation. For brevity, we omitted a part of the text with “...”.

System Prompt: 
You are professional editor with years of experince editing and proofreading 
English academic writing

User Prompt:
Please reply with the number of the higher quality academic writing of 
the following two texts. # base prompt
Do not provide any explanations or text apart from the number (1 or 2).

Text:
1: … (source or revised doc.)
2: … (source or revised doc.)

Figure 3: Example of prompt.

Configurations Values

Model Architecture bert-base-uncased
Optimizer Adam (Kingma and Ba,

2015)
Learning Rate 2e-5
Number of Epochs 10
Batch Size 32

Table 8: Hyper-parameters settings

• Grammaticality: “Please reply with a more
grammatical text number.”

• Fluency: “Please reply with a more fluent text
number.”

• Clarity: “Please reply with the number of the
text whose meaning is clearer.”

• Style: “Please reply with the number of the
higher quality academic writing of the follow-
ing two texts. Please focus your evaluation on

the adaptation to an academic writing style in
particular.”

• Readability: “Please reply with a more read-
able text number.”

• Redundancy: “Please reply with a text number
that is less redundant.”

• Consistency: “Please reply with more consis-
tent text.”

F Experimental settings for AEG

We adopted the “Transformer (big)” set-
tings (Vaswani et al., 2017) using the implementa-
tion in the fairseq toolkit (Ott et al., 2019) as a
GEC model. In addition, we used the BEA-2019
workshop official dataset (Bryant et al., 2019) as
the training and validation data. For preprocessing,
we tokenized the training data using the spaCy tok-
enizer10. Then, we removed sentence pairs where
both sentences where identical or both longer than
80 tokens. Finally, we acquired subwords from
the target sentence via the byte-pair-encoding
(BPE) (Sennrich et al., 2016) algorithm. We
used the subword-nmt implementation11 and then
applied BPE to split both source and target texts.
The number of merge operations was set to 8,000.

10https://spacy.io/
11https://github.com/rsennrich/subword-nmt
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Abstract
In the rapidly evolving educational technology
landscape, the potential applications and lim-
itations of AI-generated content need greater
scrutiny. This study explores the authenticity
of AI-generated texts by comparing vocabu-
lary usage between human-authored texts and
those generated by AI across different regis-
ters, specifically in news and creative writing.
Employing Vocabulary-Management Profiles
(VMPs) for structural analysis and word key-
ness analysis to evaluate vocabulary frequency
and dispersion, we reveal distinct patterns of
text production. Our results demonstrate varia-
tion in vocabulary usage between human and
AI-generated texts across registers, and shows
how VMPs capture these differences effectively.
These findings highlight the challenges Large
Language Models (LLMs) face in mimicking
human text generation and open some new av-
enues for examining characteristics of vocabu-
lary use relevant to applications in education.

1 Introduction

We are navigating a transformative era, marked
significantly by the integration of AI technologies
into various aspects of daily life. This is partic-
ularly evident in the realm of language learning,
where Large Language Models (LLMs) have be-
come instrumental. LLMs find application across
diverse sectors including education, healthcare, and
research, showcasing their versatility and impact
(Hosseini et al., 2023). The role of LLMs in lan-
guage acquisition and written composition deserves
special attention; it is claimed they offer substantial
benefits to learners through personalized learning
experiences, interactive prompts for questions and
examples, and feedback on writing (Dao, 2023).
This highlights the potential of LLMs to enhance
the efficacy of language learning strategies signifi-
cantly.

While the potential is certainly undeniable, a
factor that is worth addressing is whether texts

produced by LLMs - particularly in the form of
examples generated in a learning environment -
accurately represent what a learner is likely to ob-
serve in a real-world scenario. In particular, we aim
to gain a better understanding of whether LLMs
generate text with respect to different registers in a
fashion similar to humans.

Previous research (AlAfnan and MohdZuki,
2023; Gómez-Rodríguez and Williams, 2023) pro-
vides some insight into the perceived ’style’ and
characteristics of LLM production. We narrow our
scope to focus on attributes related to discourse and
vocabulary, two adjacent concepts that we expect
to differ by register. In particular, we are interested
in how vocabulary is deployed within the structure
of texts. Anecdotally, LLM text is often described
as ’generic’ or ’bland’ in tone. Thus, we were
motivated to understand the extent to which such
differences are linked to lexical diversity and the
rate, or sequencing, with which new vocabulary
is introduced. To achieve this, we investigate hu-
man authored and machine generated texts through
Vocabulary-Management Profiles (VMP). In their
simplest interpretation, VMPs provide a linear rep-
resentation, that can be graphically illustrated, rep-
resenting the rate of newly introduced vocabulary
through the progression of a text.

2 Related Work

2.1 AI text for Language Acquisition and
Development

Language learners and teachers are enthusiastic
about LLMs, but research on their pedagogical
uses is still in infancy. Researchers Kostka and
Toncelli (2023) highlight the opportunities of these
systems in an English Language Learning setting
and advocate for cross-collaboration between ed-
ucators, students, and developers. We are at a
point where LLM systems are being adopted in
an ever-growing manner, and efforts are needed to
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understand what differentiates AI-generated text
from authentic human-authored text and what con-
sequences may flow from these differences in an ed-
ucational setting. For instance, Vaccino-Salvadore
(2023) outline areas of concern and ethical con-
siderations when bringing systems like ChatGPT
into the classroom for language learning, especially
the bias and diversity constraints inherent in these
systems. We must remember that systems like Chat-
GPT and similar LLMs derive their training data
largely from the internet, potentially reproducing or
amplifying cultural and linguistic biases, replicat-
ing dominant themes and linguistic patterns, and re-
ducing the diversity of language compared to what
is actually in use around the world (Ray, 2023).

Bringing LLMs into a language learning set-
ting involves many considerations. While research
(Baskara and Mukarto, 2023) highlights the poten-
tial benefits, such as the personalization, or gener-
ation, of authentic learning materials, more work
on how these systems differ from human-generated
text would be beneficial. We also note that recent
work on the degradation of LLMs trained on syn-
thetic data such as (Shumailov et al., 2023) and
(Guo et al., 2023) suggests that small reductions
in quality or diversity of learning materials can, if
propagated, be catastrophic for language models.
We must understand how text generated by LLMs
differs from human-authored text to evaluate these
synthetic materials properly for human language
instruction.

2.2 Vocabulary Management Profiles
Vocabulary-management profiles provide a method
for measuring the rate at which new vocabulary
is introduced throughout a text and a convenient
means of representing this graphically (Youmans,
1991, 1994). Prior to developing VMPs, Youmans’s
(1990) worked on conceptually similar graphic
representations through the broader application of
type-token vocabulary curves (TTVC), their deriva-
tions, and their estimation of vocabulary size. Type-
token modelling- examining the ratio of the number
of unique word (types) and number of collective
words (tokens), are readily examined in the field
of linguistics (Mitchell, 2015) and the area of lan-
guage development and acquisition (Jarvis, 2013).
Token curves approximate lexical diversity (LD)
progression over time (or length of a text), but
compared to VMPs, they offer a more generalized
indication of lexical usage within a text. On ob-
serving a TTVCs, we can relate curves with a more
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Figure 1: VMP Curve for a human-authored creative
writing sample. The Type/Token Ratio (y-axis) averages
individual word ratios of a moving window (set at 51
here) across a text, plotted against the token sequence
(x-axis) of the text sample

pronounced increase in lexical diversity, whereas
shallower curves denote a lower lexical diversity.
VMPs improve on these earlier methods by observ-
ing the number of new (word-) types that occur in
a moving window across the text. The difference
is that VMPs aim to move beyond a static lexical
assessment of the text as a whole and instead ob-
serve local patterns in the sequence of vocabulary
use. Relating these structures to narrative or text
structure, different slope trajectories can indicate
factors signalling boundary points or “a new turn
in the story” (Stubbs, 2006, p. 142). These turns
can reveal the author’s stylistic attributes and nar-
rative structure. Indeed, they display a necessary
storytelling component, balancing the inclusion of
new words to help progress a story with the repeti-
tion of older words that help ensure text cohesion
(Stubbs, 2006). Close analysis of these structural
changes can expose how a writer navigates changes
in topic and style or how diegesis relates to exegesis
(Clement, 2013).

The advantage of investigating text in this man-
ner is that it provides a structure resembling that
found more traditionally in time-series data, which
enables a flexible perspective of the scope of a text,
peering into not only global trends but also narrow-
ing the field into patterns that when they emerge
can provide insight into representations of different
groups of text. By observing an individual text
under the lens of a VMP, relationships emerge as
to the dynamics indicated through respective peaks
and valleys "signaling the ebb and flow" of informa-
tion in texts (Youmans, 1991, p. 4). Youmans sug-
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gests that vocabulary used less frequently towards
the end of moving intervals is often associated with
introducing new topics. In contrast, vocabulary
used more recently is likely to indicate the contin-
uation of an existing topic. Evans (2020) refers to
this as fractal patterning and attributes these for-
mulations as evidence for the nested dynamics of
self-similar attributes found from a global reference
such as a novel with self-reciprocating emerging
patterns of peaks and valleys, demarcated between
narrowing orders of magnitude, as in sections, chap-
ters, and paragraphs.

The degree of effectiveness of VMPs will vary
with different applications. McKenny (2003) ap-
plied VMPs to ELL essays and observed their ca-
pacity to identify texts that follow stylistic choices
of including new information as an inspirational
factor for concluding remarks. However, because
VMPs generalise patterns in the introduction or
regularity of vocabulary use, they cannot substitute
for context-specific qualitative analysis. For exam-
ple, Meyer and Cooney (1994) found that VMPs
benefit textual analysis by providing insight into
the use of new and known information as mea-
sured by vocabulary but express limitations, par-
ticularly in the case of contextual usage, or how a
word is used. This acknowledgement aligns with
McKenny’s (2003) positing the need for clear ob-
jectives when generalising about VMPs.

2.3 Word Keyness and Dispersion
In an educational context, the concept of ’Keyness’
is closely aligned with creating word lists for lan-
guage learning, emphasizing the strategic selection
of high-frequency vocabulary. Nation (2006) high-
lights the value of these lists in planning vocabulary
learning, a notion supported by further research
(Nation, 2011). Vocabulary selection, tailored to
learners’ needs and specific domains like academia,
plays a pivotal role. Such specialized lists, as Na-
tion (2006) notes, are highly generalizable, prov-
ing effective across disciplines and extending to
journalistic language. This effectiveness is further
confirmed in English for Specific Purposes (ESP),
showcasing the utility of targeted vocabulary strate-
gies (Ðurović, 2023).

To elucidate the variation in lexical usage across
our corpora from a broad perspective, we imple-
ment two methods to measure a word’s keyness.
First, concerning word frequency, then second, we
employ dispersion measures to discern between
AI-generated and human-generated text. Disper-

sion assesses how evenly or unevenly a word is
distributed within a corpus. Aiming to identify key-
words that differentiate humans from AI-generated
text, relying solely on frequency lists may fall short
of offering a comprehensive understanding of vo-
cabulary usage. Dispersion offers more profound
insights into lexical patterns, as our analysis spans
diverse sources (i.e., human and AI) and various
genres (news versus creative writing). Given prior
studies on source and genre variation (Biber, 1987;
Kruger and Rooy, 2018), dispersion effectively pro-
vides a holistic view of vocabulary disparities. In
contrast, the VMP analysis yields a more detailed,
text-specific exploration of these differences.

Keyness broadly reflects a word’s presence and
significance in a corpus relative to its size, high-
lighting the word’s distribution and importance
(Jeaco, 2023). It is closely linked with disper-
sion, helping identify core vocabulary differences
between corpora. Building on Egbert and Biber
(2019)’s work on incorporating dispersion in key-
word analysis, we apply Gries’s (2021) method for
a nuanced assessment of keyness. This method
evaluates a word’s frequency and dispersion to de-
termine its unique role across corpora more accu-
rately, avoiding biases introduced by frequency-
based measures, such as the log-likelihood ratio.
This approach enables a detailed comparison of vo-
cabularies, offering insights into distinctive lexical
patterns (Gries, 2021).

Our research aligns with the goals of authentic
material matching used in a language learning con-
text. Briefly, while there are competing notions,
authenticity is described here as genuine language
used in writing to communicate a meaningful mes-
sage to a real audience, encompassing a wide va-
riety of language (Gilmore, 2007; Morrow, 1977).
There are numerous ways of measuring aspects of
authenticity concerning discourse and lexical diver-
sity, such as register variation multi-dimensional
analysis (Biber, 2014) or linguistic feature extrac-
tion (Lee and Lee, 2023). By restricting our fo-
cus to vocabulary, we can disseminate variation
in a manner easily processable by educators and
learners. Often, overly complex systems with a
multitude of features can add dimensions of entan-
glement, making it difficult for users to interpret
results. VMPs are positioned to provide graphical
representations that provide indications of the rate
of introduced vocabulary where patterns are visu-
ally identifiable and computationally measurable.
Through VMP and Keyness analysis, we can ex-
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tract vocabulary information that can be conveyed
intuitively, making identifying patterns readily un-
derstood by a spectrum of users.

3 Method

• RQ1: Are there distinguishable patterns of
vocabulary usage across different text sources
and registers?

• RQ2: In what ways does analyzing texts
through VMPs uncover structural differences
across sources and registers?

• RQ3: How do frequency and dispersion-based
keyness analyses reveal vocabulary patterns
across various text sources and registers?

We aim to investigate vocabulary usage through
two distinct lenses. By implementing Vocabulary-
Management Profiles (VMPs), we evaluate struc-
tural differences in writing patterns, shedding light
on how texts from various sources and registers
unfold. Then, through word keyness analysis, we
qualitatively examine words associated with spe-
cific sources and registers to grasp salient differ-
ences through vocabulary usage better.

3.1 Data
This study investigates text under two dimensions
of consideration: the source of the data (i.e. hu-
man or AI) and the register (i.e. news or creative).
Data was retrieved from the DeepfakeTextDetect
1 dataset. Further details regarding the compila-
tion of the initial dataset can be found in (Li et al.,
2023). This combined dataset comprises eight dif-
ferent registers and text generated from 27 LLMs.
We create a subset of extracted text from LLM
sources, OpenAI gpt-turbo-3.5 and Meta LLaMA
65B, along with their human-generated counter-
parts. The length of a text plays a role in the ob-
servations of VMPs. Simply put, the longer a text
is, the more observations can be extracted. Unfor-
tunately, LLM prompts often generate texts well
below what humans produce. We selected texts
within a range of 400 to 500 tokens to strike a
balance. Token counts are obtained after a prepro-
cessing stage where words are converted to low-
ercase and punctuation is removed. Additionally,
Youmans’s (1991) found that further preprocessing
modifications, such as removing affixes and con-
flating synonyms, have a minimal impact on the

1https://huggingface.co/datasets/yaful/
DeepfakeTextDetect

Source Mean Standard Deviation
creative_65B 448.70 29.62
creative_gpt 430.95 23.66
creative_human 450.47 28.75
news_65B 450.52 30.29
news_gpt 427.64 25.13
news_human 448.75 28.29

Table 1: Mean and Standard Deviation of Word Counts
(in tokens) by Source.

graphical representations of English discourses, so
we refrained from any lemmatization or stemming
procedures. This yielded 120 texts for each unique
register/source combination, totalling 720 individ-
ual texts for analysis. Details of the corpus can be
viewed in Table 1.

3.2 Vocabulary Management Profiles
As discussed, VMPs can be thought of as a mov-
ing window through the progression of a text that
measures the rate of newly introduced vocabulary.
Youmans developed three methods for calculating
VMPs (Youmans, "How to generate VMP 2.2s");
we use the VMP 2.2 method here. Our vmp function
takes three parameters: delta_x, which is the size
of the moving window; cleaned_tokens, a list
of preprocessed tokens from the text; and for con-
venience, we specify half_delta_x, the middle
value of the moving window, to be used for plotting.
The function operates by sliding a window across
the cleaned_tokens, giving each new vocabulary
word a score of 1.0, and for each repeated word,
determining a score using the following calcula-
tion: "(Number (index) of Current Word - Number
(index) of Previous Occurrence - 1)/(Total tokens
in the Text - 1)" (adapted from Youmans, "How
to generate VMP 2.2s"). To ensure scores for the
start of the text are consistent, the moving window
centred on token 1 of the text ‘wraps around’ so
that its first half covers the end of the text. This
way, the VMP 2.2 measures vocabulary use at a
‘second pass’ through the text. (Youmans "How to
generate VMP 2.2s").

Some considerations worth noting are the user-
defined parameters. First, how a user wishes to treat
common words and other preprocessing. We are
interested in VMPs as a potential measure of stylis-
tic and structural/topical changes, so we present
results with common words retained (commonYes)
and without (commonNo). Beyond this we have
set aside investigation of the effects of different
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kinds of preprocessing in the current study. An
important parameter is the delta_x value. This
value corresponds with the window size moving
over each text. While Youmans (1991) suggests
that longer delta_x values would be better suited
for long-term patterns, it is also observed as hav-
ing a smoothing effect on the trend of delta_y
through a text. We examine a range of window
sizes and suggest some additional smoothing tech-
niques. A package to generate VMPs can be found
at github.com/matthewdurward/vmp.

3.3 Keyness: Frequency and Dispersion
We investigate two independent properties related
to vocabulary, keyness as it relates to frequency
and again as it relates to dispersion. The com-
bining of both is what Egbert and Biber (2019)
describe as key keywords or words that demon-
strate the collective power of both elements. To
calculate keyness concerning frequency, we apply
Gries’s (2021) adaptation of Kullback-Leibler (KL)
divergence to capture a word’s association with a
corpus. Equation (1) presents a generalized form
of the Kullback-Leibler divergence, DKL used to
evaluate the extent of divergence between the con-
ditional probabilities by observing a specific word
in two corpora, compared to the overall probabili-
ties within those corpora.

Equation (2) provides the calculation in applica-
tion that measures how one probability distribution
diverges from a second, expected probability dis-
tribution. In the context of text analysis, DKL can
be used to compare the distribution of word fre-
quencies in one corpus or document (the "target")
against another (the "reference"). A higher value
of DKL indicates a more significant divergence be-
tween the two distributions. If the divergence is
zero, the two distributions are identical.

DKL(p(corpus |word) || p(corpus)) (1)

(
a× log2

a

e

)
+
(
b× log2

b

f

)
(2)

a =
Occ. of word in Target corpus

Total Occ. of word in Target + Reference
(3)

b =
Occ. of word in Reference corpus

Total Occ. of word in Target + Reference
(4)

In Equation (2), a signifies the relative frequency
of a specific word in our target corpus (e.g., human
news) compared to its presence in both the target
and reference corpora (e.g., human news + GPT
news) as illustrated in (3). Conversely, b indicates
this word’s relative frequency within the reference
corpus (e.g., GPT news), also in relation to the
combined target and reference, shown in (4). The
variables e and f represent the proportion of all
words in the target and reference corpora, respec-
tively, to the total word count across both. The sign,
or direction, of DKL for frequency remains posi-
tive when the word in question prefers the Target
corpus (a > b) and set to negative when the word
prefers the Reference corpus (b > a). Thus, DKL

for frequency provides two aspects of considera-
tion, the magnitude or strength of divergence and
the direction of favorability for a corpus. Essen-
tially, equation (2) quantifies how the distribution
of a particular word differs between two textual
datasets, helping to ascertain its distinctiveness or
prevalence within one corpus as opposed to the
other.

To compute dispersion, we adopt the methodol-
ogy outlined by (Gries, 2021), utilizing the DKL

calculation previously employed to assess key-
words for frequency. This method now serves as an
analytical tool to gauge the distribution of a word’s
occurrence across different corpus segments, con-
trasting its distribution in one part of the corpus
(target or reference) with the other parts. Apply-
ing this information-theoretic metric allows us to
evaluate the frequency and spread of lexical items,
providing nuanced insights into their usage patterns
within and across corpora.

A normalization step is applied, 1− e−DKL , to
transform the Kullback-Leibler divergence, DKL,
which can potentially range from 0 to ∞, into a
value that falls within the closed interval [0, 1].
This transformation ensures that the dispersion
measure is bounded and interpretable. Lower val-
ues of the normalized dispersion indicate less di-
vergence from the expected distribution, whereas
values closer to 1 suggest greater divergence.

3.4 Transformation and Dynamic-Time
Warping

We revisit VMPs as a method for textual analysis,
treating texts as time-series data to explore their
dynamics using time-series analysis methodologies.
To understand the stylistic and lexical variations
across different sources and registers, we applied
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Dynamic Time Warping (DTW). DTW functions
as a measure of distance between two distinct text
VMPs, with the progression of words representing
time, and the type/token ratio of the VMPs serv-
ing as the unit of measurement. Recognizing the
challenge posed by the variability and noise in raw
VMPs, we preprocessed the data with wavelet de-
noising and Gaussian smoothing. This approach,
employing the ’db1’ wavelet for denoising and a
sigma of 2 for smoothing, effectively minimized
noise and highlighted long-term trends without sac-
rificing the VMPs’ core characteristics.

These preprocessing steps clarified the VMPs
for better interpretability and enhanced their analy-
sis with DTW, allowing us to identify both subtle
and pronounced differences in vocabulary usage.
This nuanced examination, facilitated by signal pro-
cessing techniques, affirms VMPs’ utility for our
context. Figure 2 illustrates an example of the com-
parative analysis of two separate pairs of individual
text VMPs marked as similar (A) and dissimilar
(B) using DTW. We calculated pairwise DTW dis-
tances of extracted VMPs both within the same reg-
ister/source (such as creative/human) and between
different sources but the same register (for exam-
ple, news/65B compared to news/human). From
these calculations, we derived distance matrices
that were transformed into self-similarity measures.
These measures are scaled between 0 and 1, where
values closer to 1 indicate a higher similarity be-
tween a specific pair of Vocabulary Management
Profiles (VMPs).

3.5 VMP Characteristic Features
Our analysis covers the interaction between dif-
ferent registers and sources, examining various
conditions such as window sizes and the inclu-
sion of common words. In this context, DTW
serves as a method to quantify structural sim-
ilarities. Beyond DTW, we further investigate
time-series characteristics of the VMP themselves.
To quantitatively assess the observed disparities,
we employed three specific time series charac-
teristic features: DN_mean, DN_Spread_Std, and
MD_hrv_classic_pnn40. These features were de-
rived using the catch22 package, details of which
can be found in the repository2.
DN_mean computes the average Type/Token ratio

across the series, serving as a measure of lexical
diversity within the text. Higher values indicate

2https://github.com/DynamicsAndNeuralSystems/
catch22

0.45

0.50

0.55

0.60

0.65

0 50 100 150 200 250 300 350
0.45

0.50

0.55

0.60

0.65

A

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

0.2

0.4

0.6

0.8

1.0

B

Figure 2: Dynamic Time Warping (DTW) visualizations
illustrating the variability in VMP profiles for two pairs
of example texts. Image (A) depicts a warping path with
the minimal DTW distances, which suggests a closer
similarity between ’creative-human’ and ’creative-gpt’
sample text sequences using a window of size 51. Im-
age (B) presents a warping path with maximal DTW
distance, where the orange lines exhibit more deviations,
indicating substantial differences. This example uses a
window size of 11. in the temporal patterns of ’news-
human’ and ’creative-65B’ sample text sequences over
a window of size 11. These paths reflect the level of
adaptation required to align the sequences, with a more
veritcal path implying less adjustment and a deviated
path indicating more significant temporal distortion.

a greater variety of words used. DN_Spread_Std
measures the spread of the Type/Token ratios
around the mean, quantifying the variability in lex-
ical diversity across different text segments. Lastly,
MD_hrv_classic_pnn40 denotes the proportion of
significant incremental changes within the series,
effectively capturing the frequency and magnitude
of fluctuations in lexical diversity. A higher value
suggests more pronounced and rapid shifts in the
Type/Token ratios, reflecting erratic changes in the
VMP. Further details of features and extraction
methods are described in (Lubba et al., 2019).
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4 Results and Discussion

Initial observations comparing VMPs, as illustrated
in Figure 3, reveal notable differences across all
conditions of varying window sizes for both regis-
ters, represented in scenarios of excluding common
words (Figure 6) and including common words
(Figure 7).
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Figure 3: Sample VMP plot for the creative register
texts by source including common function words with
a window size of 11. It displays mean lines for the
source groups, with variability indicated by shaded areas
representing one standard deviation from the mean.

4.1 VMP Characteristics

To answer RQ1 and RQ2, statistical examina-
tion across various conditions, including com-
mon words and window size, has revealed signif-
icant distinctions among group sources for each
of our tested VMP characteristic features. Our
findings reported in this section exhibit highly
significant p-values (p < 0.00001) for Kruskal-
Wallis tests. Therefore, we emphasize the re-
sults with the most robust effect size, eta squared.
From a broad perspective, human writing can
be generalized as having higher lexical diversity
represented through higher DN_Mean scores and
higher consistent variability as demonstrated in
DN_Spread_Std. Conversely, 65B demonstrates
more sporadic episodes in texts with a gener-
ally higher MD_hrv_classic_pnn40. Notably, the
most significant effect sizes were predominantly
found in the news register, particularly for a win-
dow size of 25. For the feature DN_Mean in the
commonNo category, a significant effect size of
0.4394 underlines a marked distinction primarily
between 65B and human-generated texts, as well
as between human and gpt variants. This differ-
ence points to the human-generated texts generally

having higher Type/Token ratios than their counter-
parts.

Analyzing the DN_Spread_Std feature within
the context of news content, particularly for the
Delta 9, commonNo condition, provides insight
into the variability of textual production across
different sources. The effect size of 0.1955 in-
dicates substantial variability differences among
the groups, particularly between GPT and human
VMPs. Posthoc comparisons further elucidate
the nature of these differences: while both com-
parisons involving the 65B model (against GPT
and human) showed significant results, indicat-
ing 65B’s distinct variability profile, the direct
comparison between news_gpt and news_human
did not reach statistical significance (p=0.3882).
The MD_hrv_classic_pnn40 feature further high-
lighted significant disparities, most notably in the
news content for Delta 35, commonNo, with an
effect size of 0.0815, particularly evident in com-
paring news for 65B and GPT.

4.2 DTW Based Similarity for VMPs
To provide a broader perspective on the variations
in distributions of VMPs, we transformed DTW
distance scores between pairs of VMPs into self-
similarity scores. This approach facilitates a com-
parative analysis of textual characteristics across
different registers and sources, visualized in Fig-
ure 4 and further detailed by condition in Figure
8. Our analysis reveals that human-generated texts,
particularly in the news register without common
words and with a window size of 25, consistently
demonstrate the highest values for our tested fea-
tures, underscoring the distinctiveness of human
linguistic patterns compared to those generated by
AI models such as GPT and 65B.

To assess the statistical significance of observed
differences between the creative and news registers
within each source, we conducted Mann-Whitney
U tests. Given the multiple comparisons made,
we applied the Bonferroni correction. Our results
showed highly significant differences between reg-
isters for all sources, with all adjusted p < 0.00001,
demonstrating robust disparities. While it was ex-
pected that there would be differences between
registers for our source, our attention relates to the
effect size of our comparisons.

The effect size for these differences was quanti-
fied using the rank biserial correlation, which em-
phasizes the direction and magnitude of disparity
between registers of the same source. This ap-
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Figure 4: Distribution of DTW converted self similarity
scores by source type for VMPs with a window size of
11, using all vocabulary. The violin plots illustrate score
distributions across creative and news registers for 65B,
human, and GPT sources, emphasizing the variations
within each source and the distinctions between regis-
ters. Higher values indicate greater self similarity.

proach highlights each register and source’s dis-
tinct linguistic features and VMP characteristics.
As we can see in Figure 4, which shows results
for the condition of a window size of 11 and no
filtering of common words (CommonNo), we note
that there are noticeable differences between news
and creative VMPs for our sources.

A noteworthy observation pertains to the self-
similarity within registers for each source group.
Specifically, the human source group exhibits
greater self-similarity and a more concentrated
distribution for the news register, in contrast to
a broader distribution and lower self-similarity for
the creative register. Conversely, the 65B and GPT
sources exemplify an opposite trend, with varia-
tions in self-similarity and distribution patterns. Ta-
ble 2 indicates the most pronounced disparities
are observable within the human source category,
which consistently demonstrates the most substan-
tial effect sizes, as denoted by r, thereby indicating
a distinct separation between the news and creative
registers. This distinction underscores the efficacy
of text VMPs in differentiating between registers.
Another focal point is the directional tendency of

the correlation.

Source r (CommonYes) r (CommonNo)
Interval: 9

65B -0.076 -0.317
Human 0.945 0.654
GPT 0.038 -0.410

Interval: 11
65B -0.065 -0.291
Human 0.941 0.827
GPT -0.010 -0.299

Interval: 25
65B 0.005 -0.077
Human 0.657 0.586
GPT 0.039 -0.186

Interval: 35
65B 0.017 -0.042
Human 0.543 0.395
GPT -0.007 -0.128

Interval: 51
65B 0.058 0.019
Human 0.464 0.334
GPT -0.053 -0.171

Table 2: Effect Sizes by Source and Condition. Note: r
denotes the rank biserial correlation used as the effect
size measure. Greater deviation from zero equates to
larger disparity between registers for a particular source.
Negative values indicate an opposite direction in polar-
ity between registers for a source compared to human
VMPs.

As Table 2 indicates, a discernible relationship
exists with the window size employed for calculat-
ing text VMPs. It is important to note that larger
window sizes correlate with identifying broader
patterns within a text, whereas smaller windows
are sensitive to finer-grained distinctions. A consis-
tently higher effect size is attributed to the human
source throughout the range of window sizes tested,
indicating a more pronounced differentiation capa-
bility. Notably, after an initial increase from a win-
dow size of 9 to 11, the effect size for the human
source gradually declines towards a window size of
51. In contrast, the 65B and GPT sources demon-
strate comparatively weaker effect size strengths
and fluctuate in directional tendency across vary-
ing window intervals. Comparing results with and
without common words removed suggests that the
more apparent register differentiation in human
writing is consistent when considering both lexical
and grammatical words.
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4.3 Word Keyness

To answer RQ3, we extracted the top 100 key key-
words by applying Equation (2) to distinguish be-
tween our corpora demonstrated in Table 3 for cre-
ative and Table 4 for news. Upon first inspection,
there appears to be a notable propensity to use
colourful language in the form of profanity, which
is evident in human creative writing but absent
in creative output from GPT. However, this be-
comes less apparent when comparing humans to
65B. Comparing the creative register, we notice a
pronounced affinity towards darker thematic lan-
guage expressed in human writing. Words such
as: bloody, die, torture, cry, and hate are clear
exemplars of this notion represented in human sam-
ples to GPT vocabulary usage. Conversely, GPT
utilizes what can be described as more optimistic
language, examples including: succeeded, grate-
ful, determined. Some of these variations resonate
between humans and 65B, but to a lesser extent.
Words of interest would be aggressive or action
words, such as: threat, slammed, battle indicating
themes of conflict, whereas 65B demonstrates a
polarity with humans through positive words of
emotional tone, as in: team, community, friendship.
Pulling back, we also see contractions, through the
letter d, for human writing and when coupled with
the presence of pragmatic markers oh, uh, ah, we
can speculate on stylistic cues used by humans to
signal variation in character speech, an aspect less
prominent in our AI samples. Diverting our atten-
tion towards the news register, the LLMs tend to
have more abstract and longer words, whereas hu-
mans tend to use more concrete and shorter words.
A caveat to note here is that many of the human
keywords relate to reports of events (sports results,
financial results). We speculate that LLMs do not
generate these (or not as much) because to do so
they must start inventing specific facts. So, the key-
words might reflect how LLMs are tuned to avoid
levels of detail about the world that they cannot
accurately emulate.

5 Conclusion

This study combined more seasoned and newer ap-
proaches for evaluating vocabulary usage between
human and AI-generated texts. We noted struc-
tural differences in text sources, particularly in how
VMPs respond to our research queries about dis-
cernible vocabulary patterns. Using distributional
moment features like mean and standard deviation;

we pinpointed statistical disparities between groups
under various conditions, such as window size and
vocabulary inclusion. By converting DTW dis-
tances into self-similarity measures, we observed
marked differences in distributions by register for
specific sources. These measurable variations un-
derscore the distinct structural patterns of VMPs
generated from different sources. Further investi-
gation, particularly in response to RQ3, uncovered
specific vocabulary that served as key indicators of
thematic variations related to emotional tone. Un-
derstanding these variations can help educators and
language learners select materials that best align
with their learning objectives. We envision a sce-
nario where aspects of LLM-produced text with
lower mean VMPs could be combined with derived
word keyness features to seek out text samples that
incorporate desired vocabulary and appropriate rep-
etition, an advantage for learning new vocabulary.

Limitations

This study takes a nuanced view of using Large
Language Models (LLMs) in language learning
settings. We do not oppose their use, as we recog-
nize that there is support for such applications, and
their use should align with educators’ and learn-
ers’ educational goals and objectives. However,
we also note limitations in text selection. We ac-
knowledge that register can be a fluid quality, and
variations within a register may not be fully cap-
tured by the data used in our analysis. Moreover,
although our dataset is balanced in terms of sample
count, achieving a perfect balance in token length
poses challenges. While truncating texts is a feasi-
ble approach, it’s crucial to consider that details at
the end of passages may reveal unique attributes of
the sources.

AI-generated text was derived from default con-
figurations. While adjusting parameters such as
temperature or top-p could influence outcomes, we
opted to examine versions which users will most
likely encounter in educational settings. Our goal
was to establish a baseline understanding of unal-
tered text production by LLMs, with plans to inves-
tigate the impact of varying parameters in future
research. Gaining a deeper understanding of the
production limitations of both sources can guide
future research towards making LLMs more repre-
sentative of human language. This insight can also
effectively leverage LLMs’ potential advantages.
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A Appendix

Algorithm 1 Calculate Dispersion of a word in a
Corpus

Require: A corpus divided into N parts, the word
in question, N ≥ 1

Ensure: Dispersion value of the word in range
[0,1]

0: Let N be the number of parts, N = 10
0: Initialize array F to store the frequency fi of

the word in each part i
0: Initialize array S to store the size si of each

part i
0: Initialize DKL to 0
0: for i = 1 to N do
0:

0: pi ←
fi∑N
j=1 fj

0:

0: qi ←
si∑N
j=1 sj

0:

0: if pi > 0 then
0: DKL ← DKL + pi × log2

(
pi
qi

)

0: end if
0: end for
0: Dispersion← 1− e−DKL

0: return Dispersion =0
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Figure 5: Smoothing transformation of news text sample from a human source for commonNo vocabulary condition
with a window delta value 9. The blue solid line represents the original VMP data exhibiting natural variability
and noise. The green dashed line shows the VMP data after Fourier transform-based smoothing, which reduces
high-frequency fluctuations while preserving the main signal trend. The orange solid line, bolder for emphasis,
displays the VMP data subjected to a two-stage smoothing process involving wavelet denoising followed by
Gaussian smoothing, offering a balance between noise reduction and signal integrity preservation.
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Figure 6: VMP commonNo
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Top 100 Key Keywords for Creative Register

Creative Target-human

ll, looks, mouth, oh, wo, says, pretty, couple, seems, anyway, fuck, hell, stuff, damn, office, ca, shit,
paper, women, bastard, gets, picture, shouted, fingers, shoulder, definitely, ate, ah, guess, please, d, hate,
knows, orange, sit, god, cry, torture, fault, die, na, edit, click, direction, deserve, relationship, breathing,
normally, honest, flesh, son, jacket, eight, suppose, send, chair, cabinet, y, till, smoke, pile, armor, reaching,
inevitable, starving, kicked, fed, hated, realise, shouting, chin, somewhere, hanging, kinda, scratch, gon,
muster, nope, alcohol, bloody, blood, roll, slammed, dollars, yearold, decent, lights, accent, cheek, sits,
bathroom, gotten, deserved, asleep, tear, writing, uh, literally, hall, obviously

Creative Reference-gpt

named, fascinated, grateful, tirelessly, determined, shared, excitement, significant, accepted, completed,
relieved, consequences, lily, overjoyed, hesitant, sophie, practicing, including, respect, protect, differ-
ences, overwhelmed, intricate, eagerly, welcomed, skeptical, traveled, thrilled, unique, hugged, detail,
opportunity, villagers, chatted, achieved, gathering, longed, mattered, approach, spreading, genuinely,
expert, deserted, focused, catching, colony, choosing, importance, promising, mesmerized, frustrated,
defend, insects, grew, noticed, rush, impressed, series, challenging, thrill, rebuild, value, succeeded,
dense, behavior, lush, warriors, puzzle, intrigued, became, lilys, alex, determination, jacks, granted,
technology, weapons, crops, team, gaining, decision, insight, peculiar, crucial, particularly, tool, dire,
mortal, practiced, equally, routines, facility, frustration, mustered, grueling, industry, forests, judged,
impending, sunny

Creative Target-human

deep, soul, seemed, slightly, perhaps, shit, powers, bastard, rise, ago, warm, address, count, swear,
absolutely, further, thousand, though, impact, torture, odd, discovered, whenever, frozen, million, heading,
normally, existence, sea, carry, appeared, necessary, battle, reality, flesh, definitely, century, similar,
entered, jacket, eight, seven, data, cabinet, y, rushing, till, armor, dull, reaching, relief, inevitable, starving,
clear, kicked, actual, brings, realise, space, souls, instant, blanket, kinda, smart, slow, muster, tightly,
placed, causing, hands, somehow, threat, slammed, progress, landed, pressed, surely, stars, gold, silly, wet,
bodies, gun, seeking, uh, advanced, literally, humanity, hundred, faster, advance, officers, pure, masters,
leader, disgusting, intelligence, breath, particular, master

Creative Reference-65B

ruin, example, protect, couch, posted, pick, neighbors, labels, blow, upset, woods, scary, particularly,
oven, writer, treat, ridiculous, suggested, jealousy, department, services, talks, relieved, pray, cleaned,
react, financial, candy, persons, october, horny, depressed, glad, policy, music, thankful, hmm, levels,
recover, ages, accomplish, cream, creepy, dads, feeding, filed, necklace, repairing, hugs, easter, nerve,
ideas, liable, operating, nobodys, including, areas, sentences, hugged, blowing, kissing, cases, acting,
concentrate, shadowy, rules, teaches, cooking, player, fund, jump, students, widened, filing, respect,

christian, mix, investigate, explaining, curb, tubes, rural, recipe, airport, costs, fishing, backyard, lakes,
tragic, statements, stabbing, expressing, crook, rode, sisters, borrowed, sobs, todays, amazon, dance

Table 3: Keyword Summary for Creative Register
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Top 100 Key Keywords for News Register

News Target-human

psm, died, mr, main, ps, wednesday, parents, probably, d, told, added, near, spokesman, travelling,
happened, eight, deputy, monday, thursday, mrs, talk, playback, radio, ms, morning, huge, apparently,
march, records, single, either, chief, county, editor, weather, professor, captain, consumer, psbn, appeared,
going, boss, refused, go, me, april, rangers, labours, accepted, twitter, crown, strongly, det, backing,
possibly, internationally, brother, linked, partner, insurance, mps, achieved, communications, pictures,
advised, loan, might, tv, recognised, flat, insisted, brilliant, absolutely, evening, nice, afford, strikes,
afternoon, voted, sat, door, targets, staged, chris, obviously, innings, broke, estimates, bst, troops, injury,
stephen, christmas, jail, four, pretty, pupils, stopped, scottish, ibrox

News Reference-gpt

conclusion, importance, culture, ultimately, practices, shape, behavior, risks, attention, argue, criticized,
navigate, experiences, essential, efforts, deeply, traditional, stranger, dynamic, impossible, consumption,
highlighting, thrilled, inspire, accountability, tech, ceo, arguing, unique, individuals, growing, ability,
promising, towards, noted, alike, remains, organization, volatile, diagnosed, defense, resilient, proven,
likes, uncertain, inspiration, unexpected, combat, effects, tasked, observers, examples, dedicated, op-
ponents, ensuring, organized, guidance, topic, transition, responsibility, stable, handling, dedication,
tirelessly, investigations, discrimination, muchneeded, implement, accessible, gender, controversy, signifi-
cant, highprofile, emissions, takes, engaging, collaboration, transparent, remarks, uncertainty, recognized,
laws, disputes, scandal, wellknown, ethical, achieving, cultural, create, spread, pandemic, equalizer,
caution, ramp, cautious, component, effectively, scandals, strain, disrupt

News Target-human

speaking, revealed, troops, fans, warned, psm, regular, followed, pitch, deputy, september, ps, powers,
radio, might, adding, losing, deals, prove, parent, eventually, independently, suggested, average, quarter,
premiership, aged, rising, rugby, wanted, marks, african, bbc, labours, chose, praised, latter, backing,
armed, internationally, monthly, eyes, sheffield, historic, loan, disruption, cold, unbeaten, recognised, flat,
insisted, crowd, outcome, mistake, evening, strikes, proper, staged, obviously, operation, retain, complex,
standing, celtic, lose, ownership, employers, games, favour, nottingham, sundays, euro, sparked, ali, stake,
commit, mile, mutual, responding, dealt, length, appalling, militants, sit, defended, institution, indicated,
contributed, automatically, quoted, rebuild, clearly, southeast, broken, subsequently, scores, ira, formal,
cancelled, sofa

News Reference-65B

researchers, applications, center, delivers, ceo, base, method, mexico, photos, billion, developers, promis-
ing, organized, manifesto, awarded, apples, amazon, operated, organization, developer, deeply, devel-
opment, effects, displayed, capabilities, export, author, episode, distributed, browser, stimulate, chapter,
determine, forget, netherlands, flag, detective, object, restrictions, ties, caring, surveillance, spread,
organizations, manipulate, dedicated, residential, factories, integrated, cruz, perfect, entry, tagged, takes,
earth, gentleman, guy, cultural, approved, library, stable, apple, ability, trained, illinois, patterns, tags,
updated, federation, consulting, vulnerability, sensitive, acquisition, useful, crew, airports, implemented,
physics, tool, humans, interact, algorithms, valley, please, virtual, algorithm, materials, located, threats,
historical, tools, fuel, australias, experiences, movies, manage, afraid, experiment, string, asks.

Table 4: Keyword Summary for News Register
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Abstract
Individual feedback can help students improve
their essay writing skills. However, the manual
effort required to provide such feedback limits
individualization in practice. Automatically-
generated essay feedback may serve as an al-
ternative to guide students at their own pace,
convenience, and desired frequency. Large
language models (LLMs) have demonstrated
strong performance in generating coherent and
contextually relevant text. Yet, their ability
to provide helpful essay feedback is unclear.
This work explores several prompting strategies
for LLM-based zero-shot and few-shot gener-
ation of essay feedback. Inspired by Chain-
of-Thought prompting, we study how and to
what extent automated essay scoring (AES) can
benefit the quality of generated feedback. We
evaluate both the AES performance that LLMs
can achieve with prompting only and the help-
fulness of the generated essay feedback. Our
results suggest that tackling AES and feedback
generation jointly improves AES performance.
However, while our manual evaluation empha-
sizes the quality of the generated essay feed-
back, the impact of essay scoring on the gener-
ated feedback remains low ultimately.

1 Introduction

Essay writing is a valuable skill that empowers
students to communicate effectively, to think criti-
cally, and to express their opinions clearly (Bangert-
Drowns et al., 2004; Liu et al., 2014; Schendel and
Tolmie, 2016). However, learning to write essays of
high quality can be challenging (Peloghitis, 2017;
Febriani, 2022). Individual feedback to essays is
thus critical, so students may recognize and over-
come their weaknesses (Riddell, 2015). However,
manually writing essay feedback is time- and labor-
intensive. Given educators’ limited time, this often
renders real individual feedback infeasible in prac-
tice. As an alternative, automated essay writing
support could benefit students by offering guidance
at their own pace and convenience.

Student Essay

Everyone has their favorite book. But if it offended someone, 
should he be allowed to remove it? Offensive materials should 
not be removed from shelves. If we removed books that offended 
even one person, then no books would remain. 

Essay Feedback

Your essay presents a clear and well-articulated opinion on the 
issue of library censorship. However, there are some areas where 
your essay could be improved.

Essay Prompt

As americans, we have the right to freedom of speech. Authors 
use their freedom in their writing, just like musicians use their 
freedom to make music. But if we denied them their right to put 
out their creations, we would be denying them their basic rights as 
an american citizen.
Personally, I hate rap. I don't even consider it to be music, due to 
the fact that no one actually sings. But I do understand that a large 
percent of our population does enjoy listening to it. ...

First, try to stay focused on the topic of library censorship and 
avoid bringing in unrelated examples, such as your personal 
dislike of rap music. While it's important to acknowledge different 
perspectives, it's crucial to keep the focus on the main topic.
Second, provide more specific examples and evidence to  support 
your argument. For instance, you could discuss specific instances 
of censorship in libraries and the negative ...

Write a persuasive essay to a newspaper reflecting your vies on 
censorship in libraries. Do you believe that certain materials [...] 
should be removed from the shelves if they are found offensive? 

3

Figure 1: Exemplary student essay on library censorship
from the ASAP dataset (Hamner et al., 2012) along
with feedback and essay score generated by one of the
methods evaluated in this paper. Explicit connections
of the feedback to essay parts are color-coded.

Towards supporting essay writing automatically,
much research has focused on quality assessment,
mostly in the form of automated essay scoring
(AES; Ke and Ng, 2019; Ramesh and Sanampudi,
2022). Most existing AES approaches perform a
holistic scoring, summarizing the quality of an es-
say with a single score (Alikaniotis et al., 2016;
Vajjala, 2018; Uto et al., 2020; Wang et al., 2023).
Alternatively, specific essay quality aspects may be
assessed, such as coherence (Li et al., 2018; Farag
et al., 2018), grammar (Ajit Tambe and Kulka-
rni, 2022), and organization (Persing et al., 2010;
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Rahimi et al., 2015). While AES helps assess essay
quality and monitor writing skill progress, most ap-
proaches cannot explain why a score was predicted,
nor guide the student in improving the essay.

Another prominent line of research towards writ-
ing support focuses on identifying and correcting
grammatical errors (Imamura et al., 2012; Bryant
et al., 2017; Rozovskaya and Roth, 2019; Grund-
kiewicz et al., 2019). However, studies in educa-
tional research show that computer-based learning
systems lead to higher learning outcomes if elabo-
rated feedback is provided that provides explana-
tions instead of only pointing to errors or providing
the solution (Van der Kleij et al., 2015). There-
fore, Nagata (2019) introduced the task of feedback
comment generation in NLP: Given a learner text
with a grammatical error, automatically generate a
comment with hints and explanations to guide their
correction process. Song et al. (2023) extended this
task by generating explanations for a broader range
of grammatical error types using large language
models (LLMs). However, these tasks operate only
on the sentence level and are limited to grammati-
cal errors. Generating feedback on the essay level
by addressing not only grammatical errors but the
essay as a whole remains relatively unexplored.

To foster research in this direction, we tackle the
task of essay feedback generation: Given a student
essay, automatically generate textual feedback that
helps students improve their essays. An example
is shown in Figure 1. Building on the strong abil-
ities of LLMs in many text-generation tasks, this
work examines how well LLMs can generate essay
feedback by exploring various prompting strategies
in zero- and few-shot settings. Inspired by Chain-
of-Thought prompting (Wei et al., 2022), we study
whether AES can benefit the performance of essay
feedback generation and vice versa.

Our experiments suggest that generating essay
feedback by explaining the predicted essay score
improves the scoring performance on the widely-
used ASAP dataset (Hamner et al., 2012). For
essay feedback generation, we deem helpfulness
to be the most important quality criterion. Help-
ful essay feedback should point out and explain
mistakes made in an essay in a precise and easy
way for students to understand (Shute, 2008; Hattie
and Timperley, 2007). We evaluate the helpful-
ness automatically and manually. Due to the lack
of ground-truth essay feedback, we propose using
LLMs to automatically judge the essay feedback’s

helpfulness, which turns out to correlate well with
human helpfulness judgments. Our manual evalua-
tion also reveals that the generated essay feedback
is deemed helpful for students to improve their es-
say writing skills. However, the impact of scoring
the essay remains low ultimately. Altogether, this
paper’s main contributions are:

• A comparison of several LLM prompting
strategies for automated essay scoring

• An approach and task-specific automatic eval-
uation strategy for essay feedback generation
using LLM prompting

• Empirical insights into the influence of auto-
mated essay scoring on generating essay feed-
back and vice versa1

2 Related Work

Essay writing is a central task in education to eval-
uate various skills of students, including logical
thinking, critical reasoning, and creativity (Liu
et al., 2014; Schendel and Tolmie, 2016). How-
ever, manual essay grading is time-consuming and
not always consistent within and across raters (Kas-
sim, 2011; Eckes, 2015). Automated essay scor-
ing (AES) aims to alleviate these issues, reducing
the effort of graders and, ideally, making grading
more consistent and reliable (Ke and Ng, 2019;
Uto, 2021; Ramesh and Sanampudi, 2022).

While extensive research exists on AES (Ke and
Ng, 2019; Ramesh and Sanampudi, 2022), assess-
ing all important quality aspects (known as traits),
including the relevance of an essay’s content to the
prompt, the development of ideas, cohesion, co-
herence, and more remains challenging (Ramesh
and Sanampudi, 2022). Only few works focus on
scoring multiple traits at once (Mathias and Bhat-
tacharyya, 2020; Hussein et al., 2020). Instead,
the majority of AES research targets holistic essay
scoring, that is, summarizing the essay quality in a
single score (Alikaniotis et al., 2016; Cozma et al.,
2018; Vajjala, 2018; Wang et al., 2023).

State-of-the-art approaches to AES can be di-
vided by their use of the available data into full-data
and few- or zero-shot settings (Tao et al., 2022). In
the full-data setting, where all labeled data is used
for training, most approaches fine-tune pretrained
language models, such as BERT (Devlin et al.,
2019). Yang et al. (2020) proposed solving the task

1The code used for our experiments can be found under
https://github.com/webis-de/BEA-24.

284

https://github.com/webis-de/BEA-24


by combining essay scoring and essay ranking, fine-
tuning BERT using multiple losses simultaneously.
Extending this idea, Xie et al. (2022) combined re-
gression and ranking into a single loss. Rather than
fine-tuning a language model, Tao et al. (2022) de-
signed two self-supervised constraints for learning
a multi-layer embedding, which prepends the input
to a frozen BERT model. They evaluate their ap-
proach in the full-data and one-shot setting, outper-
forming a fine-tuned BERT in the latter. To explore
the potential of large language models (LLMs),
Mizumoto and Eguchi (2023) prompted GPT-3.5 to
score the student essays from the TOEFL11 dataset
(Blanchard et al., 2013) in a zero-shot setting, indi-
cating promising scoring performance.

The most straightforward way to provide more
detailed feedback for an essay than a holistic score
is trait scoring (Jong et al., 2023), that is, to evalu-
ate an essay for different quality aspects. However,
the reasoning behind an assigned trait score usu-
ally remains unknown to the student. Therefore,
Kumar and Boulanger (2020) adopted explainabil-
ity methods to explain how input features to an
AES system influence the trait scores for an essay.
While this provides more insights, the pedagogical
quality and impact on writing performance remain
questionable if no feedback is given together with
the scores (Kumar and Boulanger, 2020).

Specific feedback generation tasks have been
addressed in educational NLP. Nagata (2019) in-
troduced feedback comment generation to explain
grammatical errors to a learner on the sentence
level. This task has been tackled by combining
retrieval and text generation (Hanawa et al., 2021;
Ihori et al., 2023), by identifying different feedback
types (Stahl and Wachsmuth, 2023), by augment-
ing the dataset (Babakov et al., 2023; Behzad et al.,
2023), and by correcting the error (Jimichi et al.,
2023; Koyama et al., 2023), all using fine-tuned
language models. For a wider range of grammat-
ical error types, Song et al. (2023) used the LLM
GPT-4 to first identify the necessary corrective edit
before generating a grammar error explanation us-
ing one-shot prompting. In the educational domain,
Meyer et al. (2024) showed that LLM-based writ-
ing feedback, generated using a single handcrafted
prompt, positively impacts students’ text revisions,
motivation, and positive emotions.

So far, however, the generation of textual feed-
back on complete student essays has, to our knowl-
edge, received very little attention. All generation

approaches mentioned above operate on the sen-
tence level and explain grammatical errors only,
while our work aims to address all aspects of stu-
dent essays that may need improvement. The only
other work on essay feedback generation tackled
the task using Chain-of-Thought prompting using
zero-shot learning (Han et al., 2023). The resulting
feedback was deemed to be more helpful than the
feedback generated using standard prompting, as
evaluated by humans.

Motivated by these promising results and the
positive effects of LLM-based writing feedback on
students, we go beyond previous work by compar-
ing the effectiveness of different prompting strate-
gies for essay feedback generation. We also study
how and to what extent AES can benefit essay feed-
back generation (and vice versa) by addressing the
tasks jointly. Following the educational literature
on feedback, we aim to generate essay feedback
that is specific and elaborate (Shute, 2008) while as-
sessing the current state and instructing on how to
improve to achieve the goals (Hattie and Timperley,
2007).

3 Approach

This section describes our approach to essay feed-
back generation. We propose to tackle essay scor-
ing and feedback generation jointly in order to
study how and to what extent AES can benefit essay
feedback generation and vice versa. By comparing
different prompting strategies for large language
models (LLMs), we explore how well the tasks can
be solved using in-context learning.

In particular, we test different prompting strate-
gies by systematically varying three main aspects
of the prompts, as visualized in Figure 2: (a) the
prompt pattern, which defines the context and lay-
out; (b) the task instruction type, which sets the
ordering and phrasing of the tasks to be tackled;
and (c) the in-context learning approach, which
specifies the number of examples provided.

3.1 Prompt Patterns
We compare two different kinds of prompt patterns,
which define the context and format of the prompt:
(i) a base pattern and (ii) different persona patterns.
All prompt patterns are displayed in Table 1.

Base Pattern The base pattern simply gives the
general context and defines the layout and order in
which the essay prompt (i.e., the task given to the
learner writing the essay), the task instruction, as
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Prompt
Task
Essay

(a) Prompt Pattern (b) Task Instruction Type (c) In-Context Learning

Feedback

Score

Base
Persona: Teacher’s assistant
Persona: Educational researcher 
Persona: Creative writing mentor

Feedback –> Score
Score –> Feedback
Score –> Feedback_CoT

Zero-shot learning
One-shot learning
Few-shot learning

…

Student Essay Score&Feedback

Prompt
Task
Essay

vs
vs

Score

Feedback 4

vs
4

3
+

Figure 2: Overview of the main points of variation in our approach to predict a score and to generate feedback for a
student essay: (a) Prompt pattern: Use of the base pattern or persona-specific pattern; (b) Task instruction type:
Tasks to be tackled and their ordering; (c) In-context learning approach: Number of examples to learn from.

Base: You are given an essay written by a student and the
corresponding prompt for the 7th to 10th grade student.
#### Prompt: “{essay_prompt}”
### Task: {task_instruction}
#### Student essay: “{essay}”

Teacher’s Assistant: Imagine you are a teacher’s assistant
in a middle school tasked with reviewing a 7th to 10th grade
student’s essay. You have the essay and the prompt that was
given to the student.
#### Original Prompt Provided to Student: “{essay_prom.}”
### Review Task: {task_instruction}
#### Student’s Essay for Review: “{essay}”

Educational Researcher: You are part of an educational re-
search team analyzing the writing skills of students in grades
7 to 10. You have been given a student’s essay and the prompt
they responded to.
#### Essay Prompt: “{essay_prompt}”
### Analysis Task: {task_instruction}
#### Analyzed Student Essay: “{essay}”

Creative Writing Mentor: You are a creative writing mentor
evaluating a piece written by a student in grades 7 to 10. The
student’s work is based on a specific prompt.
#### Creative Prompt Given: “{essay_prompt}”
### Critique Instructions: {task_instruction}
#### Student’s Creative Piece: “{essay}”

Table 1: Prompt patterns: Base pattern and all persona
patterns. Brackets indicate placeholders that are filled re-
spectively during the experiments. We removed model-
specific pre-/suffixes and line breaks for illustration.

defined by the used task instruction type, and the
current learner essay will be presented to the model.
All inputs are indicated by markdown headings.

Persona Patterns These prompt patterns are in-
spired by persona prompting (White et al., 2023),
giving the LLM a persona or role to play when gen-
erating output. This aims to implicitly define the
expected type of output. For our task, we compare
the three personas, namely, teacher’s assistant, ed-
ucational researcher, and creative writing mentor,
by altering the context given in the prompt pattern.

3.2 Task Instruction Types
The task instruction type defines the tasks to be
tackled along with their ordering. We differentiate
between tackling (i) only essay scoring, (ii) essay
scoring and feedback generation, and (iii) only es-
say feedback generation. This way, we can measure
the influence that essay scoring has on feedback
generation, and vice versa. We explore the follow-
ing task instruction types for our tasks:

• Scoring. Instruct to score the student essay on
a given score range. This serves as a baseline
for assessing the essay scoring performance.

• Feedback. Instruct to generate essay feedback
for the student writer. This serves as a baseline
for assessing the feedback performance.

• Scoring→Feedback. Instruct to score the es-
say and then generate feedback for the student
writer. This measures the influence of essay
scoring on the feedback performance.

• Feedback→Scoring. Instructs to first gener-
ate feedback before scoring the essay. This
evaluates whether feedback generation helps
to predict the correct essay score.

• Scoring→Feedback_CoT. Instruct to score the
essay and to then generate feedback using
zero-shot Chain-of-Thought (CoT) prompt-
ing, that is, to add the phrase “Let’s think
step by step.”, which has been shown to in-
crease LLM’s reasoning performance (Kojima
et al., 2022). This might benefit the reasoning
needed in feedback generation.

• Feedback_dCoT→Scoring. Instruct to first
analyze the essay quality using the rubric, to
then generate feedback, and to finally score
the essay. This is a more detailed variation of
CoT that provides task-specific steps to follow
before arriving at the final essay score.
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Score Description

3 The response demonstrates an understanding of the
complexities of the text.
– Addresses the demands of the question
– Uses expressed and implied information from the
text
– Clarifies and extends understanding beyond the
literal

2 The response demonstrates a partial or literal under-
standing of the text.
– Addresses the demands of the question, although
may not develop all parts equally
– Uses some expressed or implied information from
the text to demonstrate understanding
– May not fully connect the support to a conclusion
or assertion made about the text(s)

1 The response shows evidence of a minimal under-
standing of the text.
– May show evidence that some meaning has been
derived from the text
– May indicate a misreading of the text or the question
– May lack information or explanation to support an
understanding of the text in relation to the question

0 The response is completely irrelevant or incorrect, or
there is no response.

Table 2: Exemplary rubric from essay set 3 of the ASAP
dataset (Hamner et al., 2012). The rubrics are provided
as additional information within the task instructions.

• Scoring→Explanation. Instruct to score the
essay and to then generate an explanation for
the predicted score. This explores whether
score explanations as a form of feedback re-
late to asking for essay feedback specifically.

• Explanation→Scoring. Instruct to analyze the
essay, to then first generate an explanation for
an essay score that, in turn, should be gen-
erated at the end. This avoids that the LLM
predicts an incorrect score and then generates
an explanation justifying the incorrect score,
as observed by Ye and Durrett (2022).

Task instructions for essay scoring provide the
scoring range that should be used, while those
for feedback generation provide the rubric, that is,
guidelines including a short description for essays
of each quality level and typical elements of such.
An exemplary rubric can be seen in Table 2.

Since the performance of LLMs is sensitive to
the exact wording of a prompt (Leidinger et al.,
2023), we create a total of four task instructions
for each task instruction type by instructing Chat-
GPT (OpenAI, 2023) to generate three paraphrases
of each initial, manually written task instruction.
Examples of the latter can be seen in Table 3. We
provide all task instructions in Appendix A.

Scoring: Given this essay that was written for the given
prompt, grade the essay using those ranges: {scoring_range}.

Feedback: Analyze the given essay using the following
rubric: {rubric}. Provide comprehensive feedback for the
student that helps them to achieve better grades in the future.

Scoring→Feedback: Grade the given essay using the fol-
lowing rubric: {rubric}. Use those score ranges: {scor-
ing_range}. Provide comprehensive feedback for the student
that helps them to achieve better grades in the future.

Feedback_dCoT→Scoring: Analyze the given essay using
the following rubric and give helpful feedback to the student:
{rubric}. Use those score ranges: {scoring_range}. Let’s
think step by step. First, analyze the quality of the essay in
terms of the given rubric. Then, give feedback to the student
that explains their mistakes and errors and additionally gives
them tips to avoid them in the future. As a final step, output
the score at the end.

Scoring→Explanation: Grade the given essay using the
following rubric: {rubric}. Use those score ranges: {scor-
ing_range}. Provide an explanation for your score as well.

Table 3: Task instruction types: Examples of the ini-
tial, manually written task instructions for five types.
Brackets indicate placeholders that are filled with the
respective information during the experiments.

One-shot Example: Essay: “{essay}”

Reasoning: This is a minimally-developed response with
inadequate support and detail. The writer takes the position
that computers can be harmful to the eyes and then addresses
eye damage to three groups of people (kids, teens, adults). A
few specific details are included (sensitive eyes, MySpace),
but elaboration is minimal. Some organization is demon-
strated but few transitions are used. Overall, the response is
sufficiently developed to move into the score point ‘3’ range.

Scores: {Overall: 3}

Table 4: One-shot example consisting of a student essay,
a manually written score justification, and the assigned
score. The data is taken from the scoring guidelines for
essay set 1 of the ASAP dataset (Hamner et al., 2012).

3.3 In-Context Learning
As final point of variation of our approach, we ex-
plore how providing one or multiple exemplary
essays, together with their score and a reasoning
for the score, helps with essay scoring and feed-
back generation. The data comes from additional
material given to human raters. We argue that the
reasoning of the score may help with essay scor-
ing, but could also be seen as a form of feedback
and may benefit that task as well. We compare (i)
zero-shot, (ii) one-shot, and (iii) few-shot learning.

For one-shot, we randomly select an essay with a
medium score, as the one in Table 4. For few-shot,
we first randomly select examples among the essays
with the best and worst scores before covering the
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Pattern Essay Set

1 2 3 4 5 6 7 8 Mean

Base .495 .532 .405 .495 .497 .601 .436 .377 .480
TA .536 .603 .408 .499 .512 .625 .443 .439 .508
ER .436 .554 .460 .560 .553 .620 .418 .467 .509
CWM .484 .588 .382 .434 .507 .596 .471 .352 .477

Table 5: Essay scoring results: Average QWK over
all task instructions using zero-shot learning for each
prompt pattern: base, teacher’s assistant (TA), edu-
cational researcher (ER), and creative writing mentor
(CWM). We report the performance for each of the eight
essay sets as well as the mean QWK over all sets.

other scores. Due to the limited context length, we
restrict the prompt to 5,120 characters and select as
many examples that fit this limitation as possible.2

4 Data

Multiple AES datasets are available, with the Auto-
mated Student Assessment Prize’s (ASAP) dataset
(Hamner et al., 2012) being the most widely used.
It comprises 12,980 essays written by school stu-
dents in grades 7 to 10. All essays were scored
manually by two raters. The essays are divided
into eight essay sets. The essay sets differ by the
essay prompt, i.e., the task description they were
written for, the scoring range, and the rubric used
by the raters as annotation guidelines. The rubrics
provide a short description for essays of each qual-
ity level and typical elements of such essays.

Since for the introduced task of essay feedback
generation, no parallel dataset is available yet, we
use the ASAP dataset as input data and evaluate
the generated feedback without supervision.

5 Evaluation

We evaluate the performance of a large language
model (LLM) by comparing the proposed prompt-
ing strategies on the two tasks: essay scoring and
feedback generation. First, we assess the scoring
performance and, then, we both automatically and
manually evaluate the generated feedback in terms
of the helpfulness for the student writer. We aim
to study the effects of tackling essay scoring and
feedback generation jointly, as well as explore how
well LLMs can solve both tasks using prompting.

2For the few-shot variation, the described example selec-
tion process led to 3, 2, 4, 5, 8, 6, 4 and 2 examples for the
essay sets 1 to 8 respectively. The differences are due to the
variation in essay and reasoning length per essay set.

5.1 Essay Scoring
We compare the proposed prompt patterns, task in-
struction types, and in-context learning approaches,
to evaluate the performance of an LLM on the es-
say scoring task. Also, we measure the influence of
feedback generation on the scoring performance.

Approach We use the instruction-following re-
cent LLM Mistral with 7B parameters (Mistral-7B-
Instruct-v0.2, Jiang et al., 2023) in our experiments,
generating each output with greedy decoding.3 We
found that instructing the model to generate the
essay score in JSON format helps to extract the
score from the generated text automatically.4 Be-
low, we report the number of essays that still did
not receive a score (Unscored) and omit them from
the performance calculation.

Baselines As a baseline, we report the perfor-
mance AES-Prompt (Tao et al., 2022), which is, to
our knowledge, the best-performing AES approach
that is not fully fine-tuned on the ASAP dataset.
As an upper bound, we also report the performance
of R2BERT (Yang et al., 2020), the state-of-the-art
approach fully fine-tuned on the same dataset.

Experimental Setup We automatically assess
the essay scoring performance using quadratic
weighted kappa (QWK), the most widely adopted
metric for automatic essay scoring (Ke and Ng,
2019). Since the test set of the ASAP dataset is not
publicly available, we follow Taghipour and Ng
(2016) and apply their 5-fold cross-validation split.
Since we perform no training, we only use the val-
idation splits to create reasonable initial prompts
and report the performance on the test splits.

Results Table 5 presents the scoring performance
for each prompt pattern. We report the average
QWK of all task instructions using zero-shot learn-
ing to measure the influence of the prompt pattern
on the scoring performance. Using the personas
“educational researcher” (ER) and “teacher’s assis-
tant” (TA) seems beneficial for essay scoring, either
of which performs best on all but one essay set, and
ER best on average (mean QWK of .509).

To evaluate the influence of the task instruction
type, Table 6 shows the performance of the best-

3Initial experiments on essay scoring with Llama-2 (7b-
chat-hf and 13b-chat-hf, Touvron et al., 2023) led to lower
performance, which halted further testing with Llama-2.

4If the score was not generated as instructed, we re-
prompted the model to extract the score from its prior response.
This was effective when a score was in the initial answer.
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Task Instruction Type Essay Set Unscored

1 2 3 4 5 6 7 8 Mean

Scoring .448 .585 .479 .596 .557 .649 .438 .481 .529 1
Scoring→Feedback .510 .615 .439 .530 .489 .621 .449 .481 .517 1
Feedback→Scoring .388 .561 .484 .600 .622 .630 .385 .545 .527 16
Scoring→Feedback_CoT .538 .595 .422 .494 .530 .635 .458 .477 .519 19
Feedback_dCoT→Scoring .546 .564 .424 .558 .581 .628 .477 .489 .533 37
Scoring→Explanation .466 .580 .472 .565 .541 .639 .420 .417 .513 0
Explanation→Scoring .470 .553 .488 .636 .571 .675 .384 .484 .533 2

Table 6: Essay scoring results: QWK for the best approach variation per task instruction type in the zero-shot setting.
We report the performance per essay set and the average over essay sets. The best results per column are bold.

performing approach variations per task instruction
type. We report the combination of prompt pat-
tern and task instruction that performed best on
the validation set using zero-shot learning. The
results suggest that instructing the LLM to first fol-
low task-specific steps to analyze and give feed-
back (Feedback_dCoT→Scoring) as well as to
first generate an explanation for the essay score
(Explanation→Scoring) particularly help with es-
say scoring. These two achieve the highest mean
QWK (.553). In general, the variations that gener-
ate some form of feedback first perform better than
their counterparts that perform scoring first.

Finally, we study the influence of in-context
learning on the instruction type Scoring→Feedback
using the prompt pattern and task instruction that
performs best on the validation split for a fair com-
parison to the baselines (Table 7). The results indi-
cate that giving examples of scored essays aid essay
scoring. One-shot learning outperforms few-shot
learning, but the effect is rather small. Our prompt-
ing approaches perform rather competitively to the
strong baseline AES-Prompt (Tao et al., 2022).

5.2 Essay Feedback Generation
As with essay scoring, we evaluate the generated
feedback by comparing the prompt patterns, task in-
struction types, and in-context learning approaches.
Our goal is to explore how well LLMs perform
at generating helpful essay feedback and whether
essay scoring can benefit the feedback generation.

Approach We continue using the large language
model Mistral (Mistral-7B-Instruct-v0.2, Jiang
et al., 2023) for the essay feedback generation task
since it performed well at the essay scoring task.

Automatic Evaluation Using LLMs to assess
the quality of generated texts has been shown to be
consistent with human expert annotations for some
free-text generation tasks (Chiang and Lee, 2023).

Context Essay Set

1 2 3 4 5 6 7 8 Mean

Zero-shot .510 .615 .439 .530 .489 .621 .449 .481 .517
One-shot .565 .619 .523 .600 .606 .665 .509 .233 .540
Few-shot .558 .586 .515 .586 .618 .671 .472 .297 .538
AES-Pro. .682 .544 .590 .672 .701 .622 .683 .620 .639

R2BERT .817 .719 .698 .845 .841 .847 .839 .744 .794

Table 7: Essay scoring results: QWK per in-context
learning approach for Scoring→Feedback using the
best-performing prompt pattern and task instruction.
The baseline AES-Prompt (Tao et al., 2022) also has one
shot. R2BERT (Yang et al., 2020) is fully fine-tuned.

Since there are no existing automatic metrics for
assessing the quality of generated essay feedback,
we follow previous work and use Mistral itself as
well as Llama-2 (Llama-2-13b-chat-hf, Touvron
et al., 2023) for the automatic part of our feedback
evaluation. We instruct them to assign an overall
helpfulness scores between 1 (not helpful) and 10
(very helpful) for each generated essay feedback.
The used prompt can be found in Appendix B.5

Our evaluation focuses on helpfulness, which we
deem to be the most important quality dimension
for essay feedback. We anticipate that other quality
aspects, such as faithfulness, are implicitly covered
since irrelevant or incorrect feedback would not be
helpful for the student author.

Automatic Results Table 8 presents the assigned
helpfulness scores for each prompt pattern, aver-
aged over task instructions using zero-shot learning.
Both LLMs deemed the feedback generated by a
persona pattern to be most helpful, on average: the
top helpfulness score is achieved by ER for Mistral
(8.26) and CWM for Llama-2 (7.48).

To evaluate the influence of the task instruction
5We also experimented with relative comparisons of feed-

back for automatic helpfulness assessment. However, the
correlation to our manual helpfulness annotations was low.
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Prompt Pattern Mistral Llama-2

Base 7.78 ±0.53 6.88 ±0.18

Teacher’s assistant (TA) 7.90 ±0.39 6.84 ±0.19

Educational researcher (ER) 8.26 ±0.23 6.87 ±0.18

Creative writing mentor (CWM) 7.83 ±0.47 7.48 ±0.85

Table 8: Automatic feedback generation results: Aver-
age helpfulness scores predicted by Mistral and Llama-2
for each prompt pattern over all task instructions using
zero-shot learning. The best result per column is bold.

Task Instruction Type Mistral Llama-2

Feedback 8.96 ±.25 7.31 ±.19

Scoring→Feedback 8.04 ±.44 7.15 ±.45

Feedback→Scoring 8.27 ±.38 7.27 ±.50

Scoring→Feedback_CoT 7.30 ±.63 6.72 ±.41

Feedback_dCoT→Scoring 8.53 ±.66 7.28 ±.55

Scoring→Explanation 7.22 ±.45 6.68 ±.40

Explanation→Scoring 7.27 ±.63 6.75 ±.36

Table 9: Automatic feedback generation results: Aver-
age helpfulness scores predicted by Mistral or Llama-2
for each task instruction type over all task instructions
and prompt patterns using zero-shot learning.

type, Table 9 shows the results per type, averaged
over prompt patterns and task instructions using
zero-shot learning. Both evaluation models gave
the highest average scores to performing feedback
generation only (Feedback). For the other task
instruction types, the variations that generate some
form of feedback first seem more helpful than their
counterparts that perform scoring first.

Finally, we study the influence of each in-context
learning approach on the task instruction type
Scoring→Feedback on average over the prompt
patterns and task instructions (Table 10). The re-
sults suggest that the reasoning presented in the
provided in-context examples positively impacts
the feedback helpfulness. Although the effect is
small, more examples help more.

Manual Evaluation The proposed automatic
evaluation only approximates the quality of the gen-
erated essay feedback. Therefore, we conducted
a manual annotation study during which 12 anno-
tators manually judged the feedback quality. All
annotators have advanced English skills and are not
authors of this paper. The annotators were divided
into four groups that annotated the same feedback.

In particular, we randomly selected 24 essay
feedback texts generated by the three task instruc-
tion types that performed best in the automatic
evaluation: Feedback, Feedback→Scoring, and
Feedback_dCoT→Scoring. Here, we used the best-

In-Context Learning Mistral Llama-2

Zero-shot learning 8.04 ±.44 7.15 ±.45

One-shot learning 8.39 ±.54 7.28 ±.47

Few-shot learning 8.42 ±.56 7.30 ±.46

Table 10: Automatic feedback generation results: Aver-
age helpfulness scores predicted by Mistral or Llama-2
per in-context learning approach for Scoring→Feedback
over all prompt patterns and task instructions.

Task Instruction Type S1 S2 S3 S4 S5

Feedback 5.88 5.71 6.04 5.75 6.08
Feedback→Scoring 5.17 5.04 5.46 5.21 5.08
Feedback_dCoT→Scoring 5.50 4.92 5.29 4.83 5.00

Table 11: Manual feedback generation results: Average
scores assigned by the annotators for each approach for
statements S1–S5 on a 7-point Likert scale (7 is best).

performing combination of prompt pattern and task
instruction. All sampled feedback texts were writ-
ten for essays from one essay set only to reduce the
time the annotators need to read the essay prompt.
We chose essay set 4, which covers the most com-
mon ASAP task, reading comprehension.

To judge the feedback helpfulness, the annota-
tors received the essay prompt, the student essay,
and the generated feedback. Based on this, they
were asked to assess to what extent the following
statements apply on a 7-point Likert scale (score 1:
“I strongly disagree”, score 7: “I fully agree”):

S1: The feedback clearly points out mistakes that
were made in the essay.

S2: The feedback explains exactly why the errors
are errors.

S3: The feedback is very clear and precise so that
the student can understand it.

S4: The feedback is absolutely suitable for stu-
dents from 7th to 10th grade.

S5: Overall, the feedback is very helpful.

Manual Results Table 11 presents the results of
the manual annotation study. For all five statements
covering different helpfulness aspects, Feedback
achieved the highest scores on average. Especially
the clarity and precision (S3) as well as the over-
all helpfulness (S5) of Feedback were rated with
the second-best score of 6 (“I mostly agree”). All
compared task instruction types reach an average
score above the neutral score of 4, indicating that
all feedback is perceived as rather helpful in gen-
eral. Overall, the generated essay feedback seems
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Autom. Evaluation S1 S2 S3 S4 S5

Mistral 0.29 0.27 0.45 0.25 0.61
Llama-2 –0.11 –0.11 –0.02 0.07 –0.10

Table 12: Pearson correlation of the manual annotations
per statement (S1–S5) and the automatic helpfulness
scores using Mistral or Llama-2. The top value is bold.

to have the most potential for improvement by bet-
ter explaining why an error is erroneous (S2) and
being more suitable for students (S4). The inter-
annotator agreement in terms of Krippendorff’s α
on average over the four groups is 0.44.

To evaluate the reliability of our automatic help-
fulness evaluation, we show the correlation be-
tween manual and automatic helpfulness scores in
Table 12. The highest correlation value (0.61) was
measured between the manually annotated over-
all helpfulness (S5) and the automatic helpfulness
scores predicted by Mistral. This indicates that
using Mistral can be useful for automatically evalu-
ating feedback helpfulness. The helpfulness scores
generated by Llama-2 do not correlate with the
manual annotation for any statement.

6 Conclusion

Despite the strong text generation abilities of re-
cent LLMs in various tasks, their effectiveness in
generating essay feedback that helps student writ-
ers improve their essays has remained unclear until
now. Also, generating textual feedback that ad-
dresses the entire essay has previously only been
tackled using one prompting strategy in a zero-shot
learning setting. With this work, we go beyond
existing work by comparing different LLM prompt-
ing strategies for essay feedback generation. We
propose tackling essay feedback generation and
automated essay scoring (AES) jointly to study
whether AES can benefit feedback generation and
vice versa. Our experiments suggest that AES can
be solved competitively by prompting LLMs, bene-
fitting from tackling feedback generation first. The
generated feedback is deemed helpful for students
by our automatic and manual evaluation. However,
the impact of scoring on the feedback helpfulness
remains low ultimately.

7 Limitations

Aside from the still-improvable performance of
the presented prompting approaches to automated
essay scoring and feedback generation, we see two

notable limitations of our work: the dependence of
our feedback approaches on additional data and the
pending utilization of the generated essay feedback
for real-world essay writing support.

First, we point out that our feedback approaches
rely on the availability of a detailed rubric, that
is, guidelines including a short description for es-
says of each quality level, typical elements of such,
and textual reasoning as to why example essays
received a specific score. Such information might
not always be available, which could reduce the
transferability of our results to other essay datasets.

Second, while our evaluation suggests that the
generated essay feedback is helpful for student writ-
ers, it remains unclear whether the student writers
also perceive it as such. We encourage future work
to utilize our approaches for real-world essay writ-
ing support and make it available to students. Feed-
back from students on such a tool would be useful
to guide research on essay feedback generation.
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A Task Instructions

We present all used task instructions in the fol-
lowing list. This includes all paraphrases per task
instruction type.

• Scoring: (1) Given this essay that was written
for the given prompt, grade the essay using
those ranges: {scoring_range}.
(2) Review the provided essay in response
to the given prompt. Assess its quality and
assign a grade according to the following cri-
teria: {scoring_range}.
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(3) Examine the essay written in response to
the specified prompt. Utilize the following
grading ranges to evaluate and score the essay:
{scoring_range}.
(4) Analyze the submitted essay that corre-
sponds to the given prompt. Apply these grad-
ing standards to determine its score: {scor-
ing_range}.

• Feedback: (1) Analyze the given essay using
the following rubric: {rubric}. Provide com-
prehensive feedback for the student that helps
them to achieve better grades in the future.
(2) Please evaluate the essay in accordance
with the criteria outlined in: {rubric}. Offer
detailed and constructive feedback to assist
the student in improving their writing skills
for future assignments.
(3) Utilize the provided rubric ({rubric}) to
assess the essay. Your feedback should be
thorough, focusing on areas of strength and
suggesting improvements to help the student
enhance their academic writing.
(4) Conduct an assessment of the submitted es-
say using this specific rubric: {rubric}. Your
feedback should be insightful and supportive,
guiding the student towards achieving higher
grades in their future essays.

• Scoring→Feedback: (1) Grade the given es-
say using the following rubric: {rubric}. Use
those score ranges: {scoring_range}. Provide
comprehensive feedback for the student that
helps them to achieve better grades in the fu-
ture.
(2) Please evaluate the essay in accordance
with the criteria outlined in: {rubric}. As-
sign a grade based on these standards: {scor-
ing_range}. Offer detailed and constructive
feedback to assist the student in improving
their writing skills for future assignments.
(3) Utilize the provided rubric ({rubric}) to
assess the essay. Grade it according to these
parameters: {scoring_range}. Your feed-
back should be thorough, focusing on areas of
strength and suggesting improvements to help
the student enhance their academic writing.
(4) Conduct an assessment of the submitted
essay using this specific rubric: {rubric}. Ap-
ply the grading criteria as per these guidelines:
{scoring_range}. Your feedback should be
insightful and supportive, guiding the student

towards achieving higher grades in their future
essays.

• Feedback→Scoring: (1) Analyse the given
essay using the following rubric: {rubric}.
Use those score ranges: {scoring_range}. To
do this, first provide comprehensive feedback
for the student that helps them to achieve bet-
ter grades in the future. Then give the final
score.
(2) Begin by carefully reviewing the submit-
ted essay in light of the criteria outlined in
{rubric}. After your thorough analysis, of-
fer detailed and constructive feedback aimed
at guiding the student towards academic im-
provement. Conclude your review by assign-
ing a score to the essay, adhering to the guide-
lines specified in {scoring_range}.
(3) First, evaluate the essay against the crite-
ria mentioned in {rubric}. Your evaluation
should include specific, actionable sugges-
tions for the student to enhance their writ-
ing skills and essay quality. Following your
comprehensive feedback, assign a score to the
essay based on the scale provided in {scor-
ing_range}.
(4) Commence your assessment by applying
the criteria from {rubric} to the essay. Focus
on delivering in-depth feedback that is both
informative and beneficial for the student’s
future academic endeavors. After providing
this feedback, conclude by scoring the essay
as per the range defined in {scoring_range}.

• Scoring→Feedback_CoT: (1) Analyse the
given essay using the following rubric and
give helpful feedback to the student: {rubric}.
Use those score ranges: {scoring_range}.
Let’s think step by step. Make sure to out-
put the score only at the end.
(2) Please evaluate the provided essay accord-
ing to this specific rubric: {rubric}. Scores
should be assigned based on these crite-
ria: {scoring_range}. Proceed methodically
through each step. Conclude your analysis by
presenting the final score.
(3) Conduct a thorough assessment of the es-
say using the rubric below: {rubric}. Adhere
to the following scoring guidelines: {scor-
ing_range}. Break down your analysis into
clear steps. Ensure the final score is given at
the end of your evaluation.
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(4) Examine the student’s essay in detail, uti-
lizing the rubric provided: {rubric}. Apply
these scoring ranges for evaluation: {scor-
ing_range}. Tackle the analysis in a step-by-
step manner. The score should be presented
at the conclusion of your feedback.

• Feedback_dCoT→Scoring: (1) Analyze the
given essay using the following rubric and
give helpful feedback to the student: {rubric}.
Use those score ranges: {scoring_range}.
Let’s think step by step. First, analyze the
quality of the essay in terms of the given
rubric. Then, give feedback to the student
that explains their mistakes and errors and ad-
ditionally gives them tips to avoid them in the
future. As a final step, output the score at the
end.
(2) Begin by evaluating the essay based on the
criteria outlined in the rubric: {rubric}. Con-
sider the scoring guidelines provided: {scor-
ing_range}. First, conduct a thorough analy-
sis of the essay according to the rubric stan-
dards. Next, provide constructive feedback to
the student, highlighting areas for improve-
ment and suggesting strategies to enhance
their writing skills. Conclude with a summary
of the essay’s strengths and weaknesses. Fi-
nally, present the essay’s score at the end of
your analysis.
(3) Follow these steps to assess the student’s
essay: First, reference the provided rubric:
{rubric}, and apply it to evaluate the es-
say. Use the scoring ranges given: {scor-
ing_range} for accurate assessment. Provide
detailed feedback to the student, pinpointing
specific areas of the essay that align or deviate
from the rubric, along with advice for future
improvement. Your feedback should be clear,
constructive, and actionable. After your com-
prehensive review, conclude by outputting the
final score, ensuring this is done only at the
very end.
(4) To evaluate the student’s essay, pro-
ceed as follows: Start with the provided
rubric: {rubric}, to assess the essay’s at-
tributes. Adhere to the scoring guidelines:
{scoring_range} for consistency. Your anal-
ysis should first focus on how well the essay
meets the criteria in the rubric. Then, craft
feedback for the student that is both informa-
tive and helpful, addressing any shortcomings

and providing practical advice for future es-
says. The feedback should be encouraging yet
honest. Conclude your evaluation by scoring
the essay, presented at the conclusion of your
feedback.

• Scoring→Explanation: (1) Grade the given
essay using the following rubric: {rubric}.
Use those score ranges: {scoring_range}.
Provide an explanation for your score as well.
(2) Please assess the submitted essay accord-
ing to the criteria outlined in this rubric:
{rubric}. Scores should be allocated based
on these guidelines: {scoring_range}. Addi-
tionally, include a detailed rationale for the
score you assign.
(3) Evaluate the provided essay by referring to
the standards specified here: {rubric}. Utilize
the following scoring range for your evalua-
tion: {scoring_range}. Also, furnish a com-
prehensive justification for the grade you de-
termine.
(4) Rate the essay in front of you using these
evaluation criteria: {rubric}. Your scoring
should align with these parameters: {scor-
ing_range}. Please also give a thorough expla-
nation to support the score you decide upon.

• Explanation→Scoring: (1) Analyse the
given essay using the following rubric:
{rubric}. To do this, first explain using the
scoring rubric why you chose the score. After
you analysed the essay, give a final grade.
(2) Utilize the provided scoring rubric
({rubric}) to evaluate the essay. Begin by
detailing the reasons for your assigned score
based on the rubric’s criteria. Conclude by
summarizing your analysis with a final grade.
(3) Apply the scoring guidelines from {rubric}
to assess the essay. Start by discussing how
the essay meets or falls short of each criterion
in the rubric. Finalize your assessment with a
grade.
(4) Use the scoring rubric ({rubric}) as a basis
to critically analyze the essay. Explain how
the essay aligns with each aspect of the rubric,
justifying your evaluation. Conclude with a
definitive grade.

B Automatic Helpfulness Assessment

We used the following prompt for our automatic
helpfulness evaluation:
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“You are given an essay and feedback from a
teacher for this essay. Your task is to evaluate the
helpfulness of the feedback.

# Task: Evaluate the helpfulness of the feed-
back. Helpful feedback should explain what the
errors are, why they are errors, and how to fix them.
Give a score between 1 and 10, where 1 means the
feedback is not helpful at all, and 10 means the
feedback is very helpful.

Provide the output in the following output: {for-
mat_instructions}”

C Generated Essay Feedback

Table 13 compares the generated essay feedback for
the same essay using three different task instruction
types, compared in the manual evaluation.
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Task Instruction Type Generated Essay Feedback

Feedback Based on the provided essay prompt and the given text, it appears that the student has not fully
understood the story "Winter Hibiscus" by Minfong Ho. The student’s response, "Saeng would
return to her homeland," is not an accurate reflection of the story’s conclusion.
The author concludes the story with Saeng’s determination to retake the driver’s test in the spring
when the hibiscus is budding and the geese have returned. This decision comes after Saeng’s
emotional experience in the greenhouse, where she is surrounded by familiar plants and memories,
and is struck by a wave of loss for her past life in Vietnam.
The author’s use of the imagery of the geese returning and the hibiscus budding signifies the
cyclical nature of life and the passing of seasons. Saeng’s decision to retake the driver’s test in the
spring shows her resilience and determination to move forward in her new life in the United States
while holding on to her past.
To improve future essays, the student could focus on closely reading and understanding the text,
taking notes, and identifying key themes and symbols. It may also be helpful for the student
to practice summarizing and paraphrasing the text in their own words to demonstrate a deeper
understanding.

Feedback→Scoring The essay response is very brief and does not fully address the demands of the question. The
statement ’Saeng would return to her homeland’ is not explicitly stated in the text, and the essay
does not provide any evidence or explanation to support this assertion. To improve, consider
reading the text more closely and taking notes to help you understand the main ideas and themes.
Use these notes to develop a more detailed and well-supported response that addresses the demands
of the question.

Feedback_dCoT→Scoring Your essay does not fully address the demands of the question. In order to earn a higher score, you
should explain why Saeng would return to her homeland based on the details and events in the
story. Consider how the hibiscus plant and the memories it evokes for Saeng might be connected
to her desire to go back to her homeland. Additionally, you could discuss how the experiences and
emotions Saeng encounters in the greenhouse contribute to her decision. Remember to use specific
details and examples from the text to support your ideas.

Table 13: Generated essay feedback using the three task instruction types compared in the manual annotation study.
The feedback was generated for the same student essay from essay set 4 of the ASAP dataset (Hamner et al., 2012).

298



Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 299–308
June 20, 2024 ©2024 Association for Computational Linguistics

Towards Fine-Grained Pedagogical Control over English Grammar
Complexity in Educational Text Generation

Dominik Glandorf
University of Tübingen

Yale University
dominik.glandorf@student.uni-tuebingen.de

Detmar Meurers
Leibniz-Institut für Wissensmedien (IWM)

detmar.meurers@uni-tuebingen.de

Abstract

Teaching foreign languages and fostering lan-
guage awareness in subject matter teaching
requires a profound knowledge of grammar
structures. Yet, while Large Language Models
can act as tutors, it is unclear how effectively
they can control grammar in generated text and
adapt to learner needs. In this study, we inves-
tigate the ability of these models to exemplify
pedagogically relevant grammar patterns, de-
tect instances of grammar in a given text, and
constrain text generation to grammar charac-
teristic of a proficiency level. Concretely, we
(1) evaluate the ability of GPT3.5 and GPT4 to
generate example sentences for the standard En-
glish Grammar Profile CEFR taxonomy using
few-shot in-context learning, (2) train BERT-
based detectors with these generated examples
of grammatical patterns, and (3) control the
grammatical complexity of text generated by
the open Mistral model by ranking sentence
candidates with these detectors. We show that
the grammar pattern instantiation quality is ac-
curate but too homogeneous, and our classi-
fiers successfully detect these patterns. A GPT-
generated dataset of almost 1 million positive
and negative examples for the English Gram-
mar Profile is released with this work. With our
method, Mistral’s output significantly increases
the number of characteristic grammar construc-
tions on the desired level, outperforming GPT4.
This showcases how language domain knowl-
edge can enhance Large Language Models for
specific education needs, facilitating their ef-
fective use for intelligent tutor development
and AI-generated materials. Code, models, and
data are available at https://github.com/
dominikglandorf/LLM-grammar.

1 Introduction

The arrival and accessibility of well-performing
Large Language Models (LLMs) created a flood
of applications in personalized education for tu-
toring and material creation (Kasneci et al., 2023).

Despite their ability to follow instructions, it is
underexplored to what extent prompting can sys-
tematically affect the linguistic properties of the
generated output to satisfy educational needs. If
LLM-generated text was finely adjustable regard-
ing the grammatical constructs used, personalized
and engaging learning materials could systemati-
cally support learners’ language development by
exposing them to the optimal linguistic complex-
ity (Mart, 2013). This control would enable a
stronger connection to input-oriented theories of
language acquisition.

Due to their data-driven nature, LLMs’ gram-
matical knowledge has to be empirically examined.
On the one hand, they have been successfully used
for text simplification and grammar construction
detection (Jeblick et al., 2023; Weissweiler et al.,
2022). On the other hand, transformer models still
benefit from explicit syntactic information during
training (Hu et al., 2020). Because of missing la-
beled training data and systematic evaluations, it
is uncertain to what extent neural text generation
can be controlled for the presence of a comprehen-
sive set of pedagogically relevant and teachable
grammatical constructions.

This work pursues the questions of how well
LLMs can create valid examples for grammar con-
structs (RQ1), how well BERT sentence embed-
dings represent these grammar constructs (RQ2),
and how well text generation can be controlled for
these constructs (RQ3). We build on an empiri-
cally established and validated taxonomy of En-
glish grammar, the English Grammar Profile (EGP)
(O’Keeffe and Mark, 2017), precisely characteriz-
ing the development of English across the profi-
ciency spectrum with 1,222 grammar patterns. We
first evaluate how well GPT3.5 and GPT4 can gen-
erate positive and negative instances on a subset of
the EGP (RQ1). We then alleviate the lack of exam-
ples by automatically creating 946K labeled exam-
ple sentences for all entries of the EGP, which we
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make available to the public. This unique dataset
serves to fine-tune and evaluate BERT-based clas-
sification models on detecting examples of the
EGP’s grammar patterns in sentences (RQ2). Us-
ing these models, a grammar-controlled text gen-
eration approach to strategically decoding an open
pre-trained LLM, Mistral-7B, provides a proof of
concept with 600 generated texts (RQ3). To gener-
ate them, we sample multiple candidate sentences
at inference time and rank them by the grammar
patterns detected by the classifiers.

We show that the accuracy of generated in-
stances of grammar patterns is 87.1% with GPT3.5
(92.9% with GPT4), and the classifiers distin-
guish the positive from negative examples in our
generated dataset with an average accuracy of
95.1%. The grammar-controlled text generation
approach at least doubles the grammatical con-
structions on each level of the standard Common
European Framework of Reference for Languages
(CEFR)({Council of Europe}, 2020).

Going beyond the specific task, our work high-
lights how explicit domain knowledge relevant to
language learning and broader language-sensitive
educational contexts can be fused with the versatil-
ity of LLMs. It is a step towards better control over
a powerful tool compared to pure prompting. The
approach can readily be extended to other pedagog-
ically desirable attributes of LLM-based tutors and
educational material.

2 Related Work

2.1 Grammatical complexity in education

Krashen’s Input Hypothesis about language learn-
ing features the idea that input is an essential driver
of language development if understandable to a
learner but one step beyond their language level
(Krashen, 1992). Although criticized for the vague-
ness of the theory’s predictions, the role of in-
put is broadly accepted in the literature (Lichtman
and VanPatten, 2021; Loewen, 2021; Ellis, 2002).
Learners benefit from language input adapted to
their proficiency level. This assumption manifests
itself in graded readers, such as simplified litera-
ture for learners. Not only do they adapt lexical
features but also grammatical complexity (Zakaria
et al., 2023). Berendes et al. (2018) systematically
analyzed textbooks and highlighted the need to pay
more attention to language complexity in subject-
matter teaching regarding learner appropriateness.
Indeed, research on language-sensitive education

in science and other subjects stresses that learning
difficulties often arise due to factors such as the syn-
tactic complexity of the language used (Wellington
and Osborne, 2001). The success of graded readers
and these shortcomings underline the importance
of controlling grammar in learning materials for
effective language development and the potential
impact of automated control.

O’Keeffe and Mark (2017) compiled and pub-
lished the English Grammar Profile based on the
systematic analysis of learner data from language
proficiency exams. The EGP includes 1,222 gram-
mar constructs that learners use on different levels,
categorized by the standard CEFR level, from A1
(beginner) to C2 (native). They are organized into
19 categories (e.g., adverbs) and can be of type
FORM, FORM/USE, or USE. FORM means con-
structs that can be described lexically and syntacti-
cally, whereas USE refers to a semantic function of
a linguistic form. The EGP includes a brief descrip-
tion in the form of a can-do statement and one to
five authentic learner examples for each structure,
as illustrated in Figure 1.

Research on fostering adaptive language learn-
ing has started to use developmentally proximal
input, though it typically does so by selecting from
existing materials (Chen et al., 2022). The EGP’s
instance-based characteristics of grammatical de-
velopment allow for fine-grained adaptivity in lan-
guage teaching because each construct is teachable
(and indeed, many are explicitly specified as part of
school curricula), which contrasts with the typical
aggregate measures and ratios used in linguistic
complexity research as part of the Complexity, Ac-
curacy, and Fluency triad (Housen et al., 2012).
Thus, the EGP can be a milestone in measuring
the grammar complexity of learner input, which is
especially valuable when generating material for
learners in earlier stages of development, for which
little authentic language material exists. However,
no large-scale corpus annotated with the EGP con-
structions is publicly available, yielding the need
for our novel dataset.

2.2 Grammar-related tasks in natural
language processing

Recent LLMs are performant on high-level
grammar-related tasks such as essay complexity
scoring (Yancey et al., 2023) and text simplification
(Jeblick et al., 2023), suggesting a general grasp
of grammatical structures. Low-level tasks include
grammar annotation, for example with a pre-trained
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Figure 1: An English Grammar Profile construct at level B2 with two examples

BERT model (Devlin et al., 2019). Weissweiler
et al. (2022) successfully detected the presence
of the comparative correlative in English with lo-
gistic regressions on BERT sentence representa-
tions. Yu et al. (2023) also argue for the potential
of LLMs for linguistic annotation compared to tra-
ditional natural language processing techniques,
especially for semantic features without a map-
ping to lexical forms. Their results for annotat-
ing acts of apologizing hint that LLMs can distin-
guish complex grammatical functions of words and
can potentially solve tasks demanding grammati-
cal knowledge. The only work that classified an
EGP-alike set of constructions from SCoRE (Chujo
et al., 2015) used BERT models to detect three con-
structions and was successful in increasing their
likelihood in generated dialog responses via rein-
forcement learning (Okano et al., 2023). Unfor-
tunately, the construction-wise reinforced models
cannot be combined, making the approach chal-
lenging to scale.

Controlled text generation has developed from
decoding strategies and supervised fine-tuning
(Xiao et al., 2023) to prompt engineering (Koraishi,
2023) and preference optimization approaches
(Rafailov et al., 2023). Apart from Okano et al.
(2023), past work on syntactic constraints usually
worked on parse trees or part-of-speech sequences,
which are not directly mappable to curricular gram-
mar patterns (Sun et al., 2023). Especially EGP
patterns of the type USE are semantic and impossi-
ble to represent in this form. Advanced controlled
text generation approaches are out of the scope of
this work, but the resulting classifiers of this work
can be incorporated into all of these approaches.

3 Method

Our approach comprises validating the EGP instan-
tiation capabilities of state-of-the-art LLMs, train-
ing neural rule detectors on a generated large-scale
grammar dataset, and using these rule detectors
to rank candidates when sampling from an open
text generation model. The analysis was conducted

with standard Python libraries for natural language
processing and deep learning on up to 16 Nvidia
GeForce RTX 2080 Ti GPUs provided by the com-
puting cluster of the University of Tübingen. The
code and data are available on GitHub1. Seeds are
provided for reproducibility.

3.1 Instantiating the English Grammar
Profile

This step evaluates the possibility of automatically
sourcing a high-quality labeled dataset of single
grammar constructions. The English Grammar
Profile is obtained from its official website2. Its
structure is characterized in Section 2.1. The in-
formation about the learner and the uncorrected
examples are removed. We prompt the OpenAI
Chat Completion API3 to generate more examples,
namely positive instances of the rule and nega-
tives that ought to have the same meaning with-
out using the construct (i.e., a minimal pair). We
evaluate two model checkpoints for comparison,
gpt-3.5-turbo-1106 and gpt-4-0125-preview,
using in-context learning with a prompt template
to describe the grammar rule and append the one to
five available examples. If present, the numerical
value for the lexical range is translated into low,
medium, and high. After the list of positive exam-
ples is returned, a second prompt asks to rewrite
every example as a minimal pair without using the
construction. These are the exact prompts:

1 . Learn t h e grammar r u l e "{ Can−
do s t a t e m e n t }" ( { Super
C a t e g o r y } , {Sub C a t e g o r y } , {
Guideword } ) . I t i s CEFR l e v e l
{ Leve l } . { L e x i c a l Range }

Examples :
{ Examples }

1https://github.com/dominikglandorf/
LLM-grammar

2https://www.englishprofile.org/
english-grammar-profile/egp-online

3https://platform.openai.com/docs/models/
overview
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C r e a t e { Batch S i z e } more examples
u s i n g t h a t r u l e .

2 . { P r e v i o u s Prompt and Response }
R e w r i t e each c r e a t e d example as a

minimal p a i r t h a t does n o t
show t h e usage o f t h e g i v e n
r u l e .

Using regular expressions, the model responses are
parsed based on the enumeration, cleaned from pre-
fixes and explanations in parenthesis, and cleared
from repetitions of the positive examples in the case
of negative instances. The presence_penalty pa-
rameter that penalizes repetitions of tokens during
sampling from the model was increased to 0.5 for
the initial prompt to diversify the vocabulary within
one response. The model temperature that makes
the output more random for higher values was de-
creased to 0.5 for the negative prompt to favor cor-
rectness over diversity. This assumes that there
is only a small number of possible modifications
to make a positive example negative and therefore
the sampling should favor the most likely tokens.
The EGP may or may not be part of the training
set of OpenAI’s models. Even if this is the case,
it remains unclear how well they can transfer the
patterns to a wider range of topics and sentence
meanings than the few included examples.

For a small-scale quality assessment (before gen-
erating the large dataset in the next step), 36 EGP
patterns are randomly drawn, stratified by CEFR
level and type, and the two models generate each
20 (in two batches of 10) positive and 20 negative
examples each, resulting in 2,880 examples. The
set of sentences is hand-coded on whether they
include the intended grammar pattern or not in a
blinded manner, i.e., without knowing the model or
intended label. These labels serve to calculate the
models’ accuracy. An automatic evaluation based
on the ROUGE and BLEU scores assesses how
close the negative examples are to the most similar
positive example. The ROUGE-1 score (ranging
from 0 to 1) reflects the number of common uni-
grams between a text and the set of reference texts,
measuring lexical similarity. The BLEU score is in
the same range but focusses more on precision in-
stead of recall and also takes longer subsequences
into account. Furthermore, the average cosine sim-
ilarity of embeddings with the recent ember-v1
model4 between all positive example sentences and

4https://huggingface.co/llmrails/ember-v1

between all negative sentences is calculated per
EGP pattern and compared to the baseline of the
renowned Brown corpus (Kučera et al., 1967). To
improve the diversity of negative examples, posi-
tive examples from other EGP entries are mixed in,
assuming that these do not contain the pattern.

3.2 Detecting instances of grammar patterns
This step poses the challenge of learning a binary
classifier that detects the presence of a single EGP
construct in a given sentence. The bidirectional
transformer architecture led to a breakthrough in
natural language understanding and was also used
by prior work on grammar detection (Okano et al.,
2023; Weissweiler et al., 2022). Due to the large
number of EGP constructs, we use multi-task train-
ing. We choose BERT instead of non-neural tools
due to the much lower cost of development, only
requiring accurate training data. We fine-tune a pre-
trained instance of bert-base-uncased (Devlin
et al., 2019) with model dimensionality 768 and
12 attention layers (110M parameters) as a shared
embedding model for each of the six CEFR levels.
We train for each single construction a two-layer
feedforward network with a hidden dimensionality
of 16 on the mean-pooled output from the shared
model (12,320 extra parameters per construction).
This is a compromise between optimal performance
by fine-tuning an entire BERT for each construction
and saving the vast amount of GPU memory that
this would entail. We did not explore other model
architectures because preliminary results have been
satisfying.

We use gpt-3.5-turbo-1106 to create 500
unique positive and 250 unique negative examples
for each EGP construct in batches of 25 because
the model often refused to create larger batches.
This results in the large-scale dataset of 946,246
sentences we release with this work. During train-
ing, we add 250 random positive examples from
other constructs labeled as negative to increase the
diversity of the dataset, assuming these do not con-
tain the rule. This leads to a total of 109K (CEFR
A1) to 338K (CEFR B1) sentences to train and
evaluate each of the six models. Gradients were
accumulated across batches of all constructs before
taking an optimizer step to balance the influence
of a single construct. The batch size was 8, the
learning rate for the AdamW optimizer was 0.0001,
and training was stopped as soon as the validation
loss increased or after a maximum of 5 epochs. We
release the trained models with data.
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We use 5-fold cross-validation for evaluation
and do not pursue systematic hyperparameter tun-
ing due to satisfying initial experimentation results.
Because of the balanced classes, accuracy is the
primary evaluation metric besides precision and
recall.

3.3 Controling text generation for grammar
patterns

This step uses the trained classifiers to control lan-
guage model output for grammar patterns. Caused
by the lack of authentic text annotated with single
EGP entries, the CEFR level is used as a proxy.
Ideally, a text for a certain level exposes the reader
to a high amount of grammar constructions on that
level. Thus, the goal is to generate texts with the
most EGP constructs of a given level, as indicated
by the previous step’s classifiers. A CEFR-labeled
dataset that was compiled from online resources5

serves as the static baseline. It contains 1,494 texts
on all CEFR levels, 37,008 sentences in total.

We generate 600 texts (100 per level) with each
method for comparison. As the LLM baselines,
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)
and gpt-4-0125-preview are prompted to con-
tinue the first words of given writings with as many
grammar constructs as possible on a specific CEFR
level, explained with its official description ({Coun-
cil of Europe}, 2020). Mistral-7B is a model with
an architecture and training procedure comparable
to the GPT models but with efficiency adjustments.
We relied on Mistral-7B due to its appealing trade-
off between model size and performance and added
GPT4 as the best-performing, closed model at the
time. We ran Mistral in inference mode on our
cluster infrastructure on two of the GPU cores.

In our proposed ranking approach, the model,
prompted in the same way as the baselines, gen-
erates five sentence candidates, and the candidate
with the most grammar constructs on the desired
level is chosen in the remaining generation proce-
dure. This approach is supposed to succeed if the
generated candidates show a significant variance in
grammar constructions. Tyen et al. (2022) chose
a similar ranking approach to generate dialog re-
sponses of a specified CEFR level but was using a
classifier predicting the CEFR level of candidates
instead of explicitly the presence of grammatical
structures. Although possible, we did not use a
smaller set of preferred EGP patterns because of

5https://www.kaggle.com/datasets/amontgomerie/
cefr-levelled-english-texts
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Figure 2: Ratio of correctly generated instances by
model and type of example.

the large number of constructions and the poten-
tial inefficiency of sampling. Past work has also
emphasized that a single grammar rule may not be
sensible in every generated sentence (Okano et al.,
2023). The prompt comprised at least the first 50
characters (adding characters up to the following
space) from randomly drawn texts in the CEFR
dataset to set different topics of the stories:

[ INST ] C o n t i n u e t h e w r i t i n g u s i n g
as many grammar c o n s t r u c t s on
CEFR l e v e l { l e v e l } as

p o s s i b l e ( { l e v e l d e s c r i p t i o n } )
. Do n o t t a l k a b o u t t h e CEFR
l e v e l .

[ / INST ] { s t o r y b e g i n n i n g }

We stop generation when the continuation exceeds
1,024 characters (Mistral) or 256 tokens (GPT4).
The evaluation metric is the average percentage of
detected constructions in the corresponding text
level.

4 Results

4.1 Grammar Pattern Instantiation

4.1.1 Accuracy
Figure 2 summarizes the manually evaluated qual-
ity of the two models on generating instances of 36
sample EGP entries. On average, GPT4 got over-
all 92.9% of the generated instances right, while
GPT3.5 scored 87.1%. This difference holds for
positive and negative examples, while both models
score a few percentage points worse on positive
examples. This indicates that they got some rules
wrong in the first place. Since all four conditions
are accurate far above the random baseline of 50%,
the accuracy of the LLM-generated examples is
satisfying, and the next steps can build on this tech-
nique.
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Table 1: ROUGE and BLEU scores of negative exam-
ples versus positive examples

Model & Parameters ROUGE-1↑ BLEU↑
GPT3.5, temp=1 0.704 0.268
GPT3.5, temp=0.5 0.783 0.368
GPT4, temp=1 0.721 0.283

EGP#288: Can use no article before a limited range of 
singular, plural and uncountable nouns when referring to 
things in general. 

EGP#777: Can use the past perfect simple to talk about 
situations which changed.

They had expected to win the match, but their 
opponents played exceptionally well.
They expected to win the match, but their opponents 
played exceptionally well.
She had thought she had everything under control, but 
then the unexpected happened.
She thought she had everything under control, but then 
the unexpected happened.
We had believed we had enough time to finish the 
project, but unforeseen complications arose.
We believed we had enough time to finish the project, 
but unforeseen complications arose.

+

-

+

-

+

-

Dogs are my favorite animals.
The dogs in the park are friendly.
Milk is good for your bones.
The milk in the fridge is expired.
I don't like carrots. 
The carrots in the salad are fresh.

+
-
+
-
+
-

Figure 3: Generated positive (+) and negative (-) exam-
ples for an EGP entry with very high average ROUGE
and BLUE scores (top) and one with very low scores
(bottom).

4.1.2 Minimality

Table 1 shows the automatic quality assessment of
the minimality of the negative examples, measured
by their ROUGE and BLEU scores with respect to
the positive examples. Interestingly, the tempera-
ture is more critical than the general performance
of the model. Concretely, GPT3.5 with decreased
temperature performs better than GPT4 with the
default temperature. This hints at the importance
of reducing the randomness when sampling from
the language model output. Figure 3 shows gen-
erated examples for two EGP entries. These in-
stances show that there may be rules for which
minimal negative examples are easier to create. For
construct #288, one could just add the article but
would make the sentences potentially ungrammat-
ical. This shows that the model also takes care of
the correctness of the generated examples.

Table 2: Average cosine similarities between sentences
in authentic text (Brown corpus) and the positive and
negative examples generated by GPT3.5. *Random
others refer to negative examples with random positive
examples from other constructs.

Corpus Similarity Std. Dev.
Brown 0.334 0.002
Positive examples 0.462 0.052
Negative examples 0.451 0.045
Random others* 0.369 0.007

A1 (109) A2 (291) B1 (338) B2 (243) C1 (129) C2 (112)
CEFR level (#constructs)

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

 o
ve

r c
on

st
ru

ct
s Rule Detection Accuracy

Figure 4: Accuracy distributions of the grammar classi-
fiers across CEFR difficulty levels. Variation between
cross-validation folds is negligible. The baseline is 50%.
The white dash indicates the median and the pronounced
black strip the interquartile range.

4.1.3 Diversity
The diversity of the generated examples, indicated
by the average sentence similarity within the gen-
erated EGP patterns, is represented by Table 2.

To some extent, the similarity between the exam-
ples is expected to be higher due to the presence
of the grammar pattern. Still, we observe a signifi-
cantly increased cosine similarity for both positive
and negative pairs compared to the Brown refer-
ence corpus. Adding positive examples from other
EGP constructs increases the diversity, yielding an
average cosine similarity increased by only 10%
compared to the reference corpus. Overall, the
evaluation confirms the capability of state-of-the-
art LLMs to augment a grammar pattern dataset
from a class description and a few examples with
accurate positive and negative examples, only lack-
ing diversity within the positive examples.

4.2 Grammar Pattern Detection

Figure 4 depicts the accuracies of our BERT-based
models at detecting whether a given grammar con-
struction is present in a sentence.

The average accuracy of all classifiers is 95.1%,
precision is 93.3% and recall is 97.3%. The distri-
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Figure 5: Number of grammatical constructions per
CEFR levels for the static baseline (top) and our pro-
posed approach (bottom). The trained classifiers from
the previous step detected constructions.

butions of precisions and recalls are mean-shifted
but overall very similar and are included in our
GitHub repository. The average recall attains at
least 91% among all CEFR levels. The lower pre-
cision may be explainable by false negatives added
for diversification and the quality differences be-
tween positive and negative examples. The accu-
racy distribution within CEFR level A1 reveals
slight problems detecting some of these construc-
tions. This may be due to the very basic character
of many A1 grammar patterns. This likely also
increases the number of false negatives in the ran-
dom negatives from other constructs. Overall, the
classification quality seems near optimal given the
quality of the augmented data, which sets an upper
performance bound. Due to eliminating duplicates
and having 25% random examples from other con-
structs in the validation set, the accuracy can ex-
ceed the 87.1% example accuracy from the manual
evaluation.

4.3 Grammar-Controlled Text Generation

Table 3 lists the average ratio of detected gram-
mar constructions on the given level across all sen-

tences, as detected by the trained classifiers from
the previous step.

The two LLM baselines, which employ pure
prompting, already show improvements over the
static baseline of CEFR-annotated texts. GPT4
increases the frequency of EGP entries on all re-
quested levels. The Mistral baseline shows less
pronounced improvements and fails to increase the
number of grammar constructs on levels A2 and C2.
Generally, the pre-trained models have difficulties
using more constructs of the levels A2, B1, and B2.
Our approach to ranking sentence candidates dur-
ing text generation has a severe positive impact on
the distribution of grammar constructions across all
six levels. For all levels, the ratio of applied gram-
mar rules has at least doubled, on level C1 it has
even quadrupled versus the baseline. This proves
that the variance within different generated candi-
dates regarding the grammatical constructions is
sufficient, although the prompt included the instruc-
tion to control text complexity. Figure 5 provides a
bigger picture of the generated text characteristics
between the static baseline versus our method.

While the grammatical constructions in the cor-
pus are much more evenly distributed across all
text difficulties, our ranking approach can create
visible spikes on the desired complexity level while
roughly maintaining the frequencies of other levels’
patterns. Only on requested level B2, constructs of
level C1 are also increased which may even help
scaffolding. Overall, the intervention seems to help
control the desired pedagogical properties of gen-
erated text.

5 Discussion and Conclusion

This work showcases how Large Language Mod-
els can be controlled based on the qualitative EGP
augmented to a large-scale dataset to align with
pedagogical use cases, specifically – but not lim-
ited to – language teaching. We first verified the
sufficient quality of LLM-generated instances of an
established grammar repository, the English Gram-
mar Profile. The validation emphasizes the strength
of the most recent closed-source model, GPT4.
Nevertheless, the quality of instances generated
by GPT3.5 could almost keep up with the flagship
model. Because of this positive finding, we gener-
ated 946K labeled grammar construction examples,
which we publicly share for further research. The
binary grammar construction classification on this
data shows satisfying results within the distribution
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Table 3: Ratio of detected constructs by CEFR level of the corresponding texts on the same level.

Method A1↑ A2↑ B1↑ B2↑ C1↑ C2↑
Static Baseline 13.4% 5.0% 5.2% 3.9% 5.1% 5.1%

GPT4 22.2% 5.7% 7.0% 7.3% 14.2% 10.9%
Mistral Prompting 16.1% 4.2% 6.1% 6.5% 9.7% 4.6%

Mistral Candidate Ranking (Ours) 29.6% 10.0% 12.3% 12.2% 20.6% 11.3%

of generated data. The results are close to simi-
lar research that has not used minimal pairs and
shared embedding models and solved a potentially
easier problem (Okano et al., 2023). Controlling
an open LLM such as Mistral on the used grammar
constructions with these classifiers significantly af-
fects the frequency of desired grammar patterns.
It can even beat the baseline of prompting GPT4.
While the prompt-based strategies already improve
over the static baseline for most CEFR levels, our
proposed approach has improved text on every pro-
ficiency level and at least doubled the default fre-
quency of constructs on all levels. It also solves the
shortcoming of Tyen et al. (2022) that had difficul-
ties generating text on the simpler levels A1 and
A2.

With the advent of performant open LLMs, such
as Llama3 and Mixtral of Experts, educational ap-
plications can be further tailored to align with peda-
gogical expectations than with prompting alone.
Currently, instructors can only use commercial
model interfaces such as ChatGPT or third-party
wrappers around the model endpoints. Our method
advances the possibilities from prompt engineering
approaches to fine adjustment of the model out-
put. We freely release our augmented dataset and
the trained grammar classifiers to provide learning
engineers with a tool to introduce this level of con-
trol to their applications. A possible application
is adjusting the grammatical complexity of an AI
tutor in science to the language proficiency level
of each student. Non-native speakers in the same
classroom can interact with the seemingly "same"
agent that adapts its language to them under the
hood. Language instructors can use models to gen-
erate texts of students’ interests while ensuring the
use of particular grammar that aligns with their
curriculum.

5.1 Ethical considerations
The EGP was created and annotated by experts
to empirically identify the characteristics of the
English used by learners at different levels of pro-
ficiency. While the data stems from official profi-

ciency tests taken by a wide variety of language
learners worldwide, the language used may still
be biased by the test tasks, the opinions expressed
by the learners who took the tests, and the selec-
tion of learner data selected as examples for the
EGP. Instructing the LLM to focus on grammatical
structure instead of content should mitigate such
bias in the generated dataset, though this is not
guaranteed. The grammar classification may thus
work better for topics typically used by a specific
student subgroup in particular language tasks. The
authors also acknowledge the potential critique of
the CEFR classification as eurocentric (O’Keeffe
and Mark, 2017).

Another consideration related to the use of
LLMs is the potential generation of toxic or bi-
ased language, which is especially sensitive when
underage students are working with an LLM-based
language learning tool (Meyer et al., 2023). On the
pedagogical side, the use of artificially generated
text may also limit authenticity and thereby reduce
learner motivation. Finally, interacting with a ma-
chine to foster language acquisition will not offer
the same social benefits and challenges as human
interaction.

5.2 Future Work
Future work should build real applications for the
educational text generation approach. Then, a con-
trolled field experiment should be pursued to as-
sess the impact on students’ language acquisition.
It should survey the perception of the generated
texts by teachers and students and measure learn-
ing gains. This may reveal details about potential
weaknesses and issues for example with lexical
complexity for which our approach does not ex-
plicitly control. With more invasive adaptation
techniques, the approach can be easily extended
to single grammar constructions and adapt gram-
mar not only to the holistic proficiency level of the
learner but to the knowledge of single grammar pat-
terns. The grammar constructions should be further
located within the sentences to increase the detec-
tion quality and enable annotations. This enables
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more precise input enhancement applications.

6 Limitations

The training data for grammar classification has
some drawbacks. Having only many positive and
negative examples is likely insufficient for robust
control over single grammar patterns in educational
text generation. The models usually use the same
sentence structure for creating new instances, es-
pecially given the scarcity of seed examples in the
EGP. Although the classifiers can learn most of
the differences within the generated dataset, it re-
mains unclear how well the classifiers generalize to
other models’ generative distributions or real-world
corpora. More diverse examples must be fostered,
and a manual validation of grammar construction
detection in real corpora would be needed.

In the text generation step, we only maximized
the amount of constructs on the desired CEFR
level. A suitable text likely also requires reduc-
ing the number of overly difficult constructs to not
confuse the learner and better target the zone of
proximal development. One could add a param-
eter that balances how large the penalty for the
presence of more difficult grammar should be. Fur-
thermore, some grammar patterns may occur too
infrequently in sampling from a pre-trained model,
and generating many candidates to obtain at least
one positive instance would be inefficient. This
can only be overcome by adapting the weights of
the pre-trained language model or advanced decod-
ing strategies. Therefore, we tested the approach
only on the six groups of grammar construction, as
given by their CEFR level, which limits the current
approach to less fine-grained control over text gen-
eration. However, we believe this can still serve as
a proof of concept.

We are also aware that the English Grammar Pro-
file is a description of the typical proficiency level
when learners start to use a grammar pattern. This
can only serve as a proxy for reading comprehen-
sion, which is the focus of this work. Fortunately,
our grammar classifiers can serve to analyze ex-
isting materials that are expert-curated to create
a valid mapping to reading comprehension levels
instead of written production.
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Abstract

This study investigates the potential of Large
Language Models (LLMs), in particular GPT
and LLaMA, for automated scoring of short an-
swer responses. We focus on zero-shot and few-
shot settings, but also compare with fine-tuned
models and a supervised upper-bound. Our re-
sults show that LLMs perform much worse in
those settings on a performance level that is
not feasible for practical purposes. Fine-tuning
LLMs brings their results on roughly the same
level as supervised results, but as they are less
efficient there currently seems to be no basis
for applying LLMs for short answer scoring.

1 Introduction

The constantly increasing demand placed on ed-
ucators in today’s educational landscape requires
innovative solutions to replace traditional assess-
ment methods. Manual assessment, especially for
large-scale exams, presents challenges for scala-
bility, consistency and timely feedback to students
Ramesh and Sanampudi (2022). Automated scor-
ing has emerged as a potential solution, promising
faster, more objective and feedback-rich assess-
ments Galhardi and Brancher (2018).

Extensive research has explored automated scor-
ing, but many systems require large amounts of
training data to achieve reliable performance Patil
and Adhiya (2022). Our focus is on finding a sys-
tem that demonstrates strong performance across
different datasets while minimizing the need for
huge number of training examples. Large Lan-
guage Models (LLMs) seem promising in this re-
gard Naveed et al. (2023). Thus, in this paper,
we explore LLMs performance in scoring open-
ended student answers across three datasets. We
compare two prominent LLMs, Generative Pre-
trained Transformer (GPT) and Large Language
Model Meta AI (LLaMA), under different train-
ing settings, including zero- and few-shot learn-
ing, and fine-tuning specifically applied to the GPT

model. Additionally, we benchmark their perfor-
mance against established baselines, specifically
Google’s pre-trained language model BERT De-
vlin et al. (2018) and classical SVM , known for its
robustness in classification tasks Cortes and Vapnik
(1995). This evaluation aims to deepen our under-
standing of how LLMs handle various assessment
tasks and shed light on their potential to enhance
automated scoring in education, particularly with
limited training data.

2 Related Work

Very few studies have explored the performance
of LLMs in zero- and few-shot settings within the
context of automated scoring. Wu et al. (2023)
introduced the Matching exemplars as Next Sen-
tence Prediction (MeNSP) method, by employing a
zero-shot prompt learning method using pre-trained
language models. Their results indicate that few-
shot learning offered limited improvement in per-
formance.

Latif and Zhai (2024) compare the performance
of a fine-tuned GPT-3.5 model with BERT and
demonstrated that GPT-3.5 achieved higher scor-
ing accuracy. It showed a remarkable average in-
crease of 9.1% compared to BERT when applied
to a single dataset of six assessment tasks. This
finding emphasized the need for domain-specific
fine-tuning LLMs to enhance their performance.

On the other hand, many studies investigated
the neural networks and machine learning mod-
els to build scoring tools. Steimel and Riordan
(2020) demonstrate how pretrained transformer
models could be adapted for content scoring using
an instance-based approach. By pooling token rep-
resentations across all model layers, this approach
achieved state-of-the-art performance on short an-
swer scoring tasks. Bexte et al. (2023) conduct a
comparison between instance-based and similarity-
based methods on multiple datasets. They inves-
tigated the influence of different training set sizes
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on the performance of these methods using learn-
ing curve experiments. It found that a fine-tuned
SBERT model does often yield the best results.

Overall, existing research offers limited insight
into how LLMs perform in zero-shot and few-shot
settings.

3 Experimental Setup

We tested the GPT family of models introduced
by OpenAI, specifically GPT-3.5 and GPT-4.1 Ad-
ditionally, we tested Meta AI’s LLaMA-2 models
LLaMA-7b, LLaMA-13b, and LLaMA-70b 2. Fi-
nally, Google’s BERT model and SVM were in-
cluded as baselines for comparison. For testing,
we randomly selected 20% of each task from the
datasets. We observed that LLMs usually produce
in addition to the score an explanation, or repeat
the scores of the given shots, rather than providing
only the score, so we applied a filtering function
that retrieves only the last integer of the LLMs re-
sponse, and if no integer was found, we assigned
a randomly generated number between 0 and the
maximum possible score of the current task.

3.1 Datasets & Evaluation

We performed experiments on three widely used
answer scoring datasets that are freely available.

ASAP Automated Student Assessment Prize3

contains 10 prompts covering a broad range of dis-
ciplines. All answers were scored by two humans
on a 0-2 or 0-3 scale depending on the task.

MindReading contains responses from children
(ages 7-13) on questions from the Strange Story
and Silent Film tasks, where answers scored on a
0-2 scale Kovatchev et al. (2020).

Powergrading is a short-answer dataset focused
on knowledge about the United States for the citi-
zenship exam. Answers are scored on a 0-1 scale
Basu et al. (2013).

In this study, we differentiate between the terms
‘Task’ and ‘Prompt’. ‘Task’ refers to a specific
question from the datasets used. While,‘Prompt’ is
a set of instructions designed for the LLM, includ-
ing scoring guidelines, relevant context, and the
student answer to be scored. For few-shot model,
the prompt also includes randomly selected answer
samples for each score within the task of the stud-
ied dataset.

1https://openai.com/
2https://ai.meta.com/
3https://www.kaggle.com/c/asap-sas

For each task, we calculated Quadratic Weighted
Kappa (QWK) Cohen (1968) as a standard metric
used to quantify the agreement between machine
scoring and human expert scoring. Finally, we aver-
aged QWK scores across all tasks, for each dataset,
to obtain a single overall performance metric.

3.2 Prompting

For the Powergrading dataset and 5 tasks within
the ASAP dataset, we explored zero-shot perfor-
mance. Note that zero-shot was not suitable for
other ASAP tasks due to their reliance on long-
form text or image data, nor for the MindReading
dataset, where the questions are unavailable. To
investigate the effectiveness of few-shot model for
score prediction, we employed a variety of prompt
designs and evaluated them on different numbers
of shots. Initial testing (1, 3, 5, and 10 shots) with
three prompt designs – Newline, Semicolon, and
Space delimiters – revealed minimal variance in
results, unlike to what Sclar et al. (2023) found
(see Appendix B). Based on these results, we pro-
ceeded with the Newline delimiter prompt design
for subsequent experiments from 0 to 10 shots, as it
showed consistent performance across initial tests.

3.3 Fine-tuning

We extended our study to unveil the potential of
the LLMs by fine-tuning a GPT-3.5 model. Fine-
tuning involves adjusting the pre-trained model’s
parameters to adapt to specific characteristics of
the task under study. For training phase we used
80% of the data to fine-tune GPT-3.5-turbo-1106.

4 Results & Discussion

Table 1 gives an overview of our results. The su-
pervised system is a reference point that we use to
compare zero-shot and few-shot result with.

4.1 Fine-tuning

Contrary to the results in Latif and Zhai (2024),
which was conducted on a limited dataset, our re-
sults in Table 1 show that BERT actually scores
slightly higher QWK over all datasets. This sug-
gests a potential overfitting issue in GPT-3.5 model.
In particular, in three tasks of Powergrading dataset,
we observed that the model consistently scored all
answers as 1. In general, fine-tuned results are in
the same ballpark as supervised results, but compu-
tationally much more expensive.
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Figure 1: Impact of number of shots on scoring perfor-
mance

4.2 Zero-shot

LLMs performance in zero-shot settings varied sig-
nificantly across datasets. GPT-4 showed promis-
ing results on Powergrading dataset, while all mod-
els performed poorly on ASAP dataset. This sug-
gests that LLMs are not yet mature enough for
reliable zero-shot automated scoring. The good
performance on Powergrading dataset can be at-
tributed to the simplicity of the questions, which
are related to USA citizenship test, and the scoring
range (0,1). In contrast, even with detailed prompt
and rubrics scoring instructions, LLMs struggled
with ASAP dataset, indicating their limitations on
tasks that require complicated reasoning or relay
on domain-specific knowledge.

4.3 Few-shot

Our initial expectation was that incorporating few-
shot into the prompt would enhance the model per-
formance, as observed in the previous study Wu
et al. (2023). However, our results indicate that
only LLaMA models on Powergrading and Min-
dReading datasets showed a slight improvement in
performance with an increasing number of shots
(up to 6 shots). In contrast, GPT-3.5 exhibited a
weird behavior, with performance decreasing as
the number of shots increasing, in particular on

QWK
ASAP MR PG

supervised BERT .74 .87 .94
SVM .46 .74 .80

fine-tuning GPT-3.5 .61 .81 .83

0-shot

GPT-4 .26 .22 .86
GPT-3.5 .19 .10 .62
LLaMA-70b .14 .08 .77
LLaMA-13b .13 .15 .39
LLaMA-7b .06 .05 .02

3-shot

GPT-4 .30 .43 .87
GPT-3.5 .22 .11 .32
LLaMA-70b .24 .27 .69
LLaMA-13b .22 .22 .65
LLaMA-7b .23 .21 .41

Table 1: Comparison of model performance in terms of
Quadratic Weighted Kappa (QWK)

Powergrading dataset.
The poor performance of LLMs in ASAP dataset

is attributed to two key factors. First, answers in
ASAP dataset tend to be longer compared to an-
swers in other datasets, as shown in Figure 2 (see
Appendix), where the average length of answers
is approximately 50 words, so adding few-shot for
each score increases the prompt size rapidly, which
might badly affect the output. Additionally, the
dataset’s complexity, as questions heavily depend
on domain-specific knowledge indicates challenges
for general models in such domains. Similarly, in
MindReading dataset, not only the questions are
not available, but these questions are also derived
from strange stories or silent films and they rely on
specific knowledge that LLMs may not be trained
on. On the other hand, the questions presented on
Powergrading dataset related to general knowledge
about USA, which made it easy for the LLMs to
predict the scores which were limited to 0 and 1.
Additionally, the short length of answers enables
LLMs to effectively memorize it’s task, making
score prediction easier.

5 Conclusion

This study explores the potential of LLMs in au-
tomated scoring tasks, specifically zero- and few-
shot, and fine-tuned settings across three diverse
datasets.

Overall, our findings reveal strong performance
from zero-shot and few-shot models on general
knowledge. GPT-4 achieved performance very
close to the upper bound BERT and outperformed
SVM model. LLaMA models showed promising
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results; while not reaching GPT-4 levels, their per-
formance remained consistent across different num-
bers of shots. In contrast, GPT-3.5 appeared overfit-
ting as more shots introduced. This highlights the
potential of few-shot LLMs for short answer scor-
ing, especially on tasks involving general knowl-
edge questions.

However, LLMs face challenges when con-
fronted with tasks that require complicated reason-
ing or domain-specific knowledge, as noticed by
their poor performance in ASAP dataset. The com-
plicated nature of the questions in these subjects
appears to cause difficulties for LLMs, highlighting
the need for further improvements in dealing with
nuanced and specialized content within educational
datasets.

With regard to the fine-tuned model, our study
revealed unexpected results as it failed to meet our
performance expectations for automated scoring. It
became clear that the model was overfitting at cer-
tain questions ‘tasks’, particularly noticeable when
examining the performance of the Powergrading
dataset.

Limitations

We only test commercial LLMs, but argue that open
source LLMs would very likely yield even worse
results. So the overall conclusion of the paper that
LLMs are not yet ready to be used in zero-shot or
few-shot settings for short answer scoring would
stand unchanged. However, in future work we
want to test a wider range of LLMs to gain further
insights into their capabilities.

Ethical Considerations

LLMs are trained on large data sets that may con-
tain unintentional biases, potentially leading to un-
fair scoring based. LLMs as black-box can lack
transparency, making it difficult to provide an in-
terpretation how they predict the scores. Another
significant concern is student data privacy. If an
LLM is hosted online, student answers are send to
the provider and could end up in the model training
data.
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A Models Hyperparameters

1. SVM with TF-IDF vectorization: We used a
linear SVM model with a fixed Regularization
parameter C=1.0 and utilized TF-IDF vector-
ization with a maximum vocabulary size of
1000 features.

2. BERT: We used the pre-trained BERT ("bert-
base-uncased") model. Training data is pro-
cessed with the BertTokenizerFast tokenizer
and padded to a uniform length (512). we
trained the model for 20 epochs with batches
size = 8. After each epoch we run evaluation
and kept the model with the lowest validation
loss for evaluation on testing data.

3. GPT: For fine-tuning we utilized the OpenAI-
recommended GPT-3.5-turbo-1106 model.
Where as, GPT-4 is not yet available for fine-
tuning. Training, validation, and test data
were formatted in JSONL files as required.
We employed the default values (auto) for
learning rate, num_epochs, and batch_size.
For few-shot experiments both GPT-3.5-turbo
and GPT-4-turbo-preview were tested using
the default parameters.

4. LLaMA: We utilized LLaMA-7b, LLaMA-
13b, and LLaMA-70b for the few-shot model
with the following parameter:
temperature: 0.6 (Adjusts randomness of
outputs. Higher values increase random-
ness, lower values promote determinism.).
top_p: 0.9 (Controls text generation. Sam-
ples from the top 90% of most likely tokens,
allowing for some variation.). max_seq_len:
we choose different values between 512 and
2056, depending on the dataset and number
of shots ( It refers to the maximum length
of input sequences the model can process.).
max_gen_len: 5 as we want only the score.
(It sets a limit on the maximum length of gen-
erated responses.). max_batch_size: int =
4

B Prompt designs

New line delimiter Evaluate student response
to the United States Citizenship Exam. Re-
turn only the score, 1 if it is correct, and 0 if
it is wrong. Question: What is one right or
freedom from the First Amendment? (Return
only the score):

Answer: the right to assemble -> Score: 1

Answer: freedom of speech -> Score: 1

Answer: freedom of religion.s -> Score: 1

Answer: right to pursue happiness. -> Score:
0

Answer: right to bear arms -> Score: 0

Answer: privacy -> Score: 0

Answer: free speech -> Score:

Semicolon delimiter Evaluate student re-
sponse to the United States Citizenship Exam.
Return only the score, 1 if it is correct, and 0
if it is wrong. Question: What is one right or
freedom from the First Amendment? (Return
only the score): Answer: the right to assem-
ble -> Score: 1; Answer: freedom of speech
-> Score: 1; Answer: freedom of religion.s
-> Score: 1; Answer: right to pursue happi-
ness. -> Score: 0; Answer: right to bear arms
-> Score: 0; Answer: privacy -> Score: 0;
Answer: free speech -> Score:

Space delimiter Evaluate student response to
the United States Citizenship Exam. Return
only the score, 1 if it is correct, and 0 if it is
wrong. Question: What is one right or free-
dom from the First Amendment? (Return only
the score): Answer: the right to assemble ->
Score: 1 Answer: freedom of speech -> Score:
1 Answer: freedom of religion.s -> Score: 1
Answer: right to pursue happiness. -> Score:
0 Answer: right to bear arms -> Score: 0 An-
swer: privacy -> Score: 0 Answer: free speech
-> Score:
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1 Shot 3 Shot 5 Shots 10 Shots

Dataset qwk Acc qwk Acc qwk Acc qwk Acc

ASAP .152
.077
.105

.417

.349

.355

.068

.051

.083

.319

.309

.343

.057

.034

.058

.287

.256

.288

.029

.010

.037

.234

.198

.223
Mindreading .217

.237

.195

.516

.534

.500

.137

.128

.139

.419

.436

.423

.133

.122

.133

.400

.423

.420

.101

.104

.108

.403

.443

.428
Powergrading .656

.403

.373

.909

.832

.843

.077

.058

.028

.500

.538

.507

.105

.320

.199

.767

.876

.838

.156

.098

.149

.793

.842

.813

Table 2: Impact of Delimiters (New Line, Semicolon, Space) of prompt on Accuracy and QWK using GPT-3.5

1 Shot 3 Shots 5 Shots

Dataset qwk Acc qwk Acc qwk Acc

ASAP .244
.250
.244

.465

.460

.452

.280

.264

.250

.486

.482

.472

.220

.230

.233

.453

.487

.478
Mindreading .133

.136

.129

.415

.416

.411

.408

.447

.409

.625

.655

.631

.448

.507

.476

.643

.688

.673
Powergrading .788

.774

.781

.941

.940

.945

.798

.794

.794

.947

.941

.946

.777

.749

.786

.934

.922

.927

Table 3: Impact of Delimiters (New Line, Semicolon, Space) of prompt on Accuracy and QWK using GPT-4

1 Shots 3 Shots 5 Shots 10 Shots

Dataset qwk Acc qwk Acc qwk Acc qwk Acc

ASAP .190
.154
.161

.465

.448

.462

.225

.195

.219

.503

.463

.477

.190

.137

.157

.483

.414

.448

.168

.112

.137

.455

.400

.429
Mindreading .043

.094

.082

.190

.455

.436

.206

.252

.236

.523

.578

.569

.213

.193

.274

.517

.541

.588

.296

.212

.289

.565

.487

.540
Powergrading .324

.278

.334

.698

.751

.732

.390

.460

.452

.709

.808

.806

.500

.461

.500

.829

.817

.801

.646

.583

.572

.901

.872

.866

Table 4: Impact of Delimiters (New Line, Semicolon, Space) of prompt on Accuracy and QWK using LLaMA2-7b-
chat
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1 Shots 3 Shots 5 Shots 10 Shots

Dataset qwk Acc qwk Acc qwk Acc qwk Acc

ASAP .148
.200
.191

.428

.477

.470

.237

.186

.166

.518

.463

.461

.180

.123

.184

.470

.420

.469

.132

.090

.130

.430

.371

.416
Mindreading .097

.110

.097

.367

.418

.395

.221

.217

.198

.505

.512

.476

.255

.219

.215

.528

.520

.491

.285

.219

.282

.562

.502

.557
Powergrading .541

.620

.558

.848

.875

.835

.547

.582

.518

.818

.828

.826

.573

.579

.617

.862

.842

.872

.656

.712

.631

.884

.827

.875

Table 5: Impact of Delimiters (New Line, Semicolon, Space) of prompt on Accuracy and QWK using LLaMA2-13b

Figure 2: Length distribution of answers

315



Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 316–329
June 20, 2024 ©2024 Association for Computational Linguistics

Automated Essay Scoring Using Grammatical Variety and Errors
with Multi-Task Learning and Item Response Theory

Kosuke Doi Katsuhito Sudoh Satoshi Nakamura
Nara Institute of Science and Technology

{doi.kosuke.de8, sudoh, s-nakamura}@is.naist.jp

Abstract

This study examines the effect of grammatical
features in automatic essay scoring (AES). We
use two kinds of grammatical features as input
to an AES model: (1) grammatical items that
writers used correctly in essays, and (2) the
number of grammatical errors. Experimental
results show that grammatical features improve
the performance of AES models that predict the
holistic scores of essays. Multi-task learning
with the holistic and grammar scores, alongside
using grammatical features, resulted in a larger
improvement in model performance. We also
show that a model using grammar abilities es-
timated using Item Response Theory (IRT) as
the labels for the auxiliary task achieved com-
parable performance to when we used grammar
scores assigned by human raters. In addition,
we weight the grammatical features using IRT
to consider the difficulty of grammatical items
and writers’ grammar abilities. We found that
weighting grammatical features with the dif-
ficulty led to further improvement in perfor-
mance.1

1 Introduction

Automated Essay Scoring (AES) is a task that au-
tomatically grades essays. Essay assignments are
widely used in language tests and classrooms to as-
sess learners’ writing abilities, while grading them
takes time and effort for human raters. Maintain-
ing inter- and intra-rater reliability is another issue
associated with human scoring. AES can help alle-
viate these problems and has been attracting more
attention in recent years.

The grading methods for essays can be roughly
categorized into two types: holistic scoring and
analytic scoring. The former assigns a single score
to an essay based on its overall performance, while
the latter assigns different scores to various aspects

1The code is publicly available at https://github.com/
ahclab/aes-grammar-mtl-irt.

of the essay, such as grammar, vocabulary, content,
or organization (Weigle, 2002). However, rubrics
for holistic scoring typically contain descriptions of
several aspects of writing used in analytic scoring
(e.g., TOEFL iBT Independent Writing Rubric).

Among those aspects, we focus on grammati-
cal features, inspired by the research on criterial
features for the levels of the Common European
Frameworks of References (CEFR) (Council of Eu-
rope, 2001) in L2 English (Hawkins and Filipović,
2012). The CEFR, one of the influential frame-
works in language teaching, describes language
abilities in functional terms (i.e., can-do statements,
such as “Can write short, simple essays on topics
of interest”). However, it is grammatical items and
lexis that realize the functions written in can-do
statements. To fully develop and elaborate their
ideas in essays, they need to use a wide range of
grammatical items. In fact, grammar plays an im-
portant role in essay scoring. Researches on writing
in the second language acquisition field have been
focusing on syntactic complexity2 and accuracy
(see Kuiken, 2023; Housen et al., 2012).

Hawkins and Filipović (2012) identified gram-
matical items that learners at a certain level and
higher can use correctly and items that learners
at a certain level are prone to making mistakes
in. It is known that human raters look for those
features consciously or unconsciously when they
evaluate learners’ performance, and explicit use of
grammatical features in AES will improve model
performance.

Grammatical features have been used in many
feature-engineering AES models (see Ke and Ng,
2019) as well as in hybrid models, which incor-
porate handcrafted features into deep neural net-
work AES models (Dasgupta et al., 2018; Uto
et al., 2020; Bannò and Matassoni, 2022). In

2Syntactic complexity refers to the extent to which a
learner can use a wide variety of both basic and sophisticated
structures (Wolfe-Quintero et al., 1998).
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Yannakoudakis et al. (2011), features represent-
ing grammatical structures were used together with
other linguistic features. However, in many previ-
ous studies (e.g., Vajjala, 2018; Uto et al., 2020),
grammatical items used correctly were aggregated
into measures of grammatical complexity (e.g., ra-
tio of dependent clauses per clauses; see Wolfe-
Quintero et al., 1998) rather than individual gram-
matical items (e.g., adverbial clause if, adverbial
clause so that) even though the difficulties of indi-
vidual grammatical items are different.

In this paper, we propose to use individual gram-
matical items as inputs to hybrid AES models that
predict holistic scores, and leverage the models
to incorporate the variety of grammatical items in
grading essays. We also use frequencies of gram-
matical errors corrected by a modern grammatical
error correction model (GECToR-large; Tarnavskyi
et al., 2022) as model inputs. The grammatical
features are combined with an essay representation
and passed into a fully connected feed-forward neu-
ral network to predict the score of an input essay.
Our models used BERT (Devlin et al., 2019) to
learn essay representations following the current
state-of-the-art AES models (Yang et al., 2020; Cao
et al., 2020; Wang et al., 2022).

To utilize grammatical features more effectively,
we develop a multi-task learning framework that
jointly learns to predict holistic scores and gram-
mar scores of essays. We use two types of grammar
scores: (1) scores assigned to essays by human
raters and (2) writers’ latent abilities estimated
based on patterns of grammar usage using Item
Response Theory (IRT) (Lord, 1980). Note that
teacher labels are not necessary for estimating the
latent abilities using IRT.

IRT estimates not only each writer’s ability but
also the characteristics of each item (i.e., individual
grammatical item), such as discrimination and dif-
ficulty parameters. Therefore, we use these IRT pa-
rameters to weight grammatical items (e.g., award
writers who use a difficult grammatical item; see
Section 3.1.2).

In summary, the contributions of this paper are
as follows:

• We propose to use individual grammatical
items and grammatical errors as inputs to AES
models, and leverage the models to consider
grammar use in predicting holistic scores of
essays.

• We develop a multi-task learning framework

that jointly learns to predict holistic scores
and grammar scores of essays.

• We apply IRT to writers’ grammar usage pat-
terns and (1) use estimated latent abilities for
multi-task learning, and (2) use IRT param-
eters to weight grammatical items when we
feed them to AES models.

• We show the effectiveness of incorporating
grammatical features into BERT-hybrid AES
models. Our method shows a significant ad-
vantage on some essay assignments in the Au-
tomated Student Assessment Prize (ASAP)
dataset3.

2 Related Work

2.1 Automated Essay Scoring

Early AES models predict essay scores using hand-
crafted features (see Ke and Ng, 2019). For exam-
ple, e-rater (Burstein et al., 2004) uses 12 features,
including grammatical errors and lexical complex-
ity measures. Yannakoudakis et al. (2011) automat-
ically extracted various linguistic features, includ-
ing grammatical structures, using a parser. These
features were weighted and used to train SVM
ranking models. Vajjala (2018) reported that mea-
sures of grammatical complexity and errors were
assigned large weights among various linguistic
features.

Recently, a deep neural network-based approach
has become popular. AES models based on RNN
(Taghipour and Ng, 2016), Bi-LSTM (Alikanio-
tis et al., 2016), and pre-trained language models
(Nadeem et al., 2019; Yang et al., 2020; Cao et al.,
2020; Wang et al., 2022) have been proposed. In
addition, a hybrid model, which incorporates hand-
crafted features into a deep neural network-based
model, has been proposed (Dasgupta et al., 2018;
Uto et al., 2020; Bannò and Matassoni, 2022).

AES using a large language model has also been
explored. Mizumoto and Eguchi (2023) demon-
strated that using linguistic features in GPT-3 im-
proved AES performance. Yancey et al. (2023)
reported that providing a small number of scoring
examples to GPT-4 led to comparable performance
to models trained on hundreds of thousands of data
based on 85 language features.

This study examines the effect of explicitly con-
sidering grammatical features in a hybrid AES

3https://www.kaggle.com/c/asap-aes
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model by incorporating individual grammatical
items as model inputs and weighting them using
IRT parameters.

2.2 Multi-Task Learning
Multi-task learning (MTL) (Caruana, 1997) is a
method that improves the generalization perfor-
mance of the main task by training a single model
to perform multiple tasks simultaneously. MTL has
been used in previous studies in AES, and shown
to be effective. Cummins et al. (2016) used MTL
to overcome the lack of task-specific data in the
ASAP dataset by treating each essay prompt as
a different task. Xue et al. (2021) also trained
a model jointly on eight different prompts in the
ASAP dataset using BERT.

There are also studies that have performed MTL
with other NLP tasks. Cummins and Rei (2018)
trained an LSTM jointly on grammatical error de-
tection and AES. While the error detection task in
Cummins and Rei (2018) required the model to pre-
dict whether a particular token was errorful, ones
in Elks (2021) require to (1) predict a sentence con-
tains errors or (2) classify tokens by a type of error
(e.g., correct, lexical, form). Other auxiliary tasks
used in previous studies include morpho-syntactic
labeling, language modeling, and native language
identification (Craighead et al., 2020), sentiment
analysis (Muangkammuen and Fukumoto, 2020),
predicting the level of each token (Elks, 2021), and
predicting span, type, and quality of argumentative
elements (Ding et al., 2023).

In this paper, we train models jointly on holis-
tic scores and grammar scores. This is similar to
AES models that predict multiple essay traits si-
multaneously (Mathias and Bhattacharyya, 2020;
Hussein et al., 2020; Mim et al., 2019; Ridley et al.,
2021), but the difference between them and ours is
that we explicitly incorporate grammatical features
to a model, which are related to the score to be
predicted.

2.3 Item Response Theory
IRT is a probabilistic model that has been widely
used in psychological and educational measure-
ment (Hambleton et al., 1991). An IRT model
expresses the probability of a correct response to
a test item as a function of the item parameters,
which represent the characteristics of the item, and
the ability parameter, which represents the ability
of the examinee.

Previous studies in AES used IRT to mitigate

raters’ bias (Uto and Okano, 2021), integrate pre-
diction scores from various AES models (Aomi
et al., 2021; Uto et al., 2023), and predict multiple
essay traits (Uto, 2021; Shibata and Uto, 2022).
These studies employed a multidimensional IRT
model since unidimensionality cannot be assumed
for the subject to which IRT is applied.

In contrast, we regard individual grammatical
items as test items, assuming that whether gram-
mar items are used correctly constitutes grammar
ability (i.e., satisfy the assumption of unidimension-
ality). We model writers’ grammar ability using
two-parameter logistic model (Lord, 1952), formu-
lated by the following equation:

Pij(θi) =
1

1 + exp(−Daj(θi − bj))
(1)

where Pij(θi) is the probability that the writer i
with ability θi uses the grammatical item j cor-
rectly, aj is the discrimination parameter for item j,
and bj is the difficulty parameter for item j. D is a
scaling factor and set to 1.0 in this paper.

3 Proposed Method

3.1 Grammatical Features
The Common European Frameworks of References
(CEFR) (Council of Europe, 2001) is an interna-
tionally recognized framework for language profi-
ciency. It divides proficiency into six levels rang-
ing from A1 (beginner) to C2 (advanced). Due
to the language-neutral nature of the CEFR, what
grammatical and lexical properties learners develop
across the CEFR levels has been studied language
by language.

Such properties (criterial features) in English
have been identified by English Profile Programme
(Hawkins and Filipović, 2012). Criterial features
refer to linguistic properties that are characteris-
tic and indicative of L2 proficiency levels and that
distinguish higher levels from lower (ibid). They
identified positive linguistic features (PFs; gram-
matical items that learners can use correctly at a
certain level and higher) and negative linguistic
features (NFs; grammatical items that learners at
a certain level are prone to making mistakes in) in
relation to the CEFR levels.

Based on the analyses of human raters’ grading
performance in actual exams, Hawkins and But-
tery (2009) have argued that they develop clear
intuitions about these properties. We expect that
allowing a model to learn grammar representations
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Features Descriptions
type256 256 grammatical items, whether a writer use

the items
err54 54 types of errors, # of errors
multiply_b Modify type256 with item difficulty
prob Replace elements in type256 with the prob-

abilities of using the items correctly
multiply_prob Weight type256 with the probabilities
add_prob Consider both the actual use (type256) and

the probabilities

Table 1: Grammatical features used in our experiments.
The number of errors is relative freq. per 100 words.

using grammatical features would improve the AES
performance. Table 1 shows PFs and NFs used in
our experiments. The following sections describe
them in detail.

3.1.1 Positive Linguistic Features
PFs were extracted using a toolkit for frequency
analysis of grammatical items, which is provided
by the CEFR-J Grammar Profile (Ishii and Tono,
2018). It extracts 501 grammatical items in text
based on regular expressions and calculates the
frequencies of them. We converted the frequen-
cies into the 256-dimensional vector (type256)
based on CEFR-J Grammar Profile for Teachers4

as gi = {gi1, gi2, ..., gi256}. Each dimension corre-
sponds to a grammatical item, and gij = 1 if the
writer i used the item j in the essay, and 0 if not.

3.1.2 PFs Weighted using IRT Parameters
Researches on criterial features have shown that
learners master more and more grammatical items
across the CEFR levels, but type256 does not con-
sider the difficulties of the items. Therefore, we
weight them using the IRT parameters.

We transform gij in the following four ways:

multiply_b: g′ij = gij × bj

prob: g′ij = Pij(θ̂i)

multiply_prob: g′ij = gij × Pij(θ̂i)

add_prob: g′ij = αgij + (1− α)Pij(θ̂i)

where θ̂i is the grammatical ability of the writer i
estimated based on the patterns of grammar usage
using IRT, and α is a weighting parameter. α was
set to 0.5 in this paper.
multply_b aims to consider the difficulty of

items by multiplying the difficulty parameter for
4https://www.cefr-j.org/download.html#cefrj_grammar

The toolkit distinguishes the same items in different sentence
types such as the affirmative or negative, while CEFR-J Gram-
mar Profile for Teachers does not.
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Figure 1: The architectures of proposed models

the item. However, writers might not have used
some grammatical items because of the essay topic
although they had enough abilities to do. Therefore,
we use Pij(θ̂i), which shows the probability that
the writer i with ability θ̂i can use the item j cor-
rectly. In prob gij is replaced with Pij(θ̂i), while
in multiply_prob and add_prob the two values
are combined to consider both the ability of writers
and the actual use in essays.

IRT parameters were estimated independently
from the prediction of essay scores. The IRT pa-
rameters were frozen during the training of scoring
models.

3.1.3 Negative Linguistic Features
We calculated the number of grammatical errors
per 100 words as NFs. Specifically, we created the
54-dimensional vector (err54) based on error tags
assigned by ERRANT (Bryant et al., 2017)5. We
used GECToR-large (Tarnavskyi et al., 2022) to
correct grammatical errors in essays.

3.2 Model Architecture

Our model takes a batch of essays and grammatical
features as input and predicts the holistic scores
of the essays. We prepare a model that takes only
a batch of essays as input for a baseline. Essay
representations are obtained from the [CLS] token
of the BERT model.

Grammatical features are used in the four set-
tings shown in Figure 1. In cat, we concatenate
the essay representation and the vector of gram-

5Based on all possible combinations of the error types
and categories. We tried the 24-dimensional vector, which
was based on the error types, but the 54-dimensional vector
improved the model performance more.
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matical features, and feed it to a fully connected
feed-forward neural network (FFNN). In net, we
first feed the vector of grammatical features to an
FFNN and concatenate the representation from the
final layer with the essay representation. In multi,
we perform multi-task learning with the model ar-
chitecture of net. The FFNN in multi consists of
shared layers only, and does not have task-specific
layers6. In dual, the predicted values for the auxil-
iary task are output from the FFNN for grammatical
features.

As the labels for the auxiliary task in multi
and dual, we used grammar scores assigned to es-
says by human raters, which is available in ASAP
and ASAP++ dataset (Mathias and Bhattacharyya,
2018), and grammar abilities estimated using IRT.
Grammar abilities can be estimated from writers’
grammar usage patterns without any teacher labels.

4 Experiments

4.1 Data and Evaluation
We used the ASAP and the ASAP++ dataset in
our experiments. The ASAP consists of essays
for eight different prompts, with holistic scores
for Prompts 1-6 and analytic scores for Prompts
7-8. In Prompt 7 and 8, the weighted sum of the
analytic scores constitutes the total score, which is
the target of prediction by our models. ASAP++
includes analytic scores of essays for Prompt 1-6.
We developed AES models that predict the holistic
score for each essay prompt. From analytic scores,
we only used ones related to grammar7.

We evaluated the scoring performance of our
models using the Quadratic Weighted Kappa
(QWK) on the ASAP dataset. Following the pre-
vious studies, we adopted 5-fold cross validation
with 60/20/20 split for train, development, and test
sets, which was provided by Taghipour and Ng
(2016).

4.2 Settings
As explained in Section 3.2, we developed
our AES models based on BERT. We used
bert-base-uncased provided by Hugging Face8.
The maximum input length was set to 512.

We normalized essay scores in the range of
[−1, 1]. The mean squared error (MSE) loss was

6We tried models with task-specific layers, but the perfor-
mance was worse than ones without them.

7Conventions for Prompt 1, 2, 7, and 8. Language for
Prompt 3-6.

8https://github.com/huggingface/transformers

# of hidden layers
Model 1 2 3 4 5 7 10
baseline .813 – – – – – –
cat .792 .825 .814 .813 .801 .766 .722
net .812 .824 .817 – – – –
multi–hum (0.8) – .819 .827 – – – –
multi–hum (0.6) – .804 .812 – – – –
dual–hum (0.8) – .816 .824 – – – –
dual–hum (0.6) – .820 .819 – – – –

Table 2: Comparison of the number of hidden layers in
FFNN on the top (type256, Prompt 1, QWK dev)

employed for both the main and auxiliary tasks. We
updated the parameters for the FFNN and the BERT
layers. The number of hidden layers in the FFNN
for grammatical features was set to 3, and the num-
ber of the nodes in the hidden layer to one-half
the dimension of the grammatical features. The
number of hidden layers in the FFNN on the top
was set to {1, 2, 3, 4, 5, 7, 10} for cat, {1, 2, 3} for
net, and {2, 3} for multi and dual and we chose
the value that achieved the best QWK score on the
development set for Prompt 1. The number of the
nodes was set to 512. For both FFNNs, we adopted
relu as the activation function and set the dropout
ratio to 0.2. In multi and dual, we tried {0.8, 0.6}
for the weights of the loss function for the main
task. We used Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1e-5. We trained mod-
els with the batch size {4, 8, 16, 32} for 10 epochs.
In the following sections, we report the scores on
test sets for the batch size with the highest QWK
on the development set for each essay prompt. The
scores are the average of three experiments with
different seed values.

5 Results

5.1 Hyperparameters for Each Model
Architecture

Using type256 for the grammar features, we
searched for the optimal hyperparameters for each
model architecture. Table 2 shows the QWK re-
sults on the development set of Prompt 1 when we
changed the number of hidden layers in the FFNN
on the top. When the number of hidden layers was
set to 1 in cat, QWK was lower than the baseline
(.792 vs. .813). QWK became the highest when
the number of hidden layers was set to 2, while
it got lower as the number of hidden layers in-
creased. In net, the architecture with 2 hidden lay-
ers achieved the highest QWK. In both multi–hum
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Prompt
Model 1 2 3 4 5 6 7 8 avg.
baseline .799 .662 .662 .804 .801 .809 .821 .726 .760
+ type256
cat .819 .674 .675 .801 .809 .809 .830 .721 .767
net .814 .679 .678 .810 .806 .806 .831 .737 .770
multi–hum .816 .678 .683 .812 .810 .811 .830 .746 .773
dual–hum .818 .673 .687 .819 .807 .813 .833 .750 .775

Table 3: Comparison among model architectures
(type256, QWK test)

and dual–hum9, QWK became the highest when
the number of hidden layers was set to 3 and the
weight of the loss for the main task to 0.8. In the
subsequent experiments, we trained models using
these hyperparameters.

5.2 Comparison among Model Architectures

Using type256 for the grammar features, we com-
pared the model performance among the four
model architectures. Table 3 shows the QWK
results on the test set of all prompts. By using
type256, the average QWK score for all essays
improved in all proposed models, compared to the
baseline (See avg. in Table 3).

In cat, however, the QWK scores did not im-
prove in three prompts (Prompt 4, 6, and 8), which
suggests that simple concatenation of essay repre-
sentations and grammatical features was not suffi-
cient enough to take advantage of the information
that the grammatical features have. In net, only
Prompt 6 did not improve from the baseline, and
it seems effective to feed the grammatical features
to an FFNN before concatenating with essay repre-
sentations.

The QWK scores for the models with the auxil-
iary task (multi–hum and dual–hum) were higher
than the others. Even when looking at the QWK
scores for each essay prompt individually, the
scores improved for all prompts. These results sug-
gest that multi-task learning with grammar scores is
effective to take advantage of grammatical features.
Dual–hum achieved the best performance among

the four proposed architectures. In dual–hum,
grammar scores were predicted from the final layer
of the FFNN for grammatical features (see Fig-
ure 1), which might let the model learn better rep-
resentations for grammatical features.

Since the dual–hum model performed the best,
we conducted the subsequent experiments using

9“–hum” represents that grammar scores assigned by hu-
man raters were used. “–irt” is added when grammar abilities
estimated using IRT are used.

the setting.

5.3 Comparison of Grammatical Features

Using the dual–hum setting, we compared the ef-
fectiveness of different grammatical features. Ta-
ble 4 shows the QWK results on the test sets when
we trained models using different grammatical fea-
tures.10

PFs and NFs In the previous section, we showed
that positive linguistic features (PFs; type256) im-
proved the AES performance. From the Table 4,
we can see that negative linguistic features (NFs;
err54) also improved the model performance (see
avg.). Even on a per-prompt basis, the QWK scores
were higher for all prompts than those in the base-
line.

Combining the PFs and the NFs (type256 +
err54) also resulted in an improvement in AES
performance. However, the average QWK score
(.775) was almost same as that for type256 and
err54, and no synergistic effect was observed by
using both the PFs and the NFs. We just concate-
nated the vectors of the two features before feeding
the features to the FFNN for grammatical features,
and there might be more effective ways to combine
them.

PFs weighted using IRT parameters We fur-
ther explored the effectiveness of PFs by weight-
ing them using IRT parameters (see Section 3.1.2).
When we considered the difficulties of individual
grammatical items (multiply_b), the QWK score
became the highest among all settings. On the other
hand, modifying type256 with the probability that
a writer with a certain grammar ability uses the
grammatical item correctly did not help to improve
AES performance. Although the QWK scores got
higher than that for the baseline, they were lower
than that for type256. The results suggest that it is
more important to capture what items the writer ac-
tually used in the essay than what items the writer
seemed able to use.

Effect of Grammatical Features To verify that
the score improvement came from the addition of
grammatical features rather than multi-task learn-
ing, we trained models with the auxiliary task but
without using grammatical features. The num-
ber of hidden layers in the FFNN on the top

10The QWK results for the auxiliary task are shown in
Appendix A.
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Prompt
Features 1 2 3 4 5 6 7 8 avg.
baseline .799 .662 .662 .804 .801 .809 .821 .726 .760
multi–ffnn1 .803 .680 .659 .797 .802 .806 .827 .723 .762
multi–ffnn3 .812 .671 .684 .812 .805 .812 .831 .748 .772
type256 .818 .673 .687 .819 .807 .813 .833 .750 .775

(+.019) (+.011) (+.025) (+.015) (+.006) (+.004) (+.012) (+.024) (+.015)
err54 .815 .672 .689 .813 .805 .812 .832 .756 .774

(+.016) (+.010) (+.027) (+.009) (+.004) (+.003) (+.011) (+.030) (+.014)
type256+err54 .821 .673 .689 .815 .810 .805 .834 .752 .775

(+.022) (+.011) (+.027) (+.011) (+.009) (-.004) (+.013) (+.026) (+.015)
multiply_b .811 .680 .701 .818 .813 .821 .829 .759 .779

(+.012) (+.018) (+.039) (+.014) (+.012) (+.012) (+.008) (+.033) (+.019)
prob .820 .661 .682 .813 .807 .808 .834 .752 .772

(+.021) (-.001) (+.020) (+.009) (+.006) (-.001) (+.013) (+.026) (+.012)
multiply_prob .826 .662 .678 .815 .813 .809 .827 .746 .772

(+.027) (±0) (+.016) (+.011) (+.012) (±0) (+.006) (+.020) (+.012)
add_prob .812 .674 .682 .806 .799 .812 .827 .757 .771

(+.013) (+.012) (+.020) (+.002) (-.002) (+.003) (+.006) (+.031) (+.011)
Yang et al. (2020) .817 .719 .698 .845 .841 .847 .839 .744 .794

(+.017) (+.040) (+.019) (+.023) (+.038) (+.050) (+.004) (+.019) (+.026)
Cao et al. (2020) .824 .699 .726 .859 .822 .828 .840 .726 .791

(-.002) (+.001) (+.017) (+.037) (-.002) (-.001) (+.011) (-.017) (+.006)
Wang et al. (2022) .834 .716 .714 .812 .813 .836 .839 .766 .791

Table 4: Comparison among grammatical features (dual–hum, QWK test). The numbers in parentheses indicate
the improvement from the baseline. The numbers in parentheses for Yang et al. (2020) and Cao et al. (2020)
are the improvement from their baseline, which is equivalent to ours (RegressionOnly and BERT (individual),
respectively; n/a for Wang et al. (2022)).

was set to 1 (multi–ffnn1; same as the base-
line) and 3 (multi–ffnn3; the best parameter for
multi–hum; see Section 5.1). The QWK scores
for multi–ffnn1 and multi–ffnn3 were higher
than that of the baseline, but lower than those of
the models with grammatical features (Table 4).
The results show that both multi-task learning and
grammatical features contributed to improve the
model performance. In addition, the significant im-
provement on multi–ffnn3 suggests that adding
layers on the top of BERT would be effective in
multi-task learning.

Scoring examples We show some examples
from the fold 2 of Prompt 1 (Table 5). The true
scores of the four examples are 10, and are written
in roughly the same number of words.

In ID 1382, a relatively wide variety of grammat-
ical items were used (10.18 items per 100 words,
while the average for essays with true score of 10
included in the fold 2 test set was 9.86). The model
trained using type256 captured the characteristic

Grammatical items Predicted score
Essay ID # words # type per 100 baseline type256

1382 442 45 10.18 9 10
377 480 47 9.79 12 11
104 405 38 9.38 9 8

1097 421 42 9.98 9 8

Table 5: Scoring examples. The true scores of the four
examples are 10. Per 100 represents the number of
different grammar items used per 100 words.

and predicted the correct score.
On the other hand, for ID 377 and 104, the model

trained using type256 assigned lower scores than
the baseline because of the limited variety of gram-
matical items in the essays. Note that the prediction
improved in ID 377, while it got worse in ID 104.

In ID 1097, our model did not perform well.
Although a relatively wide variety of grammatical
items were used, the predicted score was lower than
that of the baseline.11

11See Appendix B for the confusion matrix on all the data
points.
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Prompt
Model 1 2 3 4 5 6 7 8 avg.
multi-irt .819 .669 .697 .811 .813 .821 .839 .757 .778
dual-irt .805 .678 .686 .807 .808 .816 .831 .742 .772

Table 6: QWK results of the models using the IRT
ability parameter for the auxiliary task (QWK test)

Comparison with existing models The QWK
scores for the state-of-the-art AES models are also
shown in Table 4. The average QWK score of our
models (the highest at .779) was not as high as
those of the existing models. In some prompts,
there seemed to be differences in baseline QWK
scores between the previous studies and ours, and
we made comparisons based on the improvement
from each baseline12.

In Prompt 1, 3, 7, and 8, our proposed mod-
els showed a greater improvement in the QWK
scores compared to Yang et al. (2020) and Cao
et al. (2020). In these four prompts, the scores
themselves of our models were also competitive
with those of the existing models. Cao et al. (2020)
achieved the state-of-the-art results in Prompt 3, 4,
and 7, but the improvements from their baselines
were relatively small in the other prompts.

However, our proposed methods were less effec-
tive for Prompt 2, 4, 5, and 6, which resulted in
lower average QWK scores than the existing mod-
els. To identify when the proposed methods were
effective, we examined the characteristics of the
essays, such as the type of essays, the average num-
ber of words in essays, the correlation coefficient
between holistic scores and the grammar ability
parameter θ and between human-annotated gram-
mar scores and θ, and the variance of θ, but none
of them could provide a satisfactory explanation.
We need further investigation and it might help to
improve the performance on the prompts where our
methods were less effective.

5.4 Using the IRT Ability Parameter for the
Auxiliary Task

In Section 5.2, we demonstrated that dual–hum
model achieved the best performance among the
four proposed architectures. However, the architec-
ture requires grammar scores annotated by human
raters. Therefore we employed grammar abilities

12We re-implemented R2 BERT (Yang et al., 2020), but our
re-implementation of the model did not achieve as good scores
as those reported in their paper. Furthermore, we trained
models using grammatical features with the loss combination
proposed by them (i.e., regression and ranking loss), which
resulted in lower QWK scores than our baseline.

estimated using IRT, which requires no human-
annotated labels, as the teacher signals.

Table 6 shows that multi–irt and dual–irt
models achieved comparable performance to the
models that used human-annotated score. In gen-
eral, analytical scoring is more time-consuming
than holistic scoring, and grammar scores, which
are one of the analytical scores, are not always
available in a dataset. A method that improves
AES performance without the additional human-
annotated labels has practical value. Another ad-
vantage of using IRT for our AES models is that
we can provide the characteristics of grammatical
items (i.e., discrimination and difficulty) as well as
essay scores.

6 Conclusions

This study examined the effectiveness of using
grammatical features in AES models. Specifically,
we fed two kinds of features: (1) grammatical items
that writers used correctly in essays (PFs), and
(2) the number of grammatical errors (NFs). We
showed that both PFs and NFs improved the model
performance, but combining them did not result
in further improvement. The experimental results
suggest that multi-task learning would be effective
to take advantage of the information that the gram-
matical features have. One of the future directions
could be exploring effective ways to combine PFs
and NFs to improve the model performance since
the way in this study was a simple concatenation
of the two vectors (e.g., to learn representations for
PFs and NFs in different networks and combine
them). Another direction would be to examine the
effectiveness of adding our grammatical features
in AES using a large language model. It poten-
tially improves the scoring performance in zero-
and/or few-shot settings (Mizumoto and Eguchi,
2023). Furthermore, in order to have more inter-
pretable models, it would be beneficial to analyze
how much individual grammatical features con-
tribute to model’s score prediction. The insights
delivered by interpretable models can help practi-
tioners in education.

We also weighted PFs in several ways using IRT
parameters and found that considering the diffi-
culties of grammatical items would improve the
model performance. In addition, we used the abil-
ity parameter θ as teacher signals for the auxiliary
task in multi-task learning. Although no human-
annotated labels are required to estimate the IRT
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parameters, the model trained with the ability pa-
rameter achieved comparable performance to the
model trained with grammar scores annotated by
human raters. In this study, IRT parameters were
estimated based on grammatical items that writers
used in their essays. In the future, we will apply
IRT to both PFs and NFs to model writers’ gram-
mar abilities.

7 Limitations

Our proposed methods showed significant advan-
tage on some essay prompts in the ASAP dataset,
while they were less effective on the other prompts.
Further investigation is necessary to clarify what
kind of essays our proposed methods would be
effective to. An analysis of the effectiveness of
grammatical features on different prompts will also
provide additional insights into the variation of
model behavior across different prompts.

There are also some limitations related to the ex-
traction of grammatical features. First, the toolkit
provided by the CEFR-J Grammar Profile extracts
grammatical items based on sophisticated regular
expression patterns, which was written by a linguist.
It would be quite challenging to prepare a similar
toolkit in other languages. Bannò and Matassoni
(2022) let a model predict the frequencies of gram-
matical errors from essay representations, which
can be applicable to PFs, but the approach requires
human-annotated labels to train a model. Another
approach is to extract grammatical features based
on cross-linguistically consistent annotations such
as Universal Dependencies. It makes easier to use
grammatical features in other languages, while it
remains challenging to extract ones related to parts
of speech and/or morphological features rather than
dependencies (e.g., present perfect in English).

Second, there could be errors in the extraction
using regular expressions and the same is true for
grammatical error correction. Experiments using
grammatical features annotated by humans would
help reveal the influence of errors in feature extrac-
tion.

Third, our method requires explicitly extract-
ing grammatical features at test time as well as at
training time. An alternative would be to develop
a multi-task learning framework where a model
is trained to reconstruct grammatical features at
training time and then run the trained model on
unparsed test data (e.g., Andersen et al., 2021).
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A QWK Results for the Auxiliary Task

Table 7 shows the QWK score for the auxiliary task
(i.e., predicting grammar score). The QWK scores
were generally low, and some of them were neg-
ative. We observed that the models output scores
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Prompt
Model 1 2 3 4 5 6 7 8 avg.
type256 0.032 -0.007 0.050 -0.007 0.001 0.000 0.000 0.079 0.016
err54 -0.002 0.017 -0.003 0.014 -0.007 0.003 -0.012 0.045 0.008
type256+err54 0.148 0.003 0.085 0.001 0.000 0.001 -0.002 0.110 0.039
multiply_b 0.015 -0.003 -0.002 -0.023 0.000 0.000 0.012 -0.003 -0.001
prob 0.052 -0.025 0.028 0.000 0.000 0.000 0.000 0.046 0.008
multiply_prob 0.097 0.000 0.003 0.000 0.000 0.000 0.007 0.059 0.018
add_prob 0.053 -0.023 0.050 -0.002 0.004 0.000 0.039 0.004 0.011

Table 7: QWK results for the auxiliary task on the test set (models shown in Table 4)

close to the mode value in each prompt. One of
the possible reasons is the relatively low weight
for loss function for the auxiliary task (i.e., 0.2).
However, when we assigned a higher weight for
the auxiliary task (i.e., 0.4), the model prediction
for the main task got worse. Further consideration
is necessary for predicting multiple essay traits si-
multaneously (e.g., Ridley et al., 2021; Shibata and
Uto, 2022).

B Detailed Results of Model Predictions

Detailed scoring performance of the model trained
using type256 is shown in Figure 2. The values
in the confusion matrices are the sum of all ex-
periments (i.e., 5-fold cross validation and three
experiments with different seed values).
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Figure 2: Scoring performance of the model trained using type256
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Figure 2: Scoring performance of the model trained using type256 (cont.)
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Abstract

Knowledge tracing, the process of estimating
students’ mastery over concepts from their past
performance and predicting future outcomes,
often relies on binary pass/fail predictions. This
hinders the provision of specific feedback by
failing to diagnose precise errors. We present
an error-tracing model for learning program-
ming that advances traditional knowledge trac-
ing by employing multi-label classification to
forecast exact errors students may generate.
Through experiments on a real student dataset,
we validate our approach and compare it to
two baseline knowledge-tracing methods. We
demonstrate an improved ability to predict spe-
cific errors, for first attempts and for subsequent
attempts at individual problems.

1 Introduction

The increasing importance of digital technologies
has made programming a critical skill. The teach-
ing of programming has long been recognised as
difficult, and novice programmers often struggle
with syntax, and with conceptual and problem-
solving skills (Figueiredo and García-Peñalvo,
2021; Thuné and Eckerdal, 2019). Practical as-
signments, designed to enhance understanding, of-
ten become stumbling blocks due to compiler er-
rors that are not informative for beginners, leading
to confusion or discouragement (Medeiros et al.,
2019). Further, given large class sizes, providing
personalised feedback from instructors is difficult
(Parihar et al., 2017; Song et al., 2019). Recent
research has explored Automatic Feedback gen-
eration, including test-case analysis (Xiong et al.,
2018) and AI-driven Automatic Program Repair
systems (Bhatia and Singh, 2016; Gulwani et al.,
2018; Suzuki et al., 2017). But many of these sys-
tem fail to trace the individual learner’s profile or
unique learning trajectory, thus reducing the effec-
tiveness of the feedback provided (Ghosh et al.,
2021).

In contrast, Knowledge Tracing (KT), an edu-
cational data mining technique, has the potential
to create personalised learning experiences by pre-
dicting student performance based on their mastery
of concepts (Piech et al., 2015; Wang et al., 2017;
Emerson et al., 2019). In programming education,
KT is useful for recommending exercises, predict-
ing assignment outcomes, and identifying students
at risk of underperforming (Huang et al., 2019;
Azcona et al., 2019). But traditional KT models
often overlook the granularity of student responses,
treating all correct or incorrect attempts uniformly
(Ghosh et al., 2021). Programming errors, though,
vary widely, from simple syntax mistakes like a
missing semicolon, to more complex issues such as
failing to implement a loop correctly. Deep Knowl-
edge Tracing (DKT) (Piech et al., 2015) uses neural
networks to identify specific patterns, and thus al-
lows more specific feedback.

This paper propose a refined application of DKT
to identify precise compiler errors. By analysing
the error patterns in students’ historical perfor-
mance, we aim to identify the specific concepts
or syntax elements that a student has not yet mas-
tered. This then enables the delivery of targeted
feedback focused on those elements. In addition,
by analysing the patterns of multiple students in a
class, we can highlight common error patterns, for
further action by educators.

Our contributions are as follows. (1) We in-
troduce a novel KT task, error-based knowledge
tracing, to learn a meaningful representation of
student submissions. We introduce a new error-
based deep knowledge tracing model (Error-DKT)
to track the progressive student error patterns. (2)
We conducted experiments on a real-world student
code database and found that incorporating error
features significantly enhances the accuracy of spe-
cific error predictions, elevating the F1 score from
0.27 (as seen in existing models) to 0.5. (3) We dis-
cuss the broader implications and limitations of this

330



research within programming education, proposing
new research directions to bridge the gap between
generic feedback systems and the need for individ-
ualised educational support.

2 Related Work

Knowledge Tracing (KT) is designed to predict stu-
dents’ future performance by analysing their past
interactions with learning materials. Initially, KT
relied on probabilistic models such as Bayesian
Knowledge Tracing (BKT) (Corbett and Anderson,
1994), which estimates students’ mastery using a
Bayesian Network and a set of fixed parameters
(guess, slip, learn, and sometimes forget). BKT’s
extended by Käser et al. (2017) through the intro-
duction of Dynamic BKT, to account for interac-
tions between different knowledge components.

Deep Knowledge Tracing (DKT) leverages re-
current neural networks to harness the sequential
patterns in student interaction data, effectively cap-
turing not only correctness of responses but also
the order and context of these interactions (Piech
et al., 2015). Recent advances includes techniques
such as attention mechanisms (e.g., AKT-Context-
aware attentive knowledge tracing (Ghosh et al.,
2020)), external memory modules (e.g., DKVMN-
Dynamic key-value memory networks for knowl-
edge tracing (Zhang et al., 2017)), and GKT-Graph-
based KT (Nakagawa et al., 2019), each aiming to
better understand the learning process’s complexi-
ties. DKT has outperformed recent deep learning
models (Shi et al., 2022; Liu et al., 2022). Liu
et al. (2023); Abdelrahman et al. (2023) gives a
comprehensive review of KT models.

Traditional DKT models primarily rely on se-
quences of question numbers and the correctness
of attempts for prediction, often overlooking de-
tailed information about students’ approaches to
solving questions (Shi et al., 2022; Ghosh et al.,
2021; Abdelrahman et al., 2023). This omission
restricts their predictive power across different do-
mains. However, incorporating domain-specific
features has been shown to enhance performance.
For example, in the mathematical domain, Liu
et al. (2020) enhanced predictions by including
question-concept relationships derived from Pre-
training Embeddings via Bipartite Graph (PEBG),
while in the programming domain, Shi et al. (2022)
introduced code features using code2vec.

There has been a push to extend DKT’s appli-
cation beyond mere correctness prediction. Ghosh

et al. (2021) adapts DKT to forecast the specific
options students select in multiple-choice ques-
tions. Inspired by this, our work aims to tackle the
more complex scenario of open-ended program-
ming questions, which creates the challenge of in-
terpreting diverse compiler errors. Liu et al. (2022)
develops Open-ended Knowledge Tracing (OKT),
which integrates an enhanced DKT model with
code features from an abstract syntax tree neural
network-ASTNN (Zhang et al., 2019) and textual
question features from GPT-2, aiming to predict
student performance. They then employ a GPT-2-
based text-to-code generator, guided by the DKT
model’s hidden state as a knowledge estimate, to
generate diverse code solutions that mirror the stu-
dent’s comprehension.

3 Methodology

Our work introduces an alternative approach for
DKT to predict directly the specific errors students
are likely to encounter. We assess how different do-
main features like student code submissions, refer-
ence solutions, and question-concept relationships
affects error prediction. After pinpointing indi-
vidual errors, we employ a bottom-up approach,
aggregating these error predictions to assess over-
all student performance as pass (error-free) or fail
(submission with errors). This is to assess whether
focusing on granular error predictions can enhance
the accuracy of student outcome forecasts com-
pared to traditional DKT predictions. Figure 1 il-
lustrates our proposed model structure.

3.1 Dataset

We use a dataset from a US university’s Spring
Semester introductory Java programming course,
conforming to ProgSnap2 format (Price et al.,
2020). This dataset includes data from 410 students
across five assignments, totaling 50 programming
questions that assess various concepts like loops
and conditions. Students submitted multiple at-
tempts per exercises until achieving a 100% score,
with submissions ranging from 10 to 20 lines of
code and automatically graded based on test cases.

We focused on Assignment 1, which consists of
10 questions, selected for its high error frequency
and variety, providing a comprehensive base for
error analysis (details in Table 1). Our analysis em-
ploys two subsets: Set-I, categorising submissions
with compiler errors as "incorrect" and those with-
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Figure 1: Architecture of Error Tracing, integrating various feature embeddings and LSTM layers to predict student
errors and overall performance, as described in section 3.3.

Description Dataset
Total submissions (subs) 9995
Subs with errors 5948 (59.5%)
Avg errors per subs 1.6
Top 3 frequent errors [0, 1, 5]
Top 2 common pairs [1, 3] [1, 2]
Total No of students 386
Avg students per question 368
Most attempted question 5 (≈ 4000 errors)
Least attempted question 4 (≈ 750 errors)

Table 1: Key Features of the Dataset: Summarises sub-
mission counts, error rates, common errors, and student
engagement metrics, highlighting critical areas of focus
within student interactions.

out as "correct", specifically for error prediction.
Set-II is for binary (pass/fail) prediciton, labelling
any submission without a perfect score as "incor-
rect" due to compiler or logical errors, and those
with full marks as "correct".

To mitigate class imbalance in Set-I, we identi-
fied the top 10 errors for proof of concept which
includes nine error types and a pass class, with oc-
currences from 5000 to 400 across the questions,
detailed in Table 2.

ID Description Frequency
0 Passed/ No error 4047
1 ’ID’ expected e.g like ";)(" 2128
2 Missing return statement 1291
3 Illegal start of expression 1163
4 not a statement 850
5 ’else’ without ’if’ 629
6 Cannot find symbol: vari-

able ID
624

7 Bad operand types for bi-
nary operator ’ID’, like
"&&, ||,*,+,>=,<"

554

8 Incompatible types, like
datatypes mismatch

444

9 Reached end of file while
parsing, maybe a missing
delimiter or closing brace

426

Table 2: Overview of key error types in student submis-
sions, presenting both the frequency and characteristics
highlighting common obstacles in the learning process.

3.2 Problem Definition

Our approach treats students’ code submissions as
a temporal sequence, aiming to trace their concept
mastery over time. Each submission at time step
t is represented as xt = ⟨pt, ct, st, et, rt, {ref}t⟩,
encapsulating the problem pt, concept ct, code solu-
tion st, errors et, result (pass/fail) rt, and reference
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Figure 2: Overview of a simplified RNN Model. The
model performs predictions at each timestep, using the
previous hidden state (representing estimated mastery)
complemented by a diverse input features.

solution {ref}t. Given T is the maximum number
of attempts, we define students submission as ST

= {x1, x2, x3, . . . , xT }. Our aim is to predict the
specific errors eT+1 that might arise in the next
problem pT+1, based on the student’s previous sub-
missions. For example, as illustrated in Figure 2,
our target is identifying potential errors (e7) at time
step t7 based on submissions from t1 to t6, while
correctness prediction determines the likelihood of
a pass/fail result (r7).

3.3 Error Tracing with DKT

We built an error tracing model (Error-DKT 1 )
that utilises a Long Short-Term Memory (LSTM)
neural network and a combination of prediction
strategies to solve the challenges in multi-label er-
ror prediction. As illustrated in Figure 1, it includes
constructing detailed input features and a layered
architecture, featuring an LSTM layer to discern
hidden knowledge states, and a fully connected
layer that converts LSTM outputs for multi-label
prediction. We investigated two predictive strate-
gies:

Standalone prediction: This strategy employs
methods where individual models operate indepen-
dently to make error predictions.

Holistic Error prediction (HE) a single model is
trained to identify probabilities for specific error
classes, including a unique "no error" class. This
model employs a dynamically adjustable threshold
to determine the overall presence/absence status.
For instance, if there are four possible error types,
the HE model will predict among five outcomes,
where one represents the absence of errors

Only Error prediction (OE) focuses solely on

1https://github.com/kencyshaka/Error-DKT

detecting errors in a submission. Referring to the
example above, OE model will predict the presence
of four error classes; if all predictions fall below
a certain threshold, the submission is classified as
error-free.

Individual Error prediction (IE) a separate model
is trained for each error type. Using the same ex-
ample with four error types, four distinct models
would be trained. Their predictions are then ag-
gregated to formulate a comprehensive view of the
errors in a student’s attempt.

Ensemble Methodology: This two-step ap-
proach initially evaluates the likelihood of any error
occurrence before pinpointing exact errors using
insights gained from the initial assessment. The
Ensembled Error Prediction strategy combines the
strengths of conventional DKT in determining sub-
mission correctness with the detailed error tracing
capabilities of our model to isolate precise errors.

3.4 Baseline Models
To tackle the novel challenge of predicting specific
programming errors without established bench-
marks, we develop two baseline models using sta-
tistical probabilities. The Simple Baseline Model
use overall dataset statistics to forecast error proba-
bilities, identifying the two most frequent errors per
question from historical data. In contrast, the Com-
plex Baseline Model offers a granular analysis,
calculating error probabilities for each question-
attempt pair and pinpointing the two most common
errors based on historical data, though it overlooks
individual error histories. Additionally, we bench-
mark against the Open-ended Knowledge Tracing
OKT approach (Liu et al., 2022), which employs
a large language model to generate student code.
We run that code through a compiler to identify
expected errors, excluding the errors not included
in our set thus providing a direct comparison with
our error tracing model.

4 Experimental Setup

Our experimental setup, detailed below, outlines
the data collection methods, model training proto-
cols, and evaluation metrics used to rigorously test
the efficacy of our proposed models.

4.1 Data Preprocessing
We grouped the submissions by student and di-
vided them into training and test sets with a ratio
of 4:1. A random split method is used for perfor-
mance prediction, with an iterative stratification
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technique, specifically MultilabelStratifiedShuffle-
Split (Sechidis et al., 2011), used to address class
label imbalances for error prediction. We further
split the training set to allocate 25% for valida-
tion, facilitating hyperparameter tuning. The entire
training dataset, including the validation subset,
was subsequently utilised for model training, with
performance evaluation conducted on the test set.

4.1.1 Constructing Input Features
The input feature xt for each timestep is:

xt =[Er(rt)⊕ (Ep(pt)⊙□)⊕ (Ec(ct)⊙□)

⊕ (Eref{ref}t ⊙□)⊕ (Eer({er}t)⊙□)]

(1)

⊙ and □ signify element-wise multiplication
and the binary presence or absence of embeddings,
respectively. ⊕ concatenates to create the final em-
bedding, integrating the problem content (Ep), stu-
dent and reference code (Ec and Eref ), and errors
(Eer), alongside results (Er) to effectively predict
student performance.

Problem and Code Embeddings Problem rep-
resentation (Ep) merges textual content (Ep1) and
concept relationships (Ep2) into a comprehensive
embedding. Ep1 leverages a GPT-2 model trained
on Java datasets for textual transformation (Liu
et al., 2022), while Ep2 employs a bipartite graph
to capture problem-concept dynamics, following
the PEBG methodology (Liu et al., 2020).

Code representation adopts ASTNN (Zhang
et al., 2019) for the reference solution (Eref ) and
a modified code2vec (Alon et al., 2019) approach
for student submissions (Ec), facilitating dynamic
adaptation during model training (Shi et al., 2022).

Categorical Embeddings Categorical features,
such as error lists and outcome indicators, are trans-
formed into vector representations. Error lists are
encoded into binary vectors (Eer), with the vec-
tor size reflecting the total number of distinct er-
rors. Similarly, result embeddings (Er) denote at-
tempt results and question interactions (Piech et al.,
2015), utilising a binary format to represent the
data efficiently.

4.2 Network Architectures and
Hyperparameter Optimisation

We systematically explored hyperparameters to
identify the optimal model configuration, assessing
their impact on model performance through aver-
age loss and F1 scores on the validation dataset.

This iterative process, conducted 100 times, aimed
to pinpoint the hyperparameter set yielding the best
validation results, which was then applied across
the entire training set to construct the final model
for subsequent testing and evaluation phases.

Input features, including code embeddings (Ec),
reference solution embeddings (E{ref}), and tex-
tual problem embeddings (Ep1), were configured
following default parameters from prior studies
in Code-DKT (Shi et al., 2022) and OKT (Liu
et al., 2022). For the problem-concept relationship
component (Ep2), we use the PEBG framework,
varying parameters such as embedding size (d =
{64, 128}), epochs (10, 50, 100, 200), learning rate
(0.001, 0.005, 0.0015), hidden states (128, 256),
and batch size (16, 32, 128), with the optimal set-
tings highlighted in bold.

Our architecture exploration was tailored to spe-
cific tasks, employing varying hyperparameters to
refine the model’s structure. This included adjust-
ments to LSTM layers (1, 2, 4, 8, 10), learning rates
(uniform distribution, min=0.00001, max=0.001),
batch sizes (16, 32, 64, 128), epochs (10, 20, 40,
50, 70, 100), threshold settings, and loss types (Bi-
nary Cross Entropy, Focal Loss (Lin et al., 2018),
Class Balanced (Cui et al., 2019) and Distributed
Balanced Loss (Wu et al., 2020)). The selected hy-
perparameters for each multi-label task in Section
3.3 are summarised in Appendix A.3 Table 6.

Model training and evaluation on an NVIDIA A-
40 GPU averaged 10 minutes, while the same tasks
took about 4 hours on a local CPU. For further
details, see Appendix A.3, Table 6. We use the
Adam optimizer for learning rate scheduling in
training. Consistent with prior research (Shi et al.,
2022), we limited the number of student attempts
to 50 for each problem, focusing on the most recent
submissions to better reflect current understanding
and skills.

4.3 Evaluation Metrics
Model performance: The primary metric for er-
ror prediction is the weighted average F1 score,
tailored to reflect the proportion of each error class
within the dataset. This approach guarantees a
balanced evaluation, highlighting the model’s pre-
cision for common errors while proportionally con-
sidering less frequent ones. Weighted average pre-
cision and recall further detail the model’s predic-
tive accuracy. Additionally, we use the weighted
average F-beta score, emphasising precision more
than recall. This prioritisation is crucial, as it en-
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sures that any predicted errors intended to guide
interventions are reliably identified, maximising
the relevance and efficacy of educational support.
For performance prediction on the correctness
(pass/fail), we use the Area Under the Receiver
Operating Characteristic curve (AUC) alongside
the average F1 score to assess model performance.

Educational Context: We analyse the model’s
performance in two educational scenarios: over-
all accuracy and accuracy in predicting the first
attempt at solving a problem. The latter is crucial
for identifying early intervention opportunities in
knowledge tracing (Emerson et al., 2019), while
the overall performance metric helps differentiate
between types of errors (conceptual vs. syntactical)
and debugging skills.

Problem and Error Analysis: Further, we evalu-
ate the model’s effectiveness across individual ques-
tions to capture how well historical performance
data informs future error predictions. We also eval-
uate the model performance on the most common
to the least frequent errors. This analysis is crucial
for understanding the model’s capacity to predict
common errors (easy task) and uncommon errors
(hard task).

5 Results

Results are shown in Table 3, for the baselines, the
error prediction tasks and the ensemble approaches.

5.1 Error Prediction
Predictive Performance The Error-DKT mod-
els, employing single-step and ensemble strategies,
outperform baselines, e.g, OKT by +15.8% and
+23.2% respectively, showcasing their superior per-
formance in predicting overall student errors. This
efficacy is particularly highlighted in the ensemble
approach, which underscores the benefit of first
identifying error-free submissions before employ-
ing Error-DKT models to pinpoint specific student
errors, thereby improving overall prediction accu-
racy. Specifically, focused error prediction models
(OE and IE) benefit from this approach, e.g, OE
using Distributed Balance loss has +35% increase
in accuracy for first attempts.

Performance at predicting first attempt is gen-
erally higher than for all attempts, including for
OKT (Liu et al., 2022). We believe this is because
each question is initially the same for each student,
and cohort data for previous questions is informa-
tive. Once a student has submitted an attempt that

Model First Overall
F1 F-beta F1 F-beta

Simple 30.5 32.6 22.9 21.1
Complex 40.9 39.7 26.1 25.1
OKT 47.1 41.8 27.5 22.9
HE-BCE 49.2 48.8 42.8 42.5
HE-FL 50.8 48.2 43.3 41.8
OE-BCE 20.2 19.8 16.7 17.3
OE-DB 16.5 19.3 30.7 30.3
IE 17.0 19.4 34.1 34.1
HE-BCE 52.0 51.9 43.7 44.8
HE-FL 53.1 53.1 50.7 50.1
OE-BCE 52.2 51.2 36.4 37.2
OE-BCE* 52.6 51.6 44.7 44.4
OE-DB 51.5 51.4 45.2 45.7
IE 51.4 51.6 46.9 47.8

Table 3: Evaluation of Model Performance Across Er-
ror Prediction Tasks: The table presents F1 and F-beta
scores for ’First’ and ’Overall’ attempts. It starts with
baseline model metrics, progresses through Error-DKT
error prediction tasks (Holistic Error), OE (Only Error),
IE (Individual Error), and concludes with ensemble ap-
proaches combining Error-DKT predictions with DKT
outcomes. OE-BCE* denotes the model trained solely
on submissions with errors. The losses are BCE-Binary
Cross Entropy, FL-Focal and DB-Distributed Balance.
Bold values highlight top performance within each sec-
tion.

fails, the student is then responding to the compiler
messages, and so the task becomes individualised,
negating the benefit of more data on each individual
student.

Interestingly, the holistic approach (HE) demon-
strated superior performance over focused error
predictions (IE, OE), especially in contexts with
limited data and high imbalance, indicating the
challenges of granular error prediction. The en-
hanced performance of IE and OE in overall at-
tempts, as opposed to first attempts, suggests that
accumulating more data leads to improved accu-
racy. Furthermore, utilising various loss functions
to tackle class imbalances significantly enhances
model performance. For instance, employing Fo-
cal loss results in a +1.6 improvement for HE pre-
diction compared to Binary Cross Entropy, and
dynamically adjusting thresholds for error classes
also contributes to this advancement.

Per Problem The analysis shows variations in
predictive model performance, which could be due
to the distinct challenges, skill requirements and
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Figure 3: Ensemble Model’s Performance per Problem:
Overall Attempts.

prevalence of errors in each problem. A general pat-
tern shows that the model’s performance increases
in predicting student errors as they advance in their
assignments, as shown in Figure 3. This trend em-
phasises the crucial role of historical performance
data in enhancing error prediction for Error-DKT.

Also, we observe the volume of submissions
and the frequency of errors committed by students,
which emerge as significant factors influencing
model predictions due to the diverse and person-
alised strategies students employ. For example,
problem 5 and 6 exhibits a significant decline in
prediction accuracy, as highlighted in Figure 3 pri-
marily due to their high error rates—twice and
three times more than other problems, respectively
(see Appendix A.2 Figure 10). In addition, by
comparing the student-problem attempts in Figure
9 and Table 5 in Appendix A.2, we can see that
problem 5 and 6 require many more attempts per
student, and so appear to be different from the other
questions. More attempts means we are again pre-
dicting the response to the compiler messages, and
our predictive performance declines

In contrast, as shown in Figure 4, focused error
prediction models (OE, IE) benefit from more er-
ror data, enabling these models to fine-tune their
predictions more effectively compared to the dam-
age they cause to the holistic model (HE). Fur-
thermore, the analysis reveals that models perform
better on problems that require similar skill sets
in later stages (e.g., Problems 7, 9, and 10), sug-
gesting that Error-DKT can successfully model stu-
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Figure 4: Error-DKT Model’s Performance with various
Prediction tasks per Problem: Overall Attempts.

dents’ knowledge of common error patterns.

Per Error Figure 5 shows the model struggling
to accurately predict rare errors across different er-
ror classes. Nevertheless, an uptick in the models’
ability to predict errors in classes 3 and 7, likely
due to their frequent occurrence in problems 5 and
6 (see Appendix. A.1, Figure 7), suggests models
like IE can benefit more. Additionally, errors 4
and 5, less common but often occurring with com-
mon error 1 (see Appendix. A.1, Figure 8), exhibit
enhanced prediction accuracy. This indicates that
models successfully extract insights from prevail-
ing error patterns, thereby improving their predic-
tive capabilities. We also note that the OKT models
predominantly predicted the error class 2, "miss-
ing a return statement". This observation suggests
that the estimated student knowledge level failed to
prompt the LLM to generate codes incorporating
previously unseen errors, such as those involving
missing semicolons or unclosed curly brackets.

5.2 Correctness Prediction

Our methods focus on predicting individual errors,
raising the question of whether these predictions
can be aggregated into a holistic pass/fail assess-
ment. According to the results in Table 4, this
approach yields poorer performance compared to
the original DKT method, which directly evaluates
pass/fail outcomes. However, by incorporating the
diverse input features outlined in Equation 1, we
can significantly improve the correctness prediction
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Figure 5: Model’s Performance with various Prediction
tasks per Error class.

capabilities of the original DKT model.

Model First Overall
AUC F-beta AUC F-beta

Simple 46.7 40.9 50.9 58.1
Complex 58.0 46.0 61.6 67.2
OKT n/a 30.8 n/a 43.0
HE-BCE 73.0 66.3 72.5 77.5
HE-FL 71.9 67.1 65.5 74.3
OE-BCE 68.0 60.5 63.4 70.1
OE-DB 68.7 60.8 68.7 75.1
IE 68.4 60.5 65.3 71.3
DKT 75.5 72.7 75.3 78.5
DKT* 76.9 72.3 77.4 79.1

Table 4: Model performance (AUC, F-beta) evaluation
based on correctness (pass/fail) prediction. DKT* is
trained using the new set of input features

5.3 Knowledge-driven prediction of students’
submissions

The heatmaps presented in Figure 6 illustrate the ca-
pabilities and limitations of the Error-DKT model.
The model exhibits proficiency in predicting er-
rors that occur frequently but shows difficulty in
identifying rarer errors. The effectiveness of the
ensembled (two-step) approach is evident, as the
accuracy of Step I predictions directly influences
the subsequent error identification. For example, in
Case 1, despite Step I yielding false positives, Step
II strongly indicates the presence of errors, which
are confirmed with ground truth values. This sug-

gests the potential for alternative ensemble strate-
gies that might allow Step II predictions to carry
more weight. In contrast, Case 2 highlights that en-
hancing the accuracy of Step I predictions, which
is generally more straightforward, could potentially
lead to overall better performance in the model.

6 Conclusion and Future Works

In our study, we enhanced traditional knowledge
tracing methods by developing a framework capa-
ble of predicting overall correctness and specific
student errors. Our Error-DKT models demon-
strated significant effectiveness, substantially out-
performing baseline OKT models in overall at-
tempts prediction with improvements of +15.8%
and +23.2% using single-step and ensemble strate-
gies (Holistic Error prediction), respectively. The
ensemble approach significantly enhances accuracy
by initially distinguishing error-free submissions
from erroneous ones, and then specifically pinpoint-
ing the errors in submissions forecasted to fail.

Predictions for initial attempts generally exhibit
higher accuracy, likely due to the uniformity of
these submissions and the rich historical data avail-
able. However, as students revise their submissions
in response to compiler feedback, the complexity
of prediction increases, particularly for subsequent
attempts. This issue is compounded in problems
with high error rates and frequent submissions, like
Problems 5 and 6, where performance notably de-
clines. Despite the advantages in error prediction,
our method showed less effectiveness in integrating
individual errors into holistic pass/fail assessments
compared to direct evaluations by traditional DKT
methods. Nonetheless, the integration of diverse
input features enhances the DKT model’s ability to
predict correctness. These findings underscore the
potential of Error-DKT to improve the precision
of error predictions and affirm the ongoing need
for models that can adapt to complex error patterns
and improve feedback mechanisms in educational
settings.

For future work, several promising directions
emerge. First, experimenting with advanced DKT
architectures like AKT and DKVMN and refined
ensemble methods may improve error prediction
and accommodate a wider array of error types with
more extensive datasets. Secondly, optimising the
OKT model to extend its predictive competence to
logical as well as compiler errors could yield more
comprehensive error detection. Thirdly, there’s
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Figure 6: Ensembled Error-DKT prediction heatmap for a student over 27 attempts: (a) showcases Step I’s
correctness predictions, with yellow boxes indicating accurate predictions and red boxes highlighting incorrect
predictions and the numbers in the cells represent the ground truth values, (b) displays specific error predictions
using the Holistic approach, where red boxes with ’1’ signify undetected errors, and those with ’0’ indicate errors
incorrectly predicted absent due to Step I’s assessment. Grey boxes represent false error predictions.

a significant opportunity to enhance knowledge
tracing models to interpret learned patterns, cor-
relating them to specific knowledge areas, such
as debugging skills reflected in students’ coding
progression. Finally, integrating our framework
with an automated feedback mechanism will be
vital in evaluating its effectiveness in delivering
personalised, actionable feedback to students.

7 Limitations

Our study faces certain limitations. First, the mod-
est performance of our Error-DKT models is partly
due to the challenging prediction task and a small
dataset (386 student summaries, referenced in Ta-
ble 1). Despite this, Error-DKT shows promise in
identifying specific student struggles better than
baseline models. Second, we focus on a narrow
dataset from one assignment and semester, limit-
ing generalisation to wider programming contexts
or error types. Given the novelty of this KT task,
our concentration was solely on predicting com-
piler errors, with no examination of logical errors.
This scope raises questions about the model’s ap-
plicability across various programming scenarios.
Lastly, using only DKT as a baseline for extending
our approach may narrow our comparative anal-
ysis. Other current models like AKT, DKVMN

could offer different insights or performance met-
rics. Nonetheless, our choice was informed by
DKT’s better performance to more recent deep
models in related research (Shi et al., 2022; Liu
et al., 2022), making it a logical starting point for
exploring error predictions.
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A.1 Error Distribution
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Figure 7: The percentage distribution of each question
in the top ten error classes.
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Figure 8: The heatmap showing the co-occurrence of
the top ten errors.

Figure 7 maps out the primary distribution of er-
rors across various problems, Figure 8 highlights an
intricate aspect of this landscape: the co-occurrence
of errors. This heatmap shows how frequently rarer
errors appear alongside more common ones, of-
fering insights into error correlations that can in-
fluence teaching strategies. Understanding these
relationships is key to creating targeted interven-
tions that simultaneously address multiple areas
of student difficulty, thus streamlining the path to
mastery and enhancing the overall efficacy of pro-
gramming education.

A.2 Students Attempts
While nearly all students attempted the questions
(see Figure 9), there was a notably higher num-
ber of attempts on questions five and six, with
submissions averaging between 1700 to 2500 as
highlighted in Table 5. This increase in attempts
corresponded with a higher occurrence of errors
in these questions (see Figure 10), suggesting that
students were struggling to correct their mistakes,
potentially encountering new challenges as they
explored different solutions.

A.3 Model Architecture Configuration
Table 6 details the architecture and parameters that
define the final models in our study. It encompasses
the chosen input features, training configurations,
loss functions, and the durations required for both
training and inference across each model.
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Figure 9: The total numbers of student attempting the
10 questions in assignment one.

Problem ID Number of Attempts
1 663
2 694
3 699
4 653
5 2578
6 1743
7 678
8 852
9 635
10 800

Table 5: Number of Attempts per Problem
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Figure 10: The number of errors committed in each
student based on all the attempts.
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Model Input Features Model Ar-
chitecture

Output Training Con-
figurations

Train and infer-
ence Time

Simple Base-
line

Top errors per
problem

- 10 - 1m36s

Complex
Baseline

Top errors per
problem per at-
tempts

- 10 - 1m36s

HE-BCE Er(rt), Ee(et),
Ec(ct)

layers=1,
hidden=512

10 lr=0.00073,
epochs=28,
bs=16

7m44s

HE-FL Er(rt), Ee(et),
Ep(pt)

layers=1,
hidden=256

10 lr=0.0004,
epochs=70,
α(Fl)=0.96,
γ(FL)=2.31,
bs=16

8m14s

OE-DBloss Er(rt), Ee(et),
E{ref}({ref}t)

layers=1,
hidden=256

9 lr=0.000485,
epochs=80,
α(FL)=0.96,
γ(FL)=4.82,
β(CB)=0.955,
α(DB)=0.93,
γ(DB)=0.89,
β(DB)=1.53,
bs=16

14m14s

OE-BCE Er(rt), Ee(et),
E{ref}({ref}t)

layers=1,
hidden=256

9 lr=0.0009,
epochs=80,
bs=16

10m44s

IE-BCE Er(rt), Ee(et),
E{ref}({ref}t)

layers=1,
hidden=256

9 lr=0.0009,
epochs=80,
bs=16

25m32s

DKT Er(rt) layers=1,
hidden=512

1 lr=0.0005,
epochs=50,
bs=16

8m35s

OE-BCE* Er(rt), Ee(et),
Ep(pt)

layers=2,
hidden=256

9 lr=0.00071,
epochs=70,
bs=16

6m32s

Table 6: Model architecture configurations for various prediction task and the set of best input features.
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Abstract
Automatic Readability Assessment (ARA)
aims to predict the level of difficulty of a text,
e.g. at Grade 1 to Grade 12. It can be helpful
for teachers and students in identifying and re-
vising text to the desirable level of difficulty.
ARA is an ordinal classification task since the
predicted levels follow an underlying order,
from easy to difficult. However, most neural
ARA models ignore the distance between the
gold level and predicted level, treating all lev-
els as independent labels. This paper investi-
gates whether distance-sensitive loss functions
can improve ARA performance. We evaluate a
variety of loss functions on neural ARA mod-
els, and show that ordinal log-loss can produce
statistically significant improvement over the
standard cross-entropy loss in terms of adjacent
accuracy in a majority of our datasets.

1 Introduction

Automatic Readability Assessment (ARA) aims to
predict the level of difficulty of a text, e.g. at Grade
1 to Grade 12. It can be helpful for teachers and
students in identifying and revising text to the desir-
able level of difficulty. ARA is an ordinal classifica-
tion task since the levels follow an underlying order,
from easy to difficult. Yet, in ARA models trained
with traditional machine learning, the use of ordinal
classification has yielded mixed results (Heilman
et al., 2008; Feng et al., 2010; Jiang et al., 2014).
Further, most neural ARA models treat the task as
multi-class classification (Xia et al., 2016; Azpiazu
and Pera, 2019; Filighera et al., 2019; Tseng et al.,
2019; Deutsch et al., 2020; Martinc et al., 2021;
Lee et al., 2021) and ignore the distance between
the gold level and predicted level. In these models,
a classifier is typically trained with the standard
cross-entropy loss function, which treats the diffi-
culty levels as independent labels. Further, perfor-
mance evaluation often penalizes incorrect predic-
tions equally, regardless of their distance from the
gold.

Recognizing the ordinal nature of ARA could
potentially enhance performance and enable more
accurate evaluation. A loss function that reflects
label distance could be suitable, since the bound-
ary between difficulty levels may not be clear-cut,
especially on fine-grained scales. While severe
mistakes are never desirable, a sufficiently close
prediction may be acceptable in some applications,
such as retrieval of extra-curricular reading mate-
rials. Evaluation metrics that reflect the average
distance from the gold label would therefore be
more informative.

Distance-sensitive loss functions have received
relatively little attention in neural ARA. Zeng et
al. (2022) showed that soft labels could improve
performance, but the evaluation was limited to
BERT and only one loss function. We present
a more comprehensive study on a variety of loss
functions, evaluated on a range of pre-trained lan-
guage models, hyper-parameters, and performance
metrics. Experimental results show that ordinal log-
loss (Castagnos et al., 2022) performs best overall
for neural ARA models. It achieves a statistically
significant improvement over the standard cross-
entropy loss in terms of adjacent accuracy in a
majority of our datasets, though sometimes at the
expense of accuracy.

The rest of the paper is organized as follows.
After a review of the major loss functions in Sec-
tion 2, we give details on the experimental set-up
in Section 3. We then report results in Section 4.1

2 Previous work

Many text classification tasks, ranging from ARA
and essay scoring, to sentiment and review rat-
ing prediction, have an ordinal structure. Let
Y = {r1, r2, ..., rK} be the set of possible labels.
Ordinal binary classification exploits the structure

1Code and data can be accessed at
https://github.com/hhlim333/Readability-Assessment-
with-Ordinal-Log-Loss
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with K−1 binary classifiers (Frank and Hall, 2001).
Ordinal Multi-class Classification with Voting was
found to be potentially helpful in improving ARA
performance (Jiang et al., 2014). Ordinal regres-
sion models have been applied to ARA models
trained in traditional machine learning. While Heil-
man et al. (2008) found that the Proportional Odds
Model offered competitive performance, Feng et
al. (2010) reported that ordinal classifiers did not
perform better than standard classifiers. Loss-
sensitive classification, which is the focus of this
paper, utilizes loss functions that impose higher
penalty to predictions further from the gold label,
based on a distance function d(ri, rj) that specifies
the distance between labels ri and rj . Two main
families of these loss functions are as follows.

2.1 Soft labels

Soft labels for ordinal regression (Bertinetto et al.,
2020) is a distance-sensitive loss function that has
been found to be effective for ARA. The soft label
is defined as follows:

yi =
exp (−β · d(ri, rt))∑K

k=1 exp (−β · d(rk, rt))
(1)

where rt is the gold label; ri ∈ Y is the i-th label;
and the hyperparameter β specifies how much more
probability mass to assign to labels closer to the
gold.

Zeng et al. (2022) applied the soft label version
of Diaz and Marathe (2019) to ARA using a simple
distance function: the distance between the gold
and an adjacent label is a positive constant, and
infinity for all other labels. A BERT-based neural
classifier trained on this loss function outperformed
the standard cross-entropy loss on both English and
Chinese data.

2.2 Ordinal log-loss

Ordinal log-loss (OLL) is defined as:

−
N∑

i=1

log(1− pi)d(y, i)
α (2)

where the hyperparameter α adjusts the amount of
penalty, with a higher value leading to the greater
penalty for predicted labels at a longer distance
from the gold (Castagnos et al., 2022). OLL is
distinguished in its use of the weight −log(1− pi),
rather than pi as in many other loss functions, to
impose greater penalty on more severe errors.

Castagnos et al. (2022) have shown OLL to be
beneficial in a number of text classification tasks,
but their evaluation focused only on BERT-tiny.
This paper is the first attempt to apply OLL on
ARA. We conduct a comprehensive study utilizing
a variety of loss functions and pre-trained language
models, and analyzing trade-off between accuracy
and adjacent accuracy.

3 Experimental Set-up

This section describes the loss functions (Sec-
tion 3.1), the datasets (Section 3.2) and training
procedure (Section 3.3).

3.1 Loss functions

We investigate the following loss functions for
training neural ARA models:2

Baseline The standard cross-entropy loss.

WKL Weighted Kappa Loss (de la Torre et al.,
2018).

EMD Earth Mover’s Distance (Hou et al., 2016).

OLL-α Ordinal log-loss (Castagnos et al., 2022)
with the hyperparameter α, as defined in Sec-
tion 2.2.

SOFT-β Soft labels (Bertinetto et al., 2020) with
the hyperparameter β, as defined in Sec-
tion 2.1.

Zeng et al The model proposed by Zeng et
al. (2022) (Section 2.1), based on the soft label
version of Diaz and Marathe (2019), which
does not use the β hyperparameter.

Following Castagnos et al. (2022), we tuned
the α parameter for OLL on {1, 1.5, 2} and the
β parameter for SOFT on {2, 3, 4}. They were
optimized on the validation set of the Cambridge
Dataset to α = 1 and β = 2, respectively. We used
the default distance function d(ri, rj) = |ri − rj |
in all experiments.

3.2 Datasets

Our experiments make use of three English and
two Chinese datasets (see detailed statistics in Ap-
pendix A):

2https://github.com/glanceable-io/ordinal-log-loss
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Loss Cam CC OSE CMT CMER
function MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Baseline 0.387 0.533 1.047 1.729 0.042 0.077 1.244 3.524 1.696 5.666
Zeng et al 0.347 0.413 0.953 1.494 0.056 0.084 1.118 2.985 1.681 5.623
OLL-1 0.347 0.400 0.776 1.012 0.074 0.13 1.112 2.894 1.638 4.847
SOFT-2 0.333 0.400 1.035 1.694 0.042 0.077 1.159 3.169 1.679 5.592
EMD 0.433 0.553 0.906 1.541 0.046 0.06 1.171 3.104 1.664 5.205
WKL 0.867 1.493 1.235 2.671 0.446 0.614 2.252 10.107 3.455 19.177

Table 1: Mean Absolute Error (MAE) and Mean Squared Error (MSE) in ARA using RoBERTa on the English
datasets Cambridge (Cam), Common Core (CC) and OneStopEnglish (OSE); and using MacBERT on the Chinese
datasets CMT and CMER

Cambridge (Cam) This dataset contains articles
for various Cambridge English Exams, la-
beled with five levels (A2-C2) in the Com-
mon European Framework of Reference (Xia
et al., 2016). We use the train/validation/test
set of the downsampled version provided by
Lee et al. (2021), which consists of 60 items
per level.3

OneStopEnglish (OSE) This corpus consists of
189 aligned texts, each written at three read-
ing levels: beginner, intermediate, and ad-
vanced (Vajjala and Luc̆ić, 2018), hence a total
of 567 texts.4

Common Core (CC) The Common Core corpus
consists of 168 texts, labeled at five grade
bands (Grades 2–3, 4–5, 6–8, 9-10, and
11–12) from Appendix B of the English Lan-
guage Arts Standards of the Common Core
State Standards (Chen and Meurers, 2016).5

China Mainland Textbook (CMT) This corpus
consists of a total of 2,723,430 characters, dis-
tributed in 2,621 texts in twelve grades, all
taken from Chinese textbooks from the first
grade of primary school to the third grade of
high school in mainland China (Cheng et al.,
2019).

China Mainland Extracurricular Reading
(CMER) This corpus consists of 2,260 texts
distributed at Grade 1 to 12, taken from
extracurricular reading books for children and
teenagers.6

3Accessed at https://github.com/brucewlee/
4Accessed at https://github.com/nishkalavallabhi/
5https://xiaobin.ch/Chen_Meurers_16Frequency/
6https://github.com/JinshanZeng/DTRA-Readability

3.3 Pre-trained language models

We evaluated the pre-trained language models
BERT, RoBERTa, BART, and XLNET7 in English
experiments. In the Chinese experiments, we used
MacBERT8, which was shown to perform best in
previous research on Chinese ARA (Lim et al.,
2022). All models were downloaded from Hug-
gingFace transformers v4.5.0 (Wolf et al., 2020).9

4 Experimental results

All results are averaged based on stratified 5-fold
cross-validation with a 8:1:1 split for train/valida-
tion/test. We first report overall results based on
Mean Absolute Error (MAE) and Mean Squared
Error (MSE) (Section 4.1), and then analyze their
performance in terms of adjacent accuracy and ac-
curacy.10 Henceforth, all Chinese results are based
on MacBERT, and the English results on RoBERTa,
sicne they performed best among the four PLMs
evaluated (see Table 7 in Appendix D).

4.1 Mean Error

Table 1 shows the performance of neural ARA
models in terms of MAE and MSE when trained
with the loss functions described in Section 3.1.
Weighted Kappa Loss (WKL) produced the worst
performance, below the standard cross-entropy
baseline in all datasets. Earth Mover’s Distance
(EMD) outperformed the baseline in four out of

7https://huggingface.co/bert-base-uncased,roberta-
base,bart-base,xlnet-base-cased

8https://huggingface.co/hfl/chinese-macbert-large
9We used AdamW (optimizer) (Kingma and Ba, 2015),

linear (scheduler), 10% (warmup steps), 8 (batch size), 3
(epoch) for all pre-trained language models. For English ex-
periments, we use the learning rate of 2e-5 for BERT and
3e-5 for the other pre-trained language models. For Chinese
experiments,we use the learning rate of 2e-5 for MacBERT.

10All metrics are calculated with SciKit-learn (Pedregosa
et al., 2011).
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Loss (a) Accuracy (b) Adjacent Accuracy
Function Cam CC OSE CMT CMER Cam CC OSE CMT CMER
Baseline 0.68 0.294 0.975 0.364 0.285 0.940 0.659 0.982 0.686 0.561
Zeng et al 0.68 0.318 0.958 0.382 0.277 0.98 0.729 0.986 0.735 0.575
OLL-1 0.673 0.341 0.954 0.368 0.232 0.987* 0.882** 0.972 0.740* 0.563
OLL-1.5 0.64 0.329 0.846 0.316 0.209 0.973 0.882** 0.993 0.738* 0.573
OLL-2 0.56 0.341 0.891 0.317 0.201 0.98 0.824** 0.989 0.731* 0.583
SOFT-2 0.693 0.294 0.975 0.381 0.277 0.98 0.671 0.982 0.718* 0.574
SOFT-3 0.727 0.294 0.979 0.387 0.281 0.967 0.682 0.986 0.726* 0.555
SOFT-4 0.713 0.294 0.979 0.367 0.29 0.96 0.659 0.982 0.699 0.568
EMD 0.62 0.376 0.961 0.359 0.243 0.953 0.753 0.993 0.709 0.573
WKL 0.387 0.271 0.639 0.182 0.105 0.8 0.659 0.916 0.5 0.307

Table 2: ARA performance based on (a) accuracy; and (b) adjacent accuracy (* means a statistically significant
improvement at p < 0.05 according to McNemar’s Test over the baseline; ** means statistically significant
improvement over both the baseline and the Zeng et al. model)

five datasets, yielding the lowest MSE on OSE.
The Zeng et al model improved upon the baseline
in all datasets except OSE. SOFT-2 outperformed
Zeng et al in three out of the four datasets, and
produced the best performance on Cambridge (tied
with OLL-1), suggesting the utility of the β hy-
perparameter. Overall, OLL-1 achieved the best
performance, with the smallest MSE on four of the
five datasets. In the remainder of the discussion,
we will focus on Zeng et al, SOFT-β and OLL-α.

4.2 Adjacent accuracy

Table 2(b) shows the results in terms of adjacent
accuracy. The OLL-α models outperformed the
baseline in the vast majority of settings, suggesting
their ability to reduce severe ARA errors.11 Of
the four PLMs, the best performance was obtained
with RoBERTa (Appendix D).

OLL-1 achieved the best adjacent accuracy
at 0.987 on Cambridge and 0.882 on Common
Core.12 It also scored the highest Macro F1 and
Weighed F1 on these two datasets (see Table 5
in Appendix C). OSE is particularly challenging
since the baseline already achieved excellent per-
formance at 0.989 adjacent accuracy; OLL was
able to make an improvement on adjacent accuracy
and F1 only when α is set to 1.5. OLL-1 improved
upon the baseline on both Chinese datasets, and
outperformed Zeng et al on CMT.

11Among all combinations of α values, PLMs and datasets,
there are only two exceptions: OLL-1 with RoBERTa on OSE,
and with BART on Cambridge.

12Statistically significant at p = 0.0391 and p = 0.0000,
respectively, according to McNemar’s Test.

4.3 Accuracy
OLL-1 generally performed worse than the base-
line, both in terms of accuracy (Table 2(a))13 and
F1 (Table 6 in Appendix C). SOFT-2 improved
upon the baseline and Zeng et al in most settings,
although the improvement was not statistically sig-
nificant.

SOFT-3 established a new state-of-the-art in ac-
curacy and F1 for neural ARA models, on both
the Cambridge and OSE datasets. Its performance
(accuracy at 0.727 and 0.979, respectively) sur-
passed the previous best (0.680 and 0.975) in neural
models (Lee et al., 2021), although it is still out-
performed by hybrid models, which require hand-
crafted linguistic features. SOFT-3 also obtained
the best result in Chinese on CMT (0.387), outper-
forming the baseline and the Zeng et al model.

5 Conclusion

Since ARA is an ordinal classification task, the
magnitude of classification error should in principle
be taken into account. This paper has presented
a comprehensive evaluation of a variety of loss
functions that are sensitive to the distance between
the predicted label and gold label.

Our experiments on neural ARA models suggest
that ordinal log-loss (OLL) is able to capture the
ordinal nature of the task, reducing the mean abso-
lute error and mean squared error on most datasets.
It produces significant improvement over the stan-
dard cross-entropy function in terms of adjacent
accuracy, but at the expense of accuracy in some

13We obtained slightly higher accuracy for the baseline on
the OSE dataset than reported by Lee et al. (2021).

346



settings. These results suggest that future ARA
models should consider using OLL for applications
that need to avoid severe errors but do not require
precise classification.

A number of research directions may be pursued.
First, ARA accuracy could be further improved by
optimizing the distance function in the ordinal log-
loss and soft label models. Second, the usability of
the ARA model in an educational setting, for exam-
ple assisting teachers and students in text selection
and revision, is also worth investigating.
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Cam CC OSE
Grade Texts Text length Texts Text length Texts Text length
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A Appendix: Dataset statistics

This section provides detailed statistics for all
datasets.

B Appendix: Computing details

We used a NVIDIA Tesla V100 GPU to train 80%
of the full dataset. The following is the total train-
ing time of the experiments on OLL-1, measured
in seconds:

English Experiments (BERT, RoBERTa, XLNet,
BART):

• Cambridge (638,496,1410,607)

• OneStopEnglish (1261, 948, 2286, 1110)

• CommonCore (382,310,776,377)

Chinese Experiment (MacBERT):

CMT CMER
Grade Texts Text length Texts Text length
1 235 108.95 218 145.53
2 320 198.58 217 308.44
3 386 329.48 234 538.35
4 321 425.39 229 628.08
5 282 569.82 200 682.41
6 252 660.89 255 701.29
7 199 1202.13 221 1227.19
8 142 1176.94 205 1324.25
9 134 1443.84 188 1302.54
10 140 1617.08 100 2182.08
11 89 1900.85 96 2252.34
12 121 1930.74 97 2043.69

Table 4: Number of texts and average length at each
grade in the CMT and CMER dataset

• CMT (12498)

• CMER (11809)

C Appendix: F1 Evaluation

This section reports F1 evaluation, based on ad-
jacent accuracy (Table 5) and accuracy (Table 6),
respectively. We used RoBERTa on the English
datasets Cambridge (Cam), Common Core (CC)
and OneStopEnglish (OSE); and MacBERT on the
Chinese datasets CMT and CMER.

D Appendix: Evaluation on other PLMs

This appendix provides detailed results for all pre-
trained language models (BERT, RoBERTa, XL-
Net, BART).
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Loss Macro F1 Weighted F1
Function Cam CC OSE CMT CMER Cam CC OSE CMT CMER
Baseline 0.938 0.527 0.982 0.593 0.518 0.938 0.551 0.982 0.655 0.548
Zeng et al 0.98 0.615 0.986 0.647 0.532 0.98 0.658 0.986 0.715 0.562
OLL-1 0.987 0.839 0.972 0.642 0.502 0.987 0.862 0.972 0.721 0.544
OLL-1.5 0.973 0.833 0.993 0.661 0.513 0.973 0.859 0.993 0.722 0.554
OLL-2 0.98 0.742 0.989 0.631 0.518 0.98 0.788 0.989 0.712 0.563
SOFT-2 0.98 0.544 0.982 0.629 0.533 0.98 0.572 0.982 0.694 0.562
SOFT-3 0.966 0.557 0.986 0.636 0.511 0.966 0.588 0.986 0.705 0.539
SOFT-4 0.959 0.527 0.982 0.605 0.528 0.959 0.551 0.982 0.673 0.555
EMD 0.952 0.722 0.993 0.62 0.53 0.952 0.722 0.993 0.686 0.565
WKL 0.766 0.626 0.894 0.437 0.216 0.766 0.605 0.894 0.473 0.248

Table 5: ARA performance in F1, based on adjacent accuracy

Loss Macro F1 Weighted F1
Function Cam CC OSE CMT CMER Cam CC OSE CMT CMER
Baseline 0.658 0.091 0.975 0.282 0.253 0.658 0.134 0.975 0.324 0.27
Zeng et al 0.668 0.131 0.958 0.322 0.246 0.668 0.173 0.958 0.363 0.262
OLL-1 0.654 0.206 0.954 0.279 0.201 0.654 0.242 0.954 0.346 0.221
OLL-1.5 0.591 0.189 0.812 0.236 0.167 0.591 0.226 0.812 0.286 0.181
OLL-2 0.496 0.182 0.868 0.227 0.153 0.496 0.224 0.868 0.273 0.168
SOFT-2 0.68 0.095 0.975 0.305 0.246 0.68 0.139 0.975 0.351 0.262
SOFT-3 0.717 0.093 0.979 0.318 0.253 0.717 0.136 0.979 0.361 0.264
SOFT-4 0.699 0.091 0.979 0.294 0.259 0.699 0.134 0.979 0.337 0.274
EMD 0.569 0.243 0.961 0.288 0.204 0.569 0.284 0.961 0.329 0.214
WKL 0.237 0.157 0.539 0.083 0.024 0.237 0.139 0.539 0.08 0.026

Table 6: ARA performance in F1, based on accuracy
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Metric→ Accuracy Adjacent Accuracy
PLM Loss Func. Cam CC OSE Cam CC OSE
BERT Baseline 0.573 0.388 0.919 0.907 0.694 0.989

Zeng et al 0.567 0.4 0.719 0.94 0.835 0.993
OLL-1 0.5 0.365 0.709 0.973* 0.812* 0.989
OLL-1.5 0.44 0.365 0.737 0.973* 0.788* 0.996
OLL-2 0.467 0.353 0.705 0.973* 0.765 0.993
SOFT-2 0.593 0.388 0.768 0.913 0.753 0.993
SOFT-3 0.573 0.376 0.765 0.913 0.718 0.993
SOFT-4 0.587 0.353 0.754 0.92 0.659 0.993
WKL 0.407 0.318 0.505 0.813 0.753 0.863
EMD 0.48 0.353 0.786 0.92 0.776 0.993

RoBERTa Baseline 0.68 0.294 0.975 0.94 0.659 0.982
Zeng et al 0.68 0.318 0.958 0.98 0.729 0.986
OLL-1 0.673 0.341 0.954 0.987* 0.882** 0.972
OLL-1.5 0.64 0.329 0.846 0.973 0.882** 0.993
OLL-2 0.56 0.341 0.891 0.98 0.824** 0.989
SOFT-2 0.693 0.294 0.975 0.98 0.671 0.982
SOFT-3 0.727 0.294 0.979 0.967 0.682 0.986
SOFT-4 0.713 0.294 0.979 0.96 0.659 0.982
WKL 0.387 0.271 0.639 0.8 0.659 0.916
EMD 0.62 0.376 0.961 0.953 0.753 0.993

BART Baseline 0.62 0.388 0.968 0.927 0.776 0.989
Zeng et al 0.593 0.435 0.944 0.92 0.788 0.996
OLL-1 0.52 0.353 0.965 0.92 0.847 0.993
OLL-1.5 0.493 0.318 0.958 0.94 0.871** 0.993
OLL-2 0.42 0.294 0.916 0.94 0.882** 0.996
SOFT-2 0.6 0.412 0.947 0.92 0.776 0.993
SOFT-3 0.6 0.435 0.944 0.9 0.8 0.986
SOFT-4 0.627 0.388 0.954 0.907 0.776 0.989
WKL 0.393 0.294 0.596 0.8 0.612 0.902
EMD 0.56 0.4 0.961 0.913 0.788 0.993

XLNET Baseline 0.573 0.365 0.804 0.933 0.671 0.993
Zeng et al 0.713 0.388 0.811 0.933 0.8 0.993
OLL-1 0.653 0.318 0.737 0.967 0.824* 0.996
OLL-1.5 0.593 0.365 0.818 0.973** 0.847* 0.993
OLL-2 0.467 0.329 0.807 0.973** 0.835* 0.993
SOFT-2 0.667 0.388 0.877 0.933 0.753 0.993
SOFT-3 0.653 0.424 0.891 0.92 0.741 0.996
SOFT-4 0.633 0.341 0.853 0.933 0.753 0.993
WKL 0.42 0.318 0.481 0.86 0.659 0.86
EMD 0.587 0.318 0.856 0.9 0.741 0.989

Table 7: ARA performance on the English datasets (* means statistically significant improvement at p < 0.05
according to McNemar’s Test over the baseline; ** means statistically significant improvement over both baseline
and Zeng et al.)
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Abstract

This paper presents and tests AllAI, an app
that utilizes state-of-the-art NLP technology
to assist second language acquisition through
a novel method of sentence-based spaced rep-
etition. Diverging from current single word
or fixed sentence repetition, AllAI dynami-
cally combines words due for repetition into
sentences, enabling learning words in con-
text while scheduling them independently.
This research explores various suitable NLP
paradigms and finds a few-shot prompting ap-
proach and retrieval of existing sentences from
a corpus to yield the best correctness and
scheduling accuracy. Subsequently, it evaluates
these methods on 26 learners of Danish, finding
a four-fold increase in the speed at which new
words are learned, compared to conventional
spaced repetition. Users of the retrieval method
also reported significantly higher enjoyment,
hinting at a higher user engagement.

1 Introduction

Spaced repetition is a well-known learning tech-
nique that involves repeated exposure to learning
material, usually at increasing intervals, which has
been shown to enhance long-term retention (see
section 2.1). Usually, spaced repetition in language
learning is done by repeating single words or whole
sentences curated by humans. Already a decade
ago, the potential of computational linguistics for
vocabulary learning was identified by Zock et al.
(2014, p. iii): "There is so much more we could
do these days by using corpora and computational
linguistics know-how, to extract the to-be learned
words from text and to display them with their con-
text. Hence, rather than having the user repeat
single words (or word pairs) we could display them
in various contexts (e.g. sentences), thereby mak-
ing sure that the chosen ones correspond to the
learners’ level and interests.." Developing a soft-
ware system that automatically generates sentences

for spaced repetition has the potential to provide
learners with a more efficient learning experience
by generating sentences with many words that are
due for repetition, with more personalized and ver-
satile tasks that make studying more enjoyable and
engaging. Furthermore, it could free up human
language teachers to focus on in-person teaching
instead of writing example sentences.

This work introduces AllAI (Automated Lan-
guage Learning with AI), an application utilizing
NLP to create such a sentence-based approach
to spaced repetition. The app keeps track of the
user’s vocabulary and generates sensible sentences
(spaced repetition "tasks") from only the subset of
words of a language that the user knows and cur-
rently needs to repeat, with some minor amount of
new words that make sense to learn. The user can
then calibrate the spaced repetition of each word
by answering which of the words in the sentence
they correctly remembered. We then investigate
the learning outcomes of using such a system com-
pared to current solutions. As such, the main re-
search questions are the following:

1. Which NLP paradigm and configuration can
optimize spaced repetition timing and best
avoid out-of-user-vocabulary words, while re-
taining high correctness of the generated sen-
tences?

2. How does sentence-based spaced repetition
using the best-performing options from the
first question influence user engagement and
learning outcomes among language learners,
compared to conventional approaches?

The proposed system combines the following
potential advantages over the conventional spaced
repetition approaches mentioned in 2:

1. It honors the minimum information principle.
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2. It shows words in context for a less artificial
learning situation and the possibility to infer
meaning.

3. It can generate a variety of tasks for high nov-
elty value.

4. It could be optimized for additional objectives,
such as entertainment value (e.g. subsequent
sentences could form a story), variety of gram-
mar, or others.

The main contribution of this work is putting the
current and soon-to-be due words of a spaced repe-
tition system into context by investigating different
methods of automating the forming of sentences
with them. We also develop a metric for calculating
the scheduling accuracy and select other metrics to
assess the quality of the output sentences for the
task. We compare a range of candidate methods
and configurations that managed to return sensible
sentences containing target words with regard to
these metrics. We develop an application consist-
ing of a front-end for the user to interact with the
generated tasks and a back-end to do the spaced rep-
etition scheduling and house the developed meth-
ods for sentence generation. Finally, we test the
real-world usefulness of two of the best-performing
methods, a retrieval-based method and a GPT-3.5-
based method using few-shot prompting, in a user
study, assessing learning outcomes and indicators
of user engagement against a baseline similar to
current spaced repetition practices.

We implement and test the system in Danish.
Still, it applies to any language in which the sen-
tences are made up of words and is developed in
such a way that it could teach a different language
if the NLP component is swapped out, e.g. by trans-
lating the prompts of a prompting-based solution
to a different language.

2 Background and Related Work

2.1 Spaced repetition
Previous research has found a large beneficial effect
of computer-assisted language learning (CALL) on
vocabulary learning (Hao et al., 2021). One possi-
ble CALL technique is spaced repetition. Spaced
repetition means reviewing information that one
wants to remember repeatedly and with temporal
spacing between each exposure to the same infor-
mation. A review usually involves the learner being
prompted, trying to recall, and then getting feed-
back. It has been shown to produce better learning
than immediate repetition without spacing, e.g. in

this meta-analysis by Carpenter et al. (2012) for
spacing in general. Based on the idea of physical
flashcards with a prompt on one side and the correct
answer on the other, that are reviewed at increasing
intervals (Leitner, 1972), most spaced repetition
software (e.g. Anki (Elmes), shown as an exam-
ple in figure 1, Mnemosyne (Çakmak et al., 2021),
SuperMemo (Wozniak)) usually show a memory
recall task to the user and expect the user to try to
solve it. Thereafter, the solution is shown, and the
user rates how well they could recall it. The sys-
tem uses the recall quality to calculate the spacing
until the task is presented to the user again, which
should ideally be right before the user is likely to
forget it.

In the context of language learning, spaced repe-
tition can be used for the parts of L2 acquisition that
require memorization, such as vocabulary learning.
There are thus three common approaches for vo-
cabulary retention using spaced repetition systems,
as evidenced by the kinds of card decks users have
published for the Anki app 1. The first one is to use
single pieces of vocabulary as the task, the second
one is to use whole sentences or text snippets, and
the third one is to use single words, but with one
or more example sentences also provided on either
the solution side or both sides of the flashcard. The
main argument for the first practice is the mini-
mum information principle: Each task should be as
minimal as possible, ideally one piece of informa-
tion (Jankowski, 1999), allowing for independent
scheduling of each of the bits of knowledge. On the
other hand, language is naturally used in context,
where words learned in the context of a sentence
reinforce each other, strengthening thus learning
and recall, meaning that remembering words out
of context is a very artificial task and much harder
than if related words are present which can give
hints about the meaning (Ramos and Dario, 2015).
This work sets itself apart from the existing litera-
ture on spaced repetition by examining the effects
of integrating a sentence generation component
that generates sentences for single use on demand,
which makes it possible to keep scheduling single
words and adhering to the minimum information
principle while showing words in context.

1"Shared Decks" https://ankiweb.net/shared/decks/danish
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2.2 Language models, Text Generation and
Language Teaching

A central concept in NLP is the language model
(LM): A statistical model that assigns a probability
to any possible sequence of tokens (Jurafsky and
Martin, 2023). This probability distribution can be
sampled, thereby generating text. The ability of
language models to generate fluent text has signifi-
cantly advanced in recent years, to the point where
they can create text of human-like quality (Fatima
et al., 2022).

With the strong performance of transformer-
based pre-trained models (PLMs), such as GPT-3
(Brown et al., 2020), zero- or few-shot prompting
of these PLMs have gained popularity, profiting
from the excellent general understanding of the
semantics and syntax of language that they can de-
velop through pre-training on large and diverse text
corpora. Recent research has demonstrated that es-
pecially for very large LMs, prompting approaches
can reach similar results to fine-tuning-based ap-
proaches on many NLP tasks, or even outperform
them (Wei et al., 2022; Brown et al., 2020).

Even before the advent of modern language mod-
els, Brown et al. (2005) used a corpus of words with
example sentences to generate cloze questions with
a keyword missing, which the user has to fill in,
to assess language learners’ level. This is similar
to the task this work tries to achieve: generating
sentences based on multiple words that should be
contained. However, they only use one input word
which in their database is already associated with
sample sentences, so the exact approach cannot be
copied for multiple input words. However, using a
retrieval system on a corpus of example sentences
can be a viable approach since queries can con-
sist of multiple words. When it comes to using
LMs in second language teaching, Okano et al.
(2023) try a reinforcement learning approach, as
well as a few-shot prompting approach to make
large language models output sentences contain-
ing specific grammatical structures and find that
both approaches are feasible. Their research was
published after this paper’s experiments were fin-
ished, so it could not be used for inspiration. While
they focus on generating sentences with specific
grammatical structures, this work instead tries to
achieve the use of specific words in the sentence,
which is easier in the sense that instead of transfer-
ring implicit grammatical patterns, the model just
needs to use the same words already given in the

Figure 1: The Anki spaced repetition system, step by
step: a task is presented (left), the solution (translation)
is shown and the user is prompted to rate how well they
remembered (right)

input, but harder in the sense that there are thou-
sands of words that might need to be generated,
while Okano et al. (2023) only had 20 grammatical
structures to optimize for. There have also been suc-
cessful attempts at creating flashcards for spaced
repetition systems using LLMs, such as Gossmann
(2024), Cruz (2023) and Velde (2023). Gossmann
and Cruz focus on summarizing knowledge from
articles into flashcards while Velde is applying their
approach to vocabulary learning. Differently from
what we are attempting, their flashcards are static,
so they will still always show each word in context
of the same information, which is equivalent to the
third existing approach mentioned in section 2.1.

3 Comparing candidates methods for the
sentence generation component

This section describes our simulated study to nar-
row down the methods and configurations that
could optimize the system’s objective to two that
can be tested in the user study.

3.1 System objectives
The system’s objective is to suggest sentences
("tasks") for the user to review, while following as
closely as possible the due dates of the contained
words coming from the spaced repetition scheduler.
This results in the following three main objectives
imposed by the first research question:

1. Maximize the correctness of the sentence

2. Maximize the amount of due and future due
words contained, prioritize by upcoming due
dates

3. Avoid sentences exceeding ten words (which
was the maximum length that three test users
reported not finding overwhelming)

3.2 Simulated Metrics
To automatically evaluate the different methods,
we simulated their use over 20 days by a user who
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remembers any word with an 85% chance and then
calculated the following automated metrics:

1. A scheduling score measuring how well the
spaced repetition scheduling is adhered to and
only due and future due vocabulary is used
(for more details on the scheduler, see 4.1)

2. Too long sentences, to measure the fraction
of sentences that are longer than the ten word
limit from the third objective

We defined the scheduling score as the aver-
age fraction of the scheduling intervals wasted by
scheduling words before they are due or 1 when a
new word is introduced without the user asking for
it, to discourage exponential vocabulary growth. It
can be between zero and one and should be mini-
mized.

S =
1

ntasks

∑

tasks

1

ntaskwords

∑

taskwords

sword

sword =





max(tdue−tnow, 0)
tdue−tlast_seen

if in user vocab

0 user requested new word
1 new word, not requested

Additionally, the correctness of the sample sen-
tences was rated by a human evaluator and GPT-
3.5-turbo-0301. While the human saw 20 samples
per method, the LM saw 1000. They agreed fairly
(Cohen’s Kappa = 0.35), indicating that the LM’s
ratings can be useful when based on larger samples,
but should not solely be relied upon.

3.3 Sentence Generation Methods
We implemented a variety of methods for generat-
ing or selecting sentences for testing purposes. Re-
inforcement learning with a static reward function
(scheduling score) and modifying the probability
distribution of a PLM directly (GPT-2 and OPT-
1.3B) were briefly explored but were not able to
generate at least 50% correct sentences that con-
tained at least one of the words it was given as
inputs. Meanwhile, retrieval of suitable sentences
from a corpus and few-shot prompting did pass and
they were thus moved on to the next stage where we
subjected different configurations to the previously
listed metrics.

The BM25 retrieval algorithm (Robertson and
Zaragoza, 2009) was taken as a starting point for
the retrieval method. It is suitable insofar as it ranks
the sentences based on how many of the query
words they contain and gives reduced importance

the more common a query word is. We modified
BM25 to add query word weights to give a higher
importance to words that are due earlier (e.g. a
word due today gets a higher weight than a word
due tomorrow). We discount query words with
exponential decay the longer in the future they were
due. The following formula was used to rank the
sentences: BM25(query, sentence) =

∑

w∈query

(
idfw

(k1 + 1) · q_freqw

q_freqw + k1(1− b + b sent_len
avgsl )(dtdw + 1)

)

Where idfw, q_freqw, sent_len, avgsl as in BM25,
dtd means days until the word is due for repetition,
k1 = 1.5 and b = 0.75

Same-day repetitions of a task are disallowed by
finding the best-ranking sentence that had not been
previously shown. In addition to this standard ver-
sion described above, we test a version that selects
the task with the best scheduling score among the
25 best-ranking tasks. We chose the Wiki-40B Cor-
pus (Guo et al., 2020) as the source of the sentences
since it is one of the largest corpora for Danish (and
40+ languages in total, allowing for easy adaption,
even though the BM25 would have to be re-tuned
for some languages’ features, e.g. different tok-
enization) with ca. 200MB worth of Danish sen-
tences and, as it is sourced from Wikipedia articles,
contains mostly correct use of the language. We re-
moved sentences with rare words (not in the 25000
most frequent from the language), shorter than two,
or longer than 10 words. After the filtering, the re-
sulting corpus contained 64259 sentences, of which
the average length was 5.9 words.

For the prompting approach, we chose GPT-3.5-
turbo-0301 as the language model since it was the
largest model that was partly trained on Danish data
(0.1%, 220 million words in Danish (Brown et al.,
2020)) at the time of writing, trained to be help-
ful with answering prompts containing instructions
and relatively cheap to use. We explore different
zero and few-shot prompts, with the best perform-
ing one given in appendix A and used for all further
experiments. Input words are taken from the words
scheduled for the current day and upcoming ones if
fewer words were due on the day than the method
takes as input. We also test two different system
messages given to the model before the prompt,
instructing it to generate a maximum of 5 words
in the first and 10 words in a correct and meaning-
ful sentence in the second. We also explore two
temperature settings (0.2 and 0.8), five versus ten
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Figure 2: Influence of different temperatures, number of shots, and number of input words on correctness

input words, and one-, two- and three-shot prompt-
ing. A zero-shot approach resulted too often in
the word list just being returned verbatim, so it
was not further pursued. Similarly to the retrieval
method, the approach of selecting the output with
the best scheduling score out of three generations
was implemented. Returning three generations also
allowed us to filter out incorrect ones by prompting
GPT-3.5 about their correctness before selecting
the best. Not all combinations of these configura-
tions were tested, but only one factor was altered
at a time.

We also explore a hybrid method choosing
BM25 retrieval and GPT-3.5 each with a 50%
chance.

A sample of the outputs of different methods for
different inputs is given in appendix B.

3.4 Results of Simulated Metrics

One of the biggest issues with GPT-3.5 for gen-
erating tasks was a tendency to loop because of
lemmatization or the lack thereof. Above all, it is a
pedagogical question whether the user’s vocabulary
should consist only of the lemmas the user has seen
or all the different forms of these lemmas indepen-
dently, and the answer arguably depends on how
morphologically rich the language is. For simplic-
ity, in this work, it was decided to treat all forms of
a lemma separately since the other approach would
require using a lemmatizer on the generated tasks,
and with the best Danish lemmatizer at the time of
writing having an accuracy of just 0.95, incorrect
lemmas would make it into the vocabulary.

With the previously chosen prompt and param-

eters, GPT-3.5 tends to generate the word form
related to the input word, which best fits the gram-
mar of the sentence, possibly due to not "thinking
ahead" when it starts the sentence, even when a
sentence "Generate the exact words forms given"
was added to the prompt. This tendency leads to
another form being reviewed than is due, while
the due form remains due, thus leading to it being
generated again in the next task, possibly going on
forever.

The retrieval and the hybrid method did not suf-
fer from this problem, since the retrieval method
uses exact matches. The hybrid model could tem-
porarily fall into a loop when using the LM method
but would eliminate the troublesome word from the
due words as soon as it uses the retrieval method,
which it does 50% of the time.

All the different combinations of configurations
tested and their scores on the metrics are given in
appendix C. Figure 2 visualizes the influence of
different parameters on the correctness.

Overall, the scheduling scores are very good,
meaning that most words in the tasks must have
been due on the exact day they were generated.
The fact that most scheduling scores are below 0.1
means that on average, less than one in ten words
in the tasks were out-of-user-vocabulary, and less
than one in five was not due on the day the sen-
tence was generated. Most sentences the best GPT
method generated were correct, however, the user
would see a substantial amount of wrong grammar
or nonsense (around 15% according to the human
evaluator), impacting learning outcomes and possi-
bly motivation. The hybrid method was rated 10%
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Figure 3: Screenshots of a task as seen by baseline (left)
and retrieval/hybrid group (right)

incorrect, which is better but still high.
For the GPT-3.5 models, we found that using a

low temperature parameter of 0.2, five input words,
three shots, a system message instructing the model
to generate up to ten output words, and selecting
the output with the best scheduling score out of
three generated outputs, where outputs rated by
the model itself as incorrect when asked again are
discarded, gave the best results. It was the most cor-
rect out of the variants tested, was tied for the best
scheduling score, and had an acceptable amount
of sentences that were longer than the goal of ten
words. Thus, it was decided to use this config-
uration in the hybrid model. When it comes to
the BM25 models, unsurprisingly all of them were
rated 100% correct. Using the best-out-of-25 strat-
egy improved the scheduling score and had no other
downsides, and was thus chosen as the retrieval
method to test in the user study and to be part of
the hybrid model. As was to be expected with the
hybrid model using two models 50% of the time
each, most metrics come in right between the used
GPT-3.5 model and the used BM25 model. Thus,
solving the looping problems and performing de-
cently in the metrics, it was decided that the hybrid
model is adequate to be the way how LM gener-
ated tasks are tested in the user study. No purely
LM-based model was selected since the looping
problem would have too big an impact on the user
experience.

4 User study

In addition to the two selected methods, a baseline
method was developed to allow for comparison to
the proposed methods in the user study. As the
baseline, it was chosen to associate a set sentence

(the one with the best BM25 score) with each word
in the vocabulary, which is then shown when the
word is due. The due word is specially marked and
only it can be reported as remembered correctly
or not for the spaced repetition. This mimics the
common approach of putting a single word on the
spaced repetition flashcard, accompanied by some
example sentences, as identified in section 2.1, but
is put into a comparable format to how the two
selected methods are presented to the user.

4.1 Test system design
For the user study, a progressive web app was de-
veloped as a front-end for the user to interact with
the generated tasks. Upon opening the app, a user
would see the first generated task (figure 3). After
thinking about a translation to the task, they click a
button to show the solution. They would then mark
all words in the task that they did not remember
correctly (or had never seen before). Through see-
ing a solution and the option to click a dictionary
icon next to the words they marked, they could
learn the meaning of new words, and refresh their
memory of old ones. This is shown in figure 4 on
the left. After selecting all unknown words, they
would press the button again to be shown the next
task, and so on, until they either wanted to stop,
or they had reviewed all words that, according to
the spaced repetition system, were due on the day.
At that time, a "done for today" screen was shown,
as seen in figure 4 on the right. This was intended
as a natural stopping point for users, however, if
they were motivated enough to spend more time,
they were given the option to add five new words
to the vocabulary and the system would generate
tasks containing these words and show them imme-
diately. This option could be used repetitively, so
the user could study for as long as they wanted. To
schedule the spaced repetition, the SM-2 algorithm
(Wozniak, 1990) was chosen, a variation of which
is for example used by Anki (Elmes), one of the
most widely used spaced repetition programs. One
simplifying modification was made: While the SM-
2 algorithm grades responses on a six-point scale
to express how difficult it was to recall the informa-
tion, a two-grade scale was used, corresponding to
grades 1 (not recalled) and 4 (recalled correctly) in
the original SM-2 algorithm.

Whenever the user requested to learn new words
(beyond those that the retrieval and hybrid method
would generate by accident in the sentences), five
new words were added to the vocabulary starting
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Figure 4: Screenshots of solution being shown with
two words selected as unknown (left), and "done for
today" screen (right) with the interestingness prompt
being shown, as described in section 4.2

at the most frequent ones in the language, using
the WordFreq (Speer, 2022) frequency list Python
module.

4.2 User study setup and metrics

26 test users were recruited for the user study,
mainly through social media from the researchers’
acquaintances. The only exclusion criterion was
that the user should not be completely fluent in
Danish. The test users can thus not be assumed to
be representative of the general population. Par-
ticipants were shown an initial questionnaire, col-
lecting demographical information and their back-
ground in language learning and initial motivation,
which were treated as potential confounding vari-
ables. Participants were aged 19 to 56 (mean 28.9,
std 11.1). 9 were female and 17 male and they had
15 different native languages. 17 were living in
Denmark and 9 had never lived there. Those in
Denmark had lived there from ten months up to
6 years (mean 2.5 years, std 1.4 years). 14 had
learned Danish before and out of them, 10 of these
had used the language outside of a class context.
23 had previously used other language-learning
apps. Users reported an average motivation of 3.1
on a 1-5 scale, std 1.0) and mainly career prospects,
curiosity, and social life as the motivating factors.

The participants were allocated randomly into
the three intervention groups using blocked ran-
domization, the two blocks being those who previ-
ously had learned Danish and those who had not.
The study was double-blind, except that the tasks
were presented with only one word highlighted to
the baseline group. This means that if two par-

ticipants compared, they could find out about not
being in the same group, but not whether they were
in the treatment or control group. It lasted ten days,
during which users were allowed to choose freely,
how much time they would like to spend using the
app. The following metrics were collected either
from usage data or questionnaires to assess learning
outcomes and user engagement:

1. User vocabulary growth (words remembered
minus words known at first exposure)

2. Time efficiency (words remembered / minute
spent)

3. Word effectiveness (new words remembered /
words seen)

4. Number of distinct words seen
5. Total time using the system
6. User’s self-reported interestingness, enjoy-

ment, perceived learning, challengingness,
and confusion at random points while learn-
ing, prompt shown in figure 4 on the right

The data was analyzed for correlations between
all the metrics and demographical data, in case
these uncovered some major confounding fac-
tors. For the significance testing, the one-sided
Mann–Whitney U test (Mann and Whitney, 1947)
was used to determine the significance of the differ-
ences between the groups with regard to the metrics.
It tests whether a probability distribution is greater
than the other and does not assume normally dis-
tributed data. Results were considered significant
if the p-value was smaller than 0.05.

4.3 Results of User Study and Discussion
During the user study, the single-word group only
saw 98 different tasks, the retrieval group saw 319,
and the hybrid group had 400 distinct tasks. Dif-
ferences were mainly observed in total vocabu-
lary growth, efficiency (figure 5), and enjoyment.
Please see appendix D for a table and figures of
the main results. The users’ vocabulary grew by
a 7 word median but with a high standard devi-
ation of 19.3. Both the group using a language
model and the pure retrieval group achieved around
four-fold greater time efficiency of their vocabu-
lary growth than the single-word group, while see-
ing three times more words and four-to-six times
higher overall vocabulary growth, even though the
latter was not significant for the hybrid group. In all
of the user-reported metrics related to engagement,
the intervention groups fared slightly better than
the single-word baseline, but the difference was
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Figure 5: Box plot of the efficiency (vocabulary growth
per minute) in the different groups

only significant for enjoyment, where the retrieval
group had significantly higher ratings than hybrid
(p=.028) and baseline group (p=.042). Most users
in this group reported enjoying using the app.

These results indicate that, compared to single-
word spaced repetition with set assigned sentences,
generating or selecting dynamic sentences based
on multiple due words, can indeed increase learn-
ing outcomes and user engagement. It seems likely
that using sentence-based spaced repetition first
and foremost manages to show users more new
words to learn in less time, especially for begin-
ners (Negative correlation Pearson’s r = −0.4 be-
tween vocab growth and previous knowledge). This
increases efficiency and vocabulary growth since
users still retain the same fraction of words seen
or even slightly more when they focus on several
words in the sentence and see words in various con-
texts. The increased efficiency then probably leads
to higher enjoyment (Pearson’s r = 0.5 between
efficiency and enjoyment).

The differences between the two intervention
groups have mostly been minor. Still, they were
significant for enjoyment and almost significant for
efficiency, which could have led to the increased
enjoyment.

5 Implications

The results mean first and foremost, that using a
sentence-based spaced repetition scheme should be
preferred over using single-word spaced repetition,
even when the single word is shown in the context
of an example sentence. This will show users more
vocabulary in less time, increasing efficiency and
thus enjoyment.

Since a retrieval model is far less costly in terms
of computing costs and there is light evidence that

it is the more time-efficient and enjoyable option,
it could be advisable to prefer retrieval over LM-
based options, but this would have to be proven
in a bigger trial to achieve significant results after
Bonferroni corrections (see limitation in section 7).

On the other hand, even though this specific
prompting-based LM method and configuration
could not outperform retrieval, with the current
rapid advancements in LM size and tasks they can
perform through prompting, other LMs e.g. GPT-
4, which has substantially more parameters than
GPT-3.5, could improve correctness and possibly
number of due words in the prompt.

While our experiments compared the proposed
system to a conventional baseline under similar
conditions and presentation, we can also compare
the results to previous literature. Thorndike (1908)
studies learners’ efficiency of learning lists of word
pairs and mentions an average of 0.57 words per
minute, with 0.34 recalled words after 42 days.
Thus, it seems that hybrid and retrieval groups with
mean of 0.54 and 0.6 words per minute recalled
after a few days had a higher efficiency than the
results from Thorndike’s study, even though not
directly comparable, since Thorndike’s study did
not have the problem of time being wasted on pre-
viously known words, which we did not count for
vocabulary growth.

6 Conclusion

The aims of this work were first to identify NLP
paradigms and configurations for sentence gener-
ation that can optimize spaced repetition timing
and best avoid out-of-user-vocabulary words, while
keeping the correctness of the generated sentences
as high as possible, and then to quantify these meth-
ods’ influence on user engagement and learning
outcomes among language learners, compared to
conventional approaches.

Two methods of achieving these goals were de-
veloped: one based on retrieval of suitable sen-
tences from a corpus of high-quality sentences us-
ing many upcoming due words as queries, and the
other was few-shot-prompting a PLM to generate
sentences from a subset of the due words. Both
methods were found to be able to form sentences
comprised mostly of words from the user vocab-
ulary, soon to be due and mostly correct, thereby
reaching the objectives. While the retrieval method
reached 100% correctness, the LM method opti-
mized the spaced repetition scheduling even better
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but had worse correctness and had an unsolved
problem with looping due to the treatment of lem-
mas, despite multiple countermeasures, making
it unsuitable for deployment to users. A hybrid
method switching between retrieval and LM gener-
ation could solve the looping problem while opti-
mizing the research question’s objectives.

Consequently, the hybrid and the retrieval
method were compared to a baseline to answer the
second research aim. It was found that the proposed
sentence-based spaced repetition significantly in-
creased learning outcomes (four-to-six-fold) com-
pared to the baseline, primarily by increasing ef-
ficiency and vocabulary growth by showing more
words more quickly, without decreasing the frac-
tion of words remembered by learners. In the re-
trieval group, a significantly higher enjoyment was
observed, possibly due to the higher efficiency, hint-
ing at a higher user engagement.

It can thus be concluded that it is beneficial to use
the proposed sentence-based spaced repetition over
the conventional approach and that the retrieval
approach might be advisable over LM-based or
hybrid approaches, but that a bigger trial comparing
the two is necessary, and further developments,
such as fixing problems with lemmatization and
looping and higher correctness possibly achievable
with newer language models could improve the
results when using a more advanced LM based
method in the future.

7 Limitations

Convenience sampling has been employed to
choose study participants. Participants were very
diverse in some aspects such as native language,
but very homogeneous in others, such as previous
usage of language learning apps. This means that
participants are not representative of the general
population. While it can be reasonably assumed
that learning works similarly in all humans, the
evidence for the effect observed is strongest for
people similar to the participants. It might not be
generalizable to persons with completely different
backgrounds, for example school children, a large
sub-group of language learners.

The recruitment through acquaintances could
affect the user-reported metrics through the social
desirability bias, making participants more likely
to give more favorable ratings. This has been partly
mitigated by emphasizing the anonymity of the
participants’ answers, but it cannot fully be avoided.

However, it affects all test groups equally, since
users did not know which intervention they had
been assigned to, so the results remain comparable
between the groups.

Furthermore, the sample size was small with 26
participants, looking at a population of hundreds of
thousands of Danish learners or possibly billions of
persons learning languages in general. This sample
size might not have been big enough to detect some
possible differences between the hybrid group and
the control group or the retrieval group and the
hybrid group. It was, however, big enough, to
detect some of the most pronounced effects that
this work tried to assess.

The user study analyzed the differences between
three groups in eleven metrics for significance us-
ing a 0.05 p-value threshold. The large number of
comparisons makes false positives more likely to
occur. While it can be assumed that the majority of
differences reported as significant are indeed signif-
icant, it should be noted that the use of Bonferroni
correction, to reduce the total possibility of having
any false positives to 0.05, would only leave the
difference between the efficiency of the retrieval vs
single group as significant.

The duration of the user study of ten days also
only allows for drawing direct conclusions for
short-term use, but, this was tried to be mitigated
by measuring engagement as a possible predictor
of long-term learning outcomes.

The choice of Danish as the language for the user
study is a slight limiting factor for generalizability.
While it is reasonable to assume that learning hap-
pens in a similar way and is influenced by similar
factors in most languages, details about the lan-
guage such as its morphology, e.g. having many
word forms for each lemma, could lead to reduced
or increased suitability of the proposed approach
and possibly increased importance of storing user
vocabulary as lemmas instead of word forms.
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A Few shot prompt

The following few-shot prompt was selected as it was the best performing of several variations tried:

Lav en korrekt sætning med de givne ord.

###

ord: en har at sådan; sætning: Vi har ønsket, at der var en løsning.
ord: nyhed for god rimmelig; sætning: Det er en god nyhed for os!
ord: rigtigt se hellere i udenfor københavn; sætning: Jeg vil hellere

kunne se rigtigt udenfor.
ord: [List of 5/10 due words]; sætning:

Figure 6: Three shot prompt (First line translates to "Make a sentence with the given words". "ord" translates to
"words", "sætning" to "sentence".)
The one and two shot version only used the first or first two of these examples.

B Output samples of each method

Method Input Words Output Sentence

single det Det er det ikke.

single trygt I mellemtiden
havde Wilhelm
været i Rom.

retrieval i, og, er, af, det, at, en, til, på, jeg Jeg er en mand.

retrieval trygt, udland, undre, er, deltage, hun, zone, forsøger, dannede, ét, kemisk, træk,
typer, tyst, ulovlig, klage, på, mio, det, retten, også, manager, general, tavs, forgæves,
samfundet, party, præsidenten, højesteret, spurgt, derpå, af, overvejelser, episk, privatliv,
historiske, beskyttelse, danskerne, tegnede, ting, som, udgang, markedsføring, ledsaget,
de, blå, brikker, en, jeg, mand, rejste, rose, mary, 2, nu, lider, mini, israel, willie, derfor,
vi, coffee, grund, stof, fikset, medlemskab, o, airways, british, for, hjørring, mørkt, der,
ud, henrettet, til, stk, køber, blev, i, little, viden, at, og

Det dannede stof
er ét kemisk stof.

gpt3.5 en, er, af, på, jeg Jeg er på en mis-
sion.

gpt3.5 trygt, udland, undre, er, deltage Jeg undrer mig over,
om det er trygt at
deltage i aktiviteter
i udlandet.

Table 1: Word Lists and Sentences for each of the three selected methods, first for a new user, then after a few
iterations of studying. Input words used in the output are in bold, or in italic if not the exact form but the same
lemma.
In line 2, there was no sentence in the corpus containing this word form. In line 4, the exact same sentence had been
generated on a previous day.
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C Results of simulated model evaluation

Model Tempe-
rature

Input
Words Shots System

Message
Best out of n,
critera

Sched
score

>10
words

Incorrect
(GPT | Human)

gpt3.5 0.2 5 3 none 3, best sched score 0.068 18.7% 8.5% | 50%

gpt3.5 0.2 5 3 1 3, best sched score 0.124 5.4% 11.5% | 25%

gpt3.5 0.2 5 1 2 3, best sched score 0.094 7.0% 25.3% | 55%

gpt3.5 0.2 5 2 2 3, best sched score 0.068 12.7% 20.2% | 45%

gpt3.5 0.2 5 3 2 3, best sched score 0.070 19.1% 8.0% | 20%

gpt3.5 0.2 5 3 2 3, prefer correct
->best sched score 0.068 19.6% 4.2% | 15%

gpt3.5 0.8 5 3 2 3, prefer correct
->best sched score 0.082 13.1% 14.6% | 40%

gpt3.5 0.2 10 3 2 3, prefer correct
->best sched score 0.077 44.1% 11.0% | 35%

BM25 - 25 - - 1 0.113 9.9% 0% | 0%

BM25 - 25 - - 25, best sched score 0.098 8.5% 0% | 0%

Hybrid 0.2
5 (LM) /
25
(BM25)

3 2
3 (LM) / 25 (BM25),
prefer correct ->
best sched score

0.078 11.2% 4.5% | 10%

Table 2: Comparison of the considered models’ and parameters’ scores on the metrics.
System messages:
1: "Du er conciseGPT, dine svar er meget korte, maks 5 ord.",
2: "Du er conciseGPT, dine svar er meget korte, maks 10 ord, men korrekte og giver mening."
The column "Best out of n, criteria" describes how many outputs were generated by the method and the criteria by
which the best was selected as the final output. "Prefer correct" means that out of the n results, only the correct ones
(determined by prompting GPT-3.5) were considered for the next criterion. If none was correct, all were considered.
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D Results of user study

Method Vocabulary
Growth

Time
Efficiency
(words/min)

Word
Effectiveness

Words
Seen

Total Time
Spent (min)

Median 7 0.38 0.12 46.5 17.4
Mean 11.5 0.43 0.15 65.3 23.7Overall
Std 19.3 0.35 0.13 82.0 27.5
Median 1.5 0.10 0.05 15.0 16.4Single
Mean 3.4 0.14 0.12 24.0 21.9Word
Std 4.1 0.16 0.15 19.5 25.0
Median 6.0 0.38 0.12 55.0 17.1
Mean 18.8 0.54 0.16 78.0 27.3Hybrid
Std 31.0 0.42 0.14 82.4 39.3
Median 10.0 0.59 0.17 48.0 26.2
Mean 11.4 0.60 0.18 89.4 21.7Retrieval
Std 7.7 0.24 0.12 106.6 15.9
hybrid ≤ single 0.056 0.003 0.005
retrieval ≤ single 0.017 0.001 0.034p-value
retrieval ≤ hybrid 0.089

Table 3: Results of the measured metrics of the user study (p-values only shown if <0.1

Figure 7: User ratings of "This is interesting" across the different groups (1 = disagree, 5 = agree)

Figure 8: User ratings of "I am enjoying this" across the different groups (1 = disagree, 5 = agree)
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Figure 9: User ratings of "I am learning a lot" across the different groups (1 = disagree, 5 = agree)

Figure 10: User ratings of "This is challenging" across the different groups (1 = disagree, 5 = agree)

Figure 11: User ratings of "I am confused" across the different groups (1 = disagree, 5 = agree)
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Abstract

Although effective revision is a crucial
component of writing instruction, few au-
tomated writing evaluation (AWE) sys-
tems specifically focus on the quality of
the revisions students undertake. In this
study, we investigate the use of a large
language model (GPT-4) with Chain-of-
Thought (CoT) prompting for assessing
the quality of young students’ essay re-
visions aligned with the automated feed-
back messages they received. Results in-
dicate that GPT-4 has significant potential
for evaluating revision quality, particularly
when detailed rubrics are included that de-
scribe common revision patterns shown by
young writers. However, the addition of
CoT prompting did not significantly im-
prove performance. Further examination
of GPT-4’s scoring performance across var-
ious levels of student writing proficiency
revealed variable agreement with human
ratings. The implications for improving
AWE systems focusing on young students
are discussed.

1 Introduction

The ability to write is foundational to academic
success. Yet, national assessments show that nearly
three-quarters of students in the United States
are not proficient writers (NCES, 2012). A well-
recognized approach for improving students’ writ-
ing skills is to engage students in cycles of revis-
ing their essays in response to formative feedback
(Graham and Perin, 2007; Graham and Sandmel,
2011). However, students rarely receive substan-
tive formative feedback on their writing for mul-
tiple reasons. First, teachers can be reluctant to
assign writing tasks that require students to work
across drafts because providing formative feedback

is time-consuming (Graham et al., 2014). Second,
teachers can feel unsure about how to provide feed-
back to improve students’ essay quality (Brindle
et al., 2016). Finally, research shows that teachers
are inconsistent in their feedback practices, and
tend to focus on surface-level features of students’
writing rather than the content of students’ ideas
and reasoning (Matsumura et al., 2002, 2023).

Automated Writing Evaluation (AWE) systems
are gaining prominence as one approach to in-
creasing students’ opportunity to receive formative
feedback. While research suggests that teachers
generally respond positively to AWE systems and
can see them as helpful time savers (Grimes and
Warschauer, 2010; Palermo and Thomson, 2018),
evidence is modest that AWE systems improve the
quality of students’ writing in the elementary and
secondary grades (Graham et al., 2015). One rea-
son why students’ writing may not improve in re-
sponse to automated feedback is that they often lack
the skills necessary for effective revision (Roscoe
et al., 2013; Wang et al., 2020). Wang et al. (2020)
found that only 18% of students successfully imple-
mented the feedback messages they received from
an AWE system. For example, when asked to pro-
vide more evidence for their claims, students com-
monly repeated the examples that they had cited
before. This highlights the importance of provid-
ing students with feedback that builds their revision
skills, in addition to feedback that improves their
writing quality.

Given that formative assessment fosters writing
skill development by establishing and reinforcing
clear criteria for successful writing (Matsumura
et al., 2023), it is notable that few assessments
target students’ revision skills. Building on the
previous discussion about the necessity of teach-
ing students how to revise, we believe that forma-
tive assessments that precisely establish the criteria
for effective revision can provide information to
students and teachers about the extent to which
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revision goals are met and offer guidance for imple-
menting revision feedback. To address this gap, our
team developed a rubric for holistically assessing
revision quality (Wang et al., 2020). By ‘revision
quality’, we specifically examine whether revisions
students made were aligned with the feedback pro-
vided, and the extent to which it improved the essay
with respect to evidence use. This is in contrast to
revisions that may improve essay quality in ways
not aligned with the content of feedback messages.

In the context of AWE systems, automatically
assessing the revision process is a necessary area
of development. Most systems have focused on
assessing overall improvement in essay quality. Al-
though these systems can detect revisions, they tend
to assign scores or provide feedback based on the
overall essay quality, rather than attend to the qual-
ity of the revisions undertaken (Foltz and Rosen-
stein, 2017; Mayfield and Butler, 2018). Recent
advancements in large language models (LLMs)
show significant promise for analyzing and evalu-
ating student revision quality. GPT-4, standing out
among these models, specifically has been shown
to generate scores that are comparable to those
given by human evaluators (Mizumoto and Eguchi,
2023; Naismith et al., 2023; Tate et al., 2023; Xia
et al., 2024; Xiao et al., 2024). While most of
these studies have concentrated on GPT-4’s ability
to assess writing quality, our study extends previ-
ous research by investigating the effectiveness of
GPT-4 for evaluating revision quality with differ-
ent prompting strategies. Given that students often
find essay revision challenging, it is essential to
provide a revision score that reflects diverse revi-
sion patterns. This study represents an initial step
in exploring GPT-4’s capability to score revisions,
setting the stage for offering personalized feedback
on students’ revision practices in future research.

In this study, we specifically explore GPT-4’s
performance in assessing the revision attempts of
young students (ages 10 to 12) who often exhibit
less structured and sophisticated writing styles.
Given that most existing research concentrates on
evaluating essays by adolescents and adults (e.g.,
Naismith et al., 2023; Xiao et al., 2024), it is of
interest to explore how GPT-4 adapts to the writing
of younger age groups. In addition, as students
may display a wide range of writing proficiency,
it is crucial to ensure that GPT-4 does not exhibit
systematic biases that could compromise scoring
accuracy.

Two research questions are addressed:

1. How accurately can GPT-4 assess the revision
quality of students’ argumentative writing in
comparison with human raters?

2. How does GPT-4’s performance in evaluat-
ing revisions vary across different levels of
students’ argumentative writing abilities?

2 Data

In this section we describe the dataset of students’
essays, the rubric used for assessing students’ re-
vision quality, and the process for evaluating these
revisions by human raters.

2.1 RTA space dataset

The corpus for our investigation is drawn from a
study of eRevise, an AWE system designed to im-
prove students’ argumentative writing in the fifth
and sixth grades (Correnti et al., 2022; Zhang et al.,
2019). eRevise was designed to score responses
and provide feedback to students on the Response-
to-Text Assessment (RTA). The RTA aims to assess
the quality of students’ ability to reason about texts
in their writing and to use text evidence to support
their claims (Correnti et al., 2012; Correnti et al.,
2013). The form of the RTA used in this study is
based on a non-fiction article about government
funding for space exploration (RTASpace). To ad-
minister the RTA, a teacher reads the text aloud to
students as they follow along with their copy of the
article. The teacher also poses planned questions
at certain points in the articles and defines some
vocabulary words to ensure that all students com-
prehend the article in advance of writing. Students
respond to the following prompt:

Consider the reasons given in the article
for why we should and should not fund
space exploration. Did the author con-
vince you that “space exploration is de-
sirable when there is so much that needs
to be done on Earth”? Give reasons for
your answer. Support your reasons with
3-4 pieces of evidence from the text.

After students submit their first drafts, the sys-
tem uses NLP features generated during the auto-
matic scoring of students’ initial essays (including
the number of pieces of evidence, specificity of ev-
idence, concentration of evidence, and word count)
to select formative feedback on evidence. There
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Figure 1: Human rater evaluation steps

are three levels of feedback (Appendix A). Feed-
back Level 1 focuses on completeness (i.e., guides
students to provide more evidence) and guides stu-
dents to be more specific about the evidence they
reference. Feedback Level 2 also directs students
to be more specific, in addition to explaining their
evidence. Finally, Feedback Level 3 guides stu-
dents to explain their evidence and connect it to
their overall argument (Correnti et al., 2020; Wang
et al., 2020). After receiving the tailored feedback,
students make revisions to their essays accordingly.

The RTASpace dataset contains a total of 600 es-
say pairs, which include both initial and revised
essay drafts, collected from thirty-four fifth and
sixth-grade ELA teachers in Louisiana who partic-
ipated in the study during the 2018-2019 school
year.

2.2 Human assessment of students’ revision
quality

Our team developed a holistic rubric to assess revi-
sion quality based on a detailed qualitative analysis
of how fifth and sixth graders applied the auto-
mated feedback they received (Wang et al., 2020).
We identified four levels of revision: 0 = No at-
tempt at implementing feedback; 1 = Attempted
to implement feedback, but no improvement in ev-
idence use; 2 = Slight improvement in evidence
use; 3 = Substantive improvement in evidence use.
These four levels of revision were further trans-
formed into a sequential flow of reasoning steps
that guide human raters’ scoring process (Figure
1). In addition, since initial drafts were categorized
into three levels, each offering different focuses

for revision, the ways in which students attempt
to apply the feedback could vary. As a result, be-
yond the four abstract criteria used to assess the
quality of revisions, the rubric was supplemented
by specific, frequently observed patterns identified
by human raters at each revision score (Appendix
B).

For example, if a student receives Feedback
Level 1 which focuses on the completeness and
specificity of evidence, a successful revision (score
3) involves adding more than one new piece of
evidence from the text that was not previously men-
tioned. A revision score of 2 is assigned when
students repeat the same evidence already provided
or a score of 1 is given if they fail to align their
changes with the Feedback Level 1 messages; for
example, instead of introducing new evidence they
only provide explanations for the evidence they had
used in their first draft. Feedback Level 2 focuses
on the specificity and the elaboration of existing
evidence; thus, a revision score of 3 is assigned
if students add significant detail or explanation to
more than one piece of evidence. Conversely, a
score of 2 is assigned if students merely paraphrase
the existing evidence, and a score of 1 is applied
if students, contrary to the focus of the feedback
message, add new evidence instead of elaborating
on their existing evidence. Feedback Level 3 em-
phasizes explaining existing evidence and its con-
nection to a claim. A revision score of 3 is assigned
if students provide a strengthened explanation for
more than one piece of evidence. A less successful
revision may result from offering relatively brief or
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repetitive explanations (score 2), or from misalign-
ment with the feedback message (score 1). This
would be shown, for example, by students merely
elaborating on their evidence without effectively
connecting it to their claim. These detailed patterns
associated with each score thus provide a nuanced
guide for humans evaluating revisions.

To evaluate the quality of revisions, human raters
began by identifying the changes students made
to their essays. Each pair of essays, consisting
of the initial and revised versions, was placed in
separate Word documents. By using the "Com-
pare Documents" feature in Word, the document
highlighted areas where students added, deleted, or
modified text. Then, taking into account the feed-
back level of the initial draft, human raters used
the revision rubric (Appendix B) to determine the
revision score.

Three human raters engaged in the evaluation
process, which was divided into two phases. In the
first phase, the primary rater, who played a crucial
role in developing the rubric, trained the second
rater to score the first 300 essay pairs. Sixty essay
pairs were randomly selected from the three feed-
back levels and were coded by both raters. The
interrater agreement for these pairs was 82% for
exact matches and a Quadratic Weighted Kappa
(QWK) of 0.74, demonstrating substantial consis-
tency. In the second phase, the second rater, now
experienced, trained the third rater to assess the
remaining 300 essay pairs. This time, 30 essay
pairs selected from the three feedback levels were
double-coded for calibration. The interrater agree-
ment reached 83% for exact matches and a QWK
of 0.75, which again indicated a substantial level
of reliability. The distribution of human revision
scores at each feedback level is shown in Table 1.

Revision
Score 0
N (%)

Revision
Score 1
N (%)

Revision
Score 2
N (%)

Revision
Score 3
N (%)

Feedback
Level 1 36 (26.67%) 40 (29.63%) 42 (31.11%) 17 (12.59%)

Feedback
Level 2 53 (17.15%) 119 (38.51%) 104 (33.66%) 33 (10.68%)

Feedback
Level 3 29 (18.59%) 56 (35.90%) 54 (34.62%) 17 (10.90%)

Table 1: Distribution of human revision scores at
each feedback level

3 Experimental design

3.1 Experiment 1: Zero-shot prompt design
(Baseline model)

In the initial experiment, we assessed GPT-4’s ca-
pability in evaluating the quality of students’ revi-
sions to their text-based argumentative essays. The
prompt was structured in the following order (see
Appendix C for the prompt details):

1. Scoring task: This section outlined a clear
scoring task for GPT-4. It introduced the
stages where students were in their text-based
argumentative writing tasks, having com-
pleted their first draft and then finished their
second draft based on the feedback received.
The feedback messages provided to students
were incorporated into the prompt.

2. Writing task: This section introduced the text
that formed the basis for the students’ essays.
The writing prompt was also included.

3. Detailed scoring rubric: The aforementioned
revision rubric with the concrete revision pat-
terns was included.

4. Student first and second drafts: To assess the
quality of revisions, both the first and second
drafts of student essays were provided.

3.2 Chain-of-Thought prompt design
We tested two different strategies of Chain-of-
Thought (CoT) for improving the performance of
GPT-4.

Experiment 2: One-shot CoT with human rater
rationale
We provided GPT-4 with one example for each
feedback level, all identified as successful revi-
sions (holistic score of 3), accompanied by the
human raters’ rationale for their ratings (Appendix
D). Considering that all essays came from fifth and
sixth graders who were in the process of learning
how to write argumentative essays, including suc-
cessful revision examples in the prompt can aid
GPT-4 in adjusting its scoring to reflect a more ap-
propriate standard for young learners as opposed
to the more advanced revisions that would be ex-
pected of adults. By presenting the rationale of
human raters, our goal was to instruct GPT-4 to fol-
low intermediate reasoning steps that human raters
would apply. We further asked GPT-4 to provide
a rationale for scoring before giving its score with
the aim of eliciting a chain of reasoning.
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Experiment 3: One-shot CoT with intermediate
steps
To improve GPT-4’s ability to use the rubric ef-
fectively, the rubric was transformed into a se-
quential flow of reasoning steps. This approach
aimed to guide GPT-4 through the evaluation pro-
cess in a step-by-step manner, closely simulating
the decision-making pathway used by human raters
(Figure 1). In addition, we also provided one exam-
ple of successful revision for each feedback level
in the prompt to support GPT-4 to adjust its scor-
ing to reflect an appropriate evaluation standard for
young students. We further asked GPT-4 to provide
a rationale before giving its score with the aim of
eliciting a chain of reasoning.

4 Results

4.1 Research question 1: How accurately can
GPT-4 assess the revision quality of
students’ argumentative writing in
comparison with human raters?

We conducted three experiments employing GPT-4
combined with CoT prompting strategies to assess
their effectiveness in predicting the holistic scores
for writing revision quality. Our primary evaluation
metrics were Quadratic Weighted Kappa (QWK),
which are widely used in automated essay scoring
(AES) tasks.

Zero-Shot
One-Shot

CoT
(Human rationales)

One-Shot
CoT

(Intermediate steps)

Exact
Agreement 52.00% 54.50% 36.33%

Quadratic
Weighted

Kappa
0.60 0.60 0.46

Table 2: Overall revision score agreement rate

In the initial zero-shot prompting experiment,
which served as our baseline, we observed an ex-
act agreement rate of 52.00% and a QWK of 0.60,
which suggested a moderate level of agreement
between human raters and GPT-4 (Table 2). In
our second experiment, we introduced a single ex-
ample of a successful revision (revision score 3)
along with the human rationale for that score at
each feedback level. This approach improved the
exact agreement rate to 54.50% while the QWK
remained unchanged. Overall, by applying detailed
rubrics with specific and concrete revision patterns
corresponding to each score, GPT-4 demonstrated
notable potential for assessing the quality of student

revisions. However, while many studies indicate
that including examples with human rating ratio-
nales greatly outperforms baseline models (e.g.,
Xia et al., 2024; Yancey et al., 2023), our second
experiment only found a slight improvement in the
exact agreement between human raters and GPT-4
when the one-shot CoT was applied.

Furthermore, the rubric used in the baseline and
second experiment was developed from observa-
tions made by human raters adhering to the scor-
ing procedure. As the rubric only contains the
most common revision patterns under each revision
score, the rubric may not capture the full depth of
our evaluation criteria for student revision quality.
Thus, we introduced a structured three-step scoring
process as a novel form of Chain-of-Thought to as-
sess whether GPT-4 could mimic the human think-
ing process during complex tasks. However, this
approach yielded a significant decrease in agree-
ment rates. Specifically, as shown in the third col-
umn in Table 2, the exact agreement rate decreased
to 36.33%, while the QWK dropped to 0.46. The
outcomes implied that a rubric with clearly defined
patterns for student revisions outperforms the more
explicit but abstract scoring process used by human
raters.

4.2 Research question 2: How does GPT-4’s
performance in evaluating revisions vary
across different levels of young students’
argumentative writing abilities?

We further explored the extent to which the level
of agreement between GPT-4 and human raters var-
ied with students’ argumentative writing skills. As
previously described, we categorized students’ ini-
tial drafts into three levels based on the number of
pieces of evidence, specificity of evidence, concen-
tration of evidence, and word count. Students with
Level 1 drafts were advised to improve their writing
by adding more evidence, while those with Level 2
and 3 drafts were guided towards more advanced
revisions centered on the elaboration and explana-
tion of the evidence provided. From Table 3, it’s
evident that GPT-4 exhibits a markedly higher level
of agreement with human scoring when assessing
revisions in Level 1 essays, a pattern that persists
across all three prompting strategies. Especially
when one-shot CoT prompting is applied, we ob-
served a notable enhancement in the precision of
scoring predictions for Level 1 essays in contrast
to Level 2 and Level 3, with the exact agreement
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Zero-Shot One-Shot CoT
(human rationales)

One-Shot CoT
(intermediate steps)

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Exact Agreement 60.00% 47.90% 53.21% 65.93% 50.16% 53.21% 55.56% 30.74% 30.77%
Quadratic Weighted Kappa 0.73 0.53 0.58 0.77 0.54 0.54 0.71 0.38 0.43

Table 3: Revision score agreement rate at each feedback level

Figure 2: Confusion matrices of one-shot CoT prompting at each feedback level

increase from 60.00% to 65.93%, and the QWK
from 0.73 to 0.77. This result suggests that GPT-4
is more likely to accurately evaluate the more con-
crete and straightforward task of adding evidence
compared to evaluating evidence elaboration and
explanation.

In contrast, the revision score agreement for
Level 2 is lower than for Levels 1 and 3 across
all three prompting strategies. Students with Level
1 or Level 3 essays were guided to focus exclusively
on one aspect of revision: adding new evidence or
adding explanations. Students with Level 2 drafts
were in a middle position, as they were instructed
not only to elaborate on the evidence but also to
offer some explanations. When it comes to assess-
ing the revision quality of draft 2, GPT-4 needs
to examine revisions from two aspects, and this
complexity may result in its inaccuracy. This result
reemphasizes the potential limitations of GPT-4’s
accuracy in evaluating multifaceted tasks than sim-
pler ones.

As the second experiment that applied one-shot
CoT prompting demonstrated a relatively higher
agreement among all three strategies, we focused
on this condition for error analysis. Confusion ma-
trices in Figure 2 reveal a strong consensus among
humans and GPT-4 on the assignment of score 0
across all three levels, indicating no attempt at re-

vision in the students’ first drafts. Although the
prediction of score 0 is highly accurate at Level 1,
at Levels 2 and 3, despite being moderate, the ac-
curacy of predicting score 0 diminished as GPT-4
tended to assign higher scores. A key factor could
be that human raters might take into account the
length of the student’s initial draft when judging
the revision effort, a nuance that GPT-4 might not
effectively adjust for based on the student’s writing
proficiency.

Another noticeable trend is that GPT-4 tended to
assign lower scores when human raters assigned a
score of 3, consistent across all three levels (Fig-
ure 2). This discrepancy could stem from GPT-4’s
higher criteria for defining “a substantive improve-
ment” in revisions. Table 4 provides an example
from a Level 2 essay where the human rater as-
signed a score of 3 and GPT-4 assigned a score of
2. In the second draft, the student first improved
one piece of evidence by adding a more relevant ex-
planation of how providing money can contribute
to better health. They also introduced new evidence
regarding pollution issues, along with an explana-
tion of how this supports their argument. Despite
the repetition of ideas and less clear reasoning, the
effort demonstrates a significant attempt at revision,
as well as improvement in elaboration and expla-
nation of existing evidence, from the perspective
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First Draft Second Draft
(Student’s additions to their essay are indicated in red font)

We readers should fund money to space exploratons . . . one reason
for the readers wanting to give money to the people is so that they
can have food and shelter for their family.according to the text it
states(1)” nearly half of all americans also have difficulty paying
for housing,food,and medicine at some point in their lives.” ” in
other countries, people are dying because they do not have access
to clean water,medical care,or so simple solutions that prevent the
spread of diseases.” (3)” for example,malaria, a disease spread
by mosquito bites,kills many people in africa every year.” this
quotation shows how we readers should donate money to the
people who are living an unhappy life.this quotation makes it
clear that we readers feel that the people who are homeless feels
more important than the space exploration because they are poor.
another reason is that people should get

We readers should fund money to space exploratons. . . one reason
for the readers wanting to give money to the space exploration is
because they want the people to be healthier and have a better and
successful life to raise their children.According to pharagraph 2,it
states” nearly half of all americans also have difficulty paying for
housing, (2)” people are dying because they have no food or clean
water to drink, also,it states” people needed medical instruments
to keep the diseases from spreading and learn and develop body’s
reaction area’s.” this quotation shows how my evidence makes it
seem important that you should give money to people who are
homeless and need to learn about medica instrument so they can
clear their diseases and sickness.this quotation makes it clear that
people would stay healthy by using medical instruments to cure
their sickness and disease.
another reason is that people need money so that they can clean
and help earth stay healthy. according to pharagraph 3,it states
”(1) many scientist believe that pollution from burning fossils fuels
is harming our air and oceans.” ” we need new,cleaner forms
of energy to power cars,homes, and factories.” ” a program to
develop clean energy could be viewed as a worthy investment.”
this quotation shows how my evidence explains why space
explorations also should still donate money to people so they
can help earth get cleaned and to power factories and cars and
also homes. this makes it clear that my evidence supports my
reasoning state and also supports my claim.

Table 4: Example of student revision at feedback level 2

of a fifth or sixth-grader at least. In other words,
humans appear more likely to consider students’
developmental level when scoring, a consideration
that GPT-4 may overlook.

5 Discussion and conclusions

Revising is a very difficult skill to master, and many
young students struggle to implement the feedback
they receive (Roscoe et al., 2013). To foster the
development of students’ revision skills, assessing
revision quality and identifying revision patterns
across various levels of writing proficiency is es-
sential for providing targeted feedback to students
on their revision efforts. With this aim, this study
explored the potential of using a large language
model, specifically GPT-4, to evaluate the quality
of essay revisions aligned with the feedback mes-
sages students received from an AWE system.

First, our results suggest that GPT-4 has a great
deal of potential for effectively evaluating writing
revision quality. We used a detailed rubric pro-
viding specific revision patterns in the zero-shot
(baseline experiment) prompting and one-shot CoT
prompting and both approaches showed a moder-
ate level of agreement between human raters and
GPT-4. However, both CoT prompting strategies
implemented in the study did not improve GPT-4

baseline performance. It is not altogether clear why
this was the case as other researchers have found
that CoT prompting tends to improve the accuracy
of writing quality scores (Xia et al., 2024; Yancey
et al., 2023). We note, however, that evaluating
the quality of revisions in younger students’ es-
says may be a more complex task than assessing
overall quality. It contains a series of evaluative
steps beyond simply identifying revision patterns
with a rubric. This includes interpreting feedback
messages, identifying what was added in second
drafts, and evaluating the alignment of those addi-
tions to the feedback. We recommend that future
research explore additional prompting strategies to
better address this complexity. For example, Tree-
of-Thoughts prompting, which encourages LLMs
to explore various ideas and assess intermediate
steps in order to provide an optimal response (Yao
et al., 2024), could be a useful way forward for
generating more accurate assessments of complex
writing processes.

Secondly, unlike studies that focus on adult writ-
ers such as college students, our research provides
insight into the capabilities of LLMs to assess the
writing produced by young students. We observed
that GPT-4 tended to assign lower scores to revi-
sions than human raters. One reason for this might
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be that fifth and sixth graders are still in the midst
of developing their language as well as reasoning
skills. The changes they make to their essays are
constrained then by their overall ability to elabo-
rate and explain their thinking in writing. Human
raters took into account the age of students, and
what they deemed reasonable to expect for revision
at that age, and gave credit for effort (incremental
changes) rather than only the quality of students’ fi-
nal product. Unlike human raters then, GPT-4 may
lack knowledge of developmentally appropriate ex-
pectations for student writing which potentially af-
fects its scoring accuracy. Therefore, LLMs would
benefit from tailored training to adjust their criteria
for "good" writing to be calibrated for different-
aged students.

Limitations

Future research should consider the reliability of
human ratings when evaluating GPT-4 scoring qual-
ity. While human raters remain the “gold standard”
of writing evaluation, they are not always particu-
larly consistent with one another (Brown, 2009; Co-
hen et al., 2018). In this study, we calculated only
the overall reliability across three feedback levels
among human raters, without specifically assess-
ing the reliability at each feedback level. Further
research is necessary to explore how human raters’
scoring accuracy may vary across different levels
of writing proficiency and within various scoring
tasks, as well as how the reliability of human raters
may influence the accuracy of automated scoring
systems.

Moreover, this study focuses solely on explor-
ing the potential of GPT-4, using it as an example
among LLMs, for evaluating the quality of student
revisions. Although GPT-4 has demonstrated im-
pressive capabilities in various writing assessment
tasks, alternative large language models, such as
those outside the GPT family, may yield different
results. Future research should investigate other
LLMs, which would offer a more comprehensive
understanding of the effectiveness of LLMs in as-
sessing writing revisions.
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A Feedback focus corresponding to each
feedback level

Feedback Level 1 (Completeness & Specificity):

• Use more evidence from the article (Complete-
ness)

• Provide more details for each piece of evi-
dence you use (Specificity)

Feedback Level 2 (Specificity & Explanation):

• Provide more details for each piece of evi-
dence you use (Specificity)

• Explain the evidence (Explanation)

Feedback Level 3 (Explanation & Connection):

• Explain the evidence (Explanation)

• Explain how the evidence connects to the
main idea and elaborate (Connection)
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B Rubric for assessing revision quality
aligned with feedback message

Essay Level
0—No Attempt

No content
revision attempted

1—Attempted, Not Aligned
Content revision attempted

but not aligned with feedback message

2—Aligned, Not Improved
Content revision aligned with

feedback message but no/slight
improvement in evidence use

3—Aligned, Improved
Content revision improved

evidence use in line
with feedback message

Level 1 • No edits at all

• Revision focused
solely on writing
mechanics.

• Only several
words added or
changed.

• Student added evidence that is not di-
rectly related to the argument or text

• Student provided explanation for evi-
dence provided

• Student elaborated on explanation
they already attempted to provide.

• Student connected evidence to argu-
ment

• Student added one relevant piece of
evidence

• Student added general discussion
(without a specific quote or para-
phrase) that supports the argument
and is generally based in the text

• Student added direct quotes to
support paraphrases that were already
there.

• Student added at least
two relevant piece of evi-
dence that are on the cor-
rect side of the argument

Level 2 • No edits at all

• Revision focused
solely on writing
mechanics

• Only a short line
or two changed
without signif-
icant content
added.

• Student added evidence or details that
are not directly related to the argu-
ment or text

• Student added evidence, but did not
add specificity (more details to evi-
dence already provided) without any
explanation

• Student added empty explanation (i.e.,
“I included this evidence because it
supports my point”)

• Student added explanations that did
not connect to the argument or that
contradict the argument

• Student made minimal content-based
edits of any sort considering the
length of the entire essay

• Student added small details (at least 2
small instances)

• Student added brief explanations of
evidence (at least 2 small instances)

• Student paraphrased existing evi-
dence

• Student added relevant
and solid details of evi-
dence or explanations to
at least two existing evi-
dence

Level 3 • No edits at all

• Revision focused
solely on writing
mechanics

• Only a short line
or two changed
without signif-
icant content
added

• Student added evidence or details that
are not directly related to the argu-
ment or the text

• Student added evidence or added
more details to evidence without any
explanation

• Student added empty explanation (i.e.,
“I included this evidence because it
supports my point”)

• Student added explanations that do
not connect to the argument or that
contradict the argument

• Student made minimal content-based
edits of any sort considering the
length of the entire essay

• Student recycled same explanation for
each piece of evidence

• Student paraphrased existing evi-
dence

• Student only added one strong expla-
nation for only one piece of evidence

• Student added a decent explanation
only at the end of the essay, not after
each piece of evidence

• Student added personal commentary,
not explanation of evidence that
connects to argument

• Student strengthened ex-
planation for at least two
pieces of existing evi-
dence

• Student provided strong
connection between
evidence presented to
the overall argument
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C GPT-4 prompt

Scoring task. 5th and 6th graders are learning how
to write and revise text-based argumentative essays,
particularly focusing on the use of evidence from
the text. After they submit their first drafts, each
student’s work is assessed and categorized into lev-
els—Level 1, Level 2, or Level 3—reflecting the
quality of their writing. Based on the level their
drafts are assigned, students receive corresponding
feedback for Level 1, Level 2, or Level 3, which
helps guide their revisions.

Level 1 feedback message concentrates on “Us-
ing more evidence from the article” and “Providing
more details for each piece of evidence you use”.
Level 2 feedback message concentrates on “Provid-
ing more details for each piece of evidence you use”
and “Explain the evidence”. Level 3 feedback mes-
sage concentrated on “Explain the evidence” and
“Explain how the evidence connects to the main
idea and elaborate”.

Your role is to score the quality of revision from
the first draft to the second draft based on a rubric
that will be provided to you. The rubric com-
prises four ratings (0,1,2,3), focusing on evaluating
whether students’ revisions align with the feedback
provided and if there is an improvement in their
essays.

Writing task. This is the text the student needs
to read before writing: A Question to Consider: Is
space exploration really desirable when so much
needs to be done on Earth? This is a question that
has been asked for several decades and requires se-
rious consideration. The arguments against space
exploration stem from a belief that the money spent
could be used differently – to improve people’s
lives. In 1953, President Eisenhower captured this
viewpoint. He opposed the space program, say-
ing that each rocket fired was a theft from citizens
that suffered from hunger and poverty. Indeed,
over 46.2 million Americans (15%) live in poverty.
Nearly half of all Americans also have difficulty
paying for housing, food, and medicine at some
point in their lives. In other countries, people are
dying because they do not have access to clean wa-
ter, medical care, or simple solutions that prevent
the spread of diseases. For example, malaria, a
disease spread by mosquito bites, kills many peo-
ple in Africa every year. It is possible to lower the
spread of this disease by hanging large nets over
beds that protect people from being bitten as they
sleep. These nets cost only $5; however, most peo-

ple affected by malaria cannot afford these nets. It
is not just people that need help. The Earth is suf-
fering also. Many scientists believe that pollution
from burning fossil fuels (gasoline and oil) is harm-
ing our air and oceans. We need new, cleaner forms
of energy to power cars, homes, and factories. A
program to develop clean energy could be viewed
as a worthy investment. Maybe exploring space
should not be a priority when there is so much that
needs to be done on Earth. Right now, the gov-
ernment spends 19 billion dollars a year for space
exploration. Some people think that this money
should be spent instead to help heal the people and
the Earth.

Tangible Benefits of Space Exploration: People
in favor of space exploration argue that 19 billion
dollars is not too much. It is only 1.2% of the total
national budget. Compare this to the 670 billion
dollars the US spends for national defense (26.3%
of the national budget), or the 70 billion dollars
spent on education (4.8% of the budget), or the 6.3
billion dollars spent on renewable (clean) energy.
The investment in space exploration is especially
worthwhile because it has led to many tangible ben-
efits, for example, in the area of medicine. Before
NASA allowed astronauts to go on missions, scien-
tists had to find ways to monitor their health under
stressful conditions. This was to ensure the safety
of the astronauts under harsh conditions, like those
they would experience on launch and return. In do-
ing this, medical instruments were developed and
doctors learned about the human body’s reaction
to stress. In rising to meet the challenges of space
exploration, NASA scientists have developed other
innovations that have improved our lives. These
include better exercise machines, better airplanes,
and better weather forecasting. All these resulted
from technologies that NASA engineers developed
to make space travel possible. Even the problems
of hunger and poverty can be tackled by space ex-
ploration. Satellites that circle Earth can monitor
lots of land at once. They can track and measure the
condition of crops, soil, rainfall, drought, etc. Peo-
ple on Earth can use this information to improve
the way we produce and distribute food. So, when
we fund space exploration, we are also helping to
solve some serious problems on Earth.

The Spirit of Exploration: Beyond providing
us with inventions, space exploration is important
for the challenge it provides and the motivation to
bring out the best in ourselves. Space exploration
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helps us remain a creative society. It makes us
strive for better technologies and more scientific
knowledge. Often, we make progress in solving
difficult problems by first setting challenging goals,
which inspire innovative work. Finally, space ex-
ploration is important because it can motivate ben-
eficial competition among nations. Imagine how
much human suffering can be avoided if nations
competed with planet-exploring spaceships instead
of bomb-dropping airplanes. We saw an example
of this in the 1960’s. During what is called the
Cold War, the United States and Russia competed
to prove their greatness in a race to explore space.
They each wanted to be the first to land a space-
craft on the moon and visit other planets. This was
achieved. It also resulted in many of the technolo-
gies and advancements already mentioned. In addi-
tion, the ‘space race’ led to significant investment
and progress in American education, especially in
math and science. This shows that by looking out-
ward into space, we have also improved life here
on Earth.

Returning to the Question All this brings us back
to the question: Should we explore space when
there is so much that needs to be done on Earth? It
is true that we have many serious problems to deal
with on Earth, but space exploration is not at odds
with solving human problems. In fact, it may even
help find solutions. Space exploration will lead to
long-term benefits to society that more than justify
the immediate cost.

This is the writing prompt: Consider the rea-
sons given in the article for why we should and
should not fund space exploration. Did the author
convince you that “space exploration is desirable
when there is so much that needs to be done on
earth”? Give reasons for your answer. Support
your reasons with 3-4 pieces of evidence from the
text.

Scoring rubric with intermediate steps. We
developed two types of rubric. The detailed rubric
with concrete revision patterns would be introduced
in Appendix C. The scoring rubric with intermedi-
ate steps was presented here:

Feedback Level 1. Step 1: Please compare the
first draft and second draft, did the student show
an attempt at content-level revision, considering
the length of the first draft? If answer is no at-
tempt or minimal attempt (including no edits at
all, or only few words, revision focused solely on
writing mechanics), please output score 0. Step

2: If yes, did the student’s revision align with the
feedback message, considering the text content?
If answer is no (including that student provided
explanation or elaborate on evidence for evidence
provided), please output score 1. Step 3: If yes, did
the student’s revision show substantive improve-
ment in the use of evidence? If answer is no im-
provement or slight improvement (including that
student added one relevant piece of evidence, or
student added direct quotes to support paraphrases
that were already there), please output score 2. If
yes (substantive improvement is that student added
at least two solid and relevant piece of evidence
that are on the correct side of the argument), please
output score 3.

Feedback Level 2. Step 1: Please compare the
first draft and second draft, did the student show an
attempt at content-level revision, considering the
length of the first draft? If answer is no attempt
or minimal attempt (including no edits at all, or
revision focused solely on writing mechanics, or
only a short line or two changed without signifi-
cant content added), please output score 0. Step
2: If yes, did the student’s revision align with the
feedback message? If the answer is no (including
that student added new evidence but did not add
more details to evidence already provided, or stu-
dent added empty explanation, or student added
explanations that did not connect to the argument
or that contradict the argument, or student added
personal commentary or non-text-based evidence),
please output score 1. Step 3: If yes, did the stu-
dent’s revision show substantive improvement in
the use of evidence, ? If answer is no improvement
or slight improvement (including student added at
least two small details, or student added at least
two brief explanations of existing evidence, or stu-
dent paraphrased existing evidence), please output
score 2. If yes (substantive improvement is that
student added relevant and solid details of evidence
or explanations to at least two existing evidence),
please output score 3.

Feedback Level 3. Step 1: Please compare the
first draft and second draft, did the student show an
attempt at content-level revision, considering the
length of the first draft? If answer is no attempt
or minimal attempt (including no edits at all, or
revision focused solely on writing mechanics, or
only a short line or two changed without significant
content added), please output score 0. Step 2: If
yes, did the student’s revision align with the feed-
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back? If the answer is no (including that student
added evidence or added more details to evidence
without any explanation, or student added empty
explanation, or student added personal commen-
tary, not explanation of evidence), please output
score 1. Step 3: If yes, did the student’s revision
show substantive improvement in the use of ev-
idence? If answer is no improvement or slight
improvement (including that student recycled same
explanation for each piece of evidence, or student
paraphrased more than 1 existing evidence, or stu-
dent only added one strong explanation for one
piece of evidence, or student added at least two
brief explanations of existing evidence, or student
added a decent explanation only at the end of the
essay, not after each piece of evidence), please out-
put score 2. If yes (substantive improvement is that
student strengthened explanation for at least two
pieces of existing evidence, or student provided
at least two pieces of strong connection between
evidence presented to the overall argument), please
output score 3.

D Examples of score 3 with the human
rater rationale at each feedback level

Feedback Level 1:

• First draft: I am convinced that space explo-
ration is desirable because space exploration
helps us remain a creative society.It makes
us strive for better technologies and scientific
knowledge. This shows that people need more
on earth than space. Another example is that
space exploration will lead to long term bene-
fits to society that more than justify the imme-
diate costs. This shows that space exploration
is desirable .This is why I am convinced that
space exploration is desirable when so much
needs to be done on space and earth.

• Second draft: I am convinced that space explo-
ration is desirable because space exploration
helps us remain a creative society.It makes
us strive for better technologies and scientific
knowledge. This shows that people need more
on earth than space. Another example is that
space exploration will lead to long term bene-
fits to society that more than justify the imme-
diate costs. This shows that space exploration
is desirable .This is why I am convinced that
space exploration is desirable when so much
needs to be done. Another reason why space

exploration is desirable is how scientist use
monitors to check astronauts health before
they go on an mission. This is another rea-
son why space exploration is desirable. My
next reason is, in addition ,the race led to sig-
nificant investment and progress in american
education ,especially in math and science. this
shows that by looking outward into space ,we
also improved life here on earth. This is why
I am convinced that space exploration is desir-
able.

• Human rationale for scoring: This is Level
1 feedback, requiring "Using more evidence
from the article" or "Providing more details
for each piece of evidence used." The student
attempted a content-level revision. The stu-
dent added "Another reasons . . . we also im-
prove life here on earth.", which seems to be
an effort to add three text-based evidence to
support their argument. Thus, the revision
aligns with the feedback message and also
results in a substantive improvement of the
essay’s evidence use. Therefore, the revision
score is 3.

Feedback Level 2:

• First draft: Space exploration is desirable
when there is so much that needs to be done
on the earth. The space exploration can help
solve some of the worlds problems. serious
problem accrue on earth but the space explo-
ration can fix some of them. Hunger problems,
soil,crops,rainfall,droughts etc, can be solved
by space exploration like the satellites that are
around earth that monitor lots of land for the
way food is produced and distributed. The
text states "people on Earth can use this infor-
mation to improve the way we produce and
distribute food." This shows that the produc-
tion of food and the way its distributed is go-
ing to be better if the scientist do the space
explo- ration. The text also states "In rising
to meet the challenges of space exploration,
NASA sci- entist have developed other inno-
vations that have improved our lives." Space
exploration is desirable when there is so much
that needs to be done on the earth. Earth has
problems on it but scientist can solve them
with space exploration. So space exploration
is desirable to solve the needs of earth.
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• Second draft: Space exploration is desirable
when there is so much that needs to be done
on the earth. The space exploration can help
solve some of the worlds problems. serious
problem accrue on earth but the space explo-
ration can fix some of them. Hunger prob-
lems, soil,crops,rainfall,droughts etc, can be
solved by space exploration like the satellites
that are around earth that monitor lots of land
for the way food is produced and distributed.
The text states "people on Earth can use this
information to improve the way we produce
and distribute food." This shows that the pro-
duction of food and the way its distributed
is going to be better if the scientist do the
space exploration.The way we distribute our
food is important we have to make sure we
have the right amount for everyone.The text
also states "In rising to meet the challenges of
space exploration, NASA scientist have devel-
oped other innovations that have improved our
lives." This piece of evidence explains the way
we face challenges on Earth,but that we can
improve our lives a little better with the space
exploration. Space exploration is desirable
when there is so much that needs to be done
on the earth. Earth has problems on it but sci-
entist can solve them with space exploration.
So space exploration is desirable to solve the
needs of earth.The text states"Beyond provid-
ing us with inventions, space exploration is
important for challenges it provides and the
motivation to bring out the best in ourselves.
Space exploration helps us remain a creative
society." This shows that the space exploration
helps in more ways than we thought, like we
stay creative and it brings out our best side.
Space exploration is desirable when there is so
much that needs to be done on the earth. This
shows how much we need space exploration.

• Human rationale for scoring: This is Level 2
feedback, requiring “Providing more details
for each piece of evidence you use” or “Ex-
plain the evidence”. The student attempted
a content-level revision. The student first
added, "This piece of evidence explains the
...," which appears to be an attempt to pro-
vide an explanation for existing evidence. Ad-
ditionally, the student added "the text states
’Beyond providing us ...’," which seems to be
an effort to introduce detailed evidence along

with an explanation for the argument. Thus,
the revision aligns with the feedback message
and also results in a substantive improvement
of the essay’s evidence use. Therefore, the
revision score is 3.

Feedback Level 3:

• First draft: They should get paid because 19
billion dollars a year for exploration. Most
people think that this money should be spent
instead of heal the people and the earth. Then
70 billion dollars spent on education (4.8%
of the budget), or the 6.3 billion dollars spent
on renewable (clean) energy. Before NASA
allowed astronauts to go on the missions, sci-
entists had to figure out how to monitor there
health under any stress- ful conditions. They
did this for the safety of the astronauts. NASA
scientists have de- veloped other innovations
that have improved our lives. NASA engineers
developed to make space travel so they can
do there mission. it is not just the people that
need help. The Earth is suffering also. Many
scientists believe that pollution from burning
fossil fuels (Gasoline and oil) is harming our
air and oceans. We need new, cleaner forms
of energy to power cars, homes, and factories.

• Second draft: They should get paid because
19 billion dollars a year for exploration. Most
people think that this money should be spent
instead of to heal the people and the earth.
Then 70 billion dollars spent on education
(4.8% of the budget, or the 6.3 billion dollars
spent on renewable (clean) energy. Before
NASA allowed astronauts to go on the mis-
sions, scientists had to figure out how to moni-
tor there health under any stressful conditions.
They did this for the safety of the astronauts.
NASA scientists have developed other inno-
vations that have improved our lives. NASA
engineers developed to make space travel so
they can do there mission. it is not just the
people that need help. the Earth is suffering
also so that means that they need money to
have the stuff to look and see what is going
to happen in the future and there is a machine
in space to see what the weather is going to
be so they need money for that. It is impor-
tant because like what is there is a tornado
unexpected so they will not know how cold or
what is going to happen there might be snow
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coming and we do not know. Many scientists
believe that pollution from burning fossil fu-
els (Gasoline and oil) is haring our air and
oceans. We need new, cleaner forms of energy
to power cars, homes, and factories. They also
need money to have satellite see if we did not
have a satellite we would not know when a
tornado would come so that means we would
not be prepared for a tornado we would not
be able to evacuate or not get water food for
a flood we would know have anything if we
were not prepared it would come unexpected
that is why they need money for all the things
like satellite so we can be prepared for any
storm. I think we should keep giving them
money because they are keeping us safe by
making a satellite and telling us on the news
so we can get the info so we should keep giv-
ing they money so we can stay safe the money
is a reward for keeping us safe so they should
get money.

• Human rationale for scoring: This is level 3
feedback, requiring “Explain the evidence” or
“Explain how the evidence connects to the
main idea and elaborate”. The student at-
tempted a content-level revision. The student
first added, "so that means that they need ..."
which appears to be an attempt to provide an
explanation for why innovation can improve
life on the the earth, such as weather. Addi-
tionally, the student added "they also need
moeny to have satellite..." which seems to
be an effort to introduce detailed evidence
of satellite along with an explanation for how
satellite can prepare for storm. Thus, the re-
vision aligns with the feedback message and
also results in a substantive improvement of
the essay’s evidence use. Therefore, the revi-
sion score is 3.
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Abstract

Crosswords are a powerful tool that could be
used in educational contexts, but they are not
that easy to build. In this work, we present
experiments on automatically extracting clues
from simple texts that could be used to cre-
ate crosswords, with the aim of using them in
the context of teaching English at the beginner
level. We present a series of heuristic patterns
based on NLP tools for extracting clues, and
use them to create a set of 2209 clues from a
collection of 400 simple texts. Human annota-
tors labeled the clues, and this dataset is used
to evaluate the performance of our heuristics,
and also to create a classifier that predicts if
an extracted clue is correct. Our best classifier
achieves an accuracy of 84%.

1 Introduction

This paper presents a series of experiments on au-
tomatically extracting clues from a text, that could
be used to generate a crossword puzzle. Cross-
words are a very interesting tool that can be used in
educational contexts, in particular for developing
vocabulary (Orawiwatnakul, 2013). In this work,
we will focus on extracting words and generating
definitions for crosswords in the context of teach-
ing English as a foreign language, in particular for
students at the beginner level.

A crossword (see Fig. 1) is a type of puzzle
where words are arranged horizontally or verti-
cally, and often intersect each other. The puzzle
is presented with blank spaces where the letters
should be, and is accompanied by the set of defini-
tions of the target words. In our case, these words
and definitions will be related to a text, for exam-
ple an article or story that an English teacher wants
to work with in class. The crossword in the figure
could be obtained by processing the following ar-
ticle1:

1Abridged version of the article “Where Is Mexico?”
from ReadWorks.

(1) Mexico is part of the continent North America.
Mexico is shaped like a hook with a wide top. (...)
On its west side is the Pacific Ocean. (...) A penin-
sula is a piece of land that has water on most sides.
The Yucatan Peninsula has the Gulf of Mexico on
its west and north sides. It has the Caribbean Sea
on its east side.

In order to do this, we must detect a set of in-
teresting words from the text, extract their cor-
responding definitions, and create the crossword
puzzle. In this work, we are not focusing on build-
ing the actual puzzle grid, but on extracting appro-
priate clues from the text that could be used to pop-
ulate the crossword.

Figure 1: Possible crossword with clues extracted from
example 1.

This kind of crosswords could be used as read-
ing comprehension exercises, so it is expected that
a student reads the text first, and then tries to solve
the associated crossword. Notice that in this situ-
ation, the types of definitions we are trying to ex-
tract will generally be tied to the accompanying
text, and would not exactly be dictionary defini-
tions.

Throughout the text we will use the term
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“definiendum” for a word that could appear in a
crossword, and “definition” for a short phrase that
defines that word. Likewise, when we mention a

“clue”, we are referring to a <definiendum, defini-
tion> pair in this context.

In this project, we created a series of heuris-
tics for extracting clues from simple texts, stories
and articles. We used the heuristics to create a
small annotated dataset of <definiendum, defini-
tion> pairs, labeled according to how correct they
are to be used in a crossword and how grammati-
cal they are. With this dataset, we trained several
machine learning systems that try to predict if new
clues would be suitable for creating a crossword.

The main contributions of this work are the
following: 1) We present a set of heuristics that
can extract clues from simple English texts. The
heuristics range from simple linguistic patterns ex-
traction to more complex question-answer gener-
ation, and could also combine information from
different sentences in a text. 2) We annotated a
dataset of 2209 clues, generated using our heuris-
tics, with information about grammaticality and
correctness as a clue for a crossword (i.e. it
would be suitable to include this definition for this
definiendum in the context of a crossword)2. 3)
We did experiments on automatic classification of
clues, with the best classifier achieving 84% ac-
curacy and 78% macro-F1 for detecting correct
clues.

The rest of the paper is structured as follows:
Section 2 presents some relevant related work, sec-
tion 3 describes the corpus we used and the heuris-
tics we created for extracting clues, section 4
shows the quality evaluation of the extracted clues
and presents the classifier we built, and finally sec-
tion 5 presents some conclusions and future work.

2 Related Work

The works on automatic generation of crossword
clues from texts are scarce. We comment below
those that are closer to our objectives.

In (Percovich et al., 2019), the authors present
two approaches to the generation of crossword
puzzles, with the aim of using them for teaching
English as a second language at the beginner level.
On the one hand, a set of definitions organized by
classical categories (e.g., colors, food, animals) is

2The corpus is not yet available because we are waiting
for the authorization of the text owners to publish it, we hope
this will happen soon.

created, from which crossword puzzles are auto-
matically generated according to the selected cat-
egory. The definitions are extracted from differ-
ent sources: existing children’s dictionaries were
used, and new definitions are also generated by
applying patterns on Simple Wikipedia texts and
filtering those that do not correspond to the ex-
pected categories by applying heuristics based on
word embeddings. On the other hand, crossword
puzzles are generated from texts entered by teach-
ers, from which pairs <definiendum, definition>
are extracted automatically, as in our work. For
this, some heuristics based on information from a
dependency parser are applied, using the verb “to
be” as a central element, and each clue is extracted
from a single sentence.

In (Rigutini et al., 2012), a traditional approach
based on linguistic analysis tools is presented. A
pipeline is applied to generate crossword clues
from texts obtained by web crawling. The system
processes the texts by applying different analyzers
in sequence: sentence splitter, POS-tagger, chun-
ker, and specific rules for the identification of sub-
ject, object and predicate (verbal or nominal) of
each sentence. Then a finite state automaton is ap-
plied to detect which sentences are definitions, and
finally, to generate the crossword clue, the subject
of the sentence is removed. The system was used
to create Italian crosswords.

In (Esteche et al., 2017), a system for cross-
word generation from Spanish news texts is pre-
sented. They use tools for linguistic analysis –a
POS-tagger, a constituency parser, and a clause
segmenter– and from the information they provide
they define recursive regular expressions to extract
clues from the texts. The paper presents a wide va-
riety of patterns, and includes a tool implemented
in Prolog to generate different crossword grids.
This last task of actually generating the crossword
grid has been explored in the past (Meehan and
Gray, 1997; Botea, 2007), and is not particularly
relevant from an NLP perspective, although some
of the ideas in (Esteche et al., 2017) such as using
different priority levels for words when building
the grid might be relevant in an educational con-
text to make sure the words that the teacher wants
to highlight are included in the puzzle.

In (Katinskaia et al., 2018), a platform for lan-
guage learning is presented. The platform includes
crossword-based exercises created from stories.
The crosswords are composed of words taken from
the story, the student has to guess the words in
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their correct grammatical form.
Some of our extraction heuristics that use lin-

guistic patterns bear some resemblance to the clas-
sic method proposed by Hearst (1992) in the con-
text of hyponyms extraction, although in that work
there is an iterative step in which previously ex-
tracted information is used to generate new pat-
terns from a large corpus. We have not tried the
iterative process in this work, although a similar
approach has already been explored in the context
of clues extraction for crosswords in the past (Es-
teche et al., 2017), where it was unable to find new
productive patterns.

A similar task to the one addressed in this pa-
per is the generation of Question & Answering ex-
ercises for English teaching, aiming at the same
objective, which is to evaluate the comprehension
of a text. The extraction of question/answer pairs
from texts can be used as input to generate clues
for crossword puzzles, by means of some transfor-
mations, as we show below. In (Yao et al., 2022;
Berger et al., 2022) neural approaches for generat-
ing Q&A exercises for teaching are presented, in
(Morón et al., 2021) a similar work is presented us-
ing patterns based on different linguistic analyses
(POS-tagging, semantic role labeling, coreference
resolution, named entities recognition).

Another related NLP task is definition extrac-
tion, although with important differences from the
problem addressed in this paper. Our goal is to
extract clues for creating crosswords from texts.
These clues may not make any sense outside the
context of that text since they are not true defini-
tions of the terms, in the strict sense of a dictionary
definition. An important reference on definition
extraction is SemEval-2020 shared task 6, "Def-
inition extraction from free text with the DEFT
corpus" (Spala et al., 2020), in which a specific
corpus for definition extraction was used to train
models. Fifty-one teams participated in this com-
petition and most of them based their approaches
on the use of pretrained language models.

3 Dataset and Clue Extraction

We created a number of heuristic rules or patterns
that can be used to extract <definiendum, defini-
tion> pairs from simple texts in English. These
rules were created by experimenting with a corpus
of short texts, manually exploring and analyzing
the frequencies of different expressions and pat-
terns.

We used a dataset comprised of 400 short texts
obtained from the ReadWorks website3, an edu-
cational technology nonprofit organization. Read-
Works contains thousands of short texts and stories
ranked in levels K, 1, 2, 3, 4, and 5 and categorized
in the Lexile scale. The texts are written by experts
and curated by educators, and could be non-fiction,
fiction or poetry, within these three thematic areas:
science, social studies and art. In our experiments
we used 400 texts, most of them belong to level
1, and a few to level 2. These texts include short
articles about history, geography and science, and
some short stories.

Our clue detection and extraction rules begin
with a pre-processing phase in which we per-
form coreference resolution using the AllenNLP
tool (Gardner et al., 2018) and simple sentence
splitting. Then we have a series of modules that ap-
ply different extraction patterns based on: syntax,
Semantic Role Labeling (SRL), extended patterns
that combine sentences, Named Entity Recogni-
tion (NER), and Question-Answering (QA). All
these patterns extract rough clues, and we use a
post-processing module to improve the shape of
the definienda and definitions.

3.1 Syntax-based patterns

The first heuristic processes the constituency tree
looking for some key verbs, and performs basic
transformations to turn the phrase into a clue. We
first analyzed our dataset searching for the most
common verbs, trying to find ways in which the
sentences these verbs took part in could be trans-
formed into clues. Consider the following exam-
ples:

(2) Bears eat the meat

(3) One kind of green apple is called Granny Smith.

These examples use two frequent constructions
in the corpus: the verb ‘to eat’ and the construc-
tion ‘is called’. We crafted regular expressions for
these frequent verbs that could be used to extract
<definiendum, definition> pairs. These expres-
sions operate over the text representation of the
constituency tree, obtained using AllenNLP (Gard-
ner et al., 2018), and use capture groups to define
the parts of the text we want to extract. The pat-
terns created for these verbs are shown in Fig. 2.

3https://www.readworks.org/
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(a) Application of the "eat" pattern to example 2.

(b) Application of the "is called" pattern to example 3.

Figure 2: Examples of application of syntactic patterns: a carefully tailored regular expression is applied to the
textual representation of the constituency tree, and the capture groups are used to build the clue.

Note that it is actually not possible to use regu-
lar expressions to capture any type of expression
from a constituency tree, but the type of simple
sentences existing in the corpus, with low nesting
levels, could mostly be treated with this tool.

As shown in Fig. 2, the types of clues extracted
in this way could be rough around the edges, but
the post-processing phase intends to fix some of
these imperfections.

3.2 SRL-based patterns

Semantic role labels are a way of categorizing
parts of a sentence as arguments of a predicate and
the role they play in the described action (Palmer
et al., 2005). The use of semantic role labels pro-
vides a more expressive way to define patterns that
could capture some subtleties that regular expres-
sions over constituency trees cannot. Semantic
roles are, in a way, invariant to the syntactic po-
sition in the sentence, e.g. an argument with the
role ‘agent’ could be acting as a subject or an ob-
ject but still have the same semantic role.

We used the AllenNLP SRL analyzer and de-
fined patterns that could be applied to these struc-
tures. In the SRL patterns, we look for com-
binations of phrases with role agent or theme
(ARG0/ARG1) and phrases with role theme or at-
tribute (ARG1/ARG2) associated to the same pred-
icate. Several patterns were composed in this way,
that work over the verbs like “to be”, “to have”,
and “to like”.

In the “to like” pattern, the analyzer already dis-

ambiguates the uses of “like” as a verb (predicate)
or as a preposition, so the following examples are
correctly resolved:

(4) Bobby likes to play basketball.

(5) Bobby plays sports like basketball.

The pattern for the verb “to live” is slightly dif-
ferent, because instead of an ARG1 it generally de-
fined an ARGM which can either be a temporal or
a location modifier. See the following examples:

(6) Aztecs lived in Mexico.

(7) Dinosaurs lived in prehistoric ages.

In example 6 the argument is labeled as
ARG-LOC, so the clue is extracted as <Mexico :
Place where Aztecs lived>, while in example 7 it
is labeled as ARG-TMP and the clue is <Prehistoric
ages : Time when dinosaurs lived>.

Besides looking for particular verbs, we built a
more generic SRL pattern that captures any verb
given that some valid combination of arguments is
found. Optionally this pattern can also take some
other types of modifiers, like in the following ex-
ample:

(8) A grown-up kangaroo can be bigger than a per-
son.

From example 8, the generic pattern can extract
the clue <kangaroo : something that can be bigger
than a person>, that includes the modifier “can”
which is labeled as ARGM-MOD by the SRL module.
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3.3 Extended patterns

The patterns seen so far work within the bound-
aries of one sentence, but we can create richer def-
initions if we combine the contents of more sen-
tences. Consider the following example:

(9) Bears are apex predators. They eat small mam-
mals, like foxes.

Two separate patterns (for the verbs “be” and
“eat”) could be applied independently, and if coref-
erences have been properly resolved, they both
would have the same definiendum “Bears”. In
this kind of situations, where there is a nomina-
tive pattern (“be” or “is called”) and a pattern that
describes an action (such as “eat” or “live”), we
can combine the definitions of the two patterns to
create a new clue: <Bears : apex predators that
eat small mammals, like foxes>.

3.4 NER-based patterns

In the NER patterns, we use the spaCy NER mod-
ule (Honnibal et al., 2020) to find the named enti-
ties of the text and their categories. One pattern
that already could capture the use of named en-
tities was the “live” pattern, but in this case it is
generalized when a named entity with a particular
category is found. Take a look at the following
examples:

(10) Many chili peppers are grown in Mexico.

(11) Lebron James plays basketball at NBA.

We have two cases with named entities of dif-
ferent categories. We can extract both names as
definiendums, and use the category to create a def-
inition tailored to that named entity. Mexico is
classified as GPE (geo-political entity), so its clue
would be <Mexico : Place where many chili pep-
pers are grown>. Lebron James is classified as
PER (person), so its clue ends up being <Lebron
James : Organization where Lebron James plays
basketball>.

3.5 QA-based patterns

Another way of generating clues is by casting the
problem as a question answering task. First we use
the NER module to extract named entities from
the text that could be candidates to be used as
definienda, together with some features like the
category and number. Using the story as context,
we create a question related to the named entity,

and use the HuggingFace QA module4 to generate
an answer.

For example, using as context a story about the
Great Sphynx, the process could detect the terms
“Egypt”, “Ancient Egyptians” and “Africa” as can-
didates. The following are the questions the pro-
cess creates for those candidates, and the answers
given by HugginFace QA:

• What is Egypt? || A country in Africa.

• What are Ancient Egyptians? || They made
the statue by cutting into a huge rock.

• What is Africa? || Egypt is a country.

The first answer is a definition that fits perfectly,
creating the clue <Egypt : A country in Africa>,
but the other two are not correct in this context.
In order to improve the quality of the clues, we
filter out answers with a low confidence score as
predicted by HuggingFace QA.

3.6 Post-processing
As mentioned above, some of the clues extracted
might not be directly usable in crosswords, but we
have a post-processing phase that can transform
some of them to make them better. Consider the
following examples of clues extracted with the pat-
terns:

1. <A snake : a reptile that moves its tail>

2. <Beauty and charm : Features Cleopatra had>

3. <Solar system : the name for the sun, planets, and
other smaller bodies>

4. <Statue of Liberty : a symbol of freedom>

The first step of post-processing is using NLTK
POS tagger (Bird, 2006). There are different trans-
formations that could be done after identifying the
POS tags. If the definiendum is a determiner and
a noun as in the first case, we can just drop the de-
terminer. When a coordination is found, as in the
second case, we can forget the conjunction and cre-
ate two different clues with the remaining words.
In other cases we select one or more words from
the definiendum, giving preference to nouns, and
move the rest of the words to the definition (third
case). In the fourth case, as both words are good
definienda, we create two different clues, keeping
the remaining words in the definition.

After this process, the transformed clues are the
following:

4https://huggingface.co/tasks/question-answering
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1. <snake : a reptile that moves its tail>

2. <beauty : Feature Cleopatra had>

3. <charm : Feature Cleopatra had>

4. <system : (Solar ___) the name for the sun, planets,
and other smaller bodies>

5. <Statue : (___ of Liberty) a symbol of freedom>

6. <Liberty : (Statue of ___) a symbol of freedom>

Sometimes the patterns tend to return under-
specified definitions, like “something that is called
Granny Smith” or “something that can be bigger
than a person”. These definitions are not fit for a
crossword as they describe the terms too vaguely.
As described above, the NER based pattern uses
the named entity category to specify this, indicat-
ing whether the referred term is a person, location,
organization, etc., while the SRL pattern can some-
times infer a more specific term for location or
temporal modifiers.

However, this information is not available in
all cases, so we implemented a heuristic based
on the WordNet ontology (Miller, 1995; Fell-
baum, 1998) that tries to improve this. Word-
Net is a lexical database that contains thousands
of terms taxonomically structured by the hyper-
nymy/hyponymy relation. The idea is to replace
the vague term for a category that is still hyper-
nymy of the definiendum, but is simple enough
for students at the beginner level. In our case, we
considered a list of simple categories that are gen-
erally part of the beginner level curricula: animal,
food, fruit, clothing, city, country, region, location,
instrument, plant, tool, activity, action, relative,
feeling, sensation.

The heuristic tries to visit all the hypernyms of
a definiendum and stops when one that belongs to
our simple category list is found, otherwise, if we
reach the most abstract “entity” term and no suit-
able candidate was found, we keep the first term
of the definition as “something”.

4 Experiments

After running our heuristics methods on all 400
texts of our dataset, our process generated 2321
<definiendum, definition> pairs. However, the
quality of these clues might be very variable, de-
pending on the pattern and on the text they were
extracted from. It is very important to analyze
which clues were correct and could be used for
crosswords, and also we are very interested in

making the whole process more accurate. One
way to do this would be having a classifier that
could discriminate if a new clue was correct or not
according to some criteria. In this section, we de-
scribe the annotation of our corpus and the classi-
fier we built.

4.1 Annotation
First of all, we annotated manually all the gener-
ated clues. Eleven annotators participated in this
process5, and they were asked to answer two ques-
tions for each clue: First, if the clue could be con-
sidered correct in the context of a crossword, con-
sidering that the person solving the puzzle would
have read the corresponding text. Secondly, if the
clue is grammatically correct.

After an initial annotation round that was used
to discuss criteria and labeling conventions, we no-
ticed that there was a third dimension we wanted
to address. There were cases in which the orig-
inal text had mistakes (probably transcription er-
rors) that made the extracted clues unusable, these
cases were to be marked as invalid and would be
left out of the final corpus.

Each annotator was given a spreadsheet with the
following information:

• Definiendum: Word to guess in the cross-
word.

• Definition: Text that defines the definien-
dum.

• Context: Main sentence were the clue was
extracted from.

• Text Name: Name of the original text, so it
could be checked for further context.

• Method: Heuristic pattern used to generate
the clue.

They would also have the full texts that were
needed for understanding their clues. The annota-
tors had to indicate if the clue was valid or invalid
(due to errors in the text), if it was correct (for a
crossword), and if it was grammatical.

4.2 Analysis
All the 2321 clues originally extracted by the
heuristics were considered for the annotation. In

5The annotators were researchers that took part in this
work and a related project, and students that were compen-
sated with undergraduate credits.
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total, 112 of them were deemed as invalid because
of errors in the texts, and were not considered for
the rest of the analysis. The following is an ex-
ample of a clue that is invalid, because the text
contained a transcription error:

• Context: This painting Photos.comis titled
Breaking Home Ties. It was painted by
Thomas Hovenden, an Irish-born artist.

• Definiendum: Irish

• Definition: Breaking Home Ties

Some examples of clues that were considered
correct and grammatical:

• Context: The White House has a swimming
pool and a movie theater.

• Definiendum: Pool

• Definition: (Swimming ___) Something The
White House has

• Context: So Franklin D. Roosevelt came up
with plans to add more jobs.

• Definiendum: Roosevelt

• Definition: (Franklin D. ___ ) President that
came with plans to add more jobs

The following is an example of a clue that could
be considered correct, but is ungrammatical:

• Context: Green iguanas eat leaves, flowers,
and fruit

• Definiendum: iguanas

• Definition: (Green ___) large that eat leaves,
flowers, and fruit

The definition should be changed to something
like “large animal that eats...” to be considered
grammatical.

Table 1 shows the number of clues extracted by
each pattern, and the corresponding values of cor-
rectness and grammaticality according to the anno-
tators. The first thing we can notice is that some
patterns are much more productive than others: all
the SRL patterns were very productive, but espe-
cially the extended pattern that combines a sen-
tence with the verb “to be” and another sentence
generates a lot of clues, mainly because it could

combine the already productive “to be” pattern
with any other related clue. If we analyze the cor-
rectness and grammaticality of the clues, it is inter-
esting to see that the SRL patterns once again are
the most trustworthy: except the generic SRL pat-
tern all the rest are very accurate in terms of gram-
maticality, and also mostly correct. On the other
hand, the QA pattern was an under-performer, ob-
taining very few clues from the texts, and even
then most of them were wrong, even if we set a
confidence threshold for the generation. Exploring
better and more powerful QA generation models
(e.g. Yao et al. (2022); Berger et al. (2022)) would
be necessary to improve this pattern.

Pattern Total Correct Gramm.
is called 35 48% 86%
eat 53 83% 87%
live 15 13% 60%
SRL have 276 65% 90%
SRL like 54 65% 94%
SRL live 74 84% 88%
SRL to be 538 81% 96%
SRL gen. 217 75% 82%
to be ext. 887 70% 83%
NER 49 71% 86%
QA 11 28% 81%
Total 2209 72% 87%

Table 1: Number of clues extracted by each pattern
from the whole dataset, together with their average cor-
rectness and grammaticality according to the manual
annotation. The 112 invalid clues are not included in
this table.

4.3 Classifier
Using this annotated set, we performed a series of
experiments on creating a classifier that could au-
tomatically determine if a given clue is correct or
not. For these experiments, we split the set in 80%
for training and 20% test, and we used 5 fold cross
validation for parameter tuning.

The different classification models we experi-
mented with are the following:

Centroid distance baseline Based on the sim-
ple classifier presented in (Percovich et al., 2019),
we obtain the FastText embeddings (Bojanowski
et al., 2017) centroid of the context sentence, and
of the definiendum and definition pair, and we cal-
culate the Euclidian distance between them. Then
we experimentally determined a distance threshold
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that maximized the F1 metric.

Machine learning methods Using a represen-
tation that takes the FastText embeddings of the
context, definiendum and definition, we experi-
mented with several classical machine learning
models (Kowsari et al., 2019): KNN, Naïve Bayes,
Decision Trees, Gradient Boosting and MLP.

Deep learning methods We carried out experi-
ments with BERT based models, inspired by (Yao
et al., 2022), which used a similar model for rank-
ing automatically generated question-answer pairs.
For these experiments we used the BERT (De-
vlin et al., 2018) and DistilBERT (Sanh et al.,
2019) pretrained models, finetuned to our data
with the HuggingFace Transformers (Wolf et al.,
2019) AutoModelForSequenceClassification
class. In both cases, the input is the context, the
definiendum and the definition, separated by SEP
tokens.

Table 2 shows the results of these experiments,
and we can see that both BERT-based models out-
perform the rest, DistilBERT being the best model
for our task.

Model Accuracy Macro F1
Centroid 0.66 0.58
KNN 0.72 0.57
Dec. Tree 0.64 0.55
Grad Boosting 0.71 0.59
MLP 0.73 0.59
NB 0.66 0.49
BERT 0.77 0.70
DistilBERT 0.84 0.78

Table 2: Accuracy and Macro F1 of the classifiers that
predict the correctness of a clue.

5 Conclusions

We presented some experiments on automatic ex-
traction of clues for crosswords from simple texts,
considering a clue as a <definiendum, definition>
pair that could be used in a crossword puzzle. We
created several heuristic patterns for detecting and
extracting clues using different NLP tools, like
constituency parsing, SRL, NER and QA. With
these heuristics, we extracted 2209 clues from a
dataset of 400 documents from ReadWorks, and
annotated them with information about correct-
ness and grammaticality. The best heuristic pat-

terns for extracting clues, according to our annota-
tion, are the ones based on SRL.

Using our annotated dataset, we trained several
classifiers on the problem of detecting whether an
extracted clue is correct for a crossword. The
best model for this turned out to be a DistilBERT
model finetuned on our training data, obtaining
84% accuracy and 78% macro F1.

In the future, we want to explore the possibil-
ity of using large language models such as GPT or
LLAMA for this task, which have shown promis-
ing results according to some preliminary exper-
iments. We also want to explore the possibility
of improving the QA based pattern by using bet-
ter QA extraction modules. Currently we are in
the process of testing our extraction system in-
tegrated to a crossword generation tool in a real
case (Chiruzzo et al., 2022), with school children
that are beginning to learn English, which would
give us a better sense about how well our heuris-
tics work and how they can be improved.

6 Ethics Statement

We understand that by using pretrained statistical
NLP tools, our work could be infusing undesired
biases in the results. This is especially dangerous
in the situation we want to use the system, which
is the context of a classroom with school children.
Because of this, we consider that the results ob-
tained by this tool must not be used directly by
the students, but the supervision of a teacher is al-
ways necessary. In the system we are building, a
teacher can automatically extract clues from a text
and create a crossword, but they always have the
possibility to inspect the generated clues in order
to modify or remove any term or definition that
might not be suitable, before the crossword is pre-
sented to students.

7 Limitations

In the experiments described in this paper, we
have worked only with ReadWorks stories. These
are texts designed to be simple and easy to read,
and intend to be varied in terms of contents, but
nonetheless they are only one data source and this
means our process might end up be too tailored
to the style and vocabulary of these texts and not
generalize well to other sources.

Furthermore, given that these texts are very
short, during our experiments we found that our
heuristics generally can extract very few clues
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from each text. On average we can extract around
four <definiendum, definition> pairs from a text
(this can be noticed in the numbers presented in
Table 1), which might be too few for creating an
engaging crossword. We are working on improv-
ing the extraction process to generate more clues,
but a combination with other methods such as in-
cluding dictionary definitions of related words, es-
pecially short ones that could fill crossword gaps,
would be advisable to build more complete and in-
teresting crosswords.

Besides our heuristic patterns, we made some
experiments to extract clues with more modern
large language models (LLM) techniques which
seemed promising. However, due to the limita-
tions of our application servers, we decided to use
more traditional methods because they are less de-
manding in terms of computational resources.

Acknowledgements

We want to thank ReadWorks for letting us use
their simple English texts in the context of this re-
search.

References
Gonzalo Berger, Tatiana Rischewski, Luis Chiruzzo,

and Aiala Rosá. 2022. Generation of english ques-
tion answer exercises from texts using transform-
ers based models. In 2022 IEEE Latin Ameri-
can Conference on Computational Intelligence (LA-
CCI), pages 1–5. IEEE.

Steven Bird. 2006. NLTK: the natural language toolkit.
In Proceedings of the COLING/ACL 2006 Interac-
tive Presentation Sessions, pages 69–72.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the associa-
tion for computational linguistics, 5:135–146.

Adi Botea. 2007. Crossword grid composition with a
hierarchical csp encoding. In Proceeding of the 6th
CP Workshop on Constraint Modelling and Refor-
mulation, ModRef-07.

Luis Chiruzzo, Laura Musto, Santiago Góngora, Brian
Carpenter, Juan Filevich, and Aiala Rosá. 2022. Us-
ing nlp to support english teaching in rural schools.
In Proceedings of the Second Workshop on NLP for
Positive Impact (NLP4PI), pages 113–121.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jennifer Esteche, Romina Romero, Luis Chiruzzo, and
Aiala Rosá. 2017. Automatic definition extraction
and crossword generation from spanish news text.
CLEI Electronic Journal, 20(2):6–1.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT press.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
volume 2: The 14th international conference on
computational linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, Adriane Boyd, et al. 2020. spaCy:
Industrial-strength natural language processing in
python.

Anisia Katinskaia, Javad Nouri, and Roman Yangarber.
2018. Revita: a Language-learning Platform at the
Intersection of ITS and CALL. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura Barnes, and Donald
Brown. 2019. Text classification algorithms: A sur-
vey. Information, 10(4):150.

Gary Meehan and Peter Gray. 1997. Constructing
crossword grids: Use of heuristics vs constraints.
Proceedings of Expert Systems, 97:159–174.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Martín Morón, Joaquín Scocozza, Luis Chiruzzo, and
Aiala Rosá. 2021. A tool for automatic ques-
tion generation for teaching english to beginner stu-
dents. In 2021 40th International Conference of the
Chilean Computer Science Society (SCCC), pages 1–
5. IEEE.

Wiwat Orawiwatnakul. 2013. Crossword puzzles as
a learning tool for vocabulary development. Elec-
tronic Journal of Research in Education Psychology,
11(30):413–428.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.

389

https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501


Analía Percovich, Alejandro Tosi, Luis Chiruzzo, and
Aiala Rosá. 2019. Ludic applications for language
teaching support using natural language process-
ing. In 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), pages 1–
7. IEEE.

Leonardo Rigutini, Michelangelo Diligenti, Marco
Maggini, and Marco Gori. 2012. Automatic genera-
tion of crossword puzzles. Int. J. Artif. Intell. Tools,
21.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sasha Spala, Nicholas Miller, Franck Dernoncourt, and
Carl Dockhorn. 2020. SemEval-2020 task 6: Defi-
nition extraction from free text with the DEFT cor-
pus. In Proceedings of the Fourteenth Workshop
on Semantic Evaluation, pages 336–345, Barcelona
(online). International Committee for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Bingsheng Yao, Dakuo Wang, Tongshuang Wu, Zheng
Zhang, Toby Li, Mo Yu, and Ying Xu. 2022. It
is AI’s turn to ask humans a question: Question-
answer pair generation for children’s story books. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 731–744, Dublin, Ireland. As-
sociation for Computational Linguistics.

390

https://api.semanticscholar.org/CorpusID:14402729
https://api.semanticscholar.org/CorpusID:14402729
https://doi.org/10.18653/v1/2020.semeval-1.41
https://doi.org/10.18653/v1/2020.semeval-1.41
https://doi.org/10.18653/v1/2020.semeval-1.41
https://doi.org/10.18653/v1/2022.acl-long.54
https://doi.org/10.18653/v1/2022.acl-long.54
https://doi.org/10.18653/v1/2022.acl-long.54


Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 391–402
June 20, 2024 ©2024 Association for Computational Linguistics

Anna Karenina Strikes Again:
Pre-Trained LLM Embeddings May Favor High-Performing Learners

Abigail Gurin Schleifer1 Beata Beigman Klebanov2 Moriah Ariely1 Giora Alexandron1

1 Weizmann Institute of Science, Rehovot, Israel
2 ETS, Princeton, USA

{abigail.gurin-schleifer,moriah.ariely,giora.alexandron}
@weizmann.ac.il

bbeigmanklebanov@ets.org

Abstract

Unsupervised clustering of student responses
to open-ended questions into behavioral and
cognitive profiles using pre-trained LLM em-
beddings is an emerging technique, but little
is known about how well this captures peda-
gogically meaningful information. We investi-
gate this in the context of student responses to
open-ended questions in biology, which were
previously analyzed and clustered by experts
into theory-driven Knowledge Profiles (KPs).
Comparing these KPs to ones discovered by
purely data-driven clustering techniques, we
report poor discoverability of most KPs, except
for the ones including the correct answers. We
trace this ‘discoverability bias’ to the represen-
tations of KPs in the pre-trained LLM embed-
dings space.

1 Introduction

Classifying students into behavioral or cognitive
profiles using unsupervised cluster analysis tech-
niques is a common application of machine learn-
ing to educational data (Le Quy et al., 2023; Martin
et al., 2023; Ariely et al., 2024; Rastrollo-Guerrero
et al., 2020; Bovo et al., 2013). Recently, there has
been a growing interest in applying this methodol-
ogy to textual student responses that are decoded
using pre-trained large language models into vector-
ized embeddings in semantic spaces (Martin et al.,
2023; Wulff et al., 2022; Masala et al., 2021). The
operational appeal of this approach is that it min-
imizes the need for expert knowledge, which is
costly to inject through human labeling procedures
(Nehm and Haertig, 2012; Tansomboon et al., 2017;
Li et al., 2023; Ariely et al., 2024). However, the
validity of patterns discovered this way depends
on the ability of the embeddings to maintain the
pedagogically meaningful information that existed
in the original, textual representations of responses
(Devlin et al., 2018; Seker et al., 2022) and of the al-
gorithmic method to discover them. Evaluation of

emergent profiles is often done in terms of the inter-
nal quality of the clustering, as data is usually not
available to estimate the extent to which the discov-
ered profiles align with a pedagogically meaningful
representation of the responses. Without such an
evaluation, a loss of important information can be
overlooked, potentially leading to sub-optimal edu-
cational decisions that rely on this analysis (Le Quy
et al., 2023).

To investigate whether this hypothesized risk
manifests in real-life educational context, we uti-
lize student answers to two constructed response
questions in high school biology. The data was pre-
viously analyzed by a team of biology education re-
searchers and experienced teachers, and graded ac-
cording to a theory-driven detailed analytic rubric
that is based upon the Causal-Mechanical Explana-
tion framework (Ariely et al., 2024; Salmon, 2006).
The rubric contained 10 (item 1) or 11 (item 2)
binary categories, each checking for the occurrence
of a specific key piece of information in the re-
sponse. Using these human-generated binary vec-
tors of length 10 (11), the responses were clustered
using a KMeans algorithm into a set of 6 (7) Knowl-
edge Profiles (KPs) that were found by teachers to
encapsulate specific patterns of errors.

The validity of the KPs was evaluated in several
ways. First, human experts conducted a qualita-
tive analysis to assess whether each KP captures a
specific and distinct pattern of errors. Second, we
analyzed the results computationally, showing that
i) the KPs were consistent across the two items,
namely, revealing the same type of conceptual er-
rors; and ii) the learners tended to exhibit the same
type of conceptual error (KP) in both items. Third,
we conducted an in-class formative assessment in-
tervention study that provided automated guidance
to students based on their KP, and showed signif-
icant improvement in their performance on a dif-
ferent prompt that measures the same conceptual
knowledge. These analyses provided strong evi-

391



dence that the KPs capture pedagogically meaning-
ful information (for full details, see Ariely et al.
(2022, 2024)).

Using these data, we are in a position to answer
two research questions:

RQ1 What is the correspondence between clus-
ters that are computed from pre-trained LLM
embeddings of student responses and theory-
based KPs?

To preview the result, we find that two clustering
techniques that are commonly used for such tasks
(Le Quy et al., 2023) – KMeans (Lloyd, 1982) and
HDBSCAN (McInnes et al., 2017) – largely fail to
discover the KPs though retrieval is somewhat bet-
ter for the profile containing the correct responses.
Following up on this finding, we go ‘upstream’, to
the pre-trained embeddings, and investigate:

RQ2 How well are the KPs represented in the pre-
trained embeddings space?

Our results reveal a strong relationship between
the quality of the responses in the profile (correct or
various degrees of incorrect) and the shape and den-
sity of its embeddings-based representation. We
refer to this relationship as an ‘Anna Karenina prin-
ciple’ and tie it to the profile discovery failure we
observed in RQ1.

The contribution of this work is twofold. First,
it is the first to demonstrate the Anna Karenina
principle in the context of pre-trained representa-
tion of student responses to open-ended questions.
Second, our results suggest that, in some cases, out-
of-the-box pre-trained LLM embeddings may be a
pedagogically unsound basis for profile discovery.

2 Related Work

2.1 NLP-based profiling of constructed
responses in science education

Open-ended items require students to develop and
construct their answers, reflect on their knowledge,
and integrate it with new ideas (Fellows, 1994).
Reasoning and evidence-based defense of an argu-
ment is key for testing scientific hypotheses (Toul-
min, 2003). Therefore, constructing causal explana-
tions is an essential skill for students of science to
learn (Ariely et al., 2024; Martin et al., 2023); prac-
tice and high-quality feedback are key elements in
helping students master the skill (Hattie and Tim-
perley, 2007; Gerard and Linn, 2016; Tansomboon
et al., 2017).

Analyzing open-ended items to provide feed-
back is a time-consuming, complex task. Automat-
ing some of the analyses for assessment and feed-
back purposes is promising for supporting teaching
and learning (Tansomboon et al., 2017; Gerard and
Linn, 2016; Ariely et al., 2023).

Most systems for automated evaluation of scien-
tific explanations to date had been designed in the
supervised machine learning framework (Schleifer
et al., 2023; Sung et al., 2019; Riordan et al.,
2020; Kumar et al., 2019; Mizumoto et al., 2019;
Li et al., 2021). Among the unsupervised ap-
proaches, Masala et al. (2021) extracted the main
takeaways from students’ feedback on different
components in academic courses, using KMeans to
cluster pre-trained BERT embeddings of students’
feedback. Martin et al. (2023) applied HDBSCAN
over pre-trained LLM embeddings and to find emer-
gent argumentation patterns’ characteristics. Wulff
et al. (2022) investigated HDBSCAN clustering
over LLM embeddings to evaluate the attention
of preservice physics teachers to classroom events
elicited from open-ended text responses. A semi-
supervised coding method in which homogeneous
clusters receive the same coding automatically and
heterogeneous clusters are fully labeled by humans
was proposed by Andersen et al. (2023) and applied
to student responses to PISA items.

2.2 Biases in pre-trained LLMs

While LLMs are powerful meaning representations
that undergird the state-of-art systems on a wide
range of NLP tasks, they are also known to exhibit
a plethora of social biases that could lead to so-
cial harm when the models are used in downstream
tasks (Bender et al., 2021). In a recent review of the
current state of research on LLM bias evaluation,
Goldfarb-Tarrant et al. (2023) criticize the field
for focusing heavily on the upstream, pre-trained
LLMs, in most cases without considering the con-
nection to a specific task the LLMs is being put to
(68% of the reports reviewed), citing this as a threat
to the predictive validity of bias measurements.

In fact, the literature that does consider the con-
nection between upstream (intrinsic) and down-
stream (extrinsic) behavior suggests that it is not
straightforward. Considering static embeddings
(e.g., word2vec) and a commonly used bias test,
the Word Embedding Association Test (WEAT)
(Caliskan et al., 2017), Goldfarb-Tarrant and col-
leagues (Goldfarb-Tarrant et al., 2021) found no
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clear relationship with performance of models us-
ing the embeddings, as measured by differences in
precision and recall of retrieval of the target con-
struct on data from privileged and non-privileged
groups. Extension to contextual embeddings and
a wider range of tasks and measures yielded simi-
lar results (Cao et al., 2022; Kaneko et al., 2022).
Our contribution extends the discussion towards
social constructs beyond the typically considered
demographic attributes such as gender, race, eth-
nicity, age towards a distinction that is particularly
relevant when dealing with learner data – that of
learners at the more or less advanced state of under-
standing of the phenomenon under consideration.
We are not aware of prior work comparing LLM
representations based on knowledge-related pro-
files; the closest finding in the literature are exam-
ples of poorer performance of LLM-based systems
on data produced by English language learners with
respect to native speakers of English (Baffour et al.,
2023). Additionally, we explore LLMs in a rela-
tively low-resource language (Hebrew) in contrast
to the bulk of current work that focuses on English
or other high-resource languages: In the 90 LLM
bias studies evaluated by Goldfarb-Tarrant et al.
(2023), only two report results in a language that is
not highly resourced.

3 Data

The data consists of 669 student responses to two
open-ended items in high-school biology, collected
anonymously from students in grades 10-12 from
about 25 high schools of varied demographics and
socioeconomic status (based on location) across
Israel. Gender distribution was 70% females (typ-
ical to the gender distribution among high-school
biology majors in Israel). The items deal with the
connection between respiration and energy in phys-
ical activity in the context of smoking (Q1) and
anemia (Q2), taught as part of the core topic “The
human body”. The items were human-scored using
a similar analytic rubric containing 10 (Q1) or 11
(Q2) categories (Ariely et al., 2024). All rubric
categories are binary, each targeting specific infor-
mation that needs to be mentioned in a correct re-
sponse, such as “the role of hemoglobin in oxygen
transportation” or “changes in cellular respiration
rate”. The resulting binary vectors were clustered
using KMeans; the clusters were analyzed by ex-
perienced teachers and ranked from 1 to 6 (Q1)
or 7 (Q2) with larger numbers corresponding to

clusters with more severe errors. We denote these
clusters Knowledge Profiles, and index them from
1 (KP1) to 7 (KP7). See Ariely et al. (2024) for
a full description of the items and the assessment
framework. The items and examples of student
responses and their mapping into KPs can be found
in Appendix 1.

For the purposes of the analysis presented in this
paper, all responses were represented using rich
contextualized vectors – embeddings produced by
a pre-trained Large Language Model (LLM). The
LLM being used, AlephBERT (Seker et al., 2022),
is state-of-the-art for Hebrew. It was trained on a
large corpus of the Hebrew language, including:
Twitter tweets, Hebrew Wikipedia, and the Hebrew
subset of the Oscar (Suárez et al., 2020) dataset.
AlephBERT has the same architecture as BERT
(Devlin et al., 2018): 12 layers, 110M parame-
ters, and 12 attention heads. It was trained on a
52K-word Hebrew vocabulary on masked token
prediction task, and on the Hebrew language tasks:
word segmentation, part-of-speech tagging, and
full morphological tagging. It was further trained
on the tasks of sentiment analysis and named entity
recognition.

4 Methods

To evaluate whether raw LLM embeddings carry
useful knowledge for unsupervised profiling of re-
sponses, we experimented with two common clus-
tering approaches (Le Quy et al., 2023), KMeans
(Lloyd, 1982) and HDBSCAN (McInnes et al.,
2017), which implement different clustering mech-
anisms. The first discovers convex-shaped clusters;
its mechanism is centroid-based and applies an
Euclidean distance function. The second is density-
based and can be applied with various distance
metrics, e.g., a metric induced by cosine-similarity,
and the clusters may have various shapes. Both
approaches were used previously for profile dis-
covery in constructed response data (Ariely et al.,
2024; Martin et al., 2023; Wulff et al., 2022). Ex-
periments were conducted in Python, using scikit-
learn (Pedregosa et al., 2011), SBERT (Reimers
and Gurevych, 2019) and Pytorch (Paszke et al.,
2019).

4.1 KMeans

The KMeans is a widely used algorithm (Lloyd,
1982). The algorithm is initiated with a specified
number of clusters and a random initialization of
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their centroids. The clustering approach minimizes
the within-cluster sum of squared distances, i.e.,
Euclidean distance. KMeans clusters are convex
and all samples are assigned to a cluster, i.e., there
are no outliers. Convexity means that for every two
points in the cluster, a straight line between them
also lies within the cluster.

4.2 Hierarchical Density-Based Spatial
Clustering of Applications with Noise
(HDBSCAN)

Another clustering approach, which is more promis-
ing in the context of LLMs’ embeddings (Martin
et al., 2023) is the HDBSCAN (McInnes et al.,
2017) algorithm. The approach here is creating
a mutual reachability graph where core samples
are points in areas of high density. A cluster is a
set of core samples and a set of non-core samples
that are neighbors of core samples but are not core
themselves. Non-core samples are at the fringes
of clusters. A core sample is such that there are
’min_samples’ other samples with a distance less
than ϵ from it, for some ϵ > 0 (Pedregosa et al.,
2011). The HDBSCAN mechanism performs clus-
tering for various ϵ values and the most stable clus-
tering is chosen.

The default metric for HDBSCAN is Euclidean
distance. To use cosine similarity, we turn it into a
distance function (McInnes et al., 2017):

∥x− y∥ =
√
2× (1− CosSim(x, y)) , (1)

where x, y are unit vectors, i.e., ∥x∥ = ∥y∥ =
1 (Manning, 1999). Since cosine similarity does
not depend on vectors’ magnitude, only on the
angle between the two vectors, we first turned every
embedding ei to a unit vector ei

∥ei∥ and then applied
the HDBSCAN on a pre-computed metric matrix
consisting of all pairwise distances between all
embeddings in the dataset using formula (1).

In contrast to the KMeans, HDBSCAN can find
clusters with varied densities and clusters may have
non-convex shapes.

4.3 Metrics for Comparing Clusters

To compare the similarity between the KPs and the
cluster assignments of the KMeans/HDBSCAN,
we used Adjusted Rand Index (ARI) (Vinh et al.,
2009). In ARI, similarity is interpreted as the num-
ber of pairs of items on which the clusterings agree,
adjusted for the amount of chance agreement. Let
D be a dataset containing n items that are classified

into m clusters by clustering C and, independently,
into k clusters by clustering E. For a pair of items
(i1, i2) ∈ D, C and E agree on it iff i1 and i2 are
either (1) assigned to the same cluster in both C and
E (let’s say there are a such pairs), or (2) assigned
to different clusters in both C and E (let’s say there
are b such pairs). Now, a + b is the number of
agreements between C and E. The ARI index is
given by:

RI =
a+ b(

n
2

) ; ARI =
RI − E[RI]

max(RI)− E[RI]
,

where E[RI] is the expected RI for some ran-
dom label assignment (Vinh et al., 2009), and
max(RI) equals to 1. The ARI values range from
−1 to 1, where 1 indicates perfect agreement, and
−1 indicates complete disagreement (Hubert and
Arabie, 1985). Since each student response in our
dataset is labeled with its KP, we evaluated the
ARI for each clustering assignment, i.e., KMeans
and HDBSCAN, compared to the KPs. This yields
a global comparison between the KPs and each
clustering assignment.

To evaluate the ‘discoverability’ of each KP, we
also conducted by-KP analysis, applying a retrieval
paradigm and considering each cluster as an at-
tempt to retrieve each of the KPs. We calculate
recall, precision, and F1 score using a contingency
matrix A = (amn)1≤m≤k, 1≤n≤f where rows are
the KPs k = 6, 7, and columns are the unsuper-
vised clusters Cn found by KMeans or HDBSCAN,
f = #fitted_clusters;

amn =
∑

1≤m≤k, 1≤n≤f

∣∣{x : x ∈ KPm ∩ Cn}
∣∣

the cell amn in the matrix A counts the number
of members of KPm that fell in cluster Cn. The
precision of retrieval of KPm using cluster Cn is
Pmn = amn

|C(n)| ; the recall is Rmn = amn
|KP (m)| . F1

score is Fmn = 2·Pmn·Rmn
Pmn+Rmn

, indicating the extent
to which we were able to retrieve KPm using the
emergent cluster Cn.

5 Results

5.1 RQ1: Correspondence between
embedding-based clusters and
theory-based Knowledge Profiles

5.1.1 Global alignment between the
clusterings

As described in Section 4, we evaluated the agree-
ment between clusterings that were computed from
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the embeddings using two cluster analysis methods:
KMeans and HDBSCAN. As we were interested in
upper-bounding the discoverability of the KPs by
both algorithms, we “helped" them with additional
information (the number of clusters to the KMeans
algorithm, and allowing the HDBSCAN to grid
search for ‘good’ hyperparameters). With k equals
the number of KPs per item (six for Q1 and seven
for Q2), the resulting ARIs for the KMeans were
0.122 and 0.191, for Q1 and Q2, respectively. For
the HDBSCAN algorithm, we conducted a grid
search for two parameters: min_cluster_size,
i.e., the minimum number of samples in a
cluster (values:{3, 4, 5, 10, 15, 20, 30, 40}), and
min_samples, i.e., the number of samples in a
neighborhood for a point to be considered as a core
point (values: {1, 2, 3, 4, 5}). We report the best-
performing combination in terms of ARI: 0.037
for Q1 (with min_cluster = 5, min_samples =
2), and 0.038 for Q2 (with min_cluster = 3,
min_samples = 3). Based on these results,
we conclude that the clusters discovered by the
KMeans had low agreement with the KPs, and the
clusters discovered by the HDBSCAN had negligi-
ble agreement with the KPs.

5.1.2 Discoverability of specific KPs
We further investigated the clusters’ matching qual-
ity by calculating the F1 score per KP for each of
Q1 and Q2. For KMeans, the results show good re-
trieval of KP1, the cluster with the highest-quality
responses – F1 = 0.60, 0.67 for items Q1 and Q2
respectively – but much worse retrieval of the other
KPs, with maximal F1 = 0.40 for KP6 in Q1 and
F1 = 0.47 for KP2 in Q2. The clustering results
in terms of contingency tables and F1 Scores are
presented in Tables 1 to 4, with KPs as rows and
columns as fitted clusters.The maximum F1 scores
per profile are shaded in gray.

The evaluation of HDBSCAN clusters mirrored
that of KMeans, showing better retrieval of KP1 –
0.43, 0.46 F1 scores for Q1 and Q2 – than of any
other profile, with maximal F1 = 0.36 for KP6
in Q1 and F1 = 0.29 for KP2 in Q2. We observe
that, overall, results are worse for HDBSCAN than
for KMeans. The clustering results in terms of
contingency tables and F1 Scores are presented in
Tables 5 to 8, with KPs as rows and columns as
fitted clusters. The maximum F1 scores are shaded
in gray.

We then considered the possibility that more
coarse-grained profiles might emerge from the

clustering than the detailed KPs. To this end,
we tried different options for grouping KPs and
calculated the F1 scores between fitted clusters
and the grouped KPs. The best results show
an emergent pattern consistent in both items Q1
and Q2, where one cluster consists of the higher-
quality responses (KP1-KP4) an is retrievable with
F1 = 0.72, 0.74, and the other cluster consists
of lower-quality responses (KP5-KP7), retrievable
with F1 = 0.52, 0.45.

We tried this approach with the KMeans as well,
but the samples scattering across fitted clusters
there did not exhibit meaningful patterns.

5.2 RQ2: How well are the KPs represented
in the embeddings?

To answer this question, we first analyzed, descrip-
tively, the level of similarity between the embed-
dings within each KP, and between KPs. We then
conducted statistical tests to verify that the ob-
served patterns are statistically robust.
Within KP similarity. To analyze the level of sim-
ilarity within each KP, we computed the pairwise
cosine-similarity between all pairs in that KP. Ta-
bles 9 and 10 show the results, with KPs as rows
and fitted clusters as columns. Within-KP similar-
ities are in the diagonals. Since the pairwise co-
sine similarity values are not normally distributed1,
we report medians. The results show that KP1’s
embeddings (highest quality responses) have the
highest density; as the quality of a response goes
down, so does its similarity to other responses with
the same pattern of error.
Between-KP similarity. As can be further seen in
Tables 9 and 10, for both items, for every i > 1
the embeddings of KPi responses tend to be more
similar to the embeddings of KP1 than to embed-
dings of their own KP (the bolded values in the first
row are the largest in each column). This means
that erroneous responses of various types are more
similar to the correct responses than to those with
the same pattern of error.
Hypothesis testing. Next, we conducted statistical
tests to confirm that i) the distribution of the embed-
dings in each KP are indeed different and that ii)
the cosine similarity within each KP is correlated
with the responses quality.
i) A Kruskal-Wallis H-test confirmed that at least
one of the medians for the different KPs is signif-

1The two-sided Kolmogorov-Smirnov test: test statistic =
0.5, p < 0.001
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A B C D E F
KP1 0 102 0 0 5 24
KP2 3 39 0 0 12 37
KP3 3 22 0 0 13 65
KP4 13 28 0 0 26 39
KP5 12 14 0 0 36 50
KP6 31 5 3 16 55 16

Table 1: Q1 KMeans contingency matrix.

A B C D E F
KP1 .00 .60 .00 .00 .04 .13
KP2 .04 .26 .00 .00 .10 .23
KP3 .04 .14 .00 .00 .10 .39
KP4 .15 .18 .00 .00 .21 .23
KP5 .14 .09 .00 .00 .28 .29
KP6 .33 .03 .05 .23 .40 .09

Table 2: Q1 KMeans F1 Scores.

A B C D E F G
KP1 10 0 2 13 13 127 0
KP2 51 0 22 13 4 30 0
KP3 11 0 10 21 14 28 0
KP4 12 0 18 25 16 13 5
KP5 5 0 16 23 29 6 1
KP6 3 0 29 8 8 6 10
KP7 4 9 20 11 8 3 12

Table 3: Q2 KMeans contingency matrix.

A B C D E F G
KP1 .08 0 .01 .09 .10 .67 0
KP2 .47 0 .19 .11 .04 .18 0
KP3 .12 0 .10 .21 .16 .19 0
KP4 .13 0 .17 .25 .18 .09 .09
KP5 .06 0 .16 .24 .34 .04 .02
KP6 .04 0 .32 .09 .10 .04 .22
KP7 .05 .24 .22 .12 .10 .02 .25

Table 4: Q2 KMeans F1 Scores.

icantly different from the others, for both Q1 and
Q2 (Q1: statistic = 338.435, p < 0.001; Q2:
statistic = 295.019, p < 0.001). A follow-up
Dunn’s post-hoc analysis indicated that the within-
KPs similarities differ significantly across all KP
pairs, for both Q1 and Q2, with p < 0.001. This
indicates that embeddings of responses from differ-
ent KPs have different distributions. Moreover, the
embeddings of high-quality responses are highly
dense, while embeddings of low-quality responses
are more scattered in the vector space.
ii) To show that the cosine similarities within
KPs are significantly correlated with the responses’
quality, we calculated for every sample x ∈ KP (i)
its cosine similarity to KP (i) centroid c(i), where
c(i) is the average embedding component-wise of
the embeddings in KP (i), i.e.,

CosSim(x, c(i)) ∀x ∈ KP (i).

We then calculated the Spearman corre-
lation between all the similarities values
∪ki=1{CosSim(x, c(i)) : x ∈ KP (i)} where
k = 6, 7 for Q1, Q2 respectively, and the ordinal
variable of the KPs’ index, where lower index
represents higher-quality responses. The Spearman
correlation coefficient and its p-values are:

rQ1 = −0.686, p < 0.001

rQ2 = −0.633, p < 0.001

indicating a strong correlation (Xiao et al., 2016)
between the quality of a ‘family of responses’ (KP)
and the within-family similarity.

6 Discussion and Conclusion

Our data consists of 669 high-school student re-
sponses to two typical constructed response items
in high-school biology. The responses were hu-
man graded according to an analytic rubric that is
based on the Causal-Mechanical explanation frame-
work (Ariely et al., 2023), transforming each re-
sponse to a binary vector that encodes the grad-
ing according to the rubric categories. Previous
work demonstrated that applying cluster analysis
(KMeans) to these vectors, which result from a
process that applies a theoretical assessment frame-
work to concrete context by human experts, yields
stable clusters that reveal pedagogically meaning-
ful knowledge profiles, which were validated in
several ways (Ariely et al., 2024). (For more de-
tails, see Section 3.) We reasoned that given the
successful performance of pre-trained LLMs on
a variety of education-related meaning-intensive
tasks (Schleifer et al., 2023; Wambsganss et al.,
2023; Riordan et al., 2020; Sung et al., 2019), and
previous work that applied this specifically to pro-
file discovery (Martin et al., 2023; Wulff et al.,
2022), we want to evaluate whether unsupervised
profile discovery that is not aided by human knowl-
edge works sufficiently well to be applied out-of-
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A B C D
KP1 19 0 112 0
KP2 29 0 62 0
KP3 36 0 67 0
KP4 49 0 57 0
KP5 61 0 51 0
KP6 71 7 43 5

Table 5: Q1 HDBSCAN contingency matrix.

A B C D
KP1 .10 0 .43 0
KP2 .16 0 .26 0
KP3 .20 0 .27 0
KP4 .26 0 .23 0
KP5 .32 0 .20 0
KP6 .36 .11 .17 .08

Table 6: Q1 HDBSCAN F1 Scores.

A B C D
KP1 23 0 142 0
KP2 39 0 81 0
KP3 27 0 57 0
KP4 30 0 56 3
KP5 32 0 48 0
KP6 33 0 31 0
KP7 32 3 32 0

Table 7: Q2 HDBSCAN contingency matrix.

A B C D
KP1 .12 0 .46 0
KP2 .23 0 .29 0
KP3 .18 0 .21 0
KP4 .20 0 .21 .07
KP5 .22 0 .18 0
KP6 .24 0 .12 0
KP7 .23 .09 .12 0

Table 8: Q2 HDBSCAN F1 Scores.

the-box.
The results of RQ1 reveal that two distinct com-

mon unsupervised clustering techniques largely
failed to discover the ‘gold’ KPs from the pre-
trained LLM embeddings. Inasmuch as a weak
relationship with the knowledge profiles was ex-
hibited by KMeans clusters (ARI of 0.12-0.19),
our retrieval-based analysis per profile showed that
KP1, the profile that captures the correct responses,
was the most discoverable profile, with F1-scores
of 0.60/0.67 (on Q1/Q2) for retrieving members
of KP1 using the best-aligned emergent cluster.
Thus, had the emergent clusters been used as a ba-
sis for feedback, only the correct responses would
have received pedagogically cogent feedback, since
responses belonging to low-knowledge KPs are
all intermixed in the emergent clusters. This phe-
nomenon was consistent across two items – Q1 and
Q2 – that were analyzed separately.

In an attempt to account for both the failure of
overall profile discovery based on pre-trained LLM
embeddings and for the bias towards the correct
responses exhibited by the emergent clusters, we
turned ‘upstream’ to inspect how the KPs are rep-
resented by the embeddings.

We found that the lower the knowledge level of
the profile, the less similar to each other its mem-
bers are in the embeddings space. It is this property
that we refer to as the Anna Karenina principle:
Analogously to Tolstoy’s observation that happy
families are similar to each other whereas each

unhappy family is unhappy in its own way, we
see that the correct responses are similar to each
other, whereas incorrect responses differ more from
each other the more incorrect (’unhappy’) they are
(strong correlation of r1 = −0.686, r2 = −0.633
for Q1/Q2). One could say that Tolstoy consid-
ered all unhappy families as an undifferentiated
mass; presumably, if classified by their specific
source of unhappiness (by family therapists, say),
profiles would have probably emerged. In our case,
the incorrect responses are grouped by teachers
according to the type of problem they exhibit; how-
ever, within-profile similarities are still lower than
those of correct responses and drift further apart
the bigger the problems. The lower density of the
poor-knowledge profiles may be one reason that
inhibits their downstream discovery.

Further analysis suggests that the privileged sta-
tus of ‘happy families’ (correct responses) extends
beyond their higher density. We also found that
while an average correct response is most similar
to another correct response, an average incorrect
response is closer in the embeddings space to a
correct response than to a member of its own pro-
file (Tables 9 and 10). That is, in some sense, the
correct responses are the center of the universe,
whereas the incorrect responses drift around them
in non-convex formations. The non-convexity of
the lower-knowledge profiles may be another in-
hibitor of their downstream discoverability. Taken
together, the ‘classic’ Anna Karenina property and
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KP 1 2 3 4 5 6
1 .920 .910 .900 .899 .883 .852
2 .903 .896 .889 .880 .849
3 .897 .890 .883 .852
4 .877 .871 .837
5 .874 .845
6 .755

Table 9: Q1 pairwise cosine similarity median per KP.

KP 1 2 3 4 5 6 7
1 .916 .891 .896 .886 .873 .857 .837
2 .876 .870 .860 .854 .840 .820
3 .881 .870 .862 .844 .828
4 .866 .860 .843 .822
5 .861 .843 .823
6 .824 .796
7 .764

Table 10: Q2 pairwise cosine similarity median per KP.

the strong version that puts the correct responses
in the center suggest an explanation for both the
overall discovery failure observed downstream and
for the bias in favor of correct responses exhibited
by the emergent clusters.

Based on our results, pre-trained representations
may not lend themselves to making the necessary
distinctions to support pedagogical decisions such
as providing formative feedback that targets spe-
cific errors in student reasoning. In particular, our
results show a case where the representations are
not sufficiently nuanced to allow commonly used
clustering methods to identify any error-based pro-
files, only the profile of the correct responses. Since
it is the students who gave the incorrect responses
who are in most need of targeted formative feed-
back, the bias in favor of correct responses is es-
pecially counter-productive. Thus, our results tell
a cautionary tale about using emergent properties
of student response data built over pre-trained em-
beddings without domain- and task-specific tuning,
and without human supervision.

6.1 Limitations

It is possible that other clustering approaches could
have revealed clusters that are more similar to the
‘gold’ ones. However, given that despite the large
difference between KMeans and HDBSCAN’s al-
gorithmic approach, they were quite consistent in
both demonstrating poor overall agreement and be-
ing biased towards discovering the best KP, we

believe that reaching results that are qualitatively
different from another clustering method is unlikely.
It is also possible that emergent clusters do corre-
spond to an alternative meaningful partition of the
responses into groups, but that partition is not what
educators see when they analyze student responses.

The AlephBERT model used in this paper is
state-of-the-art for Hebrew, but it has a smaller
number of parameters compared to the most recent
LLMs for English. It is possible that with more
advanced LLM technology, the LLM representa-
tions of student responses will be more nuanced;
we will revisit our analyses with larger Hebrew
LLMs when available.

Due to the monolingual nature of our current
data, we have experimented with one language only.
Work is underway to collect comparable student
response data in Arabic.

Ethics statement

We acknowledge that the work is conformant with
the ACL Code of Ethics. The research and its data
collection procedures were approved by the Institu-
tional Review Board and the Ministry of Education.
The instrument was administered to the students as
part of the regular instruction of the topic, based
on the teachers’ decision to use it as part of the
teaching routine (the instrument was published in
teachers’ forums), with teacher and school prin-
cipal approval that response data will be used for
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research.
The goal of this research is to better understand

the relations between pre-trained LLM-based rep-
resentations of student responses to open-ended
questions in science, and representations of these
responses according to theory-driven rubrics ap-
plied by human experts. We study to what extent
conceptually/pedagogically similar responses tend
to maintain their proximity in the embedding space
as well, and the impact of deviations from this
property on downstream analysis. What makes
this especially relevant to Ethics is our finding that
the weaker students are the ones whose responses
suffer the most from representation mismatches
between the two representation spaces. This lim-
its the ability to automatically cater to these stu-
dents – the ones who are in the highest need for
personalized guidance – with formative feedback
that matches the gaps in their reasoning. By iden-
tifying and naming this phenomenon (‘the Anna
Karenina principle’ in automated short answer eval-
uation), we hope to start a discussion on the means
to both estimate its prevalence and to address it.

We demonstrate the Anna Karenina principle
on two tasks with one pre-trained model. It is
possible that results will look different with other
tasks and other large language models. There is a
potential danger of over-generalization based on
our results, whereby large language models, as a
species, so to speak, would be thought to suffer
from the Anna Karenina principle and their off-
the-shelf use would be avoided in learner-focused
applications. This, in turn, could hamper develop-
ment of useful LLM-based applications to support
learners. We believe that the best course of action
is to continue the study of the principle in order to
improve our understanding of what kind of models
are likely to exhibit the problem and for what kind
of task, as well as how to diagnose and correct it,
ideally without recourse to a large human-tagged
dataset. In parallel, future ethics-focused research
could investigate whether weaker learners should
be a protected category in educational applications,
akin to demographic categories like race or gender,
by investigating evidence of harm differentially
wrought on such learners through technology that
does not cater sufficiently precisely to their needs.

Data from this research cannot be shared pub-
licly due to privacy regulations, but may be pro-
vided for research purposes, along with its analysis
code, subject to the necessary approvals.
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Appendix 1

Item Text
Smoking item The smoke from cigarettes contains several harmful substances,

including the gas carbon-monoxide (CO). CO is released from
cigarettes while smoking, and has a stronger tendency than oxygen
to bind to Hemoglobin. Explain how high levels of CO make it
difficult for smokers to exercise.

Anemia item A person was found to have low levels of red blood cells in his blood
test (anemia). This person complained to his doctor about weakness
and difficulty to exercise. Explain how low levels of red blood cells
make it difficult for people with anemia to exercise.

Table 11: The constructed response items (reproduced from Ariely et al. (2024); original responses are in Hebrew).

Cluster description Exemplifying response
Full explanations: All/most of
the conceptual components and
the underlying causal relations
are present.

“Red blood cells bind oxygen and transfer it in the bloodstream,
from the lungs where it is absorbed, to all the cells of the body. A
low amount of red blood cells in the body leads to the transfer of less
oxygen to the body’s cells. Since oxygen is one of the reactants in
the process of cellular respiration - the energy production process,
less oxygen reaching the cells leads to damage to this process. Thus,
less available energy is produced in the body’s cells and this impairs
their function, which leads to fatigue and difficulty in performing
physical activity.” (Anemia item)

Gaps in causal connections:
All/most of the conceptual
components are present, but
all/most of the causal relations
are missing.

“The CO binds to the red blood cell instead of the oxygen and thus
oxygen does not reach the cells of the body and then cellular
respiration does not occur and the body cannot produce energy and
thus it stops physical activity due to lack of energy.” (Smoking item)

Specific sequential stages are
missing and causal relations are
often missing.

“CO gas is known to bind to Hemoglobin with a stronger tendency
than oxygen. When CO binds to Hemoglobin, it takes the oxygen’s
place, so much less oxygen is transported from place to place and
enters the cells. Lack of oxygen in the cells leads to less production
of ATP molecules. Since energy is required for physical exercise, the
result is that the person gets tired quickly and has difficulty
exercising.” (Smoking item)

Many sequential stages are
missing and causal relations are
often missing as well.

“Red blood cells carry the oxygen (because of Hemoglobin). When
there is anemia, then there is a low amount of red blood cells and
thus a low amount of oxygen reaches the muscles.” (Anemia item)

No explanation: All/most of
the sequential stages and the
underlying causal relations are
missing/irrelevant responses.

“I don’t know”
“Anemic people are tired because they have few red blood cells.”
(Anemia item)

Table 12: Examples of student responses and their classification into the KPs that were derived from the expert
scoring according to the theory-driven rubric (reproduced from Ariely et al. (2024); original responses are in
Hebrew).
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Abstract 

The practice of soliciting self-explanations 

from students is widely recognized for its 

pedagogical benefits. However, the labor-

intensive effort required to manually assess 

students’ explanations makes it impractical 

for classroom settings. As a result, many 

current solutions to gauge students’ 

understanding during class are often limited 

to multiple choice or fill-in-the-blank 

questions, which are less effective at 

exposing misconceptions or helping 

students to understand and integrate new 

concepts. Recent advances in large 

language models (LLMs) present an 

opportunity to assess student explanations 

in real-time, making explanation-based 

classroom response systems feasible for 

implementation. In this work, we 

investigate LLM-based approaches for 

assessing the correctness of students’ 

explanations in response to undergraduate 

computer science questions. We investigate 

alternative  prompting approaches for 

multiple LLMs (i.e., Llama 2, GPT-3.5, and 

GPT-4) and compare their performance to 

FLAN-T5 models trained in a fine-tuning 

manner. The results suggest that the highest 

accuracy and weighted F1 score were 

achieved by fine-tuning FLAN-T5, while 

an in-context learning approach with GPT-

4 attains the highest macro F1 score. 

1 Introduction 

Interactivity is critical to learning (Blasco-Arcas et 

al. 2013; Herppich et al. 2016). It has been widely 

demonstrated that by increasing interactivity in the 

classroom, we can significantly improve students’ 

learning outcomes (Beauchamp and Kennewell 

2010; Mayer et al. 2009). Student-teacher 

interaction is one of the most influential factors in 

learning (Beauchamp and Kennewell 2010), and 

when classrooms are interactive, students become 

more engaged, more participative, and are more 

motivated to learn (Bachman and Bachman 2011; 

Barnett 2006; Caldwell 2007). In addition, 

interactivity can improve comprehension and lead 

to improved learning (Freeman et al. 2014). 

Despite these benefits, many STEM classrooms 

use lectures as the primary method of instruction. 

The lack of interactivity poses serious issues in 

undergraduate education (Freeman et al. 2014), and 

large class sizes can inhibit meaningful exchanges 

between instructors and students in traditional 

classrooms (Caldwell 2007). The passive nature of 

lectures is particularly problematic in STEM 

courses, as research shows that undergraduate 

students in classes that use a traditional lecture 

format are much more likely to fail than students in 

classes that use a more active learning method 

(Freeman et al. 2014).  

Classroom response systems have been touted as 

a potential solution to this problem. These systems 

capture and grade student responses to multiple 

choice questions posed by instructors during 

lectures. Each student submits a response using a 

handheld transmitter (a “clicker”), and software on 

the instructor’s computer records, grades, and 

displays students’ answers for the class to view. 

While research has shown that classroom response 

systems can promote student engagement and 

facilitate the learning of factual knowledge 

(Campbell and Mayer 2009; Hunsu et al. 2016), 

studies have also shown that “clickers” are less 

effective for promoting deep and meaningful 

learning. In fact, traditional classroom response 
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systems may actually obstruct students from 

developing a conceptual understanding of concepts 

and principles, particularly for novice students 

(Shapiro et al. 2017). Because students simply 

select an answer from a list of choices, “clickers” 

do not enable students to construct or generate their 

own responses to questions, which is a key 

component of active and constructive learning (Chi 

and Wylie 2014).  

Decades of research have shown that self-

explanation has a significant impact on student 

learning (Chi et al., 1994; Fonseca and Chi 2011). 

By explaining concepts and examples to 

themselves as they learn, students trigger the self-

explanation effect, where they actively probe their 

own understanding and address gaps in their 

knowledge. Enabling students to generate short-

answer textual explanations to prompts posed by 

instructors during lectures could open a rich 

communication channel between instructors and 

students. Eliciting self-explanations from students 

has the potential to yield substantial learning 

benefits for students in undergraduate STEM 

classrooms, and it has been widely demonstrated 

that self-explanation helps students learn much 

more effectively than students who do not engage 

in self-explanation (Chi et al., 1994; Fonseca and 

Chi 2011; Johnson and Mayer 2010; Roy and Chi 

2005). Because self-explanation requires students 

to explain concepts to themselves in their own 

words, they learn much more deeply. However, 

despite the great potential offered by self-

explanation for promoting learning, students in 

undergraduate STEM classrooms often have 

limited opportunities to engage in this type of 

active and constructive learning activity due to 

limited class time for discussion. Similarly, 

instructors have limited time to assess students’ 

self-explanation responses and provide formative 

and timely feedback during lectures. 

In this paper, we present a large language model-

based approach that automatically assesses 

students’ written responses. We investigate the 

performance of four Transformer-based large 

language models—Llama 2 (Touvron et al. 2022), 

GPT-3.5 (OpenAI 2023), GPT-4 (OpenAI 2023), 

and FLAN-T5 (Chung et al. 2022)—in assessing 

the correctness (i.e., fully correct, partially correct, 

and incorrect) of student self-explanations to 

undergraduate computer science questions. These 

explanations were collected from undergraduate 

students, including those who participated in an 

undergraduate course using the EXPLAINIT system 

we have developed. Our findings suggest that 

FLAN-T5 demonstrates high performance in terms 

of accuracy and weighted F1, when fine-tuned 

using a prompt that includes information taken 

from a grading rubric in combination with an 

exemplar response provided by the instructor. 

However, we also find that the highest macro F1 

score is achieved by GPT-4 in a few-shot learning 

setting, where examples of only ten students’ 

explanation responses are provided without any 

additional information from a rubric or an exemplar 

response. We discuss the tradeoffs between these 

models and the implications of our research for 

practical applications of LLM-based explanation 

assessment in classroom response systems. 

2 Related Work 

It has been found that students explaining concepts 

to themselves has a profound effect on learning. 

Known as the self-explanation effect (Chi et al. 

1994; Fonseca and Chi 2011; Sidney et al. 2015), 

the result of self-explanation goes beyond simply 

rehearsing information: it requires students to 

express concepts in their own words, relate 

concepts to prior knowledge, make inferences, 

integrate information with prior knowledge, and 

monitor and repair faulty knowledge. Thus, self-

explanation is a deeply constructive activity (Roy 

and Chi 2005). The significant learning gains 

associated with self-explanation have been 

demonstrated in a wide range of STEM disciplines 

including computer science (Pirolli and Recker, 

1994), engineering (Johnson and Mayer 2010), 

chemistry (Crippen and Earl 2007), algebra 

(Atkinson et al. 2003), biology (McNamara 2004), 

physics (Chi et al. 1994), and physiology (Butcher 

2006). Our EXPLAINIT classroom response system 

leverages the self-explanation effect to improve 

STEM classroom learning. 

Widely known as “clickers,” classroom response 

systems have emerged as a tool to bridge the gap 

between students and instructors and to make 

lectures more interactive. Used by millions of 

students, classroom response systems allow 

students to anonymously respond to multiple 

choice questions presented during lectures. 

Research has shown that students appreciate the 

ability to compare their own answers to those of 

their peers, receive immediate feedback, and test 

their knowledge, and that “clickers” can increase 

student interactivity during lectures (Freeman et al. 
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2014; Hunsu et al. 2016; Kay and LeSage 2009). 

However, studies have also shown that clickers fail 

to promote deep and meaningful learning, which 

can be particularly problematic for students in 

STEM classes who are required to conceptually 

understand important concepts, relationships, and 

theories to effectively solve problems (Shapiro et 

al. 2017). Closely related to our work, commercial 

classroom response systems have been explored in 

various classroom settings. These systems typically 

support students through classroom discussions, 

questions, and assignments, and they support 

instructors with features for course material 

creation and assessment, which are incorporated 

with learning management systems. While they 

provide a range of functionalities required for a 

classroom response system, such as the ability to 

pose various types of questions (e.g., multiple 

choice, fill-in-the-blank, short answer questions), 

their automated assessment is typically limited to 

multiple choice and fill-in-the-blank types of 

questions that accept a predetermined set of 

answers, while they require a manual assessment 

process for other types of questions.  

Deep learning-based language models such as 

BERT (e.g., Liu et al. 2019), FLAN-T5 (e.g., 

Chung et al. 2022), GPT (e.g., Brown et al. 2020), 

and Llama (Touvron et al. 2023) have been pivotal 

in the recent advancements in natural language 

processing (NLP; Torfi et al. 2020). In learning 

analytics, additional sources of training data, 

including data collected for free-response prompts 

(Rivera-Bergollo et al. 2022), text providing 

additional context for free-response prompts 

(Condor et al. 2021), response assessment rubrics 

(Condor et al. 2022), and synthetic data generated 

via data augmentation strategies (Lun et al. 2020), 

have effectively enhanced the training of NLP 

models, leading to improved predictive 

performance. NLP techniques have been used to 

accurately analyze student textual responses in the 

context of short-answer science assessment (Smith 

et al. 2019), student written reflections (Carpenter, 

Geden, et al. 2020), student-tutor dialogue 

(Carpenter, Emerson, et al. 2020), and student self-

explanations (Chen and Wang 2022).  

While previous work demonstrated considerable 

success with LLMs for short answer grading 

(Takano and Ichikawa 2022; Zhang et al. 2022) and 

short answer question generation (Moore et al. 

2022), a research area that has seen limited 

exploration is assessing students' free-text 

explanations (Nicula et al. 2023). Building on 

recent advances in NLP and deep learning-based 

language modeling techniques, our work makes a 

novel contribution by investigating an approach to 

assess students’ self-explanations, collected from 

an undergraduate Artificial Intelligence course, 

utilizing large language models with fine-tuning 

and few-shot learning. 

3 EXPLAINIT Classroom Response 

System 

The EXPLAINIT classroom response system 

leverages the self-explanation effect and active, 

constructive, and interactive learning, along with 

state-of-the-art natural language processing, to 

significantly improve STEM undergraduate 

education. With a specific focus on computer 

science, biology, and physics, it aims to create 

highly engaging classroom learning experiences. 

EXPLAINIT offers the opportunity to 

fundamentally improve classroom dynamics by 

supporting both students and instructors. The 

system is designed to support both students and 

instructors in undergraduate STEM courses by 

analyzing and providing feedback on students’ 

explanations through an integrated five-step 

explanation feedback loop (Figure 1): (1) the 

instructor issues an explanation prompt, which 

appears in the EXPLAINIT app on students’ 

computing devices (e.g., laptops, tablets, phones); 

(2) students write free-text explanations ranging 

from a sentence to a short paragraph in the 

EXPLAINIT app on their computing devices; (3) 

EXPLAINIT automatically analyzes students’ 

explanations and provides real-time formative 

feedback to students individually in their apps; (4) 

EXPLAINIT provides a summary of correctness of 

student explanations to the instructor; and (5) the 

instructor makes “instructional pivots” by 

immediately tailoring pedagogy to respond to 

students’ explanations to improve student 

learning and engagement by focusing the lecture 

and classroom discussion on the most important 

elements of the course material. Collectively, 

these interactive explanation-based activities are 

designed to synergistically lead to improved 

student learning and promote greater student 

engagement in undergraduate STEM classrooms. 

Our initial prototype of the EXPLAINIT 

classroom response system was implemented 

using a web-based application architecture to 

support enhanced scalability, where instructors 
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and students can choose their platforms of choice 

such as laptops and handheld devices, while the 

software enables real-time interactions with the 

user interfaces. The EXPLAINIT user interfaces 

consist of an Instructor Authoring Tool, Instructor 

Dashboard, and Student Explanation App. The 

streams of communication data are uploaded into 

a cloud-based database by the server. For data 

synchronization and analysis purposes, all 

interaction data is timestamped. To support these 

functionalities, we implemented the software 

modules to include APIs using the HTTP 

protocol. We use Microsoft’s Azure cloud 

computing service to host our cloud-based 

services. 

The Instructor Authoring Tool enables 

instructors to create or edit questions and an 

exemplar correct response per question. All 

questions and responses are categorized by their 

subjects and topics in the tool. All authored 

content is stored and accessed from the cloud, 

allowing the original instructor to reference their 

own created questions for future courses. The 

Instructor Dashboard presents the pool of 

questions per subject and topic, and it allows 

instructors to select and send questions to the 

Student Explanation App, so that students can 

view and interact with the questions in real-time 

during lectures. The Instructor Dashboard is also 

designed to display student-written responses and 

NLP assessment results in visual analytics. The 

Student Explanation App enables students to 

receive questions posed by instructors and write 

self-explanation responses to instructor-posed 

questions. When students submit their responses, 

the Student Explanation App taps into the 

Explanation Analyzer, which performs NLP-

driven assessment of student explanations, 

generates tailored feedback to students, and 

dispatches analytical summaries to instructors 

through Instructor Dashboard. The Explanation 

Analyzer is in the development phase, and our 

findings about the Explanation Analyzer’s NLP 

performance are presented in this paper. 

4 Study and Data 

This work uses data collected during a classroom 

pilot study of the EXPLAINIT system. The 

participants in the classroom study consisted of 36 

consented undergraduate students enrolled in a 

Computer Science course focused on Artificial 

Intelligence. Thirty-two students completed a 

demographic pre-survey, and among them 8 

indicated that they identified as female, 23 as male, 

and 1 preferred not to indicate gender 

identification. Participants ranged in age from 18 to 

28 (M = 21.1, SD = 1.64). Of these participants, 

40.6% were Asian, 50.0% were White, and 9.4% 

preferred not to answer. 

Prior to using EXPLAINIT in the class, the 

instructor used the Instructor Authoring Tool to 

prepare a set of questions, each accompanied by an 

exemplar correct answer. These answers were 

presented to students immediately after they 

submitted their responses to the respective 

questions. The classroom implementation unfolded 

over 6 weeks within a single semester. Throughout 

this period, a total of 13 questions were sent to the 

class, eliciting 356 responses from 36 participants, 

which were utilized in our evaluation (Table 1). 

Students’ responses to the questions were 

labeled by two of the researchers, who are experts 

in computer science. First, a rubric item was 

constructed for each question that described the 

qualities of a correct, partially correct, or incorrect 

answer to the question. For example, the rubric for 

the question “In a neural network, what function is 

responsible for introducing non-linearity to the 

model?” indicated that a correct response should 

mention the term “activation function”, a partially 

correct response might present an example of an 

activation function (e.g., “sigmoid”) without 

explicitly mentioning the term “activation 

function”, and that an incorrect response would not 

include any of this information. We also referenced 

instructor-provided exemplar answers to further 

refine the rubrics for each question. These were 

comprehensive and well-reasoned responses, 

serving as a representative correct answer to each 

question. 

Then, based on the developed rubric, both 

researchers labeled twenty percent of the student 

Figure 1: The EXPLAINIT explanation-based  

classroom response system. 
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responses. After one cycle of rubric refinement, a 

Cohen’s Kappa of 0.702 was achieved, indicating 

substantial agreement (McHugh 2012). All labels 

that the annotators did not agree on were discussed 

and agreement on a single label was reached. 

Across all questions, 73% of explanations were 

labeled as correct, 22% were labeled as partially 

correct, and 5% were labeled as incorrect. 

5 Method 

We evaluated the performance of Llama 2 

(Touvron et al. 2022), GPT-3.5 (OpenAI 2023), 

GPT-4 (OpenAI 2023), and FLAN-T5 (Chung et 

al. 2022) on the self-explanation assessment task. 

Large language models (LLMs) have been 

demonstrated to achieve state-of-the-art 

performance on many natural language processing 

tasks, with GPT-4 particularly excelling with few-

shot prompting where training examples are 

integrated into the task description (OpenAI 2023). 

This enables GPT-4 to readily adapt to new tasks 

without re-training, avoiding the prohibitive cost of 

updating its extensive parameters. However, GPT 

models’ proprietary nature and associated costs 

pose barriers to its educational adoption, such as 

EXPLAINIT. 

To address this challenge, we also evaluated the 

performance of open-source models, FLAN-T5 

and Llama 2. FLAN-T5 is an instruction-fine-tuned 

language model that has demonstrated competitive 

performance with other state-of-the-art models 

across a range of tasks when it was released (Chung 

et al. 2022). Llama 2 is an open-source pre-trained 

large language model that has demonstrated 

leading performance compared to other open-

source models and performs similarly to GPT-3.5 

on several tasks (Touvron et al. 2023). In this work, 

we investigate the performance of the base FLAN-

T5 model (250M parameters) and Llama 2-7B, the 

smallest version of the model. These versions of 

FLAN-T5 and Llama 2 were selected due to their 

computational efficiency. For all models, default 

hyperparameters were used. 

We investigated several different zero-shot and 

few-shot prompting approaches to evaluate the 

Question Topic 
Number of 

Questions 

Sent 

Number of 

Student 

Responses 

What does the term "deep" in deep learning refer to? 
What is the basic building block of a neural network 

called? 
In a neural network, what function is responsible for 

introducing non-linearity to the model? 

Deep Learning 1 28 

Deep Learning 1 27 

 

Deep Learning 1 24 

What is clustering in the context of machine learning? Clustering 2 37 

Name a commonly used algorithm for clustering and 

briefly describe how it works. 
Clustering 

2 34 

What is the main difference between K-means and 

hierarchical clustering? 
Clustering 

2 37 

The K-means algorithm may end up with different 

clustering results when the initial clustering centers are 

chosen differently. Yes or No? 

Clustering 

2 36 

What is the "purity" of an external measure for cluster 

quality? 
Clustering 

1 22 

What are support vectors in the context of SVMs SVM 1 23 

How does a soft-margin SVM differ from a hard-margin 

SVM? 
SVM 1 23 

Is it always better to use a soft-margin SVM to ensure 

model flexibility? Why? 
SVM 1 22 

Is an SVM more suitable for small datasets than large 

datasets? Why? 
SVM 1 23 

Can SVMs be used for both classification and regression 

tasks? Example? 
SVM 1 20 

 

Table 1: Descriptive statistics of questions sent during the classroom study. 
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performance of Llama 2, GPT-3.5, and GPT-4 for 

automated assessment of students’ self-

explanation. As a baseline, these models were 

provided with instructions that described the task 

(i.e., “Please evaluate a student's explanation 

response to the following question.”) in addition to 

the question and student response. Then, we 

systematically evaluated the impact on model 

performance of including the following 

information in the prompt: (a) rubric items for the 

current question, (b) an exemplar correct response 

provided by the instructor, and (c) other students’ 

labeled responses to the current question. Prompts 

were constructed with all possible combinations of 

the different information elements, and model 

performance was evaluated for each combination. 

For the prompts incorporating student self-

explanation responses, 10-fold student-level cross-

validation was used to prevent bias from students’ 

individual writing styles and to ensure 

generalizability, avoiding data leakage in model 

evaluation. Additionally, this approach accurately 

represents the real-world scenario that will be faced 

when deploying EXPLAINIT in future classroom 

implementations, as the students interacting with 

the system will be new but the models will have 

access to past student’s responses to each question. 

Due to LLM token limits and the per-token cost of 

proprietary models like GPT-4, we sampled ten 

responses from the training set for each cross-

validation fold to include in the prompts rather than 

including the entire training set. 

In comparison to Llama 2, GPT-3.5, and GPT-4, 

the FLAN-T5 base model's smaller parameter 

count facilitates easier and more cost-effective 

training. Given its sufficient size for fine-tuning 

using our available resources, we chose this 

approach over few-shot prompting. We applied 

LoRA for efficient fine-tuning, changing only a 

subset of the model’s parameters to conserve time 

and computational resources, while achieving 

similar performance to full fine-tuning (Hu et al. 

2021). The evaluation of fine-tuned FLAN-T5 

models is also based on 10-fold student-level cross-

validation using the same data split as was used for 

in-context learning with the other models. 

However, rather than including example 

explanations and their assigned labels in the 

prompt, they were used as training examples in a 

supervised learning approach. As with the in-

context learning approach, we explored variants of 

prompts including the rubric item for each question 

and/or the exemplar correct response created by the 

instructor. A separate FLAN-T5 model was fine-

tuned for each prompt variant. 

6 Results 

Results from all experiments are presented in Table 

2. Our task involves multi-class classification, 

where each student response is categorized into 

correct, partially correct, or incorrect. We 

evaluated the explanation assessment models in 

terms of accuracy, macro F1, and weighted F1. As 

noted above, all combinations of the three different 

information elements (i.e., rubric, exemplar 

response, and student example responses) were 

explored for each LLM. Due to length constraints, 

Table 2 reports only the results of including one 

element at a time as well as including all types of 

information, while the findings from all 

combinations are discussed in this paper. 

Across all experiments, FLAN-T5 models that 

were fine-tuned with rubric information and the 

instructor’s exemplar response achieved the 

highest accuracy (acc.=0.824). This was a 

substantial improvement over the majority 

baseline, which always predicts the most common 

class (acc.=0.730), as well as the next-highest 

performing approach, which was GPT-4 with ten 

student examples included in the prompt 

(acc.=0.775). In terms of macro F1 score, GPT-4 

with ten labeled student explanation responses 

included in the prompt achieved the highest 

performance (F1=0.664). This was a significant 

improvement over the majority baseline 

(F1=0.281) and the next-highest performing 

approach, which was GPT-4 with all three 

information elements included in the prompt 

(F1=0.641). In terms of weighted F1 score, FLAN-

T5 models that were fine-tuned with rubric 

information and the instructor’s exemplar response  

achieved the highest performance (F1=0.798). This 

was an improvement over the majority baseline 

(F1=0.616) and a small improvement over the next-

highest performing approach, which was GPT-4 

with ten labeled student explanation responses 

included in the prompt (F1=0.792). 

In general, our results demonstrate that 

including rubric information in the prompt 

improved model performance. For FLAN-T5, 

Llama 2, and GPT-4, both accuracy and F1 score 

were improved relative to the prompting approach 

that only provided high-level instructions for the 

explanation assessment task. We observed the 
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largest improvement in model performance when 

the sole additional information was a set of ten 

labeled explanation responses from other students. 

With this prompt, Llama 2 and GPT-4 

demonstrated improved accuracy over the 

instruction-only approach, while Llama 2, GPT-

3.5, and GPT-4 exhibited improved macro F1 

scores. However, we found that including the 

instructor’s exemplar response into the prompt led 

to reduced model performance across all models 

except for Llama 2, compared to the instruction-

only approach. This reduction may stem from the 

exemplar responses often containing 

comprehensive details that exceed the question's 

scope, leading the models to apply a very strict 

standard in assessing student responses. 

Consequently, responses were more frequently 

categorized as partially correct or incorrect, even 

though they should be labeled correct within the 

question's intended scope. 

Next, we looked at the effects of including two 

information elements in the prompt. Note that these 

results are omitted from Table 2 to save space. We 

observed that the highest accuracy and F1 score for 

FLAN-T5 were achieved when the models had 

access to both rubric information and the 

instructor’s exemplar response. That is, we found 

that there was an additive effect of including 

multiple information elements for FLAN-T5 

models. In comparison, the general trend across the 

prompting approaches for Llama 2, GPT-3.5, and 

GPT-4 that utilized two information elements was 

that there was not an additive benefit of including 

multiple information elements. For example, GPT-

3.5 and GPT-4 including either rubric information 

or the exemplar response in addition to labeled 

student responses led to reduced performance 

compared to models that only had access to ten 

student example responses. In addition, Llama 2 

generally demonstrated a decrease in performance 

when using two information elements compared to 

only one; however, the combination of the 

exemplar response and ten student responses 

without the rubric led to improved performance 

over all approaches that incorporated only one 

information element. 

A distinct trend emerged when all three 

information elements were included in the prompt. 

Model Prompt Variation Accuracy 
F1 

(macro) 

F1 

(weighted) 

Majority 

Baseline -- 0.730 0.281 0.616 

FLAN-

T5-base 

(250M) 

Fine-tuned with instructions 0.803 0.476 0.764 

Fine-tuned with instructions + Rubric 0.820 0.506 0.789 

Fine-tuned with instructions + Exemplar response 0.792 0.465 0.754 

Fine-tuned with instructions + Rubric + Exemplar 

response 
0.824 0.550 0.798 

Llama 2-

7B 

Instructions only 0.509 0.184 0.538 

Instructions + Rubric 0.664 0.400 0.698 

Instructions + Exemplar response 0.526 0.234 0.579 

Instructions + 10 student examples 0.706 0.443 0.717 

Instructions + Rubric + Exemplar response + 10 

student examples 
0.744 0.444 0.751 

GPT-3.5 

Instructions only 0.664 0.545 0.684 

Instructions + Rubric 0.564 0.449 0.586 

Instructions + Exemplar response 0.519 0.425 0.539 

Instructions + 10 student examples 0.612 0.591 0.644 

Instructions + Rubric + Exemplar response + 10 

student examples 
0.533 0.537 0.560 

GPT-4 

Instructions only 0.685 0.574 0.708 

Instructions + Rubric 0.709 0.606 0.732 

Instructions + Exemplar response 0.651 0.422 0.686 

Instructions + 10 student examples 0.775 0.664 0.792 

Instructions + Rubric + Exemplar response + 10 

student examples 
0.754 0.641 0.779 

 

 

Table 2: Student explanation assessment results across models and prompt variations. 
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GPT-3.5 and GPT-4 models with access to all three 

information elements performed worse than 

models provided with only ten labeled student 

example responses, both in terms of accuracy and 

F1 scores. However, for Llama 2 models, 

incorporating all three information elements in the 

prompt resulted in the highest accuracy and F1 

scores compared to any other combinations of 

information. 

These results suggest that the best results are not 

necessarily guaranteed by providing the model 

with the maximum amount of task-related 

information. Models consistently performed well 

when the prompt included labeled examples of 

other students’ responses, but including the 

instructor-created exemplar response tended to 

reduce model performance as discussed. Adjusting 

the exemplar response provided to the models, by 

adding clarification or simplifying its content, 

could potentially lead to improved performance 

when this information element is included. This 

underscores an important area for future research. 

Overall, these results demonstrate that fine-

tuning FLAN-T5 and utilizing few-shot learning 

with GPT-4 are both viable approaches to this 

explanation assessment task. Although FLAN-T5 

requires more training data than GPT-4 to reach 

high performance levels (our preliminary analysis 

indicated that the predictive accuracy of a FLAN-

T5 model, fine-tuned with only the data from five 

focus group students, was 60%), this tradeoff may 

be acceptable considering that FLAN-T5 is open-

source and GPT-4 is proprietary. This consideration 

becomes more critical as our classroom 

implementation scales, especially in large 

classroom settings with multiple sessions where 

deployment costs become a significant factor. 

Conversely, if the EXPLAINIT system is 

implemented in a course where FLAN-T5 models 

have not been trained with student data from that 

course, GPT-4 with one-shot learning (with rubric 

information) might significantly outperform 

FLAN-T5, making GPT-4 potentially more 

suitable for the classroom response system. It will 

be crucial to weigh practical benefits, scalability, 

and cost considerations when deploying a runtime 

version of the explanation assessment system 

during the classroom use of EXPLAINIT. In practice, 

these results suggest that a hybrid system may be a 

viable approach. When a new question is deployed 

using the system, zero-shot learning with GPT-4 

can be used based on a pre-defined rubric that was 

created for assessing responses to the question. 

Since this information can be created at the same 

time as the question, it can be provided to the 

system when the new question is first deployed. 

Then, as student responses to the question are 

collected, they can be used to fine-tune a FLAN-T5 

model, which can then replace the GPT-4 model 

once it starts showing superior performance. 

7 Conclusion 

Prompting students to craft self-explanations has 

demonstrated to offer numerous educational 

advantages. However, it often requires substantial 

time and effort necessary for instructors to 

manually assess student responses and provide 

feedback for students, which renders them 

unsuitable in large classroom environments. To 

address this challenge, we present EXPLAINIT, a 

self-explanation-based classroom response system 

specifically designed to encourage students in 

formulating written self-explanations during 

undergraduate STEM lectures. Our NLP 

framework builds on Transformer-based large 

language models, such as FLAN-T5 and GPT-4, in 

assessing the correctness of student explanations, 

and it is evaluated using our dataset collected from 

classroom interactions with the EXPLAINIT system. 

Results demonstrate that fine-tuned FLAN-T5 

models using prompts with rubric information and 

an exemplar response achieved the highest 

accuracy and weighted F1 score, while few-shot 

prompting that provided GPT-4 with ten labeled 

student response examples achieved the highest 

macro F1 score. These results indicate the potential 

to use large language models for automated 

explanation assessment, which can be leveraged to 

provide adaptive support for students’ self-

explanations in classroom environments.  

Moving forward, there are several promising 

directions for future work. First, it will be important 

to implement the full suite of EXPLAINIT system 

functionalities, including NLP assessment models, 

in a classroom environment and investigate their 

impact on students’ learning outcomes. It would 

also be interesting to incorporate AI capabilities to 

support question and rubric generation, thereby 

reducing the amount of work required by 

instructors to use EXPLAINIT in their classes. 

Additionally, the explanation assessment system 

could be expanded to support a finer-grained 

assessment of students’ self-explanations. For 

example, concept-level assessment of students’ 
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self-explanations could provide more insightful 

feedback for both students and instructors. Also, it 

will be important to investigate this explanation 

assessment approach in disciplines other than 

computer science to evaluate its performance in 

other domains. Finally, it will be important to 

explore how different types of exemplar responses 

and rubric items impact model performance. If we 

are able to identify characteristics of exemplar 

responses and rubric items that most improve the 

predictive accuracy of our LLM-based framework 

for self-explanation assessment, that will enable 

our classroom response system to more effectively 

support student learning in new settings where 

there is limited student data that can be used to 

inform the assessment models. 

8 Limitations 

One limitation of our work is the challenge 

associated with evenly comparing fine-tuned 

models (i.e., FLAN-T5) with models that are 

evaluated based on few-shot in-context learning 

(i.e., Llama 2, GPT-3.5, and GPT-4). In our work, 

FLAN-T5 had access to 90% of the dataset as 

training data because of the 10-fold student-level 

cross-validation setup. In contrast, while the 

models that used in-context learning used the same 

cross-validation setup, they had access to only ten 

student responses that were sampled from the 

training set for each cross-validation fold. This 

limitation was a result of the practical consideration 

that LLMs have limited context lengths and that 

proprietary LLMs have monetary costs on a per-

token basis. As a result, it is not feasible to provide 

an unlimited number of labeled student explanation 

responses in the prompt to an LLM, and the limit 

of ten student responses was chosen because it 

seemed reasonable. To overcome this limitation, 

future work could systematically investigate 

whether there is a more optimal number of example 

student responses that balances between model 

performance and costs. Another limitation of this 

work is the generalizability of the result suggesting 

that including an exemplar response created by the 

instructor in the prompt led to reduced model 

performance. It may be the case that certain 

characteristics of the exemplar responses used in 

this work were suboptimal for providing an LLM 

with guidance on how to correctly assess students’ 

explanation responses. Further investigation into 

the impacts of various characteristics of exemplar 

responses would be helpful for addressing this 

limitation. 
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Abstract

Generative language models have been used
to study a wide variety of phenomena in NLP.
This allows us to better understand the linguis-
tic capabilities of those models and to better
analyse the texts that we are working with.
However, these studies have mainly focused
on text generated by L1 speakers of English.
In this paper we study whether linguistic com-
petence of L2 learners of Swedish (through
their performance on essay tasks) correlates
with the perplexity of a decoder-only model
(GPT-SW3). We run two sets of experiments,
doing both quantitative and qualitative analyses
for each of them. In the first one, we analyse
the perplexities of the essays and compare them
with the CEFR level of the essays, both from an
essay-wide level and from a token level. In our
second experiment, we compare the perplexity
of an L2 learner essay with a normalised ver-
sion of it. We find that the perplexity of essays
tends to be lower for higher CEFR levels and
that normalised essays have a lower perplex-
ity than the original versions. Moreover, we
find that different factors can lead to spikes in
perplexity, not all of them being related to L2
learner language.

1 Introduction

In the past couple of years we have seen a fast de-
velopment in the capabilities of decoder-only lan-
guage models, such as GPT-4 (OpenAI et al., 2024),
LLaMA (Touvron et al., 2023), and BLOOM.1

These models have been increasingly deployed in a
wide variety of applications such as machine trans-
lation (Qian, 2023) and financial (Li et al., 2023)
and legal applications (Kwak et al., 2023). In the
context of second language (L2) educational ap-
plications, these models have been deployed to
different subtasks, with varying degrees of success
(Naismith et al., 2023; Yancey et al., 2023).

1https://bigscience.notion.site/BLOOM-BigScie
nce-176B-Model-ad073ca07cdf479398d5f95d88e218c4

Even though they excel at a multitude of NLP
tasks, the inner workings of large language models
are obscure. This means that it is complicated, if
not impossible, to verify that a model has learned
actual linguistic features instead of making spu-
rious correlations. The same issue is true when
attempting to determine how the model arrived at
specific decisions (Blevins et al., 2023). This can
be tricky, especially in high-stakes situations such
as educational applications.

One such example is the evaluation and assess-
ment of second language performance, as the result
of such assessment can alter the life opportunities a
person has access to (education, job offers, among
others). When dealing with text, we want to be
able to understand how systems interact with text
from second language learners. This would allow
us to properly build models for tasks such as sec-
ond language assessment, for grammatical error
correction, among others, while complying with
the right to an explanation (Official Journal, 2016).

One way to do so is to analyse how much text
diverges from what a language model expects. This
can be done using perplexity, a statistical concept
that measures the probability of a sequence given
an estimator and has been interpreted in an intuitive
manner as a measure of "surprisal" (Dobnik et al.,
2018; Niu and Penn, 2020). However, it has been
mostly used to study texts of first language speakers
of English. To address this gap, we aim to study
how perplexity interacts with texts generated by
second language learners of Swedish.

We hypothesise that the perplexity of a decoder-
only model is related to the complexity of the text
in an L2 speaker’s essay. In this paper we aim to
answer the following research questions:

• To what degree can the linguistic competence
of a learner (as evidenced in an essay) be es-
timated using perplexity from language mod-
els?
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• To what degree does the perplexity of the lan-
guage model correspond to CEFR2 levels?

We have used GPT-SW3 (Ekgren et al., 2023)
as our language model for this study. It is based
on the GPT series (Radford et al., 2019; Brown
et al., 2020) and trained on data of several Nordic
languages. We give more details about it in Section
3.1. For the L2 learner essays we used Swell (Volo-
dina et al., 2016a; Volodina, 2024), a collection of
corpora of L2 learner essays in Swedish. A more
in-depth explanation of its contents and how the
essays were collected can be found in Section 3.2.
We describe perplexity and some of its intuitive
interpretations in Section 3.3.

We ran two sets of experiments. In Section 4 we
show the perplexity of the essays and see how it is
distributed both across levels and within the essays.
This analysis is done both in a statistical manner in
Section 4.1 and in a linguistic manner in Section
4.2. The second set of experiments is a comparison
between the perplexity from original essays written
by L2 students and normalised versions of these
essays, described in Section 5.

2 Related Work

2.1 NLP for Second Language Learning
There have been several ways in which NLP has
been used for second language learning. The two
most relevant for us are automated essay scoring
and grammatical error correction.

Automated essay scoring (AES) of L2 learner
texts is a task in which we have a system that takes
a text generated by an L2 learner and assigns a
grade or level to it. This can be done using CEFR
levels, but different levels or scales have also been
used in the past. Despite their ubiquity in NLP
and machine learning in general, deep learning had
not been used in AES until 2016 (Alikaniotis et al.,
2016; Taghipour and Ng, 2016). Even though there
have been more works that use deep learning for
this task, Mayfield and Black (2020) warn that
their performance might not be good enough to
justify the lack of transparency and the increased
computational costs. As for decoder-only models,
they were first used for this task in 2023, with
mixed results (Naismith et al., 2023; Yancey et al.,
2023).

2CEFR stands for Common European Framework of Ref-
erence for Languages. It is a framework to evaluate foreign
language learning and assigns one of six reference levels to
determine the proficiency level of a second language speaker
(Council of Europe, 2001).

Grammatical error correction (GEC) is a task
in which we have a system that takes a text as-
sumed to have some sort of error or non-standard
language and returns a normalised version of the
same text. It is important to note that, despite
the name of the task, the errors in the original (or
source) text are not limited to grammar and often
include other kinds or errors, such as lexical, or-
thographic, among others (Bryant et al., 2017). It
is often seen as variation of machine translation,
with the source language being the non-normalised
language and the target being the normalised one
(Wang et al., 2021). Because of this, sequence-
to-sequence neural models have often been used
for this task, including decoder-only models (e.g.
Flachs et al., 2019).

Most of the work done so far in this area has
focused on English. However, the advances for
Swedish are scarce, despite it being a language
with relatively good language technology resources.
The Swell corpus collection (Volodina, 2024) con-
tains corpora both for AES (Swell-pilot) and for
GEC (Swell-gold). As far as we are aware, the
current state of the art of AES in Swedish is that of
Pilán et al. (2016) and Volodina et al. (2016b). They
use a feature-based approach using length-based,
lexical, morphological, syntactic, and semantic fea-
tures. In terms of GEC, the most recent approach
is that by Kurfalı and Östling (2023), who used a
transformer-based model.

2.2 Language models as Predictors of
Grammaticality

As Lappin (2023) points out, the discussion of lin-
guistic capabilities of large language models ranges
from (overstated) claims of their sentience and the
arrival of artificial general intelligence to skepti-
cism and dismissal. Because of that, he argues it
is is essential to explore the capabilities of these
models. One way that this has been done is by
evaluating how much texts generated by humans
diverge from what a language model expects.

One possible approach is by evaluating the gram-
maticality or linguistic acceptability of a text. The
idea is to give a system a text that it has to deter-
mine whether it is grammatically correct or not.
There are two main approaches through which this
can be done. The first one is as a classification task,
assigning each sentence a class that determines
whether a sentence is grammatically correct or not
(Klezl et al., 2022).

Another approach is by checking whether a text
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is likely to appear in text generated by a language
model or not (Lau et al., 2017). In particular, per-
plexity has been used as a way to determine how
much a model expects the tokens within a text to
appear (Niu and Penn, 2020). It has subsequently
been interpreted as a measure of "surprisal".

3 Methodology and Experimental
Settings

3.1 GPT-SW3
Our objective is to determine how much L2
Swedish learner’s texts differ from what a genera-
tive language model would expect.

In order to do this, we use GPT-SW3 (Ekgren
et al., 2023), an auto-regressive model based on the
GPT series of models (Radford et al., 2019; Brown
et al., 2020). It was trained on a large dataset called
The Nordic Pile (Öhman et al., 2023), a 1.3TB
dataset containing large dumps of several websites
in the Nordic languages.3

We decided to use this model as it is to our
knowledge the largest and best performing gen-
erative model currently available for the Swedish
language. Our assumption is that it will be able to
model Swedish in a similar way to how L1 speak-
ers write across a variety of domains, thus allowing
it to identify when an L2 speaker’s sentences differ
from what an L1 speaker would write.

3.2 Dataset
To compare how GPT-SW3 works for different
CEFR levels of language learner essays, we have
used the Swell corpus collection (Volodina, 2024).
It is divided into two corpora, Swell-pilot (Volod-
ina et al., 2016a) and Swell-gold (Volodina et al.,
2019).

Swell-pilot consists of 502 essays divided into
three sub-corpora, collected between 2012 and
2016. All essays are anonymised and annotated
for CEFR level. However, there are six essays that
lack a level, so we have ignored them for the pur-
poses of this paper.

Swell-gold consists of 502 essays that were
collected between 2017 and 2021. They are
pseudonymised and include both the original ver-
sion and a normalised version of the essays. They
also contain level indications, which, however, do

3The languages included are Danish, Faroese, Icelandic,
Norwegian, and Swedish. For more information about the
contents of the dataset, read AI Sweden’s blog post:
https://medium.com/ai-sweden/the-nordic-pile-a8d
5aaf3db60

Level N° of Essays

A1 59
A2 143
B1 86
B2 105
C1 96

C2
7 (Swell-pilot)
43 (Swell-gold)

Table 1: Distribution of the CEFR levels in Swell-pilot.
Note that we added extra essays from Swell-gold to
have a more representative sample of the C2 level.

Level N° of Essays

Beginner (Nybörjare) 289
Intermediate (Fortsättning) 45

Advanced (Avancerad) 168

Table 2: Distribution of the proficiency levels in Swell-
gold. The text in parenthesis is the name for the level
used in the metadata (in Swedish).

not align with the CEFR levels. These levels were
determined by using the course that the student was
taking as a proxy for proficiency, not by an actual
analysis of learner performance.

In our first experiment (Section 4) we use all
the essays from Swell-pilot that have a CEFR level
assigned to them, as they showcase a good distribu-
tion from the different levels, as seen from Table 1.
The only exception is the C2 level which only has
seven essays. To make up for this, we randomly
sampled 43 of the normalised version of the essays
in Swell-gold by advanced speakers as we assumed
that it would more closely resemble those by C2
second language learners.

In our second experiment (see Section 5) we use
both the original and the normalised versions of all
of the Swell-gold essays. The distributions of the
proficiency annotations of the essays can be found
in Table 2.

3.3 Perplexity as a Measure of Surprisal
Perplexity is the probability that an observation is
made by an estimator. When dealing with genera-
tive models, this is the probability that a sequence
S appears in a natural language L. When we use
a language model M , we do so as it approximates
(or models) language L. Thus, we can intuitively
interpret the perplexity PPM as a way to measure
how "surprised" the model M is to see sequence S.
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Now, perplexity is defined in mathematical terms
as the probability that an estimator (in this case M )
sees an observation S (Jelinek et al., 2005). The
best way to calculate this for a generative model is
by taking the product of the probabilities of a token
given the previously generated ones:

PPM (S) = P(S)−|S| =
∏

i≤|S|
P(Si|S<i)

−|S|

where Si denotes the i-th token of S and S<i the
sequence S up to Si.

Given that this is a very small number, we risk
having an underflow in our calculations4. Because
of this, we are better off using the log-likelihood as
opposed to using the regular likelihood. Thus, we
have

logPPM (S) = log
∏

i≤|S|
P(Si|S<i)

−|S|

= − 1

|S|
∑

i≤|S|
P(Si|S<i)

On the other hand, cross-entropy is a way to
measure how much the information between two
probability distributions differs. It is often used as
the loss function for classification tasks in machine
learning (Song et al., 2023), including text genera-
tion. When one of the distributions is unknown (as
is the case when dealing with language modeling),
it can be estimated as follows:

C(S) = LossM (S) = − 1

|S|
∑

i≤|S|
P(Si|S<i)

Thus, we can calculate the perplexity for S as
the mean cross-entropy for S given a generative
model M :

logPPM (S) = LossM (S)

Moreover, given that the relation between like-
lihood and cross-entropy is given by a monotonic
function, the relative positions between different
data points does not change. This means that we
can use the loss from GPT-SW3 (M in this case) to
determine the perplexity of a given essay (S in this
case). For the rest of this paper we will refer by per-
plexity to − logPPM (S) as opposed to PPM (S).
This is due to the fact that the second number is
more likely to underflow as it is a multiplication of
probabilities.

4An underflow occurs when small numbers are rounded
down to zero by the computer due to how floating-point num-
bers work.

Level Mean Median Std

A1 5.25 5.01 0.78
A2 4.49 4.49 0.74
B1 4.13 4.15 0.48
B2 3.96 3.95 0.42
C1 3.67 3.60 0.36
C2 3.46 3.48 0.48

Table 3: Statistics on the perplexities of GPT-SW3 on
the Swell-pilot essays per level. Note that all values get
lower the more advanced the students are. This is an
indication that as L2 learners advance in their journey,
their language approaches that of the language model,
which we are assuming should be close to that of an L1
speaker.

Figure 1: Boxplots for the perplexities of the different
CEFR levels. As we can see, as the L2 learner’s level
progresses, the perplexity of their texts according to
GPT-SW3 diminishes.

4 Experiment 1: Perplexity and CEFR
Levels

In this section we analyse the perplexities of the
essays given by GPT-SW3. We begin by doing
statistical analyses of the perplexities by level in
Section 4.1. We then do a linguistic analysis of
some of the essays of each level in Section 4.2
with the aim of identifying patterns in how the
perplexities are distributed within the essay texts.

4.1 Quantitative Analysis

As we can see from Figure 1 and Table 3, the es-
says from more advanced learners tend to have
lower perplexity than those of less advanced learn-
ers. This is evidenced when looking both at the
mean and the median values of the perplexities for
each CEFR level as the more advanced levels have
a lower mean and median value.
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When looking at the boxplots in Figure 1 we see
a similar pattern appear. For each subsequent level,
the boundaries of the same quartile are noticeably
lower than of the previous level. For example, the
first quartile’s roof and floor values in level A1 are
higher from the ones in level A2, which are in turn
higher from the ones in level B1, and so on. The
exceptions to this are the boxplots of levels C1 and
C2, which have somewhat similar distributions. A
possible explanation for this could be that both of
these levels are considered to be essentially fluent
in the target language, meaning that both kinds of
L2 speakers would be able to produce pretty similar
sentences. Another possible explanation could be
that the normalized essays chosen as a substitute
for C2 level essays have a higher perplexity than
actual C2 level essays.

However, it is also important to note that the
boxplots still have a big overlap between levels,
especially in adjacent ones. This means that, while
there is a tendency for the perplexities of the essays
from GPT-SW3 to get lower the more advanced
a learner is, it is by no means a strong indicator
for determining the CEFR level of a Swedish L2
learner. This makes sense as language learning
itself is a continuous endeavor, as opposed to a
discrete one (e.g., Ortega, 2012).

Finally, when looking at the standard deviations,
we can see that they also get lower the higher the
level. A possible explanation for this could be that
the more advanced a learner is, the more likely they
are to experiment with the language within certain
boundaries that they know to work.

4.2 Qualitative Analysis
To better understand the phenomenon of perplexity,
we have also carried out a qualitative analysis. We
have selected essays for this qualitative analysis
in the following way: we ignored the essays that
were outliers in terms of perplexity on each level;
of the remaining essays, we picked the two with
the highest perplexity, the two with the lowest, and
the two closest to the median in their respective
levels; and level C2 was ignored from this analysis
due to its similarity to the C1 essays. This leaves
us with six essays per level for a total of 30 essays.

The analysis has several aspects that we have
chosen to focus on. First of all, we want to see
what the value of the perplexity depends upon in
linguistic terms when seen on a token level and
whether this correlates with the CEFR levels. We
also want to know whether the perplexities within

Jag heter NN Jag är 16 år Jag bor i Göteborg en dagar
är inte bra Därför Jag min kompisa bråkade mid andra
alver bråkade fall grap andra alver mycket fel vi spelar
fottboll mach hallen fott boll entjejär ringer polisen .
Kommer snabb Polisen Polisen är frågar en kille vad
händer Kille är inta bra svenska är lite svenska . han
förstår inget efter Polisen fråga folk sen är skriver bver
Polisen sting hollen fott boll . efter allt bra en dagar ar
bra Jag ska gå bibilotek Jag ska fråga en Tjerär Jobbar
biliotek Jag vill läsa en bok på lätt svenska hon är
hjäpar Jag är läsa svenska bok . Jag träna svenska .
myct Svenska lär sig Repetera alltid hemma samma

(a) Original essay in Swedish.

My name is NN I am 16 years old I live in Gothenburg
one days is not good Because I my buddyse$ quarreled
wihth other tuddents quarreled hole grup other
tuddents very wrong we play fottball mach the fott ball
hall onegirles call the police . Come soon the Police
The Police is ask one guy what happens Guy is nott
good Swedish is little Swedish . he understand nothing
after the Police ask people then is writes bver the
Police thingg the fott ball hall . after all good one days
iss good I will go library I will ask one Girrles Work
library I want read a book in easy Swedish she is
helpes I is read Swedish book . I train Swedish .
mucch Swedish learn me Repear always home same
day

(b) Translated version of the essay to English.

Figure 2: An example of an A1 level with median per-
plexity. Darker colors correspond with higher perplexi-
ties. Note that the translation was made with the aim of
the text being aligned while trying to replicate grammat-
ical errors and misspellings found in the original text.

an essay can be used to help guide or inform on
possible aspects on which to focus when grading
an essay. Finally, we want to understand how per-
plexity in LLMs works when dealing with text that
was generated by an L2 language learner.

In more practical terms, our intention is to ex-
amine whether variations in perplexity can be ex-
plained by the linguistic competence of a learner.
We focus particularly on sections and tokens with
high perplexity, setting a threshold at 6 based on
the analysis of graphs in Appendix B, showing how
perplexity is distributed across the essays and their
variation across different levels. We then analyse
the tokens above this threshold across several di-
mensions.

4.2.1 Placement Within an Essay

The first hypothesis we have explored is that tokens
at the beginning of an essay would have higher
perplexity values. The idea is that the first few
words would be relatively more unexpected for the
language model than the text found later in the
essay. Looking through the different levels, we can

418



state that this is indeed true in most cases, as can
be seen in Appendix A.

This is more noticeable at lower levels, espe-
cially if an essay starts with the pronoun jag5 and
its various forms. Two examples of this are Jag
heter NN [...]6 or *Min skolan ligger [...]7. The
lowest perplexity for the first tokens in an essay
can be observed in essays starting with the formal
subject Det är / Det finns8.

The high perplexity at the beginning of an essay
does not seem to characterize essays of a certain
level. Therefore, it could be reasonable to ignore
the perplexities of the first five or six tokens for
successful practical applications of perplexity for
L2 essays. Another option would be to weight the
perplexity scores depending on their position in the
essay.

We also observe that the perplexity values tend,
in general, to go down by the end of an essay. This
could be because the model knows better what to
expect due to the preceding context. Exceptions
would arise where other unexpected elements, such
as errors, may occur by the end of an essay.

4.2.2 Placement Within a Sentence

The second hypothesis we have explored is that
tokens at the beginning of a sentence would have
higher perplexity values. It has proven not to be
the case.

Essays at levels A1 and A2 can exhibit lack of
end-of-sentence punctuation, which makes it next
to impossible to separate the increase in perplexity
due to the beginning of a sentence with the increase
in perplexity due to having a run-on sentence. Es-
says at levels B1, B2 and C1 do not show regular
spikes in perplexity at the beginning of individual
sentences. Where such spikes have been observed,
this was due to other linguistic reasons, such as er-
rors, rare words, some subjunctions, register switch
(from formal to informal or vice versa) or contex-
tually unexpected turn in narration.

Based on this analysis we suggest that the per-
plexity spikes at the beginning of a sentence could
be treated as any other within an essay. This is sup-
ported by the fact that GPT-SW3 looks at strings
of tokens, which tend to be longer than sentences.

5This pronoun is the equivalent of the pronoun I in English.
6Can be translated to English as My name is NN [...].
7Can be translated to English as *My the school lies [...].

Note the use of non-standard language by using a possessive
and a determinant on a noun.

8Can be translated to English as There is / There exists.

4.2.3 Parts of Speech

Another hypothesis we have explored is that differ-
ent parts of speech would have different perplex-
ity values in general. The distribution of parts of
speech among tokens with higher perplexity shows
that content words9 are much more often perplex-
ing for the model. The percentage of content words
of high perplexity is about ∼55-70%. Meanwhile,
only ∼15-20% of all the words with high perplex-
ity are function words.10 The rest of the words with
high perplexity are constituted by proper names,
numerals, modal verbs, and punctuation.

The high representation of content words sug-
gests a strong impact of semantics, contextual use,
and fixed expressions on the probabilities of words
expected to be used. A large number of the content
words with high perplexity can be explained by
various errors, such as non-idiomatic usage, incor-
rect spelling, or morphological errors. An example
of non-idiomatic usage would be efter allt, which
would be translated word-for-word to English as
after all. However, this expression is not used in
Swedish.

On the other hand, a high perplexity in function
words is more often than not triggered by syntax
errors, such as missing words or punctuation, is-
sues in word order, and to a lesser degree by mis-
spellings.

An interesting case is presented by high perplex-
ities in multi-word expressions (MWEs). Quite
a few of those combine with rare words that ap-
pear in combination with just a few other words.
Our model is therefore triggered to expect a certain
word once the initial part of an MWE is used, such
as å in the expression å ena sida..., å andra sidan.11

When, the form *å annan sidan is used instead, the
system flags the word annan12 as a perplexing one.
In another case, the initial preposition was omitted
by a learner from the expression i alla fall,13 so the
system flagged alla as highly perplexing, whereas
the error depended on the omitted token i. This
same concept can be seen with phrases. That is,
perplexity tends to be lower within, say, a noun
phrase as words inside it become more predictable.

The last comment on the effects of parts of

9Nouns, verbs, adjectives, and adverbs.
10Such as prepositions, articles, particles, conjunctions, and

pronouns.
11This can be translated to English as on the one hand..., on

the other hand.
12The indefinite form of the word other.
13Can be translated to English as anyway.
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speech on perplexity needs to be made in connec-
tion to proper nouns and names. Names are highly
perplexing in general in our data, but even more
interesting is the fact that some are significantly
more so than others. For example, perplexity for
Kanada 14 is much higher than for Afrika 15. While
we do not have enough proper names in the 30 es-
says we have selected for qualitative analysis to
make any generalisations, we consider that this is
a direction that is worth pursuing, especially in re-
lation to possible demographic biases in data and
models.

4.2.4 Punctuation
Regarding punctuation, we did not originally ex-
pect it to factor significantly into the perplexity of
the text. However, we found that the highest spikes
have been observed in the use of citation marks
and apostrophes. Apostrophes are not used in stan-
dard Swedish, which can explain its effect on the
model. Meanwhile, the perplexity spikes caused by
citation marks could be explained by their low use
in the training data for our model. Since citation
marks are used at higher proficiency levels (at least
in the Swell-pilot data), their high perplexity values
may effect the assignment of a CEFR level.

As a take-away lesson, we consider that punctu-
ation in general adds noise and should be exempt
from perplexity calculations in connection to essay
grading.

4.2.5 Errors
Spikes in perplexities in the running essay text
show relatively strong correlation with errors. The
majority of words with high perplexity contain
some kind of error, either on the token itself (mis-
spelling, morphology, etc) or errors within the pre-
vious context (word order, missing punctuation or
missing syntactic word, etc).

About ∼65-80% of the highly perplexing tokens
in essays at A1 and A2 level are related to errors
of various types. This number gradually decreases
up to the point where at B2 level and higher less
than 50% of high perplexity words have a straight-
forward error associated. In some cases high per-
plexity may be explained through a (rather vague)
notion of non-idiomatic language, use of relatively
rare words, deponent verb forms16, creative com-
pounding, register, abbreviation, etc. The analysis

14Canada
15Africa
16E.g. bildades, translated to English as were built.

even suggests that word tautology is punished by
perplexity, i.e. an overuse of the same content word
in close context.

We can summarise this by saying that in the
majority of cases, high perplexities reflect an error
on the token, or on the previous token. Spelling,
morphology, and to a lesser degree syntax are the
main reasons of high perplexity in the running text.
Wrong word choice, informal register of a word,
and non-idiomatic or semantically inappropriate
words are also among the errors that can explain
higher perplexities in our model.

However, error prediction based on perplexity, is
not straightforward, since the high perplexity of a
correctly used token may depend on an erroneous
usage of the token before. Moreover, errors are
not systematically causing high perplexity scores.
At lower levels words exhibiting errors with mis-
spellings, capitalisation, morphology and missing
punctuation might receive relatively low perplexi-
ties. This apparent lack of systematicity could be
explained through some of the effects that we have
seen in other sections of this analysis, such as lex-
ical choice and frequency effects, the location of
the error within the text, among others.

4.2.6 Frequency effects
Given that perplexity is based on probability dis-
tributions of the tokens, it is dependent on the fre-
quency of tokens in the dataset on which the lan-
guage model was trained on.

While we noticed that frequency of vocabulary
has a strong correlation with perplexities, a more
systematic analysis of word frequencies against
perplexity of words in sentence is left for future
work.

One of the things that we noticed is that while
rare words tend to have higher perplexity values,
frequent words like conjunction och,17 the personal
pronoun jag,18 and the link verb att vara19 have
varying perplexities, depending on their context
and neighbouring words.

Another interesting observation with regards
to frequency are formulaic expressions that go
through language variation. For example, kommer
att is an expression that can indicate something
about the future. A second way to write this would
be to drop the att particle. However, this second use
is not widely spread and is reflected more sparsely

17Equivalent to and in English.
18Equivalent to I in English.
19Which can be translated to English as the verb to be.
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Level Mean Median Std

Beginner 4.13 4.09 0.58
Intermediate 4.28 4.32 0.42

Advanced 3.59 3.55 0.45

Table 4: Statistics on the perplexities of GPT-SWE3 on
the original Swell-gold essays per level. Even though
the beginner-level essays have lower mean and median
values when compared to the intermediate-level essays,
they have a higher standard deviation.

in online data (Berdicevskis et al., 2024). Our data
analysis shows that in cases where att has been
dropped, the content verb coming after kommer
gets high perplexity score, as if the model expects
att but sees a verb instead. In cases where att is
preserved, the perplexity is on the low level on all
tokens.

5 Experiment 2: Perplexity and Text
Normalisation

In this section we analyse whether the perplexity of
an essay given by GTP-SW3 is reduced when deal-
ing with a normalised version of it. The idea is to
establish whether non-standard language correlates
with perplexity and to what degree.

When looking at the perplexities in the Swell-
gold dataset in Figure 3 and Table 4, we notice that
there is not a clear pattern regarding the proficiency
level. While this appears to contradict the find-
ings of Section 4.1, this could be due to how the
labels were obtained. As mentioned in Section 3.2,
these labels were assigned according to the course
students are taking, as opposed to actual learner
performance.

When comparing the original and the normalised
versions of the essays, we see two noticeable ten-
dencies. The first is that, even though the original
essays seem to have different distributions depend-
ing on their level, the normalised ones have pretty
much the same distribution regardless of it, as seen
in Tables 4 and 5.

The other tendency is that the perplexity between
the original and the normalised versions of the es-
says go down in all of them. Even though we have
suspected this when first looking at Figure 3, the
fact that there is an overlap in the boxplots should
not be ignored. However, this is confirmed when
looking at the figures in Table 6. Here we notice
that the minimum difference between the perplexity
of the original essays and their normalised versions

Level Mean Median Std

Beginner 3.05 3.02 0.28
Intermediate 3.11 3.11 0.26

Advanced 3.10 3.08 0.27

Table 5: Statistics on the perplexities of GPT-SWE3 on
the normalised Swell-gold essays per level. Note that all
of the statistics from these essays are much more closer
to each other across levels when compared to those of
the original essays (Table 4).

Level Mean Median Std Min

Beginner 1.07 1.03 0.48 0.13
Intermediate 1.16 1.12 0.31 0.52

Advanced 0.49 0.43 0.30 0.05

Table 6: Statistics on the difference between the perplex-
ities of GPT-SWE3 on the original and the normalised
Swell-gold essays per level. Note that the minimum
values of the difference are all positive, meaning that
the perplexity of the normalised essays is always lower
than that of their respective original essay.

is still positive, confirming our hypothesis that the
perplexity of an essay goes down after its normali-
sation.

These results corroborate the findings from Sec-
tion 4.2. That is, the biggest effect of learner lan-
guage on perplexity comes from errors and the
use of non-normative language. This confirms our
hypothesis that perplexity is indicative of learner
language at different levels.

The remaining spikes in perplexity in normal-
ized essays indicate use of rare words, potentially
register switches, citation marks, among others.

6 Conclusions

One of the issues with large language models tends
to be their lack of interpretability and explainabil-
ity. This keeps true with generative models such as
those based on the GPT architecture despite them
being able to generate text "justifying" their reason-
ing (Blevins et al., 2023).

In this work we aimed to explore the relationship
between the perplexity from a decoder-only model
of Swedish and the complexity of the text of an L2
speaker’s essays.

We found that there is an inverse relationship be-
tween the CEFR level of an essay and its perplexity.
However, due to the overlap between the values of
each level means that they are not a strong indica-
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Figure 3: Boxplots for the perplexities of the different
proficiency levels. Even though there does not seem to
be an obvious pattern between the levels of the texts
and their perplexities, the normalised texts show a much
lower perplexity than the original texts. Moreover, the
distributions of the normalised texts are much more
similar to each other than to their original versions.

tor for the level of the essay. Moreover, we found
evidence that proficiency levels derived from the
course a student is taking might not be indicative
of the actual proficiency of the essays.

We also found that there are perplexity effects
through the essays that are not exclusive to L2
language, such as placement within a text, punc-
tuation, frequency of the tokens, among others.
Despite that, some of the more prevalent effects
are characteristic of L2 language, such as errors,
non-idiomatic use of the language, and multi-word
expressions.

There is a correlation between the use of non-
standard language as an L2 language learner. This
conclusion can be drawn by the fact that the per-
plexity for every essay became lower after being
normalised.

One of the possible applications of these could
be done through the use of these features to help
guide human graders with the assessment of learner
language. The idea of this is to take either a human-
in-the-loop (Wu et al., 2022) or a hybrid intelli-
gence approach to evaluation (Dellermann et al.,
2019). However, it would be of essence to disen-
tangle the perplexity effects that are specific to L2
speakers from those effects that are not. This would
allow us to have a more reliable and fair estimation.
This, however, remains to be explored in the future.

CEFR are categorical classes used to describe
language proficiency for teaching and assessment
convenience. Despite that, language development

itself works as a continuum, where essays within
each particular level are not homogeneous with
regards to their linguistic complexity. This contin-
uum of linguistic complexity of learner language
has rather vague and arbitrary cut-off points be-
tween one level and another (Hulstijn et al., 2010;
Ortega, 2012; Alfter et al., 2021). Given the con-
text of our experiments, we hypothesise that the
perplexity score per essay can help place each es-
say on a scale between one level and another and
that it may be an indirect way of grading essays
within the same level. However, this is a hypothesis
that needs to be explored in another paper.

7 Limitations

Throughout this paper we have talked about per-
plexity as a way to measure the surprisal of a model.
While this is a useful way to interpret this value in
an intuitive manner, it is important to note that this
is just a metaphor. We are not treating the language
model as an agend and humanising it. This is par-
ticularly relevant as they still have a vast amount of
limitations and their misuse can lead to undesirable
results (Weidinger et al., 2022).

8 Ethical Considerations

In high stakes situations such as those related to
language learning it is important to constantly audit
our systems and processes to ensure that unfairness
does not begin to creep into the process. Moreover,
we consider that a human-in-the-loop approach is
the correct way to go about, as mentioned in Sec-
tion 6. This allows the students to ask both for
explanations on the results and for a revision of
these in case they consider them to be erroneous.
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A Perplexity Plots for the Beginning of
the Essays

In this appendix we present typical ’perplexity
shapes’ for the beginning of a sentence. In Fig-
ure 4 we present the plots for the first 25 tokens of
the essays from Figure 5 with the exception of the
one at level C1.

Figure 4: Perplexity plots for the first 25 tokens of the
sample essays from Figure 5. The X-axis shows the
running number of a token, while the Y-axis shows the
perplexity score. Relative perplexity for the first several
tokens is stably high, with a few exceptions. Essays at
C1 and C2 level exhibit the same tendency.

B Perplexity Plots of the Essays

In Figure 5 we present plots of the perplexity
changes throughout some of the essays. These plots
were used to help inform a cut-off line between
what we consider relatively high and relatively low
perplexity values.
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Figure 5: Sampled perplexity shapes for full essays with median perplexity at levels A1 to C1. The X-axis shows
the running number of a token, while the Y-axis shows the perplexity score.
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Abstract

Estimating item parameters (e.g., the difficulty
of a question) is an important part of modern
high-stakes tests. Conventional methods re-
quire lengthy pilots to collect response data
from a representative population of test-takers.
The need for these pilots limit item bank size
and how often those item banks can be re-
freshed, impacting test security, while increas-
ing costs needed to support the test and taking
up the test-taker’s valuable time. Our paper
presents a novel explanatory item response the-
ory (IRT) model, BERT-IRT, that has been used
on the Duolingo English Test (DET), a high-
stakes test of English, to reduce the length of
pilots by a factor of 10. Our evaluation shows
how the model uses BERT embeddings and
engineered NLP features to accelerate item pi-
loting without sacrificing criterion validity or
reliability.

1 Introduction

The Duolingo English Test (DET) is a test of En-
glish language proficiency that is used for admis-
sions decisions in English medium universities. It
measures the four skills of speaking, writing, read-
ing, and listening. It is delivered remotely to test-
takers’ computers via a desktop application, and it
can be taken any time and at any appropriate loca-
tion with a strong enough internet connection. The
DET’s value proposition to test-takers is that it is
affordable, short in duration, and has a short score
reporting turn-around time.

The DET accomplishes this, in part, by using
computer adaptive test (CAT) administration to
more quickly and accurately estimate test-takers’
language proficiency (Cardwell et al., 2022). A
computer adaptive test (CAT) uses item parame-
ter estimates to adapt to each test-taker by finding
items that will yield maximal information about
their proficiency based on how well they’ve done
so far. Item banks for CATs must be very large to

ensure that test-takers do not have preknowledge
of items (LaFlair et al., 2022; Way, 1998), and they
also require high-quality item parameter estimates
to ensure that items are selected for administration
accurately.

Typically, item parameters are estimated from
hundreds of responses for each item collected via
pilots. However, these pilots take up the test-taker’s
valuable time and increase the costs for the assess-
ment, thus limiting the rate at which new items
can be added to the bank. Explanatory frameworks
that estimate item parameters from item features
have been around for a long time, starting with
Fischer (1973)’s Log Linear Traits Model (LLTM),
and have a rich literature (De Boeck, 2004). These
frameworks can be used to help reduce or eliminate
the need for item piloting by leveraging item fea-
tures to estimate item parameters more accurately
with less response data. This can have positive
downstream effects on test security and on test-
takers. For security, it allows for test developers
to add to, or replace, their item banks at very high
rates, which helps to ensure unique administrations
of tests and reduce the effects of item preknowl-
edge. For test-takers, it reduces the amount of time
they spend responding to unscored test items dur-
ing pilots and reduces the costs of test development.
These cost savings can be passed on to test-takers
and even help lower barriers for less economically
advantaged test-takers.

It is well known in the NLP literature (Ten-
ney et al., 2019; Jawahar et al., 2019) that pre-
trained language models such as BERT (Devlin
et al., 2019) learn text representations that repre-
sent highly general linguistic properties of words
that are useful for a wide range of tasks, includ-
ing estimating the difficulty of text for L2 learners
(Yancey et al., 2021). More recent work has ex-
plored using these text embeddings in explanatory
IRT models to predict parameters for test items.
For example, Benedetto et al. (2021) finetuned
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BERT to predict difficulty using datasets of ed-
ucational questions and real student responses, and
Byrd and Srivastava (2022) combined contextual
embeddings from BERT with additional manually
curated features to predict difficulty and discrim-
ination for general knowledge questions. Similar
work has used BERT to predict the difficulty of
multiple-choice questions (Reyes et al., 2023) and
programming problems (Zhou and Tao, 2020).

One example of using explanatory models this
way is described in our previous work, McCarthy
et al. (2021), which proposed using BERT embed-
dings in a multi-task explanatory item response the-
ory (IRT) framework, called BERT-LLTM, to esti-
mate the item parameters of c-test tasks, a task typ-
ically used to assess L2 language proficiency. This
work introduces a new model, BERT-IRT, which
makes several improvements to this approach:

• BERT-LLTM estimated passage-level diffi-
culty and discrimination. BERT-IRT estimates
these at the word level, which greatly im-
proves criterion validity and reliability.

• The accuracy of BERT-LLTM’s parameter es-
timates is limited by how well the features
predict those parameters, even for items that
have enough observed responses that non-
explanatory IRT models could produce more
accurate estimates. BERT-IRT achieves the
best of both worlds by using residual weights,
which allows it to refine the parameter esti-
mates derived from features based on response
data that has been collected for each item in a
manner similar to Bayesian updating.

• BERT-IRT incorporates engineered NLP fea-
tures that substantially increase the accuracy
of the model’s parameter estimates.

In addition to the offline evaluation on historical
data, we present the results of using this model
to shorten pilots by a factor of 10 on a real-world
high-stakes test of English for L2 learners.

2 Background: Language Assessment

First, we will provide a brief overview of the rele-
vant concepts from language assessment research.

2.1 Item Response Theory (IRT)
Item Response Theory (IRT; (Lord, 2012)) is essen-
tial for most modern high-stakes tests, and for Com-
puter Adaptive Tests (CAT; (Weiss, 1982; Van der

Linden and Glas, 2010)) in particular. IRT mod-
els are statistical models that are used to improve
the time-efficiency and accuracy of assessment by
modeling item characteristics (called “parameters”)
that affect the probability of test-takers of differ-
ent proficiency levels responding to that item cor-
rectly. One of the most common IRT models is the
2PL model (Hambleton et al., 1991), which models
both the relative difficulty of an item and how well
an item discriminates between high and low profi-
ciency test-takers. IRT models are used to quantify
how informative an item will be for a given test-
taker (i.e., by computing its Fisher information),
which is used by CAT algorithms to increase the
efficiency of the test. Additionally, IRT models
are used to produce scores from CAT algorithms
by computing the expected-a-posteriori (EAP) or
maximum-a-posteriori (MAP) of the test-taker’s la-
tent proficiency based on the test-taker’s observed
responses to items and the estimated parameters
for those items (Van der Linden and Glas, 2010).

2.2 Validity & Reliability

Validity and reliability are two key concepts in as-
sessing the quality of scores (Furr, 2021), which
are the main product of an assessment. Validity
refers to the degree to which the score measures
its intended “construct” (i.e., what it’s intended to
measure). One common piece of validity evidence
is criterion validity, which is the test score’s cor-
relation with other known measures of the same
or similar construct. Reliability is the consistency
of the score. This is often measured by taking the
correlation between retests by the same test-taker
(i.e., test-retest reliability).

2.3 The C-Test Task Type

This paper focuses on estimating item parameters
of c-test tasks for L2 learners of English. C-tests
are reading tasks that measure test-takers’ general
language ability (Norris, 2018). As shown in Fig-
ure 1, each c-test task is composed of a paragraph
in which some of the words are damaged by re-
moving the second half of the word. Specifically,
the first and last sentences of the passage are left
intact to provide context, but every other word
of the intermediary sentences is damaged. The
test-takers’ task is to complete all of the damaged
words. Research on c-tests has shown that test-
taker performance on these tasks correlates with
overall language proficiency test scores (Daller
et al., 2021), measures of reading ability (Kho-
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dadady, 2014; Klein-Braley, 1997), as well as vo-
cabulary, and grammatical knowledge (Eckes and
Grotjahn, 2006; Karimi, 2011; Khodadady, 2014).

2.4 Testlets
In our IRT model, we treat each damaged word
as a distinct item with its own parameters. This
essentially makes each c-test task a testlet (Wainer
et al., 2007), where multiple items are adminis-
tered together and share a common context (i.e.,
the passage). In our internal evaluation, we found
that treating each damaged word as a distinct item
dramatically increased criterion validity and re-
liability, as the IRT model was able to account
for the differences in difficulty and discrimination
among words within the passage. Specifically, us-
ing the Spearman-Brown prophecy formula (Allen
and Yen, 2001), we found that we would have to
add 25 % more c-test passages to each test session
in order to achieve the same increase in test-retest
reliability without using testlet scoring.

3 Model

In the following sub-sections, we explain the BERT-
IRT model in detail, starting with explaining the
standard 2PL IRT model in Section 3.1 and then
extending it with an explanatory framework in Sec-
tion 3.2. We then discuss the BERT-IRT model’s
features in Section 3.3, before finally explaining
the training process in Section 3.4.

3.1 The Standard 2PL IRT Model
We start by formally defining the standard 2PL
model, which is extended by our BERT-IRT model.
In the 2PL model, the probability that a test-taker
with proficiency θp will get item i correct depends
on two item parameters:

• The intercept, denoted di, that models the
logit-probability that a test-taker with average
ability will answer the item correctly. This
measures how easy or difficult the item is.

• The slope, denoted ai, that defines how much
that logit-probability changes depending on
a test-taker’s proficiency. This measures how
discriminative the item is.

With these two item parameters, the 2PL model
defines the probability of test-taker p getting item i
correct as:

P (Yp,i = 1) = flogistic (di + aiθp)

where Yp,i ∈ {0, 1} is the test-taker’s grade on
the item.

3.2 Explanatory IRT Framework
In the standard 2PL model, each item parameter
would be estimated by finding the values that best
predict the observed responses for that item. As
in other explanatory IRT frameworks, BERT-IRT
extracts features from items and uses those features
to predict item parameters as functions of those
features. This has two key advantages:

1. This can reduce the amount of response data
needed to estimate accurate parameters.

2. This allows one to estimate item parameters
for novel items for which no response data has
been collected.

However, for an item with many observed re-
sponses, explanatory IRT models may produce less
accurate item parameter estimates than what could
be achieved by non-explanatory IRT models, due to
variance in item parameters that are not explained
by the features. To overcome this, BERT-IRT uses
residual weights to adjust the item parameter esti-
mates of each item based on the observations for
that particular item.

BERT-IRT uses a set of K item features to esti-
mate ai and di. Let Xi,k ∈ R denote the value of
the k-th feature for item i where Xi,0 is a constant
such that Xi,0 = 1 for all i.

An item’s intercept parameter, di, is thus mod-
eled as a linear function of the item’s features, Xi,
plus the item-specific residual, denoted εd,i. The
equation for di thus becomes:

di = εd,i +
K∑

k=0

υkXi,k

where υ ∈ RK+1 is a vector consisting of the
bias term, υ0, and the feature weights.

Slope parameters are defined similarly, but use
a log-linear framework. The formula for slope
parameters is thus:

ai = exp

(
εa,i +

K∑

k=0

βkXi,k

)

where β ∈ RK+1 is the vector consisting of the
bias term and feature weights, and εa,i is the resid-
ual weight. The log-linear framework is often
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Figure 1: Example C-Test Item

closer to the true relationship between the slope
parameters and the item features, has nicer conver-
gence properties, and enforces that slope parame-
ters are positive.

3.3 Model Features
Most of the features used by BERT-IRT are ex-
tracted from the pretrained BERT model by feeding
in the undamaged passage (i.e., the passage with-
out letters omitted from the damaged words). Two
embeddings for each item are used as features:

Passage Embedding (n=768) - This is computed
as the average of the embeddings extracted for
each token in the passage from BERT’s 11th
layer.

Contextual Word Embedding (n=3,072) - This
is computed by concatenating the token’s em-
beddings from the first four layers of BERT.
If the damaged word corresponds to multiple
BERT tokens, then the embeddings for the
applicable tokens are averaged.

Various alternative methods for encoding ctest
items were evaluated in preliminary experiments,
and this approach was found to be among the best.
In particular, we found that using the lowest four
layers of BERT to produce contextual word em-
beddings outperformed using higher layers. We
believe this is because lower layers are better able
to encode surface-level information, such as word
frequency (Jawahar et al., 2019; Li et al., 2021),
that are often important to predicting L2 difficulty
(François and Fairon, 2012).

In addition, BERT-IRT uses 15 engineered NLP
features shown to correlate strongly with c-test item
parameters, specifically:

• The log frequency of the damaged word in the
Corpus of Contemporary American English

(COCA) (Davies, 2008)

• The log frequency of the word in COCA
across the 8 sub-corpora (8 features)

• The log document frequency of the damaged
word in the COCA corpus

• The length of the answer key (i.e., the number
of letters the test-taker must fill in)

• The proportion of vowels in the answer key

• The average log frequency in COCA of each
word in the c-test passage

• The position of the damaged word within the
passage, normalized by the passage’s length

• The conditional probability of the correct
word, given the damaged word, derived us-
ing COCA frequencies (e.g. if the damaged
word is "pass___" and the correct word is “pas-
sage”, how frequently does that word occur
versus alternative solutions such as “passing”
vs. “passers” etc.)

3.4 Model Training

To estimate the model weights,1 we need a train-
ing dataset of graded responses from test-takers.
This consists of a set of test-taker responses repre-
sented as tuples of item, i, test-taker, p, and grade,
g ∈ {0, 1}. We essentially use gradient descent to
perform maximum-a-posteriori (MAP) estimation
of the model weights given the observed response
data. Details are provided in the subsections below.

3.4.1 Model Weights
The model has four vectors of weights that must be
estimated: the intercept bias and feature weights
vector, υ ∈ RK+1, the intercept residuals vector,

1Here, we refer to all of the model’s learnable parameters
as weights to avoid them being conflated item parameters.

431



εd ∈ RI , the slope bias and feature weights vector,
β ∈ RK+1, and slope residuals vector, εa ∈ RI ,
where I denotes the number of items in the training
dataset.

3.4.2 Theta Estimates

Since our response data is collected as part of a
high-stakes test of English, we can compute ac-
curate estimates for test-taker proficiency based
on their performance on items whose parameters
are not being estimated (i.e., the section scores for
item types other than c-test). We use these as fixed
estimates for θp during model training. In other pi-
loting designs where this is not possible, we could
treat these proficiencies as weights to be estimated
jointly with the other model weights, but that would
require larger quantities of response data to achieve
comparable performance results.

3.4.3 Regularization

To avoid the model being underidentified, the resid-
ual weights must be regularized. We apply L2
regularization to these parameters. Optimizing the
strength of those L2 penalties is important: if the
L2 penalties are set too low then the model won’t
generalize to new items as well as it could, and if
they are set too high the model will predict item
parameters for items with many observations less
accurately than it could. In this context, these L2
penalties are equivalent to using Gaussian priors
with zero means. The optimal penalty for inter-
cept residuals would be 0.5/σ2

εd
, where σ2

εd
is the

variance in the intercepts that is not explained by
the features. The optimal penalty for slope resid-
uals is likewise. Thus, we treat σ̂2

εd
and σ̂2

εa as
hyperparameters, and set the penalties for inter-
cept residuals and slope residuals to 0.5/σ̂2

εd
and

0.5/σ̂2
εa , respectively.

Since there are many features, we also use L2
regularization on the feature weights. Following
the same convention, we set the coefficients of
these penalties as 0.5/σ̂2

β and 0.5/σ̂2
υ, respectively,

treating σ̂2
β and σ̂2

υ as hyperparameters.

3.4.4 Training Objective

During training, we initialize all weights to zero
and use gradient descent to estimate values for the
model weights that maximize their log posterior-
probability given the test-taker responses in the
training dataset, D. The objective function to be
maximized is thus specified as follows:

∑

(i,p,g)∈D
LL(Φ | Yp,i = g)− 0.5

σ̂2
υ

K∑

k=1

υ2k

− 0.5

σ̂2
β

K∑

k=1

β2
k −

0.5

σ̂2
εa

I∑

i=1

ε2a,i −
0.5

σ̂2
εd

I∑

i=1

ε2d,i

where Φ denotes the set of weight vectors being
estimated (β, υ, εa, and εd) and LL is the log
likelihood function:

LL(Φ | Yp,s) = g · lnP (Yp,i = 1)

+ (g − 1) · ln(1− P (Yp,s = 1))

3.4.5 Tuning Hyperparameters
The large search space resulting from four hyper-
parameters and long training times makes tuning
hyperparameters difficult. For our experiments, we
used a sparse grid search to find acceptable values
for hyperparmeters. Since the optimization of the
residual hyperparameters requires evaluating how
well the model predicts both novel and seen items,
we ensured that the training and evaluation datasets
were split in such a way that the evaluation dataset
included both items that occurred in the training
dataset and items that did not.

We found that even a limited search of the hyper-
parameter space produced good results. However,
there are methods that could be applied to the train-
ing data to estimate σ2

εa and σ2
εd

directly. These
include maximizing the marginal likelihood func-
tion, maximizing an approximation to the marginal
likelihood function, and fully Bayesian methods
implemented via Markov Chain Monte Carlo (Dey
et al., 1997; Lindstrom and Bates, 1990; Pinheiro
and Bates, 1995; Wolfinger, 1993). Future work
could consider the application of these methods.

4 Experiments

Here we present a series of four experiments to
evaluate BERT-IRT using data from the Duolingo
English Test, a high-stakes test of English for L2
learners. In the first experiment, we use offline eval-
uation to analyze the model’s performance when
piloting a new item bank from scratch (i.e., what
we refer to as a “fast-start” scenario). In the second
experiment, we analyze BERT-IRT’s ability to gen-
eralize item parameter predictions to unseen items
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under various conditions. In the third experiment,
we investigate how much each feature contributes
to the estimation of item parameters. Finally, in
the forth experiment, we analyze BERT-IRT’s abil-
ity to leverage response data from an existing item
bank to make predictions for new items with lim-
ited piloting data available (i.e., what we refer to as
a “jump-start” scenario). As part of this, we discuss
the results of using BERT-IRT to add new items to
the test’s item bank with only a tenth of the normal
amount of pilot data.

4.1 Experiment 1. Offline Evaluation in a
Fast-Start Scenario

In this experiment, we do an ablation study to eval-
uate how the model performs when only a limited
amount of response data is available for each item.
Traditionally, a new item bank would be piloted
until 200 observations per item are collected (the
minimum needed for reasonably accurate item pa-
rameters in an unregularized 2PL model). However,
these pilots can be costly and time-consuming, so
with BERT-IRT we hope to be able to achieve simi-
lar or better performance with much shorter pilots.

For this experiment, we retrieved around a year’s
worth of historical response data from the test. The
dataset included around 3,000 c-test passages with
around 50,000 unique items. The unablated dataset
had around 600 observations per item, which were
split into train and evaluation datasets. The training
dataset was sampled to produce ablated training
datasets with observation counts of 5, 10, 20, 40,
80, 160, and 200 observations per item.

We compared BERT-IRT to two baselines:

Post-Pilot Operational 2PL - A non-explanatory
2PL model trained on 200 responses per item
(i.e., the minimal number of responses per
item collected during a standard pilot). This
simulates the performance of using the test’s
operational 2PL model on items that have only
recently been created and piloted.

Regularized 2PL - A non-explanatory 2PL model
trained on the same ablated datasets as BERT-
IRT, where the item parameters are estimated
via maximum-a-posteriori (MAP) estimation
using a Gaussian prior on each parameter.
This regularization is used because unregular-
ized 2PL models will yield very poor results
when trained on fewer than 200 responses per
item.

We then used those trained models to produce
probabilities and scores on the evaluation dataset,
which we evaluated using the following metrics:

Cross-Entropy - The cross-entropy between ob-
served binary grades and their probability as
predicted by the IRT model. This measures
how well the model predicts the probability of
the test-taker responding to an item correctly.

Item Mean Grade R - The Pearson correlation be-
tween each item’s observed mean grade in the
response dataset and it’s predicted mean-grade
according to the IRT model. This mainly mea-
sures the IRT model’s ability to predict the
relative difficulty of each item.

Test-Retest Correlation - The Pearson correla-
tion between c-test scores produced by the
IRT model for any two test sessions taken by
the same test-taker within 30 days of each-
other. This is a well established measure of
score reliability in the assessment research
literature (Furr, 2021).

Internal Validity Coefficient - The Pearson corre-
lation between the c-test score produced by
the IRT model, and the score aggregated from
other sections of the test (using their original
scoring methods). This is a common measure
that is used in the assessment research litera-
ture (Furr, 2021) to measure criterion validity.

The results are shown in Figure 2. These plots
show that the BERT-IRT model always outper-
formed the regularized 2PL model regardless of
the number of responses available for training. Fur-
thermore, these results show that the BERT-IRT
model can achieve similar or better performance
than the operational 2PL model with as few as
50 responses per item, representing a 4X increase
in piloting efficiency. The only metric on which
BERT-IRT did not outperform the Post-Pilot Oper-
ational 2PL baseline was the Internal Validity Co-
efficient. However, given that this is the case even
when BERT-IRT’s test-retest reliability is higher,
this could indicate the BERT-IRT is finding param-
eters that better represent aspects of the construct
that are specific to c-test items. This could increase
test-retest reliability by more accurately measur-
ing the skills needed to answer c-test items, but
lower internal validity because the skills measured
by c-tests are slightly different than those measured
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Figure 2: Experiment 1. Evaluation in a Fast-Start Scenario

by other task types. In any case, the difference in
internal validity is very small (0.78 vs 0.79).

4.2 Experiment 2. Generalization
Experiments

To better understand how the model generalizes
parameter estimates across items, we experiment
with different splits of the same dataset used in Ex-
periment 1. The splits we used are defined below:

Test-Taker - Response data is split such that all
responses for an individual test-taker are as-
signed to either the training or evaluation
datasets. This simulates a fast-start scenario,
as in Experiment 1. Since all items occur in
training, this is essentially a baseline indicat-
ing the ceiling of what should be possible.

Testlet - Response data is split such that all re-
sponses to a given c-test passage (i.e., testlet)
are assigned to either the training or evalu-
ation datasets. This simulates a jump-start
scenario, whereby responses for an existing
item bank are used to estimate parameters for
new items that have little or no pilot data.

Item - Response data is split such that all responses
to a given item are assigned to either training
or evaluation datasets. This investigates how
well the model can predict item parameters
for words in a passage, when there is signifi-
cant response data for other words in the same

Item Mean
Split Cross-Entropy Grade R
Test-Taker 0.38 0.98
Testlet 0.43 0.88
Item 0.42 0.89
Stem 0.52 0.76

Table 1: Comparison of BERT-IRT item parameter esti-
mates when trained on 20 vs 200 responses.

passage. This might be useful if one wanted
to change which words in a passage are dam-
aged based on its predicted item parameters in
order to adjust the c-test passage’s difficulty
or increase is informativeness.

Stem - Responses data is split such that all re-
sponses for items that share a word stem
are assigned to either training or evaluation
datasets. For example, items for “work”,
“worked”, and “works” would all be put on
the same side of the split. For this purpose,
we used the Snowball Stemmer from NLTK
(Porter, 1980; Bird et al., 2009). This evalu-
ates how well the model generalizes to items
assessing previously untested words.

In all cases, we use roughly 80 % of the data
for training and 20 % for evaluation. Since under
these data splits, individual sessions are split across
training and evaluation datasets, its not possible
to compute scores for sessions using just evalua-
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tion data. Hence, for this experiment we use only
metrics that can be computed for individual item
responses: Cross-Entropy and Item Mean Grade R.

The results are shown in Table 1. In the baseline
split, the model almost perfectly predicts the mean
grade of each item over the evaluation dataset, with
a correlation of 0.98. The testlet and item splits
shows that BERT-IRT generalizes very well to un-
seen items, predicting the mean grades of unseen
items with a correlation of 0.88.

Notably, as shown by the stem split, the model’s
ability to predict mean grades for a item degrades
significantly when that item has a novel stem that
the model did not see in training. This shows that
the item’s word stem explains a significant amount
of the variance in the item’s parameters. This is
a very useful property when jump-starting item
parameters using BERT-IRT, because, due to Zipf’s
law, if the existing item bank is sizeable, most items
of newly-created c-test passages will likely share a
word-stem with an existing item from the existing
bank. However, this means items with novel word
stems will likely have less accurate item parameter
estimates until sufficient response data for them
can be collected.

4.3 Experiment 3. Feature Contributions
To better understand the contributions of various
features, we evaluated the importance of each fea-
ture using SHAP values (Lundberg and Lee, 2017).
In the BERT-IRT model, the features only affect the
item parameter estimates through a linear combina-
tion defined by the weight vectors υ and β. As such,
we compute the SHAP values using the same meth-
ods as would be used for linear models using those
weight vectors. To account for correlations among
features, we compute observational SHAP values.
From these we compute the feature importance for
each feature as the mean absolute SHAP value over
all items, and then normalize the resulting feature
importances to sum to 1. Since embeddings consist
of hundreds of features that would be impractical to
list individually, we summarize their importances
by summing the embedding feature SHAP values
for a given item before taking the absolute value
and averaging across items. We also summarize
the 8 genre-specific word-frequency features the
same way.

The results are shown in Figure 3. The features
are presented in the same order as in Section 3.3.
For predicting both intercept parameters and log
slope parameters, the word embedding is very im-

Item Mean
Features Cross-Entropy Grade R
All Features 0.43 0.88
Embeddings 0.44 0.84
Engineered 0.48 0.69

Table 2: Comparison of BERT-IRT performance on the
Testlet split when using different feature sets.

portant, contributing 28 % and 40 % of the predic-
tion, respectively. By comparison, passage embed-
dings are a relatively weak predictor, contributing
only 3 % and 8 % of the prediction, respectively.
The word frequency features are also a very im-
portant predictor, contributing even more than the
word embedding does for predicting intercepts.

Additionally, we did an ablation study by repeat-
ing the Testlet split experiment from Experiment 2,
but using only embedding features or only engi-
neered features (see Table 2). These results show
that while the embedding features perform quite
well on their own, both sets of features complement
each other to yield superior results.

4.4 Experiment 4. Online & Offline
Evaluation in a Jump-Start Scenario

In this experiment, we evaluate how well BERT-
IRT can estimate item parameters for a new pool
of c-test items with only a very short pilot, when
leveraging large amounts of response data from
an existing item bank to learn the relationships
between the item features and item parameters.

To test this scenario, we generated 1,039 new
c-test passages with GPT-3 (Brown et al., 2020),
and piloted them on the test, with each test session
being randomly assigned one unscored pilot c-test
task in addition to its normal 4 scored c-test tasks.
We ran the pilot until we had collected around 20
responses per item. We trained BERT-IRT on both
the response data from the existing bank and the
pilot, and estimated the parameters for all the new
items. In an offline evaluation, we showed that
even if we’d used the existing BERT-IRT parame-
ter estimates to score the pilot c-test tasks instead of
one of the other 4 operational c-test tasks, criterion
validity and reliability would have been negligi-
bly affected. Based on that offline evaluation, we
added the new c-test tasks to the operational bank,
replacing roughly a third of the existing c-test item
bank with only a tenth of the piloting time that
would have otherwise been required. Furthermore,
analyses of the test following the item bank change
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Figure 4: Experiment 4. Evaluation in a Jump-Start Scenario

confirmed that there was no significant impact on
criterion validity or reliability.

Since adding the items to the operational item
bank, we have collected substantial response data
for all the new items, and are able to evaluate the
quality of item parameters that would have been
obtained had they been estimated with more data.
To that end we conducted an ablation experiment
similar to Experiment 1, but in a jump-start sce-
nario (i.e., only the response data for the newly
added items was ablated).

Figure 4 shows the results for Cross-Entropy and
Item Mean Grade R for this ablation study. Simi-
lar to the results in Experiment 1, BERT-IRT out-
performed the operational 2PL model with only a
third of the data. As expected, it also out-performed
the regularized 2PL model when trained on the
same responses data. Importantly, even though a
full third of the c-test item bank was replaced, this
ablation study indicates that the impact on criterion
validity and reliability would be negligible even if
as few as 5 responses per item had been collected
(i.e., the maximum difference between BERT-IRT
and the Post-Pilot Operational IRT was less than
0.001 for both the Internal Validity Coefficient and
Test-Retest Reliability metrics, even when BERT-

IRT was trained on as few as 5 responses for each
of the new items). This finding stands to dramati-
cally boost the rate at which the item bank can be
refreshed.

5 Conclusion & Future Work

In this paper, we demonstrated how an explanatory
IRT model with BERT embeddings and other en-
gineered NLP features can be used to accurately
estimate item parameters for c-test items with lim-
ited piloting data. We showed that the model is
able to use these features to generalize item param-
eter estimates across items, and that both BERT
embeddings and engineered features contribute to
the performance of the model. Furthermore, we
showed how this was used on a high-stakes test of
English to replace a third of its item pool with a
tenth of the data that would normally have been re-
quired. Finally, our ablation study in Experiment 4
showed that we should be able to use BERT-IRT to
reduce the pilot even further with negligible impact
on criterion validity or reliability.

In a future work, we plan to explore similar ap-
plications of NLP and explanatory IRT models to
other item types, and ways to reduce or eliminate
the need for item piloting even further.
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6 Limitations

There are three main limitations to our study:

• As mentioned in Section 3.4.5, this method
could be improved if one were to incorpo-
rate a method to directly estimate the variance
in item parameters that is explained by the
features. However, finding a method that is
tractable for a large number of features is dif-
ficult, and so we leave that to a future work.

• This study only evaluated the model on c-test
tasks. Applications to other task types will
need to be evaluated, and may require differ-
ent features or IRT models to achieve good
results.

• While Experiment 4 showed we successfully
added a large number of c-test items to the
bank with as few as 20 pilot responses per
item, the ablation study that indicates we may
be able to use even fewer pilot responses does
not account for the potential impact that less
accurate item parameters could have on the
efficiency of the CAT algorithm. While we
expect that impact would not significantly
change our results, more study is needed to
ensure that items could safely be added to the
test with fewer than 20 responses per item.
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Abstract

This paper explores the transferability of a
cross-prompt argument mining model trained
on argumentative essays authored by native En-
glish speakers (EN-L1) across educational con-
texts and languages. Specifically, the adapt-
ability of a multilingual transformer model is
assessed through its application to comparable
argumentative essays authored by English-as-a-
foreign-language learners (EN-L2) for context
transfer, and a dataset composed of essays writ-
ten by native German learners (DE) for both
language and task transfer. To separate lan-
guage effects from educational context effects,
we also perform experiments on a machine-
translated version of the German dataset (DE-
MT). Our findings demonstrate that, even under
zero-shot conditions, a model trained on native
English speakers exhibits satisfactory perfor-
mance on the EN-L2/DE datasets. Machine
translation does not substantially enhance this
performance, suggesting that distinct writing
styles across educational contexts impact per-
formance more than language differences.

1 Introduction

Argumentative writing is a central skill to succeed
across school subjects (Graham et al., 2020) and
automated feedback is an effective way to foster
writing skills (Fleckenstein et al., 2023). Figure 1
shows an example of providing students with feed-
back by highlighting different argumentative ele-
ments, such as lead, position, claim and conclusion
in their writing. Such feedback offers guidance to
students for enhancing the structure of their essays.

However, training a dedicated feedback model
for each new task could incur substantial costs.
One approach to mitigate this expense is to trans-
fer a pre-trained model to new datasets. While
existing research highlights model transferability
across different writing prompts (Ding et al., 2022),
no research demonstrates whether employing En-
glish argument mining models across languages

and different educational contexts yields consistent
performance.

Such educational contexts for argumentative
writing can be specified according to two dimen-
sions: native vs. foreign language instruction on
the one hand and independent vs. integrated writ-
ing tasks on the other hand.

We first have a closer look at the differences be-
tween L1 and L2 writing. In L1 teaching contexts,
the emphasis is primarily on content, whereas in L2,
the focus is on language acquisition and structure.
These differences are also reflected in distinct cog-
nitive models and therefore writing styles (Devine
et al., 1993). Beyond obvious characteristics such
as spelling and grammar errors in L2 writing, like
the misspelled advetisments and the subject-verb
disagreement exemplified in Figure 1, prior studies
also unveiled that non-native English writers tend
to craft shorter sentences and employ fewer hedges
(e.g., probably, may) to moderate the strength of
their claims, in contrast to native English speakers
(Burrough-Boenisch, 2002). Moreover, L2 writers
prefer a more straightforward argumentation struc-
ture and often avoid counter-arguments (Sanders
and Schilperoord, 2006).

As for the second dimension, in independent
tasks, individuals are typically provided with a spe-
cific writing prompt and are required to formulate
their essays based solely on their thoughts, experi-
ences, and knowledge. For example, the indepen-
dent writing prompt of EN-L2 in Figure 1 is:

Do you agree or disagree with the following
statement? Television advertising directed to-
ward young children (aged two to five) should
not be allowed. Use specific reasons and ex-
amples to support your answer.

In integrated tasks, writers are presented with one
or more texts related to a particular topic and then
asked to synthesize information from the provided
texts and incorporate it into their writing. For in-
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Cross-lingual

Cross-context  I think advetisments towards young children should
be forbidden because it only leads to problems. 
...

Heutzutage weiß fast jeder, dass der Klimawandel
ein großes Problem darstellt und der CO2 Ausstoß
von Autos dabei eine großes negative Rolle spielen.
...

Lead Position Claim

Evidence Conclusion

Driverless cars have been a big topic lately, but I'm
not buying into the hype.

?

?

A driverless car could cause a major or even fatal
crash. While driverless cars require you to have
hands on the wheel this does not mean you will be 
paying attention if something is about to happen. 
I think that driverless cars are not safe and they 
should not be allowed.

EN-L1

EN-L2

DE

Figure 1: Example of automatic feedback provided by an argument mining model trained on EN-L1 essays and its
uncertain transferability to EN-L2 (upper right) and DE (lower right) data.

stance, the DE dataset has an integrated writing
prompt, which discusses using renewable energy
sources to combat climate change. It presents
three options: a wind farm, a solar park, and a
hydropower plant. Students are asked to evaluate
these options based on specific criteria, taking a
stand in favor of one source and providing sup-
porting arguments. Earlier studies have shown that
task type can influence lexical complexity and ar-
gument structure in essays (Cumming et al., 2005;
Guo et al., 2013).

Targeting the challenge of transfer learning
brought by the differences described above and
the languages, the following research questions are
investigated in this paper:

RQ. 1 How do linguistic structures and argumen-
tation styles differ among English L1, L2, and Ger-
man datasets?

RQ. 2 How can the argument mining model, ini-
tially trained on the English L1 dataset, be effec-
tively transferred to L2 and German datasets? How
much data is needed to achieve the best transfer
performance?

RQ. 3 In the context of cross-lingual transfer, what
roles are played by language differences and task
disparities in influencing the model’s performance?

Through a comparative analysis of English L1,
L2, and German datasets, we answer RQ 1 by
showing the statistical and structural distinctions
inherent in argumentative essays across different
educational contexts and languages. While the En-
glish L1 and L2 data are written for independent
tasks, the German dataset is collected from inte-
grated writing tasks, this completes our study with
a focus not only on cross-lingual transfer learning

but also on cross-educational contexts. We then
conduct two experimental studies to transfer argu-
ment mining models trained on a large English L1
dataset to the L2 and German datasets for RQ 2. In
addressing the challenge of cross-language trans-
fer in RQ 3, our research extends to experiments
involving the machine-translated version of the Ger-
man dataset. This expanded scope enables a more
profound examination of the variances in model
performance arising from linguistic disparities and
diverse writing tasks.

The answer to these questions could be invalu-
able in developing educational applications: with
the appropriate adjustments, models trained on En-
glish L1 data can effectively be transferred to an L2
dataset. This would greatly benefit the development
of educational applications, particularly in contexts
where resources are limited, by providing students
with access to high-quality learning tools and feed-
back systems. Additionally, the impact of linguistic
differences on the model’s effectiveness is essen-
tial for the development of educational applications
aimed at student populations from different linguis-
tic backgrounds, ensuring they receive the support
they need to improve their argumentative writing
skills.

2 Related Work

Transfer learning has been extensively studied
for many years. Surveys such as Pan and Yang
(2009), Weiss et al. (2016), and Zhuang et al.
(2020) provide a comprehensive overview of the
developments in this area over the years. Simi-
larly, numerous studies have explored the topic of
argument mining through literature reviews, evi-
denced by works like Peldszus and Stede (2013)
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and Lawrence and Reed (2020). In this paper, we
focus our review of related work specifically on
transfer learning within the educational domain
and argument mining in student essays.

2.1 Transfer Learning in Education

In many educational scoring tasks, transfer learn-
ing is important in avoiding retraining a model
for every new task. Especially in the area of au-
tomated essay scoring, cross-prompt and prompt-
independent models are widely researched (e.g. Jin
et al. (2018), Ridley et al. (2021), Xue et al. (2021))

Fewer approaches have focused on a transfer be-
tween languages in educational scoring, for exam-
ple for content scoring (Horbach et al., 2018, 2023)
or language proficiency classification (Vajjala and
Rama, 2018).

Approaches for cross-lingual argument mining
in the educational domain are even scarcer. Eger
et al. (2018) automatically translated an educational
argument mining dataset into various languages
showing the feasibility of a cross-lingual transfer.
To the best of our knowledge, we are the first to
attempt such a transfer on authentic ecologically
valid cross-lingual data, extending the research
body on cross-lingual argument mining approaches
in other domains such as medicine (Yeginbergen-
ova and Agerri, 2023) or general controversial top-
ics (Toledo-Ronen et al., 2020).

Differences in the educational and cultural con-
text of argumentative essay scoring have been stud-
ied by Chen et al. (2022) finding that, for the ICLE
corpus containing essays by English learners with
16 native languages, culture influenced learners’
argumentation patterns substantially.

2.2 Argument Mining in Student Essays

Various approaches for argument mining in stu-
dent essays exist with many of them adopting
the persuasive essay scheme introduced by Stab
and Gurevych (2014), such as Wambsganss et al.
(2020); Putra et al. (2021) and Alhindi and Ghosh
(2021). This model comprises four key cate-
gories: major claim, claim, premise, and non-
argumentative elements.

In this study, we have five different argumenta-
tive elements, namely lead, position, claim, ev-
idence, and conclusion, which is a simplified
version of the task definition set by the Kaggle
Feedback Prize competition 1 on the PERSUADE

1https://www.kaggle.com/c/feedback-prize-2021

dataset (Crossley et al., 2022). This dataset adopts
a variant of the Toulmin argument mining model
(Toulmin, 1958), the same as the German dataset
we used for the transfer learning task (Schaller
et al., 2024). Ding et al. (2022) trained a sequence
tagging model using the pre-trained Longformer
(Beltagy et al., 2020) on PERSUADE, achieving
an F1 score of .55. We leverage their framework in
our experiments.

3 Data

In our experiments, we work with three different
datasets: PERSUADE, MEWS, and DARIUS. In
the following, we go into details for each dataset,
describe our label mapping as the basis for the
transfer learning, and compare the sequencing of
argumentative elements in each dataset.

EN-L1 The PERSUADE corpus (Crossley et al.,
2022) encompasses a collection of 26,000 argu-
mentative essays authored by students in grades
6-12 within the United States, mostly English na-
tive speakers. Expertly annotated, these essays
feature seven categories of argumentative elements:
lead, position, claim, counterclaim, rebuttal, evi-
dence, and concluding statement. The quality of
annotations is evaluated using F1 score reaching an
inter-rater agreement (IAA)2 of 0.73.

EN-L2 The MEWS corpus (Rupp et al., 2019)
comprises 9,628 essays written by English-as-a-
foreign-language learners in Switzerland and Ger-
many. For this study on transfer learning across L1
and L2 context, we randomly drew and annotated
a subset of 110 essays responding to the Television
Advertising (AD) prompt and 100 essays address-
ing the Teachers Ability (TE) prompt 3. In terms
of writing tasks, these two prompts are close to
those in EN-L1 because they are independent writ-
ing tasks. These essays were annotated following
the same schema as EN-L1, achieving an IAA of
F1 = 0.52.

DE DARIUS (Schaller et al., 2024) is a corpus
comprising 2,521 texts from the “Energy" prompt

2The calculation of IAA takes an annotation as a true pos-
itive when it is identified by two annotators with over 50%
overlap in both directions. Elements identified exclusively
by the first annotator are considered false negatives, whereas
those only recognized by the second annotator are deemed
false positives.

3Detailed writing instructions are available on Page
13 and Page 34 at https://www.ets.org/pdfs/toefl/
toefl-ibt-writing-practice-sets-large-print.pdf
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and 2,517 from the “Automotive" prompt, which
are written by German high school students. Simi-
lar to the datasets above, this dataset also has an an-
notation of argumentative elements (with different
names, see details in Section 3.2). The IAA among
different layers of annotation ranges between 0.57
and 0.98.

The performances of transfer learning on DE
dataset can be influenced by both language and
educational contexts. To keep them apart, we trans-
late it into English as the dataset DE-MT, using
DeepL Pro4. Applying experiments on this dataset
would help us distinguish between the impact of the
writing task migration and the language transition
during transfer learning.

3.1 Dataset Comparison

Table 1 shows the descriptive statistics of the three
datasets. We see that EN-L1 and EN-L2 have a
comparable length in terms of the average num-
ber of sentences (21.25 and 20.56 respectively),
whereas the German texts are significantly shorter
(9.53). However, this difference does not originate
from language, since it is almost the same as the
translated data DE-MT (9.81). Instead, this large
difference may be attributed to the nature of the
writing tasks. As emphasized above, the writing
prompts of EN-L1 and L2 are similar, requiring stu-
dents to produce independent argumentative essays.
In contrast, the DE dataset employs integrated writ-
ing prompts, potentially leading to shorter, more
concise responses.

This point can be also observed in the aver-
age number of words per essay, where the DE
dataset has the smallest amount (149.89). The EN-
L1 dataset leads with 402.31, followed by EN-L2
(349.68). The EN-L2 dataset, despite having a
larger average number of sentences, exhibits fewer
average words per essay. This observation sug-
gests that L2 writers tend to compose shorter sen-
tences, aligning with findings from the prior study
(Burrough-Boenisch, 2002).

Dataset #Essays ϕ#Sentences ϕ#Words

EN-L1 26,000 20.56 402.31
EN-L2 210 21.25 349.68
DE 5038 9.53 149.89
DE-MT 5038 9.81 163.13

Table 1: Descriptive statistics of datasets.

4https://www.deepl.com/pro?cta=header-pro

3.2 Label Mapping
For a consistent annotation mapping across diverse
datasets, we adopt a streamlined label-set inspired
by Ding et al. (2024) for the EN-L1 and EN-L2
datasets. Specifically, we employ the labels lead,
position, claim, evidence, and conclusion, by merg-
ing the labels counterclaim and rebuttal into a sin-
gle label claim. The labels are defined as follows.

• Lead: an introduction to grab the reader’s at-
tention and point toward the position.

• Position: an opinion on the main question.
• Claim: a claim that supports the position, re-

futes another claim or gives an opposing rea-
son to the position.

• Evidence: ideas or examples that support
claims.

• Conclusion: a concluding statement that re-
states the claims

The DE dataset has a four-layer annotation
schema. On the Content Zone layer, introduction,
main part and conclusion are labeled to delineate
the text’s framing and structure. On the Major
Claim layer, sentences referring to the author’s fi-
nal position on the given topic are labeled as major
claims. While the Argument layer, focused on ar-
gument quality, is less relevant to our argument
mining study, the layer of Toulmin’s Argumenta-
tion Pattern (TAP) is directly pertinent. This layer
aligns with the argument schema in EN-L1 and
EN-L2, encompassing the annotated elements:

• Claim: an assertion that characterizes the po-
sition taken.

• Data: fact that provides the basis for a claim.
• Warrant: an aspect that explains to what ex-

tent data supports a claim.
• Rebuttal: an objection to a presented data

and/or warrant.

Based on the above definitions, the mapping de-
tailed in Table 2 is established to facilitate our trans-
fer learning approach. Firstly, these five types of
argumentative elements in three datasets can be
compared in the following analysis. Secondly, we
can train an argument mining model detecting these
elements on the EN-L1 dataset and test its trans-
ferability on the other datasets (zero-shot transfer
in Section 4). With the label mapping, the essays
in EN-L2 and DE can also be added gradually to
fine-tune this model for potentially better perfor-
mance (learning curve study in Section 5). In the
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following, we refer to the mapped labels by their
names in the English datasets, i.e. lead, position,
claim, evidence and conclusion.

EN-L1 and EN-L2 Annotation Layer in DE Label in DE

Lead Content Zone introduction
Position Major Claim major claim
Claim TAP claim or rebuttal
Evidence TAP data or warrant
Conclusion Content Zone conclusion

Table 2: Label mapping of three datasets.

3.3 Analysis - Label Distribution and Length

Figure 2 visualizes the distribution and the average
length (in the number of words) of five types of
argumentative elements in the respective dataset.
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Figure 2: Distribution (upper) and average number of to-
kens (down) of argumentative elements in three datasets.

The distribution of various argumentative el-
ements is generally comparable among three
datasets, with both claim and evidence emerging
as the dominant major classes across all datasets.
For the average length in general, DE has the least
number of words in all the elements. This again
corresponds to our previous analysis of text length,
that German argumentative essays tend to be briefer
and might have originated from its integrated writ-
ing prompts.

The claim is most frequent in the EN-L1 dataset,
followed closely by EN-L2, while DE exhibits a
slightly lower frequency. This suggests a consistent

emphasis on presenting central arguments across
both English datasets. However, EN-2 stands out
with the longest average length for claim, suggest-
ing that argumentative essays written by second-
language learners may provide more detailed or
elaborate claims for central positions compared to
native speakers and German writers.

DE exhibits the highest frequency of evidence
labels among the three datasets, indicating a rel-
atively higher occurrence of supporting details in
argumentative essays compared to EN-L1 and EN-
L2. However, DE also has the shortest average
length for this label. It indicates that although EN-
L2 has a higher frequency of evidence, the individ-
ual instances are shorter. It could also suggest the
possibility of multiple spans or fragmented annota-
tions for longer evidence segments.

EN-L2 stands out with the highest frequency
of lead and conclusion labels, implying emphasis
at the beginning and end of essays by non-native
English writers. In contrast, native writers (EN-
L1 and DE) display lower percentages for these
labels. Especially for DE, it exhibits both the low-
est frequency and the shortest average length of
conclusion, suggesting a brief concluding style in
German essays.

3.4 Analysis - Label Transition
To examine the structure of essays in datasets,
we visualize the argumentation flow as transition
graphs where argumentative elements correspond
to states and arrows mark the transitions from one
element to another annotated with the transition
probability (Figure 3). We add two states ‘START’
and ‘END’, indicating the beginning and end of
an essay. For a clearer illustration, all transition
arrows with probabilities below 0.2 are omitted.

EN-L1 essays (left subfigure) predominantly
start with a lead and follow with a position. Subse-
quently, the transition to claim is most likely, and
from there, essays often transition to another claim
or an evidence. Finally, almost all the essays end
with conclusion. This style is influenced by the
five-paragraph essay model, which is the most fre-
quently taught form of writing in classrooms in the
US (Campbell, 2014). It usually consists of one
introductory paragraph, three body paragraphs for
support, and one concluding paragraph.

Similar to EN-L1, EN-L2 essays (sub-figure in
the middle) also start with a lead predominantly.
However, the lead is no longer followed directly
by the position, but by claims. Instead, the position
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Figure 3: Transitions of different elements in the essays from three datasets.

can be mostly found at the end of the essays, which
is illustrated by the 0.6 probability of transitioning
from position to conclusion, as well as the 0.3 prob-
ability of transitioning backward from conclusion
to position. By delving deeply into the teaching
guidance of argumentative writing in Germany, we
found a possible reason for this phenomenon: when
it comes to stating a position in argumentative writ-
ing, German students are encouraged to state their
own opinion at the end for a balanced discussion
(Becker-Mrotzek et al., 2010).

The structuring style in German essays (right
sub-figure) is more diverse. Firstly, almost the
same amount of essays start with a lead or a posi-
tion, which aligns with the suggestion in the ear-
lier study that arguments in German have a higher
level of directness (Tannen, 1998). In other words,
German writers tend to jump straight into the po-
sition instead of introducing the topic first with a
lead. Besides claim and position, 40% lead was
directly followed by the evidence. Unlike the En-
glish datasets, the claims in DE are rarely followed
by another claim but dominantly followed by an
evidence. This discrepancy can be attributed to
the integrated writing task in DE, which imposes a
greater demand on students to integrate evidence
from sources into their writing (Cumming et al.,
2005). At last, we notice that more self-transitions
in DE (30% conclusions, 20% evidence and 30%
positions), which may not be an inherent property
of the essays but rather an annotation artifact based
on a high granularity.

4 Study 1: Zero Shot Transfer

For our first study, we adopt the sequence tagging
architecture developed by Ding et al. (2022), which

pre-processes the annotated training data into to-
kens with Inside-Outside-Beginning (IOB) tags and
uses them as the input to the pretrained Longformer
model (Beltagy et al., 2020) for token classifica-
tion. We trained two models on 90% of EN-L1 data
with the Longformer5 to transfer on EN-L2 data
and its multi-lingual variation XLM-R Longformer6

for the DE data. After 10 epochs of training with
a maximal length of 1024 tokens, the IOB tags
of tokens are post-processed into predictions for
different argumentative elements.

Following the same schema as for the IAA eval-
uation, we evaluate our results also through the F1
score: all gold standards and predictions for a given
argumentative element are compared. If the overlap
between the gold standard and prediction in both
directions is higher or equal to 0.5, the prediction
is considered a true positive. If multiple matches
exist, the match with the highest is taken. Any un-
matched ground standards are false negatives and
any unmatched predictions are false positives.

4.1 EN-L1 to EN-L2

Table 3 shows the performance of the argument
mining model tested on EN-L1 and two different
prompts on EN-L2. Overall, the transfer perfor-
mance of the model achieves an F1 score of 0.56
and 0.42 on EN-L2 dataset, which is only a slight
drop from the performance on EN-L1, indicating its
effectiveness in extracting argumentative elements
from essays written by both native and non-native
English speakers. The model demonstrates the best

5https://huggingface.co/allenai/
longformer-base-4096

6https://huggingface.co/markussagen/
xlm-roberta-longformer-base-4096
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proficiency in detecting lead elements across all
datasets. A possible explanation is that this ele-
ment is often found at the beginning of essays and
therefore easy to find. The transferability of the
model tested on the prompt AD is better than TE,
implying the prompt similarity between AD and
EN-L1 is higher than TE and EN-L1.

Test Data

EN-L1 EN-L2 AD EN-L2 TE

Lead .76 .79 .63
Position .61 .57 .28
Claim .44 .41 .28
Evidence .69 .49 .39
Conclusion .78 .52 .50
Overall .66 .56 .42

Table 3: Zero shot transfer from EN-L1 to EN-L2 with
English pretrained Transformer

We examine the typical misclassification in the
two prompts together. The confusion matrix in Ta-
ble 4 illustrates that most of the confusion arises
between a label and no assigned span, suggest-
ing challenges in accurately delineating argumen-
tation unit boundaries. More specifically, a gold
argument is often divided into multiple predicted
spans or vice versa. This issue results in numerous
spans lacking a counterpart with significant overlap.
Among the instances of actual confusion between
two labels, we noted a common misclassification
of evidence being incorrectly labeled as claims.

Lead Position Claim Evidence Conclusion None

Lead 100 4 6 14 0 86
Position 4 61 4 4 6 142
Claim 7 8 147 120 11 447
Evidence 5 2 14 157 14 205
Conclusion 0 11 6 15 64 158
None 72 79 277 284 89 N.A.

Table 4: Confusion matrix between gold standards
(columns) and predictions (rows) of EN-L2.

4.2 EN-L1 to DE
Table 5 shows the result of zero-shot transfer learn-
ing from EN-L1 to DE and DE-MT. We first no-
tice that on the same test dataset of EN-L1 the
performance decreased by changing the pretrained
Longformer into its multi-lingual version XLM-
R Longformer. Especially for the label position,
the F1 score dropped from .61 to .29. These re-
sults align with earlier studies, showing multilin-
gual models have worse performance than their
monolingual counterparts on certain downstream
tasks (Conneau et al., 2020).

The transfer performance to DE is not as good as
EN-L2, as evidenced by the lower F1 scores across
all labels. However, the model’s performance de-
cline is not solely attributable to language differ-
ences between English and German, as even the
machine-translated German dataset (DE-MT) ex-
hibits similar performance. The F1 scores for claim
and evidence are particularly low across both the
DE and DE-MT datasets. This poor performance
is likely influenced by the differences observed in
the distribution and length of these elements in the
integrated tasks, as discussed in Section 3.3.

Test Data

Energy Automotive
EN-L1 DE DE-MT DE DE-MT

Lead .73 .61 .63 .59 .62
Position .29 .28 .35 .32 .32
Claim .38 .15 .17 .14 .16
Evidence .65 .28 .29 .27 .30
Conclusion .74 .48 .50 .48 .48
Overall .61 .36 .38 .36 .38

Table 5: Zero shot transfer from EN-L1 to DE and DE-
MT with multi-lingual Transformer

The confusion matrix in Table 6 shows the
same pattern as Table 4. Besides the majority of
confusion occurring between a label and no as-
signed span, claim and evidence are often wrongly
switched. When comparing the number of un-
matched gold standard labels (7036) with that of
unmatched predicted labels (25779), we see the
model tends to assign a label rather than not assign
anything.

Lead Position Claim Evidence Conclusion None

Lead 1102 357 76 58 0 630
Position 18 1147 285 133 41 3079
Claim 44 217 1319 1114 135 10276
Evidence 29 61 1028 3301 66 10702
Conclusion 0 445 74 128 1041 1092
None 261 614 2073 3813 275 N.A.

Table 6: Confusion matrix between gold standards
(columns) and predictions (rows) of DE.

In summary, while the performance of our argu-
ment mining model does not match that achieved
on the source dataset (EN-L1), considering it does
not see any data from the target domain during
training, it performs reasonably well in different
educational contexts and languages (EN-L2 and
DE). This highlights the potential of the generaliza-
tion capability of this model.
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5 Study 2: Learning Curve

After having established zero-shot transfer perfor-
mance, we investigate the potential of using a small
amount of target domain training data to improve
the performance of our argument mining model on
the target test dataset. This process involves fine-
tuning the model trained on EN-L1 data using a
portion of data from the target domain (EN-L2 and
DE), allowing it to adapt its representations of the
features in L2 and German argumentative essays.

However, it is important to note that fine-tuning
requires access to labeled data from the target do-
main. In a practical application scenario, when a
teacher wants to fine-tune such a model for a new
educational context or language, it is important to
know how much data needs to be labeled, since
human annotation effort is often a crucial factor.

Therefore, we perform a series of learning curve
experiments, in which we systematically vary the
amount of training data from target datasets.

5.1 EN-L1 to EN-L2

Since EN-L2 only has 210 labeled data, we use the
ten-fold cross-validation data splitting and report
the average performance. On each training data
set, we fine-tune the model from zero-shot transfer
for 10 epochs. In comparison to the fine-tuning
(Source+Target), we also trained the Longformer
from the beginning only using these training data
from EN-L2 (Target Only).

Figure 4 plots the amount of training data from
the target domain on the x-axis and the model per-
formance (F1) on the y-axis. Both Source+Target

curves start with relatively high F1 scores but ex-
hibit slow growth as the number of training in-
stances increases. In contrast, the "Target Only"
curves demonstrate faster growth with increasing
training instances. However, despite this rapid im-
provement, these lines do not achieve the same
level of performance as the "Source + Target" sce-
narios. This indicates that the current amount of
labeled data in EN-L2 is insufficient to match the
performance achieved by incorporating knowledge
from EN-L1. Therefore, the transfer learning strat-
egy is necessary for the limited labeled data in the
target domain.

To estimate the amount of data needed for label-
ing, the "Source Only" curve provides a reference.
This curve represents the scenario where the model
is trained solely on data from EN-L1. As the num-
ber of training instances from the target domain
increases, the model performance on the target task
is expected to approach the upper bound at F1=.66
with 23,400 labeled training data instances.

5.2 EN-L1 to DE

Figure 5 shows the learning curves of DE and DE-
MT datasets. Same to Figure 4, all the Source +
Target curves start at a relatively high-performance
level but exhibit a slower rate of improvement. Un-
fortunately, the gap between them and Target Only
lines can be quickly narrowed. This implies that in
educational context transfer, such as transitioning
from independent to integrated tasks, better perfor-
mance can be attained by training the model from
scratch using an adequate amount of labeled data
from the target domain.
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Regarding language transfer, the performance
achieved through machine translation (MT) is
found to be very close to that of the original source.
As a result, there appears to be no significant ben-
efit in using machine-translated data for training
purposes.

6 Conclusion

This paper explores the transferability of argument-
mining models across different educational con-
texts and languages. Through comprehensive anal-
yses of various datasets, including those authored
by native English speakers (EN-L1), English as a
foreign language learners (EN-L2), and native Ger-
man writers (DE), as well as machine-translated
German essays (DE-MT), we answer RQ 1 and
show their differences in linguistic structures and
argumentation styles.

Our experimental studies designed for RQ 2
reveal that, under zero-shot conditions, models
trained on EN-L1 demonstrate satisfactory perfor-
mance when directly applied to EN-L2/DE datasets.
However, fine-tuning the model on target domain
data does not increase the performance signifi-
cantly, highlighting the challenges of transfer learn-
ing across different educational contexts and lan-
guages. Notably, as the answer for RQ 3, machine
translation does not significantly enhance perfor-
mance, indicating that differences in dataset char-
acteristics stem less from language disparities, but
more from distinct educational contexts.

7 Limitations

This study showed the transferability of argument
mining models for the English-German language
pair on three specific corpora. Whether a transfer
works equally well for languages phylogenetically
further from the source language and potentially
less well-covered in pretrained multilingual trans-
former models remains an open question.
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Abstract

With increased attention to connecting science
topics to real-world contexts, like issues of so-
cial justice, teachers need support to assess stu-
dent progress in explaining such issues. In this
work, we explore the robustness of NLP-based
automatic content scoring models that provide
insight into student ability to integrate their sci-
ence and social justice ideas in two different
environmental science contexts. We leverage
encoder-only transformer models to capture the
degree to which students explain a science phe-
nomenon, understand the intersecting justice
issues, and integrate their understanding of sci-
ence and social justice. We developed models
training on data from each of the contexts as
well as from a combined dataset. We found
that the models developed in one context gen-
erate educationally useful scores in the other
context. The model trained on the combined
dataset performed as well as or better than the
models trained on separate datasets in most
cases. Comparing human scores with the auto-
mated scores using quadratic weighted kappas
demonstrate that these models perform above
the threshold for use in classrooms.

1 Introduction

This study investigates the robustness of Natural
Language Processing (NLP)-based automatic con-
tent scoring models that assess secondary school
students’ ability to integrate their science and social
justice ideas to explain social justice science issues
(SJSI; Morales-Doyle, 2017) in two different con-
texts. In particular, we investigate the robustness of
content scoring models in terms of their ability to
score out-of-distribution responses as we attempt to
generalize the models from one SJSI context to an-
other. The contexts are (a) a unit about combustion
reactions and asthma caused by exposure to partic-
ulate matter pollution and (b) a unit about global
climate change and exposure to extreme heat oc-
curring in urban heat islands. In both units, which

are also aligned to state science standards, the stu-
dents explore the racially disparate impacts of the
environmental hazard (particulate matter pollution,
extreme heat in urban spaces). In the units, students
are supported to explore typical disciplinary con-
tent and make connections to local justice issues.
They answer the Impacts Item, explaining whether
all people are impacted by the environmental haz-
ard in the same way. We explore the possibility of
building a robust domain general model that can be
used across multiple SJSI contexts.

The curriculum, assessments, and scoring
rubrics were developed by a research practice part-
nership (RPP) including classroom teachers, com-
puter scientists, and learning scientists guided by
the Knowledge Integration pedagogy (KI; Linn and
Eylon, 2011). The automatic content scoring mod-
els were created to assess the degree to which stu-
dents connect their understanding of the environ-
mental concepts with understanding of the social
justice issues when explaining whether everyone
is impacted in the same way. As teachers refor-
mulate their instruction to include social justice
perspectives, automatic content scoring models can
help teachers by capturing student progress. They
are especially valuable for social justice ideas that
might be new to science teachers. We investigate
the accuracy and robustness of automatic content
scoring models that can quickly assess student ex-
planations, particularly when those explanations
contain social justice ideas. In this study we ask:

• Can we develop NLP models that accurately
capture students’ integrated understanding of
SJSIs, as measured by human-computer agree-
ment?

• What are the affordances and limitations of
combining training datasets from different dis-
ciplinary contexts to develop robust automatic
content scoring models of SJSI?
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2 Related Work

This study builds on prior research integrating so-
cial justice into science curriculum and leveraging
AI techniques to score student essays.

2.1 Social Justice Science Issues (SJSI)

In this study, we combined social justice science
pedagogy (Morales-Doyle, 2017) with Knowledge
Integration (KI) design framework (Linn and Eylon,
2011) to design units featuring SJSI. Centering is-
sues of social justice in science teaching and learn-
ing offers promise for preparing students to deal
with contemporary science issues. One productive
example involves grounding science teaching in
local social justice science issues (Morales-Doyle,
2017). Students in this Chicago neighborhood drew
attention to the contamination in the soil in the
community garden. Introducing SJSIs provides
opportunities for students to make sense of issues
impacting their own communities and raises issues
around inequality and racism (Morales-Doyle et al.,
2019). In making sense of such issues, students
connect typical science ideas to interpret how an
environmental phenomenon impacts their commu-
nity. This enables them to integrate disciplinary
ideas with social justice ideas to explain why the
impacts are different across racial and socioeco-
nomic groups.

We also developed an aligned assessment, the
Impacts item, that requires students to explain an
environmental hazard and whether all people are
impacted by it the same way. For example, when
explaining who is impacted by urban heat islands,
a student wrote, “I don’t think all people are im-
pacted by the effects of climate change in the same
way. Red areas on the map are 5-20 degrees higher
than blue or green areas. Red areas are mostly
habited by brown and black people. Red areas have
less funding because of segregation and racism.
They have less access to government funds and
less green areas which help with the decrease in
climate change.” To assess student explanations,
the KI framework indicates that assessment should
focus on the integration of concepts rather than
the accuracy of isolated ideas, requiring the devel-
opment of automatic content scoring models that
capture the degree to which students integrate their
ideas. As such, we developed an overall KI score
rubric (Table 1; Liu et al., 2008; Liu et al., 2016)
as well as KI-aligned Disciplinary and Justice sub-
score rubrics to score training data.

2.2 Automatic Content Scoring

Automatic content scoring can be traced back to
early work on the Project Essay Grader (PEG) sys-
tem which leveraged computers to grade essays and
found that a computer rater’s score was nearly as
highly correlated with human raters’ scores as the
human raters’ scores were with each other (Page,
1966). This work paved the way for Automatic Es-
say Scoring (AES) models and automatic content
scoring. Many advances in AES modeling have
resulted in widely used classroom and high stakes
assessments. For example the e-rater automated
scoring system is used for the Graduate Manage-
ment Admission Test (GMAT; Burstein, 2003). To
score short, student-generated free-text responses
such as the Impacts item according to a scoring
rubric, c-rater has shown promise (Leacock and
Chodorow, 2003). C-rater works by determining
whether a natural language response is part of the
set of correct ideas that could be expressed in re-
sponse to the prompt. To do so, the model uses a
number of natural language processing techniques
to normalize a response by attending to sources of
variation in expression of the same idea: syntactic
variation, morphological variation, pronoun refer-
ence, the use of synonyms or similar words, and
spelling or grammatical errors.

Recently, researchers working on automatic con-
tent scoring for short answer responses have sought
to incorporate approaches that have been effective
in the realm of AES (e.g. Riordan et al., 2017) like
the use of neural architectures (e.g. Zhao et al.,
2017) including pre-trained transformer models
(e.g. Yang et al., 2020). In particular, we build on
the automatic content scoring work of Riordan et al.
(2020) which showed that recurrent neural network
and encoder-only transformer models performed
just as well or better than feature-based models.
Riordan et al. (2020) also demonstrated that the
encoder-only transformer-based models were more
robust to spurious, dataset-specific learning cues
when applying scoring rubrics. Thus, we adopt a
similar approach of fine-tuning encoder-only trans-
former models, BERT and SciBERT, to develop
short answer scoring models for KI, Disciplinary,
and Justice scores.

3 Data and Experimental Design

We developed automatic content scoring models
to automatically score the Impacts item which is
found in several units: Global Climate Change and
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KI
Score

Criteria Asthma Example UHI Example

1 Irrelevant idk asifhsdif
2 Vague Yes, climate change will effect

everyone in the whole world.
I think in some ways yes and in
some ways no.

3 Partial
link: one
target idea

Yes, because if you have more
freeways or factories where you live
you could have more of the effects of
incomplete combustion.

No, because there is less greenery,
and plants and trees help to keep
things cool in urban heat islands.

4 Full link:
links two
target
ideas

People who are lower income are
impacted by climate change more
than people who aren’t because they
sometimes have to live closer to
factories and other places where
there could be harm.

No, some people who for example
live in poorer or redlined areas will
be more impacted. As those areas
don’t have as much greenery or
architecture that can help with the
heat.

5 Full links:
links three
or more
target
ideas

NO! Racially oppresed groups are
affect more by climate change.
These groups are in redlined
communities which put near
industrial areas which produce green
house gases. These greenhouse gas
emmisions give you a higher chance
to have asthma.

Black and hispanic people who live
in poorer residences have less trees
and grass nearby, as an effect of
redlining, which makes poorer
neighborhoods hotter. The rich
white neighborhoods are invested in
by banks, and have much more trees
and grass, making their
neighborhood 5-20 degrees cooler.

Table 1: Rubric for KI score with examples from both unit contexts.

Urban Heat Islands (UHI; 9th grade) and Chemical
Reactions and Asthma (Asthma; 7th grade). In this
section, we describe the item, scoring rubrics, train-
ing data, and experimental design. The section that
follows details our model development approach.

3.1 Assessment Item and Scoring Rubrics

The Impacts item asks students to explain whether
all people are impacted by an environmental hazard
in the same way. In both unit contexts, students
connect their science understanding to the role of
race, socioeconomic status, and policies like redlin-
ing in their local communities. In the UHI unit, the
item prompt elicits ideas about how the Sun trans-
fers energy to different surfaces and how those
surfaces contribute to the surrounding temperature.
In the Asthma context, the item prompt elicits ideas
about how the products of incomplete combustion
reactions relate to asthma.

To develop the scoring model for the Impacts
item, we first developed a knowledge integration
(KI score) rubric (scale 1-5; Liu et al., 2008; Liu
et al., 2016) and two subscore rubrics: Disciplinary
and Justice (scale 0-2). The KI score measures the

overall integration of ideas in the student expla-
nation and is agnostic to the explanation context
(see rubric in Table 1). The Disciplinary subscore
characterizes how students integrate domain spe-
cific target ideas in their explanations. While the
rubric structure is the same, the disciplinary target
ideas are different in the Asthma and UHI contexts.
The Justice subscore characterizes how students
integrate target ideas about historical policies and
social injustices into their explanations. The justice
target ideas are the same in the Asthma and UHI
contexts. Target ideas were identified in collabora-
tion with all members of the RPP. A subscore of 0
indicates no mention of target ideas, a subscore of
1 indicates an isolated target idea, and a subscore
of 2 indicates the integration of two or more target
ideas. All rubrics reward students for linking their
ideas and connecting evidence, and do not penalize
students for incorrect ideas.

3.2 Training Dataset and Experimental
Design

We applied the scoring rubrics to data from previ-
ous classroom studies where students responded
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Disciplinary
Subcore

Criteria Asthma Example UHI Example

0 No
mention

I think so Everyone is affected

1 Isolated Yes, because historical
practices like redlining made
certain neighborhoods that had
poorer air quality be the only
neighborhoods available to
people of color.

no, some people they are
homeless and have it harder
when there is no shelter and it’s
really hot outside. when other
people can go inside too and
air-conditioned houses.

2 Full link Many places are redlined and
those neighborhoods are
usually near freeways and
refineries and have poor living
conditions. People of color are
often the ones forced to live in
redlined areas so they deal with
the incomplete combustion
from the freeways and
refineries much more than
people who live in an area that
is not redlined.

People of color and people in
lower-income households are
much more likely to experience
the effects of a global rising
temperature. They are less
likely to be able to afford
proper air conditioning and to
live near green areas, which
causes an increased rate of
heat-related hospital visits and
deaths.

Table 2: Rubric for Justice subscore with examples from both unit contexts.

Disciplinary
Subcore

Criteria Asthma Example UHI Example

0 No
mention

Probably Yes because everyone lives in
the world and global warming
affects all parts of the planet.

1 Isolated Depending on how many
Carbon Monoxide and
Particulates there are, which is
influenced by factories. If you
live closer or work in factories,
the effect will be much worse

No, because there is less
greenery, and plants and trees
help to keep things cool in
urban heat islands.

2 Full link Some places have more
incomplete combustion, that
can make soot and carbon
monoxide. This can affect the
air quality that people breath in,
which causes more cases of
asthma or other medical
conditions.

Lower-income families and
neighborhoods are affected by
the lack of trees and greenery
to cool down the temperatures.
It can affect the residents
towards more respiratory
diseases, heart problems, or
dehydration.

Table 3: Rubric for Disciplinary subscore with examples from both unit contexts.
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to the Impacts item. Available data included 1690
responses from the Asthma unit and 548 responses
from the UHI unit. The student responses are short
essays, typically ranging from 1-3 sentences long.
The students represented in the training data are
from the 6th-9th grade in schools in a large, West-
ern United States metropolitan area.

To assess reliability of human scoring before
building the models, two raters independently ap-
plied the rubrics to 5 percent of the data and then
calculated Pearson’s kappa to measure our inter-
rater reliability. We discussed disagreements and
refined the rubrics. We repeated the process until
we achieved a kappa > 0.85 for the KI, Disciplinary,
and Justice scores. The remaining data was split
50-50 among the two raters and hand scored.

Given the considerably smaller number of re-
sponses from the UHI unit, we wondered if data
from the Asthma unit context could be used to
supplement the data from the UHI unit context
to enhance the likelihood of developing a scoring
model that performs well (as measured by align-
ment to human scoring). With this in mind, we
established three training datasets: 1) the 548 re-
sponses collected in the UHI unit context, 2) the
1690 responses collected in the Asthma unit con-
text, and 3) the combined 2238 responses collected
across both unit contexts. Descriptive statistics for
KI, Disciplinary, and Justice scores for each of the
training datasets can be found in Table 4. To eval-
uate the effect of the composition of the training
dataset, we developed the three scoring models us-
ing each training dataset. This resulted in nine total
models:

• UHI-trained KI

• UHI-trained Disciplinary

• UHI-trained Justice

• Asthma-trained KI

• Asthma-trained Disciplinary

• Asthma-trained Justice

• Combined-trained KI

• Combined-trained Disciplinary, and

• Combined-trained Justice.

4 Models

4.1 Modeling Approach

The human-scored data in three training datasets
were used to train content scoring models for KI,
Disciplinary, and Justice scores. The models were
based on encoder-only transformer models (in this
case, BERT and SciBERT), following prior work
(Riordan et al., 2020). The models for KI, Dis-
ciplinary, and Justice scores were trained inde-
pendently, with each score representing the de-
gree of integration for the corresponding aspect
of the content of the response. Models were
trained on ordinal scores (1-5 for KI, 0-2 for Justice
and Disciplinary) using the text in each response.
The modeling approach was a standard “instance-
based” approach (as opposed to similarity-based
approach; c.f. Horbach and Zesch, 2019). While
instance-based models may not generalize well
across prompts (Horbach and Zesch, 2019), we
anticipated that responses generated by UHI and
Asthma versions of the Impacts item would suc-
ceed because many ideas or phrases associated with
high level scores are the same in both unit contexts.
Ideas that are specific to a particular unit context
are unlikely to occur in the other context, minimiz-
ing the likelihood that words or phrases associated
with a high score from one unit context would be
associated with a low score in the other unit con-
text.

We used BERT (Devlin et al., 2019) for the KI
and Disciplinary scores and SciBERT for the Jus-
tice score (Beltagy et al., 2019). The backbone
selection was based upon prior experimentation not
reported in this paper. Following standard practice,
for all models, during training, a special classifica-
tion token ‘[CLS]’ was added to the beginning of
each input sequence. To make score predictions,
the learned representation for the [CLS] token was
processed by an additional layer with sigmoid ac-
tivation, outputting a real-valued score prediction.
This real value was mapped back to ordinal scores
for making predictions.

During training, learning rates were tuned indi-
vidually for each model using grid search. Hyper-
parameter optimization was carried out as follows:
We trained using 10-fold cross-validation with an
80-10-10 training/validation/test split. We tuned
hyperparameters by training on each train split and
evaluating on validation splits. We retained the
epoch where best performance was observed and
the predictions from that epoch. Then, to select
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Training Dataset Mean Median Min Max Std Dev
UHI-KI 2.73 3 1 5 0.82
Asthma-KI 2.75 3 1 5 0.78
Combined-KI 2.75 3 1 5 0.79
UHI-Disciplinary 0.79 1 0 2 0.58
Asthma-Disciplinary 0.82 1 0 2 0.61
Combined-Disciplinary 0.81 1 0 2 0.60
UHI-Justice 0.21 0 0 2 0.44
Asthma-Justice 0.17 0 0 2 0.40
Combined-Justice 0.18 0 0 2 0.41

Table 4: Descriptive statistics for KI, Disciplinary, and Justice Scores for each training dataset

the best hyperparameters, we evaluated the perfor-
mance of the pooled predictions across all folds
of the validation sets. We trained final models
by training on the combined train and validation
sets, using 10-fold cross-validation and using the
best-performing hyperparameters from the prior
hyperparameter optimization.

4.2 Classroom Testing and Model Evaluation

After developing the models, we performed addi-
tional evaluation using a sample from newly col-
lected classroom data. To evaluate the models on
new data, we embedded the Impacts item at three
time points in both the UHI and Asthma units: on
a pretest, within the lesson about the SJSI, and
on a posttest. Two ninth grade science teachers
taught the UHI unit (student N= 95) and one sev-
enth grade science teacher taught Asthma (student
N = 56). We selected a balanced sample of 100
responses from each unit to evaluate the models we
built. The responses were human scored and scored
by each of the models. We used QWK, a measure
of agreement for ordinal ratings that ranges from 0
to 1 and accounts for chance agreement (Fleiss and
Cohen, 1973), to compare the performance of the
scoring models trained on each training dataset.

5 Results and Discussion

5.1 RQ1: Developing a model to capture
students’ integrated understanding of
SJSI

After model development, we evaluated each model
(UHI-trained, Asthma-trained, and Combined-
trained KI, Justice and Disciplinary scoring mod-
els) on 100 student responses from both the Asthma
and the UHI units. The test data were collected dur-
ing classroom testing and not present in the training
dataset during model development. The responses

were hand scored by the first author and scored by
each of the models. We used quadratic weighted
kappa as a metric to evaluate model performance
(Table 5).

All models developed performed sufficiently
well (QWK≥0.70, rounded normally; Williamson
et al., 2012) in the evaluation context that cor-
responded to the training context, i.e Asthma-
trained KI, Disciplinary, and Justice models per-
formed sufficiently well on new data collected
from student learning from the Asthma unit. UHI-
trained models performed sufficiently well on
new data from students learning the UHI unit.
The Combined-trained models also performed suf-
ficiently well (QWK≥0.70, rounded normally;
Williamson et al., 2012) for new data collected
in both the Asthma and UHI units. These results
suggest that we can automatically assess student
progress in explaining SJSI.

5.2 RQ2. Affordances and limitations of
combining datasets to develop AES
models for similar instructional contexts

In most cases, the model built on a larger train-
ing dataset performs better, even if the training
dataset includes data from a different instructional
context. For example, the Combined-trained Dis-
ciplinary model performed best for data from both
the Asthma (QWK = 0.9380) and the UHI units
(QWK = 0.8273). Additionally, the Asthma-
trained models perform better or as well as UHI-
trained models for test data from the UHI context.
Figures 1 and 2 illustrate the trend that as more data
is added to the training dataset, the QWK either
remains approximately the same or increases.

An exception to this trend are the models for
the Justice score (Figure 3). The Asthma-trained
Justice model performs best for data from both
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Training Context Evaluation Context KI QWK Disciplinary QWK Justice QWK
Asthma (N=1690) Asthma 0.9649 0.9265 0.9323

UHI (N=548) UHI 0.9071 0.7531 0.6983
Asthma (N=1690) UHI 0.9137 0.7499 0.8344

UHI (N=548) Asthma 0.7941 0.5479 0.8177
Combined (N=2238) Asthma 0.9385 0.9380 0.8785
Combined (N=2238) UHI 0.9432 0.8273 0.7922

Table 5: Model evaluation results (quadratic weighted kappa, QWK) on the 100 newly collected student responses
for models trained on data from the Asthma context, the UHI context, and the Combined dataset.

Figure 1: QWK for KI score for each model in both
evaluation contexts

.

Figure 2: QWK for Disciplinary score for each model
in both evaluation contexts

the Asthma unit and the UHI unit compared to
the Combined-trained Justice model, even though
it was trained using a smaller dataset and does
not contain responses from the UHI unit. Of the
100 UHI test responses, there were six responses
where the Asthma-trained Justice model accurately
scored the response and the Combined-trained Jus-
tice model did not accurately score the response.
In each of these responses, the Combined-trained
model scored the response lower than the human
rater. Four of these six responses were scored at
a level 2, the highest score, by the human rater
and Asthma-trained model and at a level 1 by the
Combined-trained model. For example, the student
explanation, “No, people are affected differently
by climate change. The reasons behind it are also
racially driven, as those who are affected more are
likely to be people of color due to redlining and the
zoning of housing” was accurately given a Justice
score of 2 by the Asthma-trained Justice model and
given a score of 1 by the Combined-trained Jus-
tice model. The ideas about people of color being
more impacted due to historical redlining and hous-
ing policies contained in this responses are well
represented in the Asthma training dataset.

With this in mind, a possible explanation for
the difference in performance is that the Asthma
dataset has more responses and more consistent
representation of the target justice ideas. As such,
it might be reasonable to expect it to perform best.
Further, the justice context requires real world
knowledge which is a difficult task for transformer
models. Additionally, the average Justice score
across the 100 UHI test responses was 0.66, while
the average of the Justice scores predicted by the
Asthma-trained models was 0.61, the average of
the Justice scores predicted by the UHI-trained
models was 0.45 and the the average of the Jus-
tice score predicted by the Combined-trained mod-
els was 0.52. The lower average predicted scores
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Figure 3: QWK for Justice score for each model in both
evaluation contexts

from the UHI-trained and Combined-trained mod-
els might indicate that the justice ideas represented
in the UHI training dataset are not well-aligned to
the justice ideas expressed in the newly collected
UHI test set.

Despite some reductions in performance, the
Combined-trained KI, Justice, and Disciplinary
models all perform well enough to be used in class-
rooms (Williamson et al., 2012). For the UHI in-
structional context, where training data was limited
during model development, the combined model
enhances performance suggesting the promise of
the modeling approach for developing a model for
in multiple instructional contexts.

6 Conclusions and Next Steps

This study investigates the robustness of pedagog-
ically aligned automatic content scoring models
trained for one SJSI context when used for a dif-
ferent SJSI context and of the model trained on
multiple SJSI. We found that the models are ro-
bust across these contexts. Models developed in
one context generate educationally useful scores in
the other context. The model trained on the com-
bined dataset is as good or better than the models
trained on separate datasets in most cases. These
findings underscore the value of using classroom
data to fine-tune encoder-only transformer models
using a pedagogically-grounded scoring rubric. In
particular, the models were robust for scoring stu-
dent responses for knowledge integration. They
also demonstrate the potential for using “instance-
based” models across contexts when it is unlikely
that words or phrases associated with a high score
from one context would be associated with a low
score in another context.

Results demonstrate that these models are above
threshold for use in classrooms to give students
adaptive, personalized guidance based on their es-
say scores. They can also be used to synthesize
classroom data for teachers in real time. Thus,
the automatic content scoring generates KI scores,
Disciplinary scores, and Justice scores that can
be displayed in class-level histograms along with
illustrative student responses to help teachers mon-
itor class progress. These results suggest promise
for generalizing models across similar contexts,
increasing the efficiency of design of automatic
content scoring models for adaptive instructional
materials.

Next steps include validating the educational
value of the models in classroom settings. We plan
to engage the RPP in designing and testing adaptive
guidance informed by KI pedagogy for each of the
automatically generated scores. In addition class-
room observations and interviews with teachers
are needed to understand how the scores generated
by the models align with teachers’ assessment of
student explanations of SJSIs and how access to
student scores from the models shapes their instruc-
tion.

7 Limitations

The findings of the work are limited by the nature
of our experimental approach. We tested models
based on the data available as opposed to systemat-
ically testing training dataset size. Further, across
all training data sets, the data are imbalanced with
an over representation of low Justice scores. These
limitations are common constraints when working
with data generated in real K-12 classroom con-
texts.
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Abstract

This research is situated in the space between
an existing NLP capability and its use(s) in
an educational context. We analyze oral read-
ing data collected with a deployed automated
speech analysis software and consider how the
results of automated speech analysis can be in-
terpreted and used to inform the ideation and
design of a new feature – feedback to learners
and teachers. Our analysis shows how the de-
tails of the system’s performance and the details
of the context of use both significantly impact
the ideation process.

1 Introduction

Reading a text fluently – accurately and with a good
speed – is evidence of development of foundational
reading skills, such as decoding and word recog-
nition (Sabatini et al., 2019). Research suggests
that the development of oral reading fluency is an
essential bridge from decoding to comprehension
of text (Pikulski and Chard, 2005). Instructional ap-
proaches to foster fluency include modeling fluent
reading to the developing reader; repeated reading
(re-reading passages multiple times); and engaging
students in wide independent reading (Ardoin et al.,
2016; Hudson et al., 2020; Pikulski and Chard,
2005; Wexler et al., 2008). Extensive reading was
also shown to support fluency development in stu-
dents of English as a foreign language (Huffman,
2014; Suk, 2017).

Given the importance of fluency for reading
development, we built Relay Reader™, an app1

where readers can practice by taking turns read-
ing out loud from full-length stories with skilled
audiobook narrators (Madnani et al., 2019). The
narrator reads a passage while the user follows
in the text; then the user reads the next passage
aloud, and so on. Users can set the word counts of
their own and narrator turns between 70 and 200

1The app is available freely on https://
relayreader.org/.

words.2 The app has been available since 2020
to readers-in-the-wild, initially with one story (an
English translation of Collodi’s The Adventures of
Pinocchio) and gradually expanding to 26 stories,
from a 460-word fable to a 120K-word novel. In
parallel, the app has been used for independent
reading (‘Drop Everything And Read’) in school
and summer camp contexts.

During the development of the app, we con-
ducted a needs assessment with teachers which
showed that obtaining estimates of students’ oral
reading fluency and accuracy was the top prior-
ity, followed by being able to see students’ spe-
cific difficulties in reading through miscue analysis
(Kannan et al., 2019). Accordingly, a speech analy-
sis system was developed and is currently used to
provide fluency information to teachers. Fluency
is measured as words read correctly per minute;
hence the system transcribes the audio and com-
pares to the passage text in order to provide fluency
estimates. As a byproduct, the system produces an
alignment between the transcript and the passage
from which the miscues can be easily recovered.

The goal of this study is to explore the potential
of using these miscues for feedback, guided by
the following research questions: (1) What is the
extent of miscues in the data? (2) How are miscues
distributed in reading passages? (3) How does the
extended reading context come into play? (4) How
reliable is miscue detection?

The main contribution of our work is the ex-
ploration of the space between a deployed NLP
capability and its use case. We show how the anal-
ysis of the data collected through the system can
support ideation of using the system in a new way –
for feedback, specifically regarding frequency and
content of such feedback. More generally, in the
context of using NLP for building educational ap-
plications, we zoom in on the process of ideating

2These are approximate since turn transitions happen on
paragraph breaks only.
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a new feature in an existing ecosystem, and show
how the analysis of existing data can inform the
ideation process.

2 Related work

Research on automated speech recognition (ASR)
for young readers suggests that misreadings and
slow reading constitute significant challenges
(Gelin et al., 2021; Wu et al., 2019); focus on sub-
word units (Hagen et al., 2007) and data augmenta-
tion with synthetically generated mistakes (Gelin
et al., 2023) are some of the approaches proposed to
improve identification of misreadings. The techni-
cal challenges notwithstanding, ASR has long been
used for feedback in automated reading tutors. The
Reading Tutor from Project LISTEN, an influential
early system that entered classrooms in the 1990s,
displayed the text one sentence at a time. As the
student read, the system interrupted if a word was
read incorrectly and not self-corrected by under-
lining the incorrect word and occasionally “cough-
ing" to get the student’s attention (Mostow and
Aist, 1999). Lalilo is another reading tutor for early
elementary students. Students record themselves
reading a word, phrase, or sentence; their record-
ing is played back, followed by a fluent model of
the sentence. The reader gets feedback when the
system is confident that it was correct (‘Perfect’)
or incorrect (’Try again’); if uncertain, the student
is asked whether their recording matched the fluent
one and is encouraged with ‘Good job!’ (Hem-
bise et al., 2021). BookBuddy is a chat bot that
converses with young readers about the story they
are reading by answering their questions, quizzing
them, and automatically evaluating their spoken
answers (Ruan et al., 2019). The Charlesbridge
Reading Fluency program ‘listens’ as a student is
reading, and when a child misreads or struggles
with a word, the machine models it and asks the
child to repeat it and continue reading; problem
words are marked in a separate report for review
and practice (Adams, 2013). The virtual reading
tutor Marni tracks the student while reading aloud
by moving the cursor to each word as it is spo-
ken (Cole et al., 2007). A reading tutor for Dutch
supports reading individual words, word lists, and
short stories; for the latter, the student is asked to
reread the sentences where they read incorrectly
one or more words, as detected by ASR software
(Bai et al., 2020).

In general, prior work on automated fluency sup-

port tends to focus on very young learners (K-2)
and on an early stage of fluency development, us-
ing words, sentences, or, at most, very short stories,
and on helping the student get every item right.
In contrast, Relay Reader is targeting a more ad-
vanced stage of fluency, with a focus on immersive
extended reading. In this context, it may not be
very important to get every word right, especially
if it comes at the cost of breaking the flow of read-
ing. Still, detailed speech analysis data similar
to that available in reading tutors can be obtained
and can therefore be used for stakeholder feedback.
This work is a preliminary investigation towards
designing miscue-based feedback appropriate to
the extended reading application.

3 Data

The data for this study come from users-in-the-
wild and from study participants in school and
summer programs. Users-in-the-wild may choose
to respond to a few demographic questions dur-
ing app sign-up – who the target reader is (self,
child, student, other) and whether the reader is a na-
tive speaker of English. Non-native speakers using
the app themselves is the largest group, followed
by native-speaking children. Study participants in
schools and summer camps were predominantly up-
per elementary students (grades 3-5) in the North-
East of the USA at schools and camps catering to
majority African American and Hispanic students.
Different books were added to the library at dif-
ferent times and received more or fewer readings,
depending on study designs and reader interest.

We start with a subset of the data with reason-
ably complete readings, that is, recordings where at
least 70% of the words of the passage were found
in the automated transcription (reading accuracy ≥
70%). The 70% cutoff helps filter out data that is
unlikely to be useful for studying reading errors,
for two reasons: (a) Low accuracies often corre-
spond to cases where large stretches of the passage
are left unread (skipped) or to very noisy record-
ings; feedback in such cases, if any, might have
to focus on improving engagement in the reading
activity or on improving the quality of recordings,
rather than on mispronunciation of specific words.
(b) The automated speech analysis is less reliable
on low-accuracy recordings (Beigman Klebanov
and Loukina, 2021). More information about the
system cam be found in Loukina et al. (2019). The
system produces fluency estimates that correlate
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with those obtained using human transcribed data
at r = 0.94 for recordings above the 70% cutoff
(Beigman Klebanov and Loukina, 2021).

The resulting dataset (ByPassage) consists of
9,432 recordings by 293 readers of 2,009 unique
passages from 24 books. These recordings cover
7,511 word types (unique words) and 136,450
word tokens (all occurrences of the words). Ta-
ble 1 shows descriptive statistics. Average passage
length is 109 words (sd = 37.5) and average ac-
curacy is 91.1% (sd = 8.2). The population distri-
bution of the recordings is: 73.1% school, 9.5%
summer camp, and 17.4% users-in-the-wild.

To detect miscues, we use the automated align-
ment of the recording to the text of the passage gen-
erated as part of the accuracy computation (Louk-
ina et al., 2019); we consider as miscues all dele-
tions of words in the passage and all substitutions
of words in the passage with other words; inser-
tions of words that were not in the passage were
ignored.

4 Patterns of Miscue Occurrence

Reading accuracy, namely, the proportion of words
read correctly out of all words in a passage, aver-
aged 91.1%. That is, readings of about 9 in 100
words are miscues; this answers RQ1.

To answer RQ2, we investigate whether miscues
tend to cluster together. To determine the proximity
of errors to one another, we cluster errors occurring
within five tokens of each other with the condition
that tokens in a cluster must be part of the same
paragraph. Thus, the sequence ECEECCCCECCE,
where E stands for error and C for correct, will be
considered as one cluster, since there is no stretch
of more than four Cs in the sequence. We find that
while 32.4% of errors occur singly, most errors are
proximal to other errors (see Table 2). On average,
clusters have 3.6 errors and span 4 tokens; see
Table 3. Thus, errors tend to occur immediately
next to each other; patterns like ECCCECCCE are
uncommon. Since there are, on average, 9.8 errors
per passage and these tend to occur in clusters of
3.6, an average passage would contain 2 or 3 error
clusters. The following examples, from Pinocchio
and Hansel and Gretel, respectively, show typical
occurrences, with cluster boundaries enclosed in
brackets and miscued words denoted in bold:

1. And growing angrier each moment, they went
from words to blows, and [finally began to
scratch] and bite and slap each other.

2. The man’s [heart] smote him heavily, and he
thought: “Surely it would be better to share
the last [bite with one’s] children!”

We observe that 5.2% of the errors occur in clus-
ters of 11 errors or more (see Table 2), with the
largest cluster consisting of 57 errors. Inspection
of the largest cluster, which occurs after about four
minutes of reading, reveals that the reader did not
read aloud the final paragraph of a long passage.

5 Extended Reading

The app contains a mix of short and long stories,
including novels, such as The Adventures of Pinoc-
chio and The Wonderful Wizard of Oz, each with
about 40K word tokens. A novel is different from
a sequence of short stories that amount to a sim-
ilar overall word count in that there tends to be
continuity of characters, relationships, and settings
throughout the story, with the corresponding rep-
etition of key vocabulary. For example, the word
marionette, a generally infrequent word, repeats
185 times in Pinocchio. Such frequency of occur-
rence, sometimes in narrator turns and sometimes
in reader turns, would provide a lot of opportunities
for readers to hear the model performance of the
word as well as to practice reading it themselves.
The interleaved reading activity itself thus consti-
tutes a kind of feedback to the reader, albeit not im-
mediate and indirect: Frequently occurring words
may be self-corrected in subsequent encounters,
perhaps making immediate corrective feedback to
the reader unnecessarily intrusive.

For our next analysis, we use readings from read-
ers who completed Pinocchio, the most read book
in the app. For every word type in the book, we
collect all its readings from those readers who mis-
read it at least once; these are readers who have
correction potential since they made a mistake on
the word. Words with fewer than five such readers
are discarded. The dataset Pinocchio has 19,763
readings of 631 word types read by 47 readers.

Each point in the plot in Figure 1 corresponds to
a word type; the size of the dot corresponds to the
total number of readers with correction potential.
On the x-axis is the log2 total number of occur-
rences of the word in the book. On the y-axis is the
proportion of readers with correction potential who
had at least one correct reading of that word. We
start with x = 1, since for x = 0 (one occurrence in
the book) it is always the case that y = 0.
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Statistic % Correct #Words Read #Words Read #Words in the
Correctly Incorrectly Passage

Mean (SD) 91.1 (8.2) 99.3 (35.5) 9.8 (10.0) 109.1 (37.5)
Mode 100 90 0 99
[Min, Max] [70.1, 100] [4, 443] [0, 74] [5, 444]
[25%, 50%, 75%] [85.9, 93.5, 98.0] [79, 94, 114] [2, 7, 15] [90, 101, 124]

Table 1: Descriptive statistics of the reading passages (ByPassage dataset), N = 9,432.

#Errors Freq. % Cumulative % #Errors Freq. % Cumulative %
1 8,284 32.4 32.4 7 889 3.5 88.8
2 5,019 19.6 52.0 8 651 2.5 91.3
3 3,493 13.7 65.7 9 506 2.0 93.3
4 2,302 9.0 74.7 10 388 1.5 94.8
5 1,559 6.1 80.7 ≥11 1,329 5.2 100
6 1,162 4.5 85.3

Table 2: Distribution of error clusters (N = 25,582) by number of errors in the cluster.

The Figure suggests that generally the more oc-
currences in the book, the higher the chances of
readers figuring out the correct reading even with-
out explicit corrective feedback. We observe that
the area to the right of x = 4.32 (20 occurrences or
more) and under y = 0.9 (<90% of readers with
correction potential with at least one correct read-
ing) is empty, with the exception of the word would.
As a rough estimate, it seems that about 20 occur-
rences suffice for the word to largely stop being a
problem. We checked this threshold on The Wiz-
ard of Oz data extracted similarly to the Pinocchio
data (11,224 readings of 480 word types read by 36
readers) and found it violated by only two words.

These observations suggest that we may want
to concentrate the explicit corrective feedback on
words that do not occur frequently enough in the
book to make self-correction through repeated ex-
posure a near certainty. This would mean that the
actual proportion of miscues that are candidates
for explicit feedback to the reader may be lower
than the 8.9% overall estimate. Removing words
with at least 20 occurrences in a story from the list
of candidates for explicit feedback for that story,
we observe that the proportion of feedback-eligible
miscues goes down from 8.9% of all word tokens
to 3.3%, for the ByPassage dataset. For an average
passage of 109 words, this would correspond to
about 3.5 miscues eligible for correction per pas-
sage, on average, instead of 9.8. This reduction
in the number of miscues eligible for correction is
an affordance of the extended reading context; this
finding, therefore, answers RQ3.

6 Reliability of miscue detection

Before designing feedback to readers or teachers
based on automatically detected miscues, we esti-
mate how reliably the system points out miscues
(RQ4). In particular, our focal measure is preci-
sion of miscue detection – if a system declares an
error, which would presumably trigger feedback,
how often is there indeed an error?

We considered words with 50% or lower %Cor-
rect, reasoning that these would be likely loci for
error flagging. There were 87 such words that were
read by at least 10 readers each. We excluded 12
non-dictionary words that may not have a standard
pronunciation.3 Table 4 shows the statistics of the
ByMiscue sample. These words are generally in-
frequent, occurring no more than 6 times in the
corpus of 24 books. Table 5 lists the words, the
number of readings and readers per word, and the
titles of the books that included the words.

For every one of the 75 word types, we randomly
sampled 3 readings where the machine classified
the reading as ‘correct’ and 3 readings classified
as ‘incorrect’. In cases with fewer than 3 predicted
‘correct’s, we used all the instances the machine
deemed ‘correct’ (2 or 1). There were 446 cases
in total for the 75 words, of which 221 had the ma-
chine’s prediction of ‘correct’ and 225 ‘incorrect’.

A trained linguist with experience in analysis

3The system used human-provided phonetic transcriptions
for these words as ‘correct’ pronunciations during the recogni-
tion step, but deviation from that may not be clear-cut cases
of miscues. These were the excluded words: ’I, ’this, E, h’m,
pep-pe, tchee, zik, ziz-zy, zum, zuz-zy, pi-pi-pi, sha’n’t.
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Statistic #Errors per cluster Cluster span #Clusters per passage
(#words)

Mean (SD) 3.6 (3.6) 4.0 (4.2) 2.7 (2.1)
Mode 1 1 2
[Min, Max] [1, 57] [1, 58] [0, 14]
[25%, 50%, 75%] [1, 2, 5] [1, 3, 5] [1, 2, 4]

Table 3: Descriptive statistics of # errors and # consecutive word tokens in error clusters (cluster spans).

Figure 1: Plot of the relationship between the frequency of a word’s occurrence in Pinocchio and the proportion of
readers who provided a correct reading for the word out of all readers who misread the word at least once. n = 631.

Statistic Readers Readings Tokens
Mean 19.00 21.01 1.95
Median 15 16 1
Mode 10 10 1
SD 10.52 13.40 1.27
Min 10 10 1
Max 55 66 6

Table 4: Descriptive statistics for the ByMiscue sample
that covers 75 of the most misread word types.

of oral data (one of the authors of the paper) has
listened to the 446 recordings of passages contain-
ing the target words, and marked the readings of
the target word as ‘correct’ or ‘incorrect’. Table 6
shows the human-machine confusion matrix. The
human rater could not make a judgment for 10 in-
stances; these all show as disagreements, equally
split between the off-diagonal cells. For ‘incorrect’
classifications, machine precision was 0.66, recall
was 0.65, and the F1 score was 0.66. Thus, about 1
in 3 ‘incorrect’ classifications are false positives –
predicting error where there was none.

While performing the annotation, we observed
that even when the final execution of a word was
correct, there were often indicators that the reader
was having some difficulty, such as pausing right
before or right after the word, making one or more
mistakes leading to the word, or repeating part of
the word (e.g., a fresh convul-convulsion seized
her). The reader’s difficulties may manifest in the
acoustic signal and, in turn, make it more difficult
for the machine to tell whether the reading was
correct or incorrect.

We therefore considered a different construct for
analysis – that of ‘evidence of difficulty’ vs. ‘no ev-
idence of difficulty’ – for the human classification.
All instances marked by the human as ‘incorrect’
in the previous round were labeled as ‘evidence of
difficulty’ by default, whereas the ‘correct’ cases
were further classified into cases with or without
evidence of difficulty. Comparing human classifi-
cation of ‘evidence of difficulty’ / ‘no evidence of
difficulty’ to the machine’s ‘incorrect’ / ‘correct’
classification (see Table 7), we found that in 80%
of the cases where the machine declared an ‘incor-
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Word % R-ngs Bks Word % R-ngs Bks Word % R-ngs Bks
C. (R-rs) C. (R-rs) C. (R-rs)

inseparable 10 10(10) G sagacity 36 11(11) G mastiffs 46 22(22) P
scuttling 10 30(30) P bedgraggled 37 30(30) P perpendi- 46 11(11) G
aristocratic 20 14(14) B bewilder- 37 19(17) BO cular
melodious 20 10(10) G ment pursuers 47 19(17) P
zest 20 10(10) B forbearance 40 10(10) G courteously 47 32(30) PE
pheasants 21 57(39) P persecutors 40 25(25) P sensibly 47 36(36) P
intuitions 21 14(13) B saucily 40 15(15) O ferocious 47 15(15) B
caressed 23 56(55) P magicians 40 10(10) O Hippoda- 47 19(14) G
convulsion 25 12(12) B disconsolate 40 10(10) G mia
personified 27 11(11) G studded 40 15(15) O mysterious 48 21(21) P
impertur- 29 14(14) B assistance 41 17(17) BG jeeringly 48 21(21) H

bably caress 41 22(22) P tinsmiths 48 29(14) O
whitened 30 10(10) G carabeneers 41 22(22) P exhausted 48 31(25) PAO
Pulcinella 31 39(36) P amusing 41 22(22) P spectacle 49 63(52) P
indigestion 32 66(53) P spit 41 64(33) P fancied 49 33(28) PGR
gold-piece 33 46(46) P convulsed 42 12(12) B reproached 50 22(22) H
certainty 33 12(12) B excursion 42 12(12) B perplexity 50 16(16) GO
Turkish 33 12(12) B pauper 43 14(14) B brocaded 50 10(10) O
ventrilo- 33 15(15) O maliciously 43 21(21) H countless 50 12(12) O

quist writhed 43 21(13) GB crocuses 50 14(14) B
astonish- 35 20(20) PB slats 43 14(14) O disgustedly 50 22(22) P

ment GR partridges 44 27(27) P keenly 50 10(10) P
deductions 36 14(13) B deceived 44 16(16) O distinctly 50 10(10) G
sewn 36 14(14) O satin 44 16(15) NO severely 50 12(12) O
distingui- 36 11(11) G perspiration 44 25(24) P mosquito 50 16(16) P

shing exquisite 45 31(21) EG stammering 50 24(21) P
immodera- 36 11(11) G singed 46 11(11) O spright- 50 10(10) G

tely digested 46 26(14) P liness

Table 5: 75 most miscued words. %C.: % Correct readings. R-ings(R-rs): #Readings (#Readers). Bks: the source
books, from Project Gutenberg: The Adventures of Pinocchio by Collodi (P), the Wonderful Wizard of Oz by Baum
(O), The Gorgon’s Head by Hawthorne (G), The Adventure of the Speckled Band by Conan Doyle (B), Hansel &
Gretel by Lang (H), The Necklace by Maupassant (N), The Emperor’s New Clothes by Lang (E), Martin Guerre by
Dumas (A), Pride & Prejudice by Austen (R).
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Human Correct Incorrect
Machine
Correct 142 79
Incorrect 77 148

Table 6: Confusion matrix for correct/incorrect human
vs machine classification.

Human No Evidence Evidence
Machine of Difficulty of Difficulty
Correct 106 115
Incorrect 44 181

Table 7: Confusion matrix where machine’s cor-
rect/incorrect classification is compared the the human’s
no evidence of difficulty / evidence of difficulty classifi-
cation.

rect’ reading, the human annotator found ‘evidence
of difficulty’ (precision = 181

181+44 = 0.80); recall
was 0.61, and the F1 score was 0.70. Thus, the
machine’s prediction of ‘incorrect’ is capturing the
human construct of ‘evidence of difficulty’ with
higher precision than the human construct of an
‘incorrect’ reading.

To confirm the reliability of these findings, a
second annotator unrelated to the project with a
master’s degree in applied linguistics and prior ex-
perience annotating speech and oral reading data
annotated a reliability sample of 90 randomly se-
lected recordings out of the 446 (about 20%) for
(1) correctness of the reading of the target word,
and (2) for those items marked as correct, whether
there is evidence of difficulty (Appendix A shows
the annotation protocol). Cohen’s κ between raters
for the 3-way classification (incorrect, correct with
evidence of difficulty, correct without evidence
of difficulty) was 0.604; it was nearly the same
(0.601) for a binary classification where ‘incorrect’
and ‘correct with evidence of difficulty’ were com-
bined into a single ‘evidence of difficulty’ class
and contrasted with the ‘correct with no evidence
of difficulty’ class.

Using the 90 instances annotated by the second
annotator, we also confirmed that the machine’s
precision was higher in detecting the second rater’s
‘evidence of difficulty’ annotations than the second
rater’s ‘incorrect’ annotations (precision of 90% for
‘evidence of difficulty’ and 84.2% for ‘incorrect’).
The precision for the first annotator’s data for the
same subset of 90 instances was 84.2% vs 76.3%
for the two constructs, respectively.

To summarize: Our analyses suggest that the
machine’s detection of a miscue corresponds more
precisely to what a human listener would consider
as a reading showing evidence of difficulty (80.4%
precision) than to what a human listener would
designate as a miscue (65.8% precision). This is
because readers sometimes ended up reading the
word correctly, perhaps after an initial stumble or
a partial reading, or recovering from a misreading
of a few words just before the current one; the
machine often did not recognize these as correct
readings.

7 Discussion: Implication for feedback
ideation

Our analysis of the automatically transcribed read
aloud data from an interleaved book reading app
shows a substantial extent of reading difficulty in
the readers: About 9% of all word readings in the el-
igible transcripts show evidence of difficulty based
on an automated analysis. The actual extent of dif-
ficulty, as detected by a human listener, is likely to
be higher, since, while the system shows fairly high
precision (0.80) in detecting what a human listener
would consider evidence of difficulty, it misses
many such cases, since the recall stands at 0.61.
Inspecting the patterns in about 9.5K recordings by
293 readers of 2K unique passages (excerpts from
novels and short stories), we observed that reading
difficulties tend to cluster in 3-4 consecutive words,
suggesting that corrective feedback to the reader
may need to contain a model performance of whole
phrases rather than individual words.

Further, we examined the interleaved extended
reading and listening itself as a kind of delayed
(not immediate) and indirect feedback to the reader
that does not require to break the flow of reading.
We estimated that a word that occurs 20 times or
more in the book is likely to have sufficient expo-
sure in narrator and reader turns for 90% of the
readers who misread it at least once to also produce
at least one correct reading. Assuming that there is
no urgency that the reader learn a particular word
now instead of a few chapters later, we may want to
forgo giving the reader direct feedback on misread-
ings of words that will almost certainly get fixed
by the time the reader finishes the story, focusing
instead on misreadings of words that do not get
repeated very often in the story.

Finally, when designing the feedback based on
automatically detected misreadings, it is impor-
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tant to keep in mind that, at least with the speech
recognition technology currently implemented in
the app and the type of data typical of this use case
(no acoustic control of the environment, consumer-
level devices and headsets), the detection of mis-
cues is only 66% precise.4 However, in 80% of the
cases where the machine flags a miscue, there is
evidence that the reader is having some difficulty –
whether or not they produced a correct reading in
the end. The ideation and design of feedback will
need to reflect this shift in the construct. This find-
ing also suggests that, in terms of learner modeling,
automatically detected reading errors provide evi-
dence not only on the knowledge dimension, but
also on a behavioral dimension – miscues flagged
by the system may provide a first-cut detection
of loci where evidence of multiple attempts, self-
corrections, pausing to consider the difficult word,
and other behaviors related to the trait of persever-
ance may be found, upon further analysis.

As a first step in exploring feedback to the
teacher based on evidence of difficulty, we created
class-level heatmaps per paragraph for an ongoing
reading of Pinocchio in a 4th grade classroom and
sent the teacher the heatmaps for the paragraphs
that were most difficult for the class, one per chap-
ter. In an interview, the teacher described her use
of the heatmap shown below. She told the students
she was showing them a challenging passage and
explained the darker red as standing for more read-
ers having a difficulty. She told students that some
of it was a bit of a tongue-twister for any reader
(she said she would have had a hard time herself);
she then praised the class for reading much of the
passage well and for giving the more challenging
part a go. The class also had a brief discussion of
what a gold-piece indigestion meant. The teacher
thus used the feedback not only for providing a
correct reading of the miscue cluster “gold-piece
indigestion" that occurred in many of her students’
readings, but also for a brief but rich motivational,
affective, and comprehension-related activity.

Pinocchio ate least of all. He asked for
a bite of bread and a few nuts and then
hardly touched them. The poor fellow,

4It is interesting that the system nevertheless provides re-
liable fluency estimates – estimates of words read correctly
per minute. It may suggest that the impact of crediting or
not those words that came out correctly after some struggle is
relatively small, considering that the struggle itself has taken
time without emission of correct words, which is appropriately
captured as detrimental to fluency.

with his mind on the Field of Wonders,
was suffering from a gold-piece indi-
gestion.

8 Conclusion

In this paper, we analyzed miscues detected by
an automated speech analysis system deployed
through a publicly available reading app where
readers take turns reading books out loud with a
pre-recorded skilled narrator. The impetus for con-
sidering miscues came from teachers’ request to
provide such data; however, it is not a-priori clear
(a) what the extent of the target behavior is; (b)
in what patterns it occurs that may suggest certain
ways of designing feedback, (c) how the design of
the reading activity may impact feedback, and (d)
exactly what a flagged miscue is communicating.

Our analysis shows that miscuing, or, rather,
readers experiencing some difficulty reading the
word, even if they do pronounce it correctly in the
end, is extensive – about nine in a hundred words
and possibly more, since our automated system
does not detect all such cases. Second, problems
tend to cluster together, suggesting that corrective
feedback may better be presented by modeling the
reading of a phrase rather than of individual words.
Third, in order to minimize the interference with
the flow of reading, one may want to prioritize
modeling misread words that do not occur very
frequently in the book. We found that words with
20 or more repetition are very likely to be learned
through the interleaved reading activity itself, with-
out additional explicit feedback.

Finally, examining the reading instances flagged
by the system as miscues, we found that these
are not necessarily incorrectly read words but is
closer to what a human listener would consider as
evidence of some difficulty on the reader’s part,
whether or not the word came out correct in the
end. This opens up the possibility of considering
the automatically detected miscues as a first-cut de-
tection of instances of reader struggles – not only
those that manifest as an error but also those that
show gearing-up or preparation (pause before), per-
sistence (multiple attempts), or self-correction (suc-
cessful final readings) – all providing evidence not
only on the skill dimension, but also on important
learner traits such as perseverance.

From the point of view of feedback develop-
ment, our analyses suggest that when designing
feedback to the reader, it may be incorrect to start
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from the vision of “give feedback on every miscue."
First, there may be too many of them. Second, it
would make sense to fuse feedback on multiple
miscues since they tend to cluster together. Third,
some of the miscued words have a verifiably high
chance of getting fixed during the activity without
explicit feedback. Finally, the content of the feed-
back would not actually be a correction of a miscue,
because there may not have been an actual miscue
– or misreading – to begin with; it may have been a
successful reading following some struggle. This
shift in the construct suggests feedback not only,
or not necessarily, along the dimension of reading
skill, but also learner traits such as perseverance.
Our first trial with a teacher shows promise in that
the teacher was able to use the evidence of diffi-
culty feedback not only for a corrective purpose,
but also for a motivational and affective one.

More broadly, our case study shows how a de-
tailed examination of existing data from a new an-
gle may provide new insights into the performance
of the system and support ideation of a new use of
the system to the benefit of the stakesholders.

9 Limitations

In this study, data was not separated by character-
istics of readers that might impact the kind of mis-
takes they are making during reading. For example,
we did not consider the possible effects of age, lin-
guistic background, or learning disabilities, since
we know relatively little about users-in-the-wild
and about readers in informal contexts, beyond the
general description provided earlier. In addition,
it is possible that the automated system performs
more accurately on data from certain kinds of read-
ers than from others. For example, recordings from
soft-spoken readers or readers with speech disor-
ders may be more difficult to analyze accurately.
Different kinds of performances may also be easier
or harder to handle; we have anecdotal evidence
that particularly creative performances – such as a
reader singing the passage – might be difficult for
automated analysis.

In the current study, we investigated relatively
large-scale patterns in order to identify important
considerations for feedback ideation; specific de-
signs will need to be informed by more nuanced
analyses of use cases, user populations, and per-
sonal reading histories of the users of the applica-
tion.

10 Ethics statement

Data collections at all the school and summer
camp sites were approved by our institution’s IRB.
The users-in-the-wild agree to the Terms of Use
(https://relayreader.org/terms) dur-
ing sign-up into Relay Reader, including the follow-
ing statement that appears on the Terms of Use sum-
mary page displayed prominently during sign-up:
“ETS collects voice recordings and other data from
users of the App. The recordings and usage data are
used in an anonymized manner in connection with
ETS research," followed by a link where more in-
formation about the research can be obtained. If the
application is being installed by parents or teachers
for their children and students, respectively, the fol-
lowing statement (that also appears in the Terms of
Use summary) additionally applies: “If I am down-
loading this App for use by my child or student,
I have the authority to permit ETS to collect the
recordings and usage data as described in the Terms
of Use." Our organization’s Privacy Policy is linked
from relayreader.org and is available here: https:
//www.ets.org//legal/privacy.html.

The data is oral reading data of stories in the
Relay Reader app and process data from the app.
As such, it is not expected to contain content such
as the reader’s name, thoughts or opinions, and,
indeed, this has not been observed in the data in-
spected in detail (ByMiscue sample). We have not
taken additional steps to check whether the data
that was collected contains any information that
names or uniquely identifies individual people or
offensive content. The data collected by the app is
securely stored and managed in accordance with
our organization’s Privacy Policy.

All the stories and narrations used in the App
are either in the public domain (in which case the
texts are sourced from Project Gutenberg and the
narrations are sourced from LibriVox.org, a col-
lection of volunteer public domain recordings of
public domain books), or licensed from the copy-
right holders.
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Incorrect A word was read incorrectly, even if
initially read correctly.

A.1 Features of incorrect reading
A word should be coded as incorrect if it has any
of the following qualities.

Mispronunciation Part of the word is not pro-
nounced as it should be expected. In the case
of proper nouns, any reasonable phonetic pro-
nunciation of the word is acceptable. Mispro-
nunciations can include: (a) Pronouncing the
wrong segment, e.g., saying SUN as SOON,
saying NATION as NATE-EE-ON; (b) Insert-
ing an extra syllable, e.g., saying NATION as
NA-SHE-ON; (c) Omitting part of a word such
as a segment, syllable, or suffix, e.g., saying
WISH instead of WISHES, saying DESCRIBED

as DESCRIDE, saying AMBIGUOUSLY as AM-
BIGUSELY; (d) Reversing the order of seg-
ments, e.g., saying ONIMOUS instead of OMI-
NOUS; (e) Using the wrong lexical stress pat-
tern, e.g., saying JAPANESE as JAPANESE.

Replacement The reader says a different word in-
stead of the target, e.g., IMPERIAL instead of
EMPIRICAL, AUTOMOBILE instead of AUTO-
MATIC.

Not blending The reader sounds out the individual
segments in a word instead of blending them
together.

Intra-word pausing The reader pauses for an ex-
tended period of time mid-word, especially at
a point that is not near an inflectional suffix or
in a way that reduces intelligibility. e.g., ELE

. . . PHANT, TER . . . MINATE.

Subvocalization The reader makes noises that re-
semble the word, such as by pronouncing a
few segments while grunting or mumbling the
rest.

A.2 Features of correct reading with difficulty
If a word has none of the features of incorrect read-
ing, it should be coded as correct with difficulty if
any of the following occur in or around the word.

Pausing The reader unnaturally pauses before or
after the word at a point where the pausing is
expected to be caused by difficulty with the
word, such as: (a) Immediately before or after
the word; (b) At a phrasal or clausal boundary

before the word, in a manner where it does
not seem that the difficulty is associated with
another word.

Errors near the word The reader reads one or
more word incorrectly before or after the word.
This may be in an adjacent word or up to 4
words before or after the word if the errors
do not seem to be caused by another difficult
word nearby. This classification would occur,
for example, if "immoderately" were targeted
for analysis, and the reader omitted "so" but
read "immoderately" correctly when reading
"In short, she is so immoderately wise people
call her wisdom personified...".

Repetition The reader says the word multiple
times and says the final attempt correctly. The
initial attempts may be either correct or incor-
rect.

False start The reader says part of the word, stops,
and says the word again from the begin-
ning correctly, e.g., saying CONCERT as CON-
CONCERT.

Intonation The reader uses rising intonation on
the word, as if asking a question, in a manner
that expresses uncertainty about correctness
of the reading.

Mumbling The reader is mumbling through the
part where the word occurs, perhaps subvocal-
izing several words, but reads the target word
correctly.
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Abstract

This paper reports findings from the First
Shared Task on Automated Prediction of Diffi-
culty and Response Time for Multiple-Choice
Questions. The task was organized as part
of the 19th Workshop on Innovative Use of
NLP for Building Educational Applications
(BEA’24), held in conjunction with NAACL
2024, and called upon the research community
to contribute solutions to the problem of mod-
eling difficulty and response time for clinical
multiple-choice questions (MCQs). A set of
667 previously used and now retired MCQs
from the United States Medical Licensing Ex-
amination (USMLE®) and their corresponding
difficulties and mean response times were made
available for experimentation. A total of 17
teams submitted solutions and 12 teams sub-
mitted system report papers describing their
approaches. This paper summarizes the find-
ings from the shared task and analyzes the main
approaches proposed by the participants.

1 Introduction

For standardized exams to be fair and defensible,
test items must meet certain criteria. One important
criterion for many exams is that the questions cover
a wide range of difficulty levels to allow informa-
tion about a wide range of examinee proficiencies
to be collected effectively. Additionally, it is of-
ten essential to allocate an appropriate amount of
time for each question: too little time can make
the exam speeded, while too much can make it in-
efficient. Often, item difficulty and response time
data are collected via a process called pretesting,
wherein new items appear on live exams alongside
scored items. While robust, the need for a statisti-
cally sufficient sample of examinees to complete
these items restricts the number of items that can

be pretested, potentially leading to overexposure
and jeopardizing item security (Settles et al., 2020).

The problem of estimating item characteristics
with little to no response data is a decades-old re-
search topic. Early studies used what is sometimes
referred to as auxiliary or collateral information—
including various properties of an item’s text—to
improve parameter estimation within a Bayesian
framework (Mislevy, 1988; Stowe, 2002; Swami-
nathan et al., 2003). Recent advances in NLP have
led to a renewed interest in predicting item char-
acteristics based on item text. As with the ear-
lier research, it is hoped that such predictions may
be used to “jump-start” parameter estimation (Mc-
Carthy et al., 2021) allowing items to be exposed
to fewer test-takers, or improve fairness by making
the time intensiveness of test forms that include
pretest items less variable (Baldwin et al., 2020).

While there is evidence that NLP techniques may
offer a potential solution (see Section 2), the ab-
sence of publicly available datasets has resulted in
fragmented efforts to advance the state-of-the-art
in item parameter prediction, impeding meaningful
comparisons between different approaches, exac-
erbating issues of reproducibility, and stifling col-
laboration. Furthermore, as outlined in Section 2,
the existing literature has concentrated on difficulty
prediction, neglecting other crucial item parameters
such as response time, which also have important
implications for exam fairness and validity.

To address these shortcomings and advance this
area of research, we organized the First Shared
Task on Automated Prediction of Difficulty and
Response Time for Multiple Choice Questions1.
The shared task was organized as part of the 19th

1https://sig-edu.org/sharedtask/2024
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Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA’24), collocated
with NAACL 2024, and took place between Jan-
uary 15 and March 10, 2024. An ideal shared
dataset for this task would encompass test items
along with their corresponding difficulties and re-
sponse times based on responses collected from
a sufficiently large and diverse examinee sample
under standardized test conditions. To this end, 667
retired clinical multiple-choice questions (MCQs)
from a high-stakes medical exam2 were released
for the exploration of two topics: predicting item
difficulty (Track 1) and predicting item response
time (Track 2). Overall, 48 teams enrolled as par-
ticipants, of which 17 submitted solutions and 12
submitted system review papers describing their
approaches. This paper summarizes the organiza-
tion and main findings from the competition. The
data are available upon request at https://www.
nbme.org/services/data-sharing.

2 Related Work

This section summarizes the main approaches used
in item difficulty and response time prediction re-
search, with special emphasis on clinical MCQs,
the domain of the shared task. For a systematic
review of the literature, we refer the reader to
AlKhuzaey et al. (2023).

2.1 Predicting Item Difficulty

Most of the early research on modeling item diffi-
culty was in the domain of language learning and
used predictors such as lexical, syntactic, statisti-
cal, and readability features. Freedle and Kostin
(1993) and Perkins et al. (1995) used a mix of lexi-
cal and syntactic features, such as vocabulary, sen-
tence and paragraph length, number of negations
and referentials, and lexical overlap between text
and options to determine the difficulty of MCQs
from English foreign language exams and reading
comprehension tests, respectively. These features
were later expanded to cohesion, discourse, and
psycholinguistic features among others (Beinborn
et al., 2014, 2015; Loukina et al., 2016).

Outside the domain of language learning, these
features showed comparatively weaker predictive
power. El Masri et al. (2017) found that linguistic
features were not good predictors for item diffi-
culty in middle-school science items, “likely due

2The United States Clinical Licensing Examination
(USMLE®)

to the extent to which computational linguistic fa-
cilities are less effective with very short textual
materials”. Likewise, Susanti et al. (2017) and
Benedetto et al. (2020) found that readability met-
rics were relatively poor predictors of item diffi-
culty for computer science and English vocabulary
MCQs, respectively.

Consistent with other NLP use cases, more re-
cent studies on item parameter prediction utilize
neural approaches. Huang et al. (2017) used em-
beddings and an attention-based convolutional neu-
ral network to predict the difficulty of reading
items. Hsu et al. (2018) converted items into
word-embeddings, calculated the cosine similar-
ities between stem, answer, and distractors, and
used them to train a support vector machine (SVM)
to predict item difficulty of MCQs from the do-
main of social studies. Zhou and Tao (2020)’s fine-
tuned BERT model (Devlin et al., 2018) achieved
a higher F1-score for predicting item difficulty of
open-ended programming-related questions com-
pared to a Bidirectional Long Short-Term Mem-
ory (BiLSTM) model. Benedetto et al. (2021)
trained a series of BERT and DistilBERT mod-
els with several pre-training steps, including the
use of masked-language modeling. BERT achieved
the highest performance for predicting item diffi-
culty of math and computer science open-ended
questions and MCQs, having surpassed all other
models—including several word-embedding ap-
proaches. Other notable studies in this area include
Loginova et al. (2021) and He et al. (2021).

Item difficulty prediction has also been applied
in efforts to automatically generate items at de-
sired levels of difficulty (e.g., Gao et al. (2018), Bi
et al. (2021)). Some of these approaches assess
the semantic similarity between a question and its
associated answer choices (Alsubait et al., 2013;
Kurdi et al., 2016), while others focus on items that
assess an examinee’s ability to distinguish between
words and pseudo-words, and thus utilize word and
sub-word level predictors (Settles et al., 2020).

2.2 Predicting Item Response Time

The prediction of response time is a less-researched
area, further motivating its inclusion within this
shared task. Early studies included features such
as the sequential position of the item within an
exam (Parshall et al., 1994), the inclusion of vi-
sual aids (Smith, 2000; Swanson et al., 2001), and
word-count (Halkitis et al., 1996; Smith, 2000).
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A 65-year-old woman comes to the physician for a follow-up examination after blood pressure measurements were
175/105 mm Hg and 185/110 mm Hg 1 and 3 weeks ago, respectively. She has well-controlled type 2 diabetes mellitus.
Her blood pressure now is 175/110 mm Hg. Physical examination shows no other abnormalities. Antihypertensive therapy
is started, but her blood pressure remains elevated at her next visit 3 weeks later. Laboratory studies show increased plasma
renin activity; the erythrocyte sedimentation rate and serum electrolytes are within the reference ranges. Angiography shows
a high-grade stenosis of the proximal right renal artery; the left renal artery appears normal.
Which of the following is the most likely diagnosis?
(A) Atherosclerosis
(B) Congenital renal artery hypoplasia
(C) Fibromuscular dysplasia
(D) Takayasu arteritis
(E) Temporal arteritis

Table 1: An example of a practice item from the USMLE Step 1 Sample Test Questions (usmle.org). © 2024
National Board of Medical Examiners and the Federation of State Medical Boards, used with permission.

Schneiderand et al. (2023) is one of the few stud-
ies that used text-based features to predict student
response time for items on multiple topics, ranging
from everyday life to personality and politics. They
trained models such as stochastic gradient boost-
ing (SGB), SVM, and random forests (RF) on 51
features including question length, lexical diversity,
and readability features, such as number of com-
plex words, with SGB achieving best performance.

2.3 Focus on Clinical MCQs

The studies most relevant to this shared task are the
ones focused on predicting characteristics of clini-
cal MCQs from the USMLE exam. These include
Ha et al. (2019), who used a 113 linguistic fea-
tures and different embedding types to predict the
difficulty (proportion correct responses) of 12,038
items. This study indicated that predicting item dif-
ficulty for this domain is a challenging task, with
Root Mean Squared Error (RMSE) of .225 for the
best result compared to a dummy regressor base-
line of .237. Baldwin et al. (2020) built upon this
study by applying the same predictors to the prob-
lem of modeling response time, and showed that
exam fairness can be improved through meaningful
reductions in the variability of time intensiveness
across test forms when predicted response times
for pretest items are taken into accounted during
form assembly. Xue et al. (2020) applied trans-
fer learning to the prediction of item parameters
and showed that the prediction of difficulty can be
improved by incorporating response time during
training, but not vice-versa. Yaneva et al. (2020)
aimed to automatically identify items that meet
statistical criteria for live use in terms of both dif-

ficulty and discrimination3. Yaneva et al. (2021)
examined the relationship between the linguistic
characteristics of a test item and the complexity of
the response process required to answer it correctly,
defined as the interaction between difficulty and
response time. The methods used in these studies
are summarized in Yaneva et al. (2023), which was
written for educational measurement professionals
and provides an overview of the applications of
NLP methods to this task.

3 Shared Task Description

The data for the shared task comprises 667 previ-
ously used and now retired MCQs from Steps 1, 2
CK, and 3 of the United States Medical Licensing
Examination (USMLE®). USMLE is a sequence
of examinations (called Steps), developed by the
National Board of Medical Examiners (NBME®)
and Federation of State Medical Boards (FSMB),
that is used to support medical licensure decisions
in the United States. Each step includes 7 to 12
blocks of MCQ items (a block ranges between 45
and 60 minutes), and each item is answered by ap-
proximately 300+ examinees. Item characteristics
used in this shared task were based on examinees
who were medical students from accredited4 US
and Canadian medical schools taking the exam for
the first time.

An example practice item from the dataset is
given in Table 1. The part describing the case is
referred to as stem, the correct answer is referred to
as key, and the incorrect answer options are known
as distractors. All items test medical knowledge

3Item discrimination is a measure of the extent to which an
item differentiates between students of different proficiency.

4Accredited by the Liaison Committee on Medical Educa-
tion (LCME).
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and were written by experienced subject-matter
experts following a set of guidelines. These guide-
lines stipulate adherence to a standard structure, as
well as the avoidance of extraneous material not
needed to answer the item, information misleading
the test-taker, or correct answers that are longer or
more specific than the other options.

Each item is tagged with metadata indicating
whether or not it contains an image, the Step exam
it was presented on, as well as Difficulty and Re-
sponse Time data, as shown in the structure below:

• ItemNum denotes the consecutive number of
the item in the dataset (e.g., 1,2,3,4,5, etc).

• ItemStem_Text: the text of the item stem (the
part of the item describing the clinical case).

• Answer_A: the text for response option A

• Answer_B: the text for response option B

• (. . . )

• Answer_J: the text for response option J. For
items with fewer than J response options, the
remaining columns are left blank. For exam-
ple, if an item contains response options A to
E, the fields for columns F to J are left blank
for that item.

• Answer_Key: the letter of the correct answer.

• Answer_Text: the text of the correct answer.

• ItemType: whether the item contained an im-
age (e.g., an x-ray image, picture of a skin
lesion, etc.) or not. The value “Text” denotes
text-only items and the value “PIX” denotes
items that contain an image. Note that the
images are not part of the dataset.

• EXAM: The USMLE Step (1, 2 or 3) the item
was presented on. For more information on
the Steps of the USMLE see https://www.
usmle.org/step-exams.

• Difficulty: The (linearly-transformed) propor-
tion of correct responses across all examinees
who attempted a given item during a live exam.
After the transformation, higher values indi-
cated more difficult items.

• Response_Time: arithmetic mean response
time, measured in seconds, across all exam-
inees who attempted a given item on a live
exam. This includes all time spent on the item
from the moment it is presented on the screen
until the examinee moves to the next item, as
well as any time spent revisiting the item.

The task was divided in two tracks as follows:

• Track 1: Given the item text and metadata,
predict the item difficulty variable.

• Track 2: Given the item text and metadata,
predict the time intensity variable.

Out of the full sample, 466 items were made
available as a labeled training set and the other 201
items were retained as an evaluation set. Train-
ing data outside of the specified training set were
allowed, provided these data were publicly avail-
able and their license allows use for research pur-
poses. Use of one target variable in the prediction
of another was not permitted, since in most cases,
predicting these variables will be most beneficial
prior to the collection of response data—at which
time neither the difficulty nor the time intensity
parameters can be estimated.

Submissions were requested as separate .csv files
for each track. Each file had to contain the item
number (Item_Num) and corresponding predicted
value for each item. Teams were allowed to sub-
mit up to three attempts per track, differentiated by
adding run1, run2, or run3 to the name of their up-
loaded .csv file; however, such teams were required
to explain how each attempt differed within their
system report paper—i.e., changes in methodology,
parameters, models used, prediction strategy, etc.

In both tracks, the evaluation was based on
RMSE, and teams that achieved the lowest RMSE
value were considered winners. There were two
separate leaderboards for Track 1 and Track 2. In
both, submissions were ranked according to the
RMSE metric from Python’s scikit-learn library
(Pedregosa et al., 2011).

4 Results

A total of 17 teams submitted up to 3 solutions
for item difficulty prediction and 15 teams sub-
mitted up to 3 solutions for response time pre-
diction. Table 2 presents ranked results for the
top 15 solutions in both tracks. The full leader-
board is available at https://sig-edu.org/
sharedtask/2024#results.

In Track 1, Predicting Item Difficulty, there are
minor differences between the RMSE of the top
15 solutions; however, even the best solution out-
performed the baseline by only a small margin (#1,
EduTec = 0.299, #16, DummyRegressor = 0.311).
These results are consistent with the prior literature

473

https://www.usmle.org/step-exams
https://www.usmle.org/step-exams
https://sig-edu.org/sharedtask/2024#results
https://sig-edu.org/sharedtask/2024#results


Difficulty Response Time

Rank Team Name Run RMSE Rank Team Name Run RMSE

1 EduTec electra 0.299 1 UNED run2 23.927
2 UPN-ICC run1 0.303 2 ITEC Lasso 24.116
3 EduTec roberta 0.304 3 UNED run1 24.777
4 ITEC RandomForest 0.305 4 UNED run3 25.365
5 BC ENSEMBLE 0.305 5 EduTec roberta 25.64
6 Scalar Predictions 0.305 6 EduTec electra 25.875
7 BC FEAT 0.305 7 UnibucLLM run3 26.073
8 BC ROBERTA 0.306 8 ED run1 26.57
9 UnibucLLM run1 0.308 9 Rishikesh 1 26.651

10 EDU Run3 0.308 10 UnibucLLM run2 26.768
11 EDU Run1 0.308 11 UnibucLLM run1 26.846
12 ITEC Ensemble 0.308 12 SCaLARlab run3 26.945
13 UNED run3 0.308 13 Scalar predictions 26.982
14 Rishikesh 1 0.31 14 EduTec deberta 27.302
15 Iran-Canada run2 0.311 15 EDU Run1 27.474

16 Dummy Regressor Baseline 0.311 25 Dummy Regressor Baseline 31.68

Table 2: Top 15 leaderboard results for Track 1: Difficulty and Track 2: Response Time

on clinical MCQs presented in Section 2.3, under-
scoring the challenging nature of the task. In Track
2, Response Time, the solutions are relatively more
successful compared to the DummyRegressor base-
line (#25 DummyRegressor, RMSE = 31.68), with
the #1 solution obtaining RMSE of 23.927.

Of the 17 teams who submitted solutions, 12
submitted system report papers, which are summa-
rized below (10 papers for both Track 1 and Track
2, and 2 papers only for Track 1).

5 Main Approaches

The solutions submitted by the participants encom-
passed several approaches that had not been previ-
ously applied to the problem of modeling item char-
acteristics. Some of these were comparatively sim-
pler models that performed unexpectedly well, such
as the case of the submission that ranked #1 in pre-
dicting response time (Rodrigo et al., 2024). In the
case of modeling item difficulty, several approaches
used classical methods such as linguistic features
combined with embeddings but expanded the set
of features to include novel predictors. These tra-
ditional solutions were not as successful for item
difficulty prediction, which favored more novel ap-
proaches. These novel approaches can be broadly
categorized as transformer model modifications,
question answering using LLMs, and data augmen-
tation techniques. These categories are not neces-
sarily mutually exclusive (e.g., some approaches
use both data augmentation and linguistic features);
however, we found this broad classification scheme
useful in describing the submitted solutions, as

shown below. The main techniques used in the
studies are further summarized in Section 5.6.

5.1 Efficient solutions that performed well

Well-performing solutions include the ones pro-
posed by UNED (Rodrigo et al., 2024), who fo-
cused on feeding combinations of the full item,
stem and correct answer, or stem only into a BERT
base model (Devlin et al., 2018). The three submis-
sions differed only by these input configurations
and were the same for both tracks (with different
target variables). There was no special preprocess-
ing and the tokenzier was the one provided by the
BERT model. The target variables were both scaled
[0-1]. Perhaps somewhat surprisingly given its sim-
plicity, this system ranked #1 for response time
prediction (RMSE of 23.927 with text and correct
answer as input) and #13 for difficulty prediction
(RMSE of 0.308, stem only).

Scalar (DataWizards) concatenated BERT em-
beddings with TF-IDF encodings for item diffi-
culty prediction and Word2Vec embeddings with
TF-IDF encodings for response time prediction.
These representations of different item components
(e.g., stem only or stem + answer options) were
used as predictors in various models, of which RF
performed best. This solution ranked #6 for pre-
dicting item difficulty (RMSE = 0.305) and #13 for
response time (RMSE = 26.982).

These solutions serve as an important benchmark
for the added value provided by the linguistic fea-
tures, question-answering techniques, and model
optimization approaches presented next.
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5.2 Transformer model modifications

The solution that ranked #1 for predicting difficulty
was from the category of novel model optimiza-
tion techniques. EduTec (Gombert et al., 2024)
proposed optimizing pre-trained transformer en-
coder language models using three modifications.
The first modification was the use of scalar mix-
ing, which is a procedure that calculates a weighted
mean of all hidden layers of the transformer (the
weights are fit during training). Scalar mixing is hy-
pothesized to be helpful because, as different layers
within transformer models learn representations for
different linguistic phenomena, it allows the use of
representations from all these different layers (as
opposed to the final layer alone), while simultane-
ously learning their importance for the final output.
The second modification was a two-layer setup for
the classification heads, where the input from the
intermediate layer was run through a rational ac-
tivation: a form of learnable activation function
whose shape is optimized during training. This
type of activation function was shown to outper-
form non-learnable activation functions. Third, the
authors used multi-task learning to learn shared rep-
resentations for both difficulty and response time,
motivated by the observed correlation between the
two variables within the training set. The architec-
ture described so far was evaluated with different
transformer encoder models, of which ELECTRA
achieved #1 in the shared task leaderboard for dif-
ficulty prediction with an RMSE of 0.299 and #6
on the leaderboard for response time prediction
(RMSE = 25.875). RoBERTa achieved #5 for re-
sponse time prediction with an RMSE of 25.64.

5.3 Question answering using LLMs

Two teams used responses from LLMs to extract
predictive features or perform data augmentation.

UPN-ICC (Dueñas et al., 2024) investigated the
hypothesis that item difficulty depends more on
the features of the test-taking population than on
the items themselves. They simulated medical stu-
dents’ answers to the MCQs by prompting chat-
GPT 3.5 in four different settings: i) answering
each question and providing a brief justification
for the response, ii) providing a yes/no response
for each answer option on whether it is the correct
answer, iii) randomly removing 20% of the content
tokens from the stem to simulate examinees who
did not read the item carefully, and iv) all of the

above but with a varying temperature parameter5.
The justification behind iv) is the hypothesis that
items that are only answered correctly under a low
temperature condition can be considered difficult,
while items answered correctly under any temper-
ature can be considered easier. Next, the authors
extracted more than 40 features from the gener-
ated output of the question-answering experiments.
Examples of such features include “A Boolean in-
dicating whether or not the question was answered
correctly by the LLM” and “Time in milliseconds
reported by the LLM to answer the question” for
condition i), “Number of sub-items answered cor-
rectly for the item” for condition ii), “Boolean indi-
cating if the LLM answered correctly the question
in spite of the stem being mutilated at 20% of its
content words (other six features for 30%, 40%,
50%, 60%, 70%, and 80%” for condition iii), and
“Number of incorrect answers for the item out of
the 11 values of t [temperature] used” for condition
iv). These features were used as input for a Ridge
regression model, which ranked #2 in difficulty
prediction (RMSE = 0.303). While the indicator
of whether the question was answered correctly
emerged as the most significant feature, all four
strategies produced meaningful predictors.

UnibucLLM (Rogoz and Ionescu, 2024) hypoth-
esized that the number of LLMs that answer an
item correctly can be an indicator of its difficulty.
In a zero-shot setup, they obtained responses from
three LLMs (Falcon-7B, (Almazrouei et al., 2023),
Meditron-7B (Chen et al., 2023), and Mistral-7B
(Jiang et al., 2023)). They then created variations of
the input that included the item text only or the item
text together with the LLM responses. This input
was used to finetune a pretrained BERT model and
a pretrained GPT-2 model (Radford et al., 2019).
The best solution for difficulty prediction was the
BERT model finetuned over the item text + the
answer text + the LLM-generated answers, which
placed #9 with an RMSE of 0.308, showing a posi-
tive effect from the LLMs. For predicting response
time, GPT-2 + original item text reached #7 with
an RMSE of 26.073.

5.4 Data Augmentation
EDU (EduNLP) (Veeramani et al., 2024) incorpo-
rated additional data from the “Test of Narrative
Language” assessment (TNL) (Fisher et al., 2019)

5A parameter that controls the level of randomness of the
LLM output, ranging between p= 2.0 (maximum randomness)
and p = 0.0 (fully deterministic).
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to use in an auxiliary task. For both the shared task
data and the TNL data, the authors first prompted
three LLMs to annotate named entities within the
data. Then, they passed each sentence with its an-
notated named entities as input to the LLMs, this
time for the task of semantic role labeling6. Next,
the LLMs were provided with the item, named en-
tities, semantic roles, and the correct answer, and
prompted to summarize the association between
these and each answer option. The models then
were instructed as follows: “Depending on the dif-
ficulty level of the linkages between input context
and [answer options], assign the input context a
score in the range of 0 to 1.4”. The best run from
this approach ranked #10 for difficulty prediction
(RMSE = 0.308). For modeling response time, the
authors added numeric and syntactic features from
LingFeat (Shaikh et al., 2022), resulting in #15
rank and an RMSE of 27.474.

SCaLARlab (Ram et al., 2024) performed data
augmentation by utilizing LLMs to generate ad-
ditional items with difficulty values above 0.7, to
balance the training set. Three models were trained
on the augmented dataset: i) BioBERT + Linguis-
tic features as input to two different neural net-
work architectures, ii) Word2Vec embeddings as
input to various regressor models (e.g., RF, KNN,
SVM), and iii) combinations of BioBERT + Lin-
guistic features as input to the regressor models.
The best run resulted in a rank of #19 for difficulty
(RMSE = 0.315) and #12 for response time (RMSE
= 26.945).

5.5 Linguistic features + embeddings
A number of teams experimented with combining
various linguistic features with embeddings and
performing model ensembling.

ITEC (Tack et al., 2024) extracted features from
the Linguistic Inquiry and Word Count tool (LIWC-
22) (Pennebaker et al., 2022) and TAALES 2.2
(Kyle and Crossley, 2015), which include classic
linguistic features, as well as features that were not
previously applied to this domain such as authen-
ticity, clout, emotional tone, and academic vocab-
ulary, among others. To these, the authors added
Bio_ClinicalBERT embeddings (Alsentzer et al.,
2019) for different combinations of item compo-
nents (e.g., stem only, answer option only, etc.).
These features were used as input to various re-

6The authors also use Longformer (Beltagy et al., 2020)
for named entity recognition and AllenNLP SRL (Gardner
et al., 2018) for semantic role labeling.

gression models following feature selection and
dimensionality reduction procedures. The authors
also experimented with finetuning clinically pre-
trained BERT variations in a multi-target regression
setting, as well as combining the output from all
of these models into an ensemble. Best results for
difficulty prediction were from RF, ranking #4 with
an RMSE of 0.305, while a lasso model ranked
#2 for response time prediction (RMSE = 24.116).
The LWIC feature indicating the degree of “ana-
lytical thinking” for the answer options emerged
as particularly noteworthy for predicting response
time and, to a slightly lesser extent, difficulty.

Iran-Canada (Yousefpoori-Naeim et al., 2024)
experimented with various features (including Coh-
Metrix (Graesser et al., 2004) and number of med-
ical terms) and MPNet embeddings (Song et al.,
2020) as input to 15 regression models. After per-
forming feature selection, they found that “the ad-
dition of embeddings only slightly enhances model
performance”, and that ensembling did not lead to
major improvement. Notable features for difficulty
prediction were related to cohesion, while for re-
sponse time were related to length and presence
of medical terms. The best run resulted in a rank
of #15 for difficulty (RMSE = 0.311) and #18 for
response time (RMSE = 28.714).

BC (Felice and Duran Karaoz, 2024) experi-
mented with three approaches: i) a linear regression
model using linguistic features similar to those in
Ha et al. (2019), ii) several transformer models,
of which RoBERTa (Liu et al., 2019) performed
best, and iii) a linear regression ensemble built on
the predictions of the previous two models. These
systems ranked #7, #8, and #5, respectively, with
an RMSE of 0.305 for the ensemble model for dif-
ficulty prediction. The BC team did not participate
the response time track.

Rishikesh (Fulari and Rusert, 2024) combined
embeddings from PubMedBERT-MS-MARCO
(Deka et al., 2022) with linguistic features as input
for a number of neural and non-neural models. The
best run ranked #14 for difficulty (RMSE = 0.31)
and #9 for response time (RMSE = 26.651).

BRG (Bulut et al., 2024) used Coh-Metrix fea-
tures and BiomedBERT embeddings (Gu et al.,
2021) within a lasso model following dimension-
ality reduction through PCA (Wold et al., 1987).
This approach ranked #20 for predicting item diffi-
culty (RMSE = 0.318) and #24 for response time
(RMSE = 31.48).
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5.6 Summary of techniques

Overall, the teams explored a wide variety of ap-
proaches, many of which performed similarly de-
spite using different models and predictors.

Most teams experimented with all parts of the
items (i.e. stem, options, correct answer), but
some found different parts to be more appropri-
ate for different tasks. The teams that used scaling
were more successful, although their success can-
not be solely attributed to this procedure. A variety
of linguistic feature sets were explored: LWIC-
22, TAALES 2.2, Coh-Metrix, SMOG, Lengths,
LingFeat, as well as linguistic features from Ha
et al. (2019) and Yaneva et al. (2020). The em-
bedding types that were explored include TF-IDF,
BERT, Word2Vec, Bio_ClinicalBERT, Clinical-
Longformer, BERT-clinical_qa, BiomedBERT, Fas-
text, Bio-BERT, RoBERTa, DeBERTa, ELECTRA,
MPNet, and PubMedBert-MS-MARCO. For fea-
ture engineering, the teams utilized correlation
studies, multicolinearity reduction, AIC, BIC, and
PCA to reduce the number of features. The model-
ing was performed using both traditional machine
learning models (e.g., linear regression, Ridge,
Lasso, ElasticNet, SGD, SVM, DT, RF, KNN,
etc.) and finetuning neural models (BERT, GPT2,
RoBERTa, bioBERT, XLNet, DeBERTa, Distil-
BERT). Customization techniques included scalar
mixing, Rational Activation, multi-task learning,
and a custom ANN. There was a variety of cross
validation techniques: two teams used 5-folds, an-
other two used 10-folds, and one used 5x5-fold;
one team split training data into 80% and 20% train-
ing and development portions, and another split it
90% and 10% 30 times.

6 Discussion

The presented Shared Task is the first effort to
benchmark the success of different methodologies
on a common dataset of MCQs with known dif-
ficulties and response times. Several innovative
approaches, previously unexplored in this context,
were formulated. The findings are consistent with
prior work, which showed that, for clinical MCQs,
the prediction of item difficulty is more challenging
than the prediction of response time.

6.1 Model Performance

For difficulty prediction, the models surpassed the
baseline by a slight margin, with minimal variance
among the solutions despite their distinct method-

ologies. One reason for the challenging nature of
this task could be the homogeneity of the test-taker
sample: the majority of questions were answered
correctly by most examinees, who were highly able
and motivated medical students taking the exams
under high-stakes conditions as a requirement for
obtaining a professional license. The models may
perform differently when applied to exams target-
ing, for instance, K-12 students, where test-taker
ability has higher variance, and difficulty distribu-
tions are more variable and less skewed. In addi-
tion, the comparable results achieved by different
approaches imply multiple avenues for extracting
predictive signal. An important question is whether
these approaches would complement each other
resulting in improved predictions.

When predicting response time, a wider vari-
ance in performance was observed, both among
different models and in comparison to the baseline.
A somewhat unexpected finding was the superior
performance of a model solely utilizing a BERT
Base model, surpassing other solutions. Another
observation was the relative success of models uti-
lizing linguistic features for predicting response
time compared to their performance with predict-
ing difficulty. Since the literature on predicting
item response time is rather limited, it is not yet
possible to draw inferences on how these findings
compare to other exam domains.

6.2 Limitations

In formulating the shared task, we made several
design choices, each contributing distinct strengths
and limitations to this study.

The first decision involved utilizing proportion
correct responses (known in the measurement liter-
ature as p-values) as the measure of item difficulty.
P-values describe the interaction between an item
and a sample of examinees. This sample depen-
dency means that difficulty will only be comparable
across items to the extent that the examinee sam-
ples used to calculate them are equivalent across
items. (For this reason, difficulty parameters ob-
tained using Item Response Theory (IRT) are often
preferable to p-values, since they are sample inde-
pendent.) A similar dependency exists for mean
response time. For the data used in this shared task,
examinees were randomly assigned to test forms
within cohort and cohorts were reasonably stable
over time making the p-values and mean response
times sufficiently comparable for many expected
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applications.

The second design consideration was whether
(and, if so, how) to rescale the target variables. Be-
cause normal distributions have many useful prop-
erties and most parametric tests make a normality
assumption of one kind or another, it is not uncom-
mon to transform data such that they approximate a
normal distribution. For proportion correct, a logit
transformation often accomplishes this; and for re-
sponse times, a log transformation is typical. Such
transformations will be familiar to researchers ac-
customed to working with these kinds of data and
for many applications transformations like this are
justified and sensible. Nevertheless, because there
are other occasions when it may be preferable to
keep values on their original scale, it is necessary
to carefully consider an intended application for a
dataset before deciding how it should be rescaled.

For example, when RMSE is used to evaluate
predicted values—as it was for this shared task—
nonlinear transformations have the effect of weight-
ing errors differently depending on the values of
the predictions and the target variables. Under
these conditions, applying a logit transformation to
proportion correct values would have the effect of
weighting errors for values nearer to 1 or nearer to
0 more than the errors for values nearer to .5. While
this may be desirable for certain applications, here
we choose to leave the question of application open
and weight all errors equally. To this end, only a
linear transformation was applied to the proportion
correct values and mean response times were left
untransformed. Participants were, of course, free
to transform the data in any manner they deemed
helpful provided their predictions were submitted
on the scale of the original values.

Third, the data for this task was limited to clini-
cal MCQs, limiting the inferences that can be made
about the generalizability of these methodologies
to other domains. How the approaches generalize is
an empirical question, however, one can speculate
that they might be less effective in a math exami-
nation where items often contain minimal text, and
more beneficial in reading-comprehension exami-
nations where the text’s complexity may be delib-
erately varied to manipulate difficulty. In an ideal
world, future shared tasks on this topic should span
multiple content domains and examinee popula-
tions with different characteristics, while remaining
equally rigorous in terms of the conditions under
which the examinee responses were collected.

6.3 Ethical Considerations

The data used in the Shared Task were obtained
with the explicit permission of the data and copy-
right owners for the purposes of the Shared Task.
Beyond this competition, the data are available
upon request, following a data use agreement in-
tended to ensure, to the extent possible, its ethical
use in research. Test taker responses were used
in aggregate, such that it is not possible to trace
responses to individual examinees.

6.4 Impact

While benchmarking and fostering novel method-
ologies is a key contribution of this Shared Task,
its impact reaches further. The competition spurred
the development of a body of research on modeling
item response time, a considerably less explored
area. Moreover, many solutions were not narrowly
tailored to the clinical realm and are potentially
applicable to diverse domains and datasets. Fur-
ther still, it is notable that the significance of these
studies is not limited to the field of education—
difficulty assessment beyond mere readability is
an exciting frontier with implications for cognition
and machine comprehension.

7 Conclusion

The First Shared Task on Automated Prediction of
Difficulty and Response Time featured a set of 667
MCQs from a high-stakes clinical exam. Seven-
teen teams submitted solutions and twelve teams
submitted system report papers. For Track 1, Item
Difficulty Prediction, the best-performing solution
achieved an RMSE of 0.299 compared to the Dum-
myRegressor baseline of 0.311. For Track 2, Re-
sponse Time Prediction, the best solution achieved
an RMSE of 23.927 compared to 31.68 for the
baseline. The paper summarized the methodolo-
gies proposed by the participants and discussed the
contributions and limitations of the competition.

Despite the progress made, the challenge of pre-
dicting item characteristics remains formidable.
Meeting this challenge necessitates not only the
continued development of innovative methodolo-
gies but also the establishment of shared resources,
such as public datasets containing reliable parame-
ter estimates across various domains. Such efforts
will facilitate cross-domain evaluation, fostering
a more comprehensive understanding of the un-
derlying mechanisms driving item difficulty and
response time prediction.
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Abstract
This paper describes a contribution to the BEA
2024 Shared Task on Automated Prediction of
Item Difficulty and Response Time. The partici-
pants in this shared task are to develop models
for predicting the difficulty and response time
of multiple-choice items in the medical field.
These items were taken from the United States
Medical Licensing Examination® (USMLE®),
a high-stakes medical exam. For this purpose,
we evaluated multiple BERT-like pre-trained
transformer encoder models, which we com-
bined with Scalar Mixing and two custom 2-
layer classification heads using learnable Ratio-
nal Activations as an activation function, each
for predicting one of the two variables of in-
terest in a multi-task setup. Our best models
placed first out of 43 for predicting item dif-
ficulty and fifth out of 34 for predicting Item
Response Time.

1 Introduction

According to Madaus and Airasian (1970), assess-
ments are arguably among the core components of
education. They help diagnose and monitor learn-
ers’ skill levels and, thus, function as a basis for
downstream educational decisions. Depending on
their concrete function, they can be further cat-
egorized. Placement assessments are needed to
recommend courses for learners at an appropriate
level. Formative assessments are required to moni-
tor learning progress. Summative assessments are
needed to measure learners’ outcomes.

Each assessment comprises multiple items, i.e.,
individual tasks test-takers must complete. For
standardized assessments, items must be evaluated
to guarantee fair and comparable outcomes. In this
context, multiple factors must be assessed as listed
in the Standards for educational and psychological
testing (Association et al., 1985).

Among these factors are Item Difficulty, i.e., a
numerical variable describing the overall difficulty
of solving a given item, and Item Response Time,

which encodes the overall time needed to solve
an item measured in seconds. Traditionally, Item
Difficulty has been assessed using methods such
as Rasch Analysis (Rasch, 1960) or Item Response
Theory (An and Yung, 2014). Both of them rely
on collection data from pre-evaluations with co-
horts of test takers. As administering respective
pre-evaluation steps is still a labour-intensive and
costly process (Settles et al., 2020), there has been
ongoing research on automating these procedures
using machine learning methods with a higher po-
tential for generalization.

One of these instances is the First Shared Task on
Automated Prediction of Difficulty and Response
Time for Multiple Choice Questions (Yaneva et al.,
2024). In this paper, we describe a submission
to this shared task, which placed first for predict-
ing Item Difficulty and fifth for predicting Item Re-
sponse Time.

2 Related Work

Both the prediction of Item Difficulty and Item Re-
sponse Time for multiple choice questions utiliz-
ing natural language processing are comparably
novel tasks. Earlier research on predicting Item
Difficulty tackled mostly other item formats such
as C-tests, a form of fill-in-the-blank test aimed
at testing language proficiency, (Beinborn et al.,
2015) or constructed response items (Padó, 2017).
In the context of language learning, Settles et al.
(2020) developed a method to assess the difficulty
of various types of items for language learning in
terms of the CEFR framework.

Early research on predicting Item Difficulty for
multiple choice questions was conducted by Ha
et al. (2019), who fit various feature-based models
using heterogeneous sets of features incorporating
embeddings, as well as lexical, syntactic, seman-
tic, cohesion-based, and psycholinguistic features
to predict Item Difficulty for a large-scale dataset
comprised of United States Medical Licensing Ex-
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amination® (USMLE®) items. The authors also
use features derived from information retrieval sys-
tems. They reason that retrieving an answer for a
given question through Information Retrieval might
predict the difficulty of cognitively retrieving an
answer. Subsequent work by Yaneva et al. (2020)
and Yaneva et al. (2021) used similar approaches
to predict Item Survival and Item Response Com-
plexity.

For predicting Item Response Time, Baldwin
et al. (2021) used feature-based models using pri-
marily the same features and algorithms which
Ha et al. (2019) applied for predicting Item Dif-
ficulty. They found that embeddings and linguistic
features were robust in predicting Item Response
Time, with IR-based features being less predictive
while still holding some degree of predictive power.
Yaneva et al. (2023) combined linguistic features
with static embeddings produced by word2vec and
contextual word embeddings produced by non-fine-
tuned BERT models to predict a range of item char-
acteristics, including Item Response Time.

What becomes apparent when reviewing the past
literature on the topic is that transformer-encoder
language models such as BERT (Devlin et al.,
2019) have not been fine-tuned for the prediction
of Item Difficulty and Item Response Time as of
now. This can be regarded as a clear research
gap, given that transformer encoders could push the
state of the art for a wide range of tasks in natural
language processing and outperformed more tradi-
tional feature-based approaches for these (Rogers
et al., 2020).

3 Method

To close this gap, we aim to evaluate the overall pre-
dictiveness of pre-trained transformer encoder lan-
guage models for Item Difficulty and Item Response
Time in our submission for the First Shared Task on
Automated Prediction of Difficulty and Response
Time for Multiple Choice Questions (Yaneva et al.,
2024).

3.1 Dataset

The dataset used for this task was provided by
Yaneva et al. (2024) and consists of multiple
choice items that were previously used for the
United States Medical Licensing Examination®
(USMLE®). It is divided into a training and a test
set, with the training set comprising 466 and the
test set comprising 201 items. Each item consists

of a prompt with up to 10 different response op-
tions, of which a single one is correct. Moreover,
for each item, it is remarked whether the response
options come in the form of texts or images (the
images are not provided with the dataset; instead,
there are descriptions of what is depicted) and if
the items belong to the first, second or third step of
the USMLE®.
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Figure 1: Violinplots depicting the general distributional
properties of Item Difficulty and Item Response Time.

Each item is given a single rating for Item Dif-
ficulty and one for Item Response Time. Figure 1
shows the distribution of values for both of them.
Going by Shapiro-Wilk, neither Item Difficulty (W
= 0.93, p < 0.000) nor Item Response Time (W
= 0.94, p < 0.000) follow a normal distribution.
However, as Figure 2 reveals, both are significantly
correlated, which is also confirmed by Pearson’s (r
= 0.49, p < 0.000) and Spearman’s (r = 0.52, p <
0.000) correlation coefficients.

As the difficulty of an item very likely influences
the time needed to think about the correct answer,
it can be speculated that there is, to a certain de-
gree, a causal relationship between both variables.
However, given that the r values are not higher, it
can also be concluded that this is not the only factor
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influencing the exact outcome of both variables for
each item.

3.2 System Description
The architecture we implemented for this shared
task is derived from the modified transformer-based
model implemented by Gombert et al. (2022) for
automated short answer scoring, where it outper-
formed regular transformer-based models for this
task. Our architecture can be flexibly applied to
various regression and classification tasks. It is a
deep neural network architecture based upon regu-
lar BERT-like transformer-encoder language mod-
els (Devlin et al., 2019). The typical BERT regres-
sion setup uses a single output neuron. This neuron
is fed with the last layer’s classification token out-
put. Our setup, however, is modified.

The first difference to the standard BERT imple-
mentation is the usage of scalar mixing. Scalar mix-
ing calculates a weighted mean of all hidden layers
of a transformer language model. The weights from
which this mean is calculated are fit during training.
This technique was mainly applied to investigate
the influence of different pre-trained layers on a
given prediction (Tenney et al., 2019; Kuznetsov
and Gurevych, 2020). Still, it can also be used as a
regular neural network building block.

Different layers of BERT-like models learn repre-
sentations for different linguistic phenomena (Ten-
ney et al., 2019). Using scalar mixing lets us ex-
ploit all these representations, instead of only the
output of the last layer, while simultaneously learn-
ing their importance for the final output. Scalar
mixing can be depicted using the following equa-
tion with tensors t1, ..., tn being the hidden layer
outputs, and γ and w1, ..., wn being the learnable
parameters:

S(t1, ..., tn) = γ
n∑

j=0

softmax(wj)tj (1)

The second adjustment to the classification heads
is to use a two-layer setup. The output of the inter-
mediate layer runs through a Rational Activation
(Molina et al., 2020), a form of learnable activation
function whose shape is optimized during training;
thus, a "Rational Network". This activation func-
tion outperformed non-learnable activation func-
tions for multiple architectures and benchmarks.
Rational Activations are based upon Padé approx-
imants (Brezinski et al., 1995), which can gener-
ally be optimized to approximate various functions,

including typical activation functions. Given a hy-
pothetical optimal activation function f(x) for a
problem at hand, one can approximate this func-
tion by learning a Padé approximant F (x) of the
pre-defined orders n and m using the following
equation where coefficients aj and ak are learned
during training:

F (x) =

∑m
j=0 ajx

j

1 + |(∑m
k=1)akx

k| (2)

Another important aspect of our model is the use
of multi-task learning. As Peng et al. (2020) put it,
"[m]ulti-task learning (MTL) is a field of machine
learning where multiple tasks are learned in parallel
while using a shared representation", with "repre-
sentation" referring to the internal embeddings put
out by the different model layers. Although the
shared task rules prevented using one of the two
variables to predict the other directly, they did not
prevent implementing a system simultaneously pre-
dicting both. As shown in section 3, Item Difficulty
and Item Response Time are significantly correlated
in the training set. While this does not necessar-
ily prove a causal relationship, it implies that the
internal representations used to predict one of the
two variables can likely benefit the prediction of
the other. Therefore, using shared representations
will likely lead to improved predictions for both
variables.

Multi-task learning is usually conducted by at-
taching multiple prediction heads to the base model
for transformer-encoder models. Our setup in-
volves the usage of a complete distinct regres-
sion head per variable, each with separate units
for Scalar Mixing and Rational Activations, and
distinct linear layers. We reason, while the trans-
former encoder learns shared representations dur-
ing fine-tuning, both variables might require a
stronger or weaker emphasis on different model
layers during Scalar Mixing. Moreover, an opti-
mal learned activation function F (x) might look
different for both.

Given an item k, the model receives the follow-
ing corresponding input I(k), with ⊕ referring
to the separation token of a given model, sk ∈
{1, 2, 3} to the exam step, tk ∈ {TEXT, PIX}
to the item type, pk to the item prompt, rk1, ..., rkn
to the possible answers, and ck ∈ {rk1, ..., rkn} to
the correct answer:

I(k) = sk ⊕ tk ⊕ pk ⊕ rk1 ⊕ ...⊕ rkn ⊕ ck (3)
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Figure 2: This scatterplot depicts the relationship between Item Difficulty and Item Response Time.

During training, the mean loss for both variables
is calculated to acquire the gradients for backprop-
agation. Since Item Response Time and Item Dif-
ficulty are on different scales, a naïve approach
would strongly bias the model towards Item Re-
sponse Time. For this reason, we divide Item Re-
sponse Time by 100 to get similar scales for both
variables. Consequently, the model outputs for Item
Response Time must be multiplied by 100 again
to acquire the actual item response time. With a
model M(x) receiving an input as defined by I(k),
vk being the Item Difficulty, and wk being the Item
Response Time of k, the following equation illus-
trates this:

M(I(k)) = (vk,
wk

100
) (4)

Figure 3 illustrates the overall system setup.

3.3 Evaluation
3.3.1 Pre-Evaluation (Model Selection)
In a pre-evaluation step, we aimed to select the
most appropriate transformer language model to
use as the basis for our shared task submission.
Therefore, we evaluated the architecture described
in the System Description section with different
pre-trained transformer-encoder language models.
All models were implemented using the Hugging-
face Transformers framework (Wolf et al., 2020).
However, we implemented our own training and

evaluation procedures. These are the following
models:

• BERT-large1: this model is the original BERT
model as described in Devlin et al. (2019).

• RoBERTa-large2: This model is an estab-
lished BERT variant that was pre-trained on
a larger data set without the usage of next
sentence prediction and outperforms regular
BERT on established benchmarks such as Su-
perGLUE (Wang et al., 2019).

• ELCTRA-large3: this model was published
by Clark et al. (2020). Unlike BERT and
RoBERTa, it is pre-trained in an adversar-
ial setup using two models that implement
a variation of masked language modelling.
One model, the generator, predicts masked to-
kens. The other model, the discriminator, then
must classify random input tokens concerning
whether they were generated or ground truth.

• DeBERTa-v3-large4: this model was pub-
lished by He et al. (2023). It uses disentangled
attention to separately encode the content and

1https://huggingface.co/google-bert/bert-large-uncased
2https://huggingface.co/FacebookAI/roberta-large
3https://huggingface.co/google/electra-large-

discriminator
4https://huggingface.co/microsoft/deberta-v3-large
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Figure 3: This diagram depicts the general architecture
of our models. A given input is encoded into static
embeddings. These are then propagated through all lay-
ers of a given pre-trained transformer encoder language
model. The static embeddings and the outputs of all
layers are propagated into the respective scalar mixing
units, where a weighted mean is calculated from the in-
dividual tensors per variable. These are then propagated
into the individual regression heads.

position of a token within an input text. More-
over, it is pre-trained using a specialized adver-
sarial setup similar to ELECTRA. We chose
this model since it is the best-performing open
BERT-like model on the SuperGLUE (Wang
et al., 2019) leaderboard5.

• BiomedBERT-large6: This model is a BERT
variant which was published by Tinn et al.
(2023). It is trained identically to BERT but
uses biomedical data exclusively (abstracts
crawled from PubMed). We evaluated this

5https://super.gluebenchmark.com/leaderboard
6https://huggingface.co/microsoft/BiomedNLP-

BiomedBERT-large-uncased-abstract

model for the shared task since its dataset also
stems from the biomedical domain.

• BiomedELECTRA-large7: This model is an
ELECTRA variant which was published by
Tinn et al. (2023). It is trained identically to
ELECTRA but uses biomedical data exclu-
sively (abstracts crawled from PubMed). We
evaluated this model for the shared task since
its dataset also stems from the biomedical do-
main.

We also added two simpler baseline models. We
used Linear Regression and Random Forests as
algorithms, which both are given the following
features:

• Tf-ifd-encoded character trigrams for the item
prompt and each answer option, motivated by
the fact that character n-gram frequencies can
provide valuable signals in terms of predict-
ing readability (Imperial and Kochmar, 2023),
which should be correlated with Item Diffi-
culty and Item Response Time, given the re-
sults from Ha et al. (2019) and Baldwin et al.
(2021).

• The overall number of tokens of the item
prompt, motivated by the general observation
of text length being correlated to text complex-
ity as reported by DuBay (2007).

Additionally, we added dummy regressors that con-
sistently predict the respective mean.

The evaluation was conducted solely on the train-
ing set using 5x5 cross-validation implemented
via the RepeatedKFold class from Scikit-learn (Pe-
dregosa et al., 2011). We trained for four epochs
and reported the best results achieved during one
of these epochs. All runs used the same random
seed, namely 1, to keep the results perfectly com-
parable. For each model, we measured RMSE (the
primary evaluation metric of the shared task), MAE
and r. To this, we added rs to measure to which de-
gree the models can correctly rank the items by the
predicted variables without explicitly considering
the exact predictions. Table 1 shows the respective
results, ranked by RMSE.

It is visible that the correct prediction of the Item
Difficulty is nearly impossible using our proposed
method with the given data. None of the models

7https://huggingface.co/microsoft/BiomedNLP-
BiomedELECTRA-large-uncased-abstract
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Item Difficulty
Model RMSE ↓ MAE r rs
ELECTRA 0.31 0.25 0.19 0.16
RoBERTa 0.31 0.25 0.17 0.16
DeBERTa-v3 0.31 0.26 0.17 0.15
Dummy (Mean) 0.31 0.26 - -
Random Forests 0.31 0.26 0.09 0.07
BERT 0.32 0.27 0.16 0.14
BiomedBERT 0.32 0.26 0.11 0.11
Linear Regression 0.32 0.26 0.11 0.07
BiomedELECTRA 0.33 0.27 0.12 0.10

Item Response Time
Model RMSE ↓ MAE r rs
DeBERTa-v3 23.05 17.48 0.63 0.65
BERT 23.52 17.76 0.60 0.64
RoBERTa 23.76 17.79 0.61 0.64
BiomedELECTRA 23.88 17.87 0.61 0.63
BiomedBERT 23.97 18.02 0.59 0.62
ELECTRA 24.68 18.57 0.60 0.64
Dummy (Mean) 46.87 37.77 - -
Random Forests 47.13 38.56 0.19 0.22
Linear Regression 47.60 38.87 0.17 0.17

Table 1: The results of our pre-evaluation experiments
to determine the strongest models ranked by RMSE. All
results were calculated during 5x5 cross-validation runs.

we tested achieved a better RMSE score than the
dummy regressor, meaning the models hold almost
no predictive power. The model based on BioMED-
BERT-large and the Linear Regression baseline are
outperformed by this dummy regressor in terms
of RMSE. Nonetheless, the r and rs results show
that all transformer-based models are at least more
successful in modelling the Item Difficulty than the
baselines. However, this success is still minimal.

Our pre-evaluations yielded better results for
Item Response Time. Here, all transformer-based
models significantly outperformed the baseline
models. This means it is possible – to a certain
degree – to model Item Response Time with our
proposed method and the given data. While models
based on BioMED-BERT-large and DeBERTa-v3-
large achieve a similar RMSE, the model based on
DeBERTa-v3-large outperforms all other models
in terms of r and rs, meaning it is the overall best
model.

3.3.2 Shared Task Evaluation
The shared task organizers allowed the submission
of up to three predictions per variable. We sub-
mitted results predicted with models based upon
ELECTRA, RoBERTa and DeBERTa-v3. BERT,
Biomed-BERT and Biomed-ELECTRA were not
used since they performed worse for the predic-
tion of the Item Difficulty while achieving very
similar results to the other models for the Item Re-

Item Difficulty
Model RMSE ↓ MAE r rs Rank
ELECTRA 0.29 0.24 0.27 0.25 1/43
RoBERTa 0.30 0.24 0.24 0.20 3/43
Dummy 0.31 - - - 16/43
DeBERTa-v3 0.31 0.25 0.21 0.19 17/43

Item Response Time
Model RMSE ↓ MAE r rs Rank
UNED run2 23.92 - - - 1/34
RoBERTa 25.64 17.94 0.60 0.67 5/34
ELECTRA 25.87 19.14 0.57 0.65 6/34
DeBERTa-v3 27.30 21.48 0.56 0.63 14/34
Dummy 31.68 - - - 25/34

Table 2: The final shared task evaluation results. For
Item Difficulty, we report the results of our models and
the baseline dummy model of the shared task organizers.
For Item Response Time, we also report the results of the
overall winning system from a competing team called
UNED run2.

sponse Time. For this purpose, all three models
were re-trained on the whole training set for four
epochs. While the models based upon ELECTRA
and RoBERTa achieved very high placements on
the shared task leaderboard for both variables, the
model based on DeBERTa-v3 performed worse,
which is a surprising outcome.

The overall trends observed during our pre-
evaluation steps continued into the final shared task
evaluations. While for the Item Difficulty, barely
any system could show a performance superior to
a dummy regressor baseline, the Item Response
Time was easier to predict. Interestingly, the model
based on DeBERTa-v3 ranks the worst out of our
models for both variables despite being the best-
performing approach for predicting the Item Re-
sponse Time during the pre-evaluations. However,
except for this, the results line up.

Going by r and rs, it is visible that predictions
and ground truth values are positively correlated for
both variables. However, a trend that is observable
for all models and both variables is revealed in
Figure 4. On average, the predicted values are
lower than the ground truth. This pattern is more
drastic for the Item Difficulty but also visible for
the Item Response Time.

4 Discussion

The research at hand has multiple implications.
First, we proved that using established pre-trained
transformer-encoder language models for predict-
ing the Item Difficulty and the Item Response Time
can be a viable choice overall. Moreover, we could
also show that our adjustments to the typical BERT
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Figure 4: These regression plots illustrate the relationship between ground truth values and model predictions. The
x-axis refers to the ground truth value of a given data point, while the y-axis refers to the respective predicted value.
The individual data points’ colour coding indicates the differences between ground truth and prediction, with a
darker colour indicating a larger difference.

architecture proved fruitful. These adjustments let
our models achieve very competitive performance
in the shared task, with our best model even win-
ning one of the two tracks (Item Difficulty).

In theory, our approach can be easily integrated
with the past feature-based models published by
Ha et al. (2019), Yaneva et al. (2020), Yaneva et al.
(2021) and Baldwin et al. (2021). For this purpose,
one needs to fine-tune a respective model. One
can then use the output of all intermediate layers
as embeddings. Using an algorithm such as Ran-
dom Forests or Gradient Boosting, selecting appro-
priate features from these internal representations
should be possible. Works as those by Minixhofer
et al. (2021), Gombert and Bartsch (2021), Ro-

taru (2021), Smolenska et al. (2021) or Gombert
(2021) show that the integration of task-specific
transformer-based contextualized embeddings with
more traditional feature-based algorithms can yield
fruitful outcomes. Considering systems such as
the ones published by Ha et al. (2019), one could
easily replace the generalized embeddings they use
with task-specific ones. Future work could thus in-
volve testing whether such embeddings can add to
a more traditional feature set to improve the overall
predictive power of a given model.

It is also visible that the prediction of the Item
Difficulty remains a challenging task since even the
best participating models barely outperformed a
dummy baseline model. On average, the models
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underestimate the difficulty of input items. In the
case of this shared task, this effect might result
from the data set being comparably small and from
a highly specialized domain, namely the biomedi-
cal one with its comparably complicated and spe-
cialized language.

However, since all past work on predicting the
difficulty and required response time of multiple
choice questions using machine learning models
was aimed at assessments from this domain, it is
hard to make generalized judgements on the overall
difficulty of this problem. What is required here is
the publication of additional datasets from different
domains and the evaluation of models using these.
In this context, cross-domain evaluations especially
would be of high use.

Predicting the Item Response Time was a more
fruitful endeavour, with models outperforming the
dummy baseline by a larger margin. However, with
an RMSE rate of 23.92 for the best-performing
model, one still needs to consider that the predicted
Item Response Time is far from accurate. The same
issue for predicting the Item Difficulty holds true
for the Item Response Time: the dataset at hand is
from a highly specialized domain, and data from
other domains is not generally available.

5 Conclusion

This paper explains our submissions for the BEA
2024 shared task on predicting the Item Difficulty
and the Item Response Time, of which the best
placed first for predicting the Item Difficulty and
fifth for predicting the Item Response Time. Our
architecture combines pre-trained transformer en-
coder models with multi-task learning and custom
regression heads, expanding upon an architecture
published by Gombert et al. (2022) by combining
them with Scalar Mixing and Rational Activations.

The results suggest predicting Item Response
Time and especially Item Difficulty are comparably
difficult tasks. However, the dataset used for this
paper stems from the biomedical domain. This
domain uses a very specialized language. For this
reason, the tasks need to be evaluated with data
from more domains to make a general claim. This
could be the objective of future work.

6 Limitations

The limitations of our systems have already been
discussed in the Discussion section. First, the
dataset used is from a narrow domain. For this

reason, results might not translate to datasets from
other domains. So far, datasets from domains other
than the medical one are unavailable. This is a
clear research gap that must be addressed in future
work. Second, even though our systems won one
of the two shared tracks and generally achieved
high ranks, the results suggest that the problems of
predicting Item Difficulty and Item Response Time
are far from solved.
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Abstract
This work explores a novel data augmenta-
tion method based on Large Language Mod-
els (LLMs) for predicting item difficulty and
response time of retired USMLE Multiple-
Choice Questions (MCQs) in the BEA 2024
Shared Task. Our approach is based on aug-
menting the dataset with answers from zero-
shot LLMs (Falcon, Meditron, Mistral) and
employing transformer-based models based on
six alternative feature combinations. The re-
sults suggest that predicting the difficulty of
questions is more challenging. Notably, our
top performing methods consistently include
the question text, and benefit from the vari-
ability of LLM answers, highlighting the po-
tential of LLMs for improving automated as-
sessment in medical licensing exams. We
make our code available at: https://github.com/
ana-rogoz/BEA-2024.

1 Introduction

High-stakes medical licensing exams, like the
United States Medical Licensing Examination
(USMLE), require well-crafted questions to accu-
rately assess a candidate’s knowledge and skills.
Traditionally, determining item difficulty and re-
sponse time (average time to answer) relied on
pretesting, which can be carried out by embedding
new items alongside scored items in live exams.
However, this method has been recognized as im-
practical due to resource limitations (Settles et al.,
2020).

This year’s Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2024)
directly addresses this problem and its resource lim-
itations by proposing a shared task on Automated
Prediction of Item Difficulty and Item Response
Time for USMLE exam items. This initiative fos-
ters collaboration and innovation in developing re-
liable prediction methods, while also contributing
to creating more efficient, secure, and informative
medical licensing exams.

This paper details our participation in the shared
task (Yaneva et al., 2024), where we investigated
the use of Large Language Models (LLMs) to pre-
dict difficulty and response time for retired USMLE
Multiple-Choice Questions (MCQs). Our main
contribution is to augment the dataset by incorpo-
rating answer choices generated by several zero-
shot LLMs (Falcon, Meditron, Mistral). To solve
the two prediction tasks (question response time
prediction, question difficulty prediction), we em-
ploy transformer-based models that alternatively
employ six different feature combinations. Our
findings indicate that predicting question difficulty
proves to be a more complex task. Interestingly, the
most successful models consistently incorporate
the question text, and benefit from the augmenta-
tion based on LLM-generated answers. Our results
highlight the potential of LLMs to enhance auto-
mated assessment methods in medical licensing
exams.

We also present post-competition methods that
obtain better results than the originally submitted
models. These newer models are aimed at address-
ing overfitting and our wrong choice of features.

2 Related work

The need for alternatives to the traditional pro-
cesses motivates the exploration of new meth-
ods for estimating item difficulty and response
time. Recent research (Ha et al., 2019; Yaneva
et al., 2020; Xue et al., 2020; Baldwin et al., 2021;
Yaneva et al., 2021) suggests promising results us-
ing machine learning models trained on item text
data to predict these characteristics.

One of the seminal studies in this direction (Ha
et al., 2019) investigated the feasibility of using
machine learning models to predict both item diffi-
culty and response time for multiple-choice ques-
tions in a high-stakes medical exam. The authors
focused on extracting various features from the
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Figure 1: An overview of the data preprocessing and model training workflow for predicting item difficulty and
response time of medical exam questions. The initial dataset is enriched with zero-shot prompted responses
generated by Large Language Models (LLMs). We then perform preprocessing over the augmented dataset by
scaling the target labels, adding new feature combinations, text cleaning and establishing the split for cross-validation.
Finally, two alternative transformer-based models are fine-tuned on the augmented data.

question text data, including linguistic features and
embedding types. Their models were then trained
to predict these difficulty and response time char-
acteristics. The encouraging results from this study
suggest that machine learning offers a promising
alternative to traditional, resource-intensive pretest-
ing methods for estimating these important exam
design elements. While the prior studies focused on
predicting difficulty and response time separately,
Xue et al. (2020) explored a method that could pre-
dict both simultaneously, using transfer learning.
Their research suggests that this approach offers
potential benefits in terms of efficiency.

In addition to predicting difficulty and response
time, researchers explored another valuable appli-
cation of machine learning: item survival predic-
tion (Yaneva et al., 2020). This task focuses on
estimating the likelihood of an item to be included
in the final exam based on its difficulty and other
question characteristics, and highlights the versatil-
ity of machine learning for various stages of exam
design. Another approach was presented by Bald-
win et al. (2021), who study the use of linguistic
features to predict the response process complexity,
which refers to the mental steps required to answer
a medical MCQ.

Instead of predicting difficulty, Yaneva et al.
(2021) leveraged the use of linguistic features to
predict the response process complexity associated
with answering medical MCQs. Their work sheds
light on the underlying factors that contribute to
the difficulty of these questions.

In summary, automated approaches offer several
advantages, such as efficiency (predicting from text
eliminates the need for pretesting, saving time and
resources), security (reduced reliance on pretest-

ing minimizes the risk of question exposure), and
scalability (automated methods allow for creating
larger pools of high-quality questions). Therefore,
continuously validating the use of machine learn-
ing to replace traditional methods is currently an
active research topic.

3 Methods

We start by annotating the original dataset with an-
swers obtained by prompting LLMs in a zero-shot
setup. The extended dataset is further processed by
scaling the target labels, creating additional feature
combinations, text cleaning, and setting the data
split for cross-validation. The cleaned dataset is em-
ployed to fine-tune two transformer-based models.
The end-to-end overview of the employed frame-
work is presented in Figure 1. Below, we describe
each step of our pipeline in detail.

3.1 Zero-Shot Prompting
We conjecture that LLMs can be employed to pro-
vide answers to the questions that need to be evalu-
ated in terms of difficulty and response time, and
the returned answers can be harnessed to better
solve the prediction tasks. For instance, the num-
ber of LLMs that give correct answers to a question
can be a strong indicator for the difficulty level of
the respective question. To this end, we rely on
three LLMs to obtain the answers, namely Falcon-
7B (Almazrouei et al., 2023), Meditron-7B (Chen
et al., 2023) and Mistral-7B (Jiang et al., 2023).
We resort to the use of models with 7B parameters,
due to our computing resource limitations. How-
ever, we compensate for the use of lighter LLMs by
integrating multiple models. While Meditron-7B
is specialized on the medical domain, which per-
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#Item Falcon Meditron Mistral
391 The correct answer is: C.

Weight loss program. The cor-
rect answer is: C.

The correct answer is option A.
The patient has a history of hy

The correct answer is D. Anti-
hypertensive therapy. The pa-
tient has

148 The answer is: A. Common
fibular (peroneal), The com-
mon

The correct answer is option A.
The common fibular nerve is

The correct answer is A. Com-
mon fibular (peroneal).
The common

562 The answer is: A. A, B. B, C.
C, D.

The correct answer is option D.
The correct answer is option D.

The correct answer is D. D.
The patient has a

Table 1: Examples of Falcon, Meditron and Mistral answers, when prompted with USMLE questions together with
the multiple-choice answers. The examples are not truncated (although it often seems so).

Feature name Description
ItemNum Index
ItemText Question text
Answer_[A-J] Multiple choice answers
Answer_Key Single value between A-J
Answer_Text The text of the correct answer
ItemType Text or PIX (i.e. image)
EXAM Step_[1, 2, 3]
Difficulty Real value indicating question

difficulty.
Response_Time Integer value indicating mean

response time (s).

Table 2: Initial set of features from the original shared-
task dataset.

fectly suits the provided shared task data, the other
LLMs are general purpose models. These choices
are aimed at enhancing the diversity of the mod-
els, which was previously reported as a relevant
aspect when constructing ensembles (Georgescu
et al., 2023). Hence, by combining the outputs
of the three LLMs, we aim to leverage the com-
plementary strengths of all models. The selected
LLMs are trained on distinct datasets, and they
exhibit different capabilities in reasoning, factual
recall, or creative text generation. By employing
diverse models, we aim to reduce the influence of
biases learned by individual models, thus achieving
a higher generalization capacity. For each sample,
we prompt the three LLMs in the following man-
ner:

PROMPT: "You are a student taking the
USMLE exam. Your task is to answer the
following question with one of the
multiple choices.

$ItemStem_Text

A.$Answer_A,
B.$Answer_B,
..."

Building on the provided prompts, Table 1 show-
cases example responses from the three LLMs
(Falcon-7B, Meditron-7B, and Mistral-7B). Inter-
estingly, we observe a wide spectrum of agreement,
ranging from all three models providing identical
answers to complete divergence in their responses.

3.2 Preprocessing

To ensure consistent scaling across labels, we nor-
malize the “Response_Time” and “Difficulty” tar-
get labels to a common range between 0 and 1.
Following the scaling of target variables, we apply
additional preprocessing steps to the LLM outputs.
To improve performance and data consistency, we
cleaned the LLM answer texts by removing any
extra spaces and new line characters.

To ensure the reproducibility of our results, we
provide the preprocessed and augmented dataset,
containing both training and test sets, at https://
github.com/ana-rogoz/BEA-2024.

3.3 Data Engineering

A detailed breakdown of the available features can
be found in Table 2. We checked how well input
features correlate to the target Response_Time and
Difficulty values, and concluded that the EXAM,
AnswerKey and ItemType columns display no cor-
relation, as shown in Figures 2, 3 and 4, respec-
tively. Thus, before the competition, we decided
to exclude these columns from all our experiments,
except for one baseline that includes all original fea-
tures. However, this decision overlooks an impor-
tant insight: although the AnswerKey alone does
not correlate with the labels, it could represent a
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Figure 2: Left: Correlation between the EXAM integer feature and the difficulty label. Right: Correlation between
the EXAM integer feature and the response time label.

Figure 3: Left: Correlation between the ItemType integer feature and the difficulty label. Right: Correlation
between the ItemType integer feature and the response time label.

very useful feature when combined with LLM an-
swers. This is because an LLM can answer “The
correct answer is D.”, and comparing this answer
with the AnswerKey feature can tell us if the LLM
was able to correctly identify the correct answer
or not. To this end, we combine the AnswerKey
feature with LLM features in our post-competition
models.

To enrich the input data provided to our models,
we engineer seven new features, as presented in
Table 3. These features combine original dataset

features with the LLM-generated answers. This
process aims to capture a more comprehensive rep-
resentation of the problem for the trained models.

To mitigate the limitations of the very small
dataset size, we employ a 5-fold cross-validation
procedure to train our models. This technique in-
volves shuffling the data and splitting it into five
fixed equally-sized subsets. Each fold is then used
for training and validation in turn, providing a ro-
bust evaluation of the models. The final extended
and shuffled dataset is part of our publicly available
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Figure 4: Left: Correlation between the AnswerKey integer feature and the difficulty label. Right: Correlation
between the AnswerKey integer feature and the response time label.

Feature set Merged features
all All initial feature columns
q_answers ItemText, Answer_*, An-

swer_Text
answers Answer_*
q_a ItemText, AnswerText
llms_a LLM answers, AnswerText
q_llms_a ItemText, LLM answers, An-

swerText
q_llms_a_key⋄ ItemText, LLM answers, An-

swerText, AnswerKey

Table 3: Combinations of features that are alternatively
used to train our models. The ⋄ symbol indicates the
feature set is added post-competition.

repository.

3.4 Models

Our work focuses on training and applying dif-
ferent models to the two regression tasks, namely
predicting response time and difficulty of medi-
cal questions. We utilize two transformer-based
approaches, well-suited for learning complex rela-
tionships. The models are trained on the new sets of
constructed features, which are detailed in Table 3.
We also include a basic linear modeling approach
as baseline. After the competition, we decided to
employ a model that uses frozen transformer-based
features and trains only a linear model on top of the
deep features. This decision is aimed at address-

ing the potential of overfitting transformer-based
models to the very small dataset available for the
competition.
Fine-tuned BERT. Our first method employs a
fine-tuned Bidirectional Encoder Representations
from Transformers (BERT) model (Devlin et al.,
2019) for the regression tasks. We leverage the
pre-trained BERT encoder to generate contextu-
alized representations for each text input as 768-
dimensional vectors. However, instead of the stan-
dard classification head, we implement a single-
neuron regression head. Finally, a sigmoid activa-
tion function is applied to the output layer, ensuring
the predictions fall within the desired range of 0 to
1.
Fine-tuned GPT-2. Similar to the BERT-based
approach, our second method fine-tunes a GPT-2
model (Radford et al., 2019) for regression. We
utilize the corresponding GPT-2 tokenizer to con-
vert text inputs into numerical representations. The
pre-trained GPT-2 model undergoes further train-
ing (fine-tuning) with a single-neuron output layer
at the end. Once again, we employ a sigmoid acti-
vation function to ensure the model’s predictions
fall within the interval [0, 1].
ν-Support Vector Regression + TF-IDF. In ad-
dition to transformer-based approaches, we in-
vestigate a linear regression method, namely ν-
Support Vector Regression (ν-SVR) (Schölkopf
et al., 2000). We experiment with two shallow
feature extraction techniques, namely TF-IDF and
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TF-IDF combined with Principal Component Anal-
ysis (PCA), focusing on the statistical properties of
words in a document.
ν-Support Vector Regression + BERT. Fine-
tuning large models, e.g. BERT or GPT-2, on small
datasets is prone to overfitting. To mitigate over-
fitting, an alternative to end-to-end fine-tuning is
keeping the pre-trained layers frozen, and train-
ing only the last regression layer. To this end, we
propose a model that employs BERT-based em-
beddings and trains a ν-SVR model on top, an ap-
proach that is also known as linear probing. As in-
put to the BERT model, we consider LLM answers
with and without the AnswerKey feature. The
resulting ν-SVR+BERT models are added post-
competition.

4 Experiments

4.1 Dataset

In the BEA 2024 Shared Task, the dataset pro-
vided by the organizers consists of retired Multiple-
Choice Questions (MCQs) from the United States
Medical Licensing Examination. The data is di-
vided into two distinct subsets: an initial training
set of 466 samples and a separate test set of 201
samples, which is used to evaluate the participants.

4.2 Evaluation

We assess the performance levels of our meth-
ods using two complementary metrics: the mean
squared error (MSE) and the Kendall τ correlation.
MSE measures the average squared difference be-
tween predicted and actual values, indicating how
well the model fits the data, while the Kendall τ
correlation evaluates the model’s ability to capture
the general trend of the data, providing insights
into its generalization capability.

4.3 Hyperparameter Tuning

The hyperparameters of all models are deter-
mined via grid search. For the transformer-
based methods (BERT, GPT-2), we employ a
grid search over the maximum number of input
tokens in {100, 150, 200, 250, 300, 350, 400, 512},
learning rate values in {10−4, 5 · 10−4, 10−5, 5 ·
10−5, 10−6, 5 · 10−6}, and number of training
epochs in {5, 10, 15, 20}. The models are opti-
mized using the AdamW optimizer (Loshchilov
and Hutter, 2019) on mini-batches of 32 sam-
ples. For the ν-SVR approaches, we employ
a grid search over the parameter C in the set

{0.01, 0.1, 0.5, 1, 5, 10, 50, 100} and values of ν
in {0.1, 0.2, 0.3, 0.4, 0.5}. The complete hyperpa-
rameter setup for our experiments, as well as the
methods themselves, are available as part of our
publicly available repository: https://github.com/
ana-rogoz/BEA-2024.

4.4 Cross-Validation Results
Due to the modest training dataset size (466 train-
ing samples), we employ 5-fold cross-validation
to obtain robust evaluation results. We present the
results based on the cross-validation procedure in
Table 4. The results represent the average MSE
and Kendall τ correlation values obtained across
the 5 folds. Our experiments show a notable differ-
ence in task difficulty. Indeed, predicting difficulty
proves to be significantly more challenging than
predicting response time.
Response time. Our 5-fold cross-validation re-
sults indicate that the SVR+BERT models based on
“q_llms_a_key” (0.0132) and “q_llms_a” (0.0134)
features achieve the best MSE values for question
response time prediction. They are followed by
the fine-tuned BERT based on “q_answers” fea-
tures (0.0148). In terms of the Kendall τ correla-
tion, the top three models are the same, but their
ranking is different. More precisely, the fine-tuned
BERT based on “q_answers” features surpasses the
SVR+BERT models in terms of Kendall τ .

We notice that the ν-SVR models based on TF-
IDF representations struggle to learn effective rela-
tionships between features and target labels. How-
ever, this is clearly an issue of the shallow TF-IDF
features, since the ν-SVR models based on BERT
embeddings are at the opposite end of the perfor-
mance spectrum.

Our experiments reveal two interesting findings
regarding feature selection for response time pre-
diction. First, transformer models that rely only on
the multiple-choice answers obtain sub-optimal re-
sults compared with those that include the original
question. This suggests that the question itself pro-
vides valuable information about the response time.
The second important observation is that the An-
swerKey feature becomes useful when combined
with LLM answers, boosting the performance of
SVR+BERT when using “q_llms_a_key” features
instead of ‘q_llms_a” features, with respect to both
MSE and Kendall τ measures.
Difficulty. Similar to the response time predic-
tion task, we analyze the top models for question
difficulty prediction in terms of both MSE and
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Task Model Features MSE ↓ Kendall τ ↑ Run

Response Time

BERT

all 0.0151± 0.0016 0.3810± 0.0543
q_answers 0.0148± 0.0011 0.4232± 0.0350 1
answers 0.0190± 0.0017 0.1334± 0.0241
q_a 0.0149± 0.0010 0.3718± 0.0452
llms_a 0.0171± 0.0003 0.2401± 0.0467
q_llms_a 0.0150± 0.0012 0.3912± 0.0414 2

GPT-2

all 0.0245± 0.0085 0.3550± 0.0876
q_answers 0.0157± 0.0023 0.4029± 0.0458 3
answers 0.0231± 0.0041 0.0703± 0.0404
q_a 0.0238± 0.0049 0.2949± 0.0766
llms_a 0.0292± 0.0102 0.1417± 0.0497
q_llms_a 0.0249± 0.0044 0.2536± 0.0984

SVR

q_llms_a + BERT 0.0134± 0.0011 0.4127± 0.0362 ∗
q_llms_a_key + BERT 0.0132± 0.0012 0.4141± 0.0289 ∗
q_a + TF-IDF 0.0254± 0.0017 0.1532± 0.0241
q_a + TF-IDF + PCA 0.0294± 0.0017 0.1132± 0.0652

Difficulty

BERT

all_input 0.0534± 0.0101 0.0780± 0.0469
q_answers 0.0534± 0.0102 0.0570± 0.0862
answers 0.0522± 0.0107 0.0795± 0.0481
q_a 0.0538± 0.0092 0.0812± 0.0189
llms_a 0.0562± 0.0105 0.0204± 0.0610
q_llms_a 0.0500± 0.0093 0.1470± 0.0447 1

GPT-2

all_input 0.0700± 0.0080 0.0727± 0.0640
q_answers 0.0659± 0.0052 0.1155± 0.0208 2
answers 0.0571± 0.0130 0.0323± 0.0518
q_a 0.0623± 0.0059 0.0802± 0.0507
llms_a 0.0707± 0.0377 0.1129± 0.0472
q_llms_a 0.0599± 0.0142 0.1259± 0.0333 3

SVR

q_llms_a + BERT 0.0576± 0.0087 0.1102± 0.0665 ∗
q_llms_a_key + BERT 0.0534± 0.0067 0.1592± 0.0616 ∗
q_a + TF-IDF 0.0551± 0.0033 −0.0895± 0.0305
q_a + TF-IDF + PCA 0.0614± 0.0025 −0.0896± 0.0350

Table 4: Results based on the 5-fold cross-validation procedure of the proposed methods for the response time and
difficulty prediction tasks. To select the runs for each task, we employ the Kendall τ correlation. For each task, we
highlight the top three Kendall τ correlations in red (bold), green, blue, respectively. We highlight the best MSE for
each task in bold. The ↓ and ↑ symbols indicate when lower or upper values are better, respectively. The ∗ symbol
indicates the results are added post-competition.

Kendall τ correlation. Interestingly, the models
achieving the best MSE scores, namely the fine-
tuned BERT models based on “q_llms_a” (0.0500)
and “answers” (0.0522) features, incorporate the
correct answer information. However, in terms of
Kendall τ , the top models are slightly different.
While the SVR+BERT with “q_llms_a_key” fea-
tures (0.1592) reaches the highest correlation, the
second and third best models employ “q_llms_a”
features in combination with BERT (0.1470) and
GPT-2 (0.1259). Notably, all these models benefit

from the inclusion of questions and LLM answers.
Moreover, all but one of the top models for both
metrics include the question text as input. This
reinforces the importance of the question itself for
predicting difficulty. Furthermore, the best Kendall
τ scores are obtained by models that always incor-
porate both the question and LLM answers. This
highlights the potential of LLMs in capturing nu-
ances beyond the provided question and answer
choices, leading to more accurate predictions.

Similar to the previous task, the ν-SVR models
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Task Model Features RMSE ↓ MSE ↓ Kendall τ ↑ Run Rank

Response Time

BERT q_answers 26.846 0.0333 0.3579 1 11/34
BERT q_llms_a 26.768 0.0331 0.3482 2 10/34
GPT-2 q_answers 26.073 0.0366 0.4767 3 7/34
SVR q_llms_a + BERT 25.621 0.0160 0.4472 ∗ 5/35
SVR q_llms_a_key + BERT 25.613 0.0160 0.4399 ∗ 5/35

Difficulty

BERT q_llms_a 0.308 0.0654 0.2179 1 9/43
GPT-2 q_answers 0.337 0.1031 0.0275 2 34/43
GPT-2 q_llms_a 0.328 0.1502 0.0008 3 30/43
SVR q_llms_a + BERT 0.292 0.0638 0.0517 ∗ 1/44
SVR q_llms_a_key + BERT 0.281 0.0582 0.1519 ∗ 1/44

Table 5: Test results of our best performing methods for the response time and difficulty prediction tasks. We report
the official evaluation metric (RMSE), along with our metrics (MSE and Kendall τ ). The ↓ and ↑ symbols indicate
when lower or upper values are better, respectively. The ∗ symbol indicates the results were added post-competition.

based on TF-IDF features seem to produce subpar
results, given that their Kendall τ scores indicate
negative correlations between predictions and tar-
get labels. However, the ν-SVR models based on
BERT embeddings achieve comparable results with
the fine-tuned transformer-based approaches, and
one of the former models (based on “q_llms_a_key”
features) performs even better in terms of Kendall
τ than the top-three submitted models.

4.5 Final Test Results

For the test dataset, we report our two evaluation
metrics, MSE and Kendall τ , on the normalized la-
bels, as well as the official evaluation metric, i.e. the
Root Mean Squared Error (RMSE), on the raw tar-
get labels. For the final evaluation on the official
test set, we selected the top three models in terms
of Kendall τ values. The corresponding results are
presented in Table 5. In the same table, we also
include our post-competition results.
Response time. All three submitted methods reach
higher (worse) MSE values on the test set compared
with the 5-fold cross-validation results, perhaps
due to overfitting. The best MSE is achieved us-
ing the fine-tuned BERT model and the “q_llms_a”
features (0.0331), surpassing the models based on
“q_answers” features. The MSE-based ranking of
the three runs on the test set is not the same as
the one obtained via cross-validation. The ranking
based on the Kendall τ correlation is also differ-
ent, with the best model on the test set being the
fine-tuned GPT-2 based on “q_answers” features
(0.4767). This model also achieves better RMSE
on the test set. However, for the other two submit-
ted models, the RMSE metric is not correlated with

Kendall τ . Compared with the other competitors,
our best model ranked 7th out of 34 models.

Our post-competition results obtained by the ν-
SVR+BERT models reveal consistent MSE and
Kendall τ values across test and cross-validation
evaluations. This suggests that keeping the pre-
trained BERT frozen leads to a higher general-
ization capacity when the data available for fine-
tuning is so small (less than 500 samples). No-
tably, calculating the RMSE on the held-out test set
demonstrates that the SVR+BERT models outper-
form our officially submitted models, potentially
obtaining a better rank (5th place out of 35).
Difficulty. The MSE values of our final sub-
missions for the difficulty prediction task are
higher (worse) for two out of three methods, when
compared with the values reported during the 5-
fold cross-validation experiments. The respec-
tive methods are the fine-tuned GPT-2 based on
“q_answers” features and the fine-tuned GPT-2
based on “q_llms_a” features. The same two meth-
ods reach poor Kendall τ values, indicating almost
no correlation between ground-truth and predicted
labels. However, for our first run, which is repre-
sented by the fine-tuned BERT based on “q_llms_a”
features, both MSE and Kendall τ values are com-
parable to the corresponding values reported using
cross-validation (MSE: 0.0500 vs. 0.654, Kendall
τ : 0.1470 vs. 2179). Our findings are in line with
the official results based on RMSE, which show
that the fine-tuned BERT based on “q_llms_a” fea-
tures is our best run. Compared with the models
submitted by other participants, our best model
for the question difficulty task ranks 9th out of 43
models.
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Our post-competition ν-SVR-based models
yield superior performance compared to all three
models submitted for the official evaluation.
Remarkably, both post-competition models ex-
hibit consistent MSE values between the cross-
validation and test sets, hinting at the effective
mitigation of overfitting which seems to affect our
fine-tuned BERT and GPT-2 models. The config-
uration based on “q_llm_a_key” features achieves
the lowest MSE of 0.0582, followed closely by
the configuration based on “q_llms_a” features,
with an MSE of 0.0638. This further confirms the
utility of the AnswerKey feature in combination
with LLM answers. Furthermore, considering the
official RMSE metric, our post-competition mod-
els achieve impressive results. The SVR+BERT
based on “q_llm_a_key” features attains the lowest
RMSE of 0.281, followed by the version based on
“q_llm_a” features with an RMSE of 0.292. These
results would have positioned our post-competition
models at the top of the leaderboard.

5 Conclusion

In this paper, we presented our approaches to the
BEA 2024 Shared Task on Automated Prediction of
Item Difficulty and Item Response Time of retired
USMLE MCQs. Our main contribution is a task-
specific data augmentation method based on adding
answers to MCQs using LLMs prompted in a zero-
shot setup. We carried out exhaustive experiments
for both tasks, using two strong transformer-based
models, in both fine-tuning and linear probing set-
tings. We employed seven different types of fea-
ture combinations, while leveraging LLM-based
answers. The empirical results showed four key
findings. First, the difficulty prediction task is sig-
nificantly harder than the response time prediction
task. Second, we noticed that the top-performing
approaches always made use of the question text.
Third, LLM answers had a positive impact on per-
formance, especially on the more difficult predic-
tion task. Fourth, linear probing (training an SVR
on frozen pre-trained features) shows a better gen-
eralization capacity than end-to-end fine-tuning,
most likely due to the small training set available
for the competition.

6 Limitations

To collect answers from the LLMs, we used a V100
GPT Colab runtime, with 78.2 GB Disk Space,
which only allowed us to prompt the smallest ver-

sions of the three LLMs, each based on 7 billion
parameters. Due to our resource limitations, we
were not able to prompt larger LLMs, which could
have led to better results.

The limited number of samples was an important
challenge for the evaluated transformers, which are
prone to overfitting on small datasets. The final
results indicate that our models suffered from some
level of overfitting. In future work, we aim to study
several ways to avoid overfitting, such as using
dropout, frozen layers, regularization terms, etc.
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Abstract

This paper describes our submission to the item
difficulty prediction track of the BEA 2024
shared task. Our submission included the out-
put of three systems: 1) a feature-based linear
regression model, 2) a RoBERTa-based model
and 3) a linear regression ensemble built on the
predictions of the two previous models. Our
systems ranked 7th, 8th and 5th respectively,
demonstrating that simple models can achieve
optimal results. A closer look at the results
shows that predictions are more accurate for
items in the middle of the difficulty range, with
no other obvious relationships between diffi-
culty and the accuracy of predictions.

1 Introduction

The development of new items for high-stake ex-
ams is a complex process involving the need to
meet many quality criteria. Among these, item dif-
ficulty is essential, as it fundamentally impacts the
validity of test scores and the fairness of the test
outcomes.

Item difficulty pertains to the ability of test items
to differentiate among varying levels of test taker
proficiency consistently across diverse populations
(AlKhuzaey et al., 2021). Traditionally, the esti-
mation of difficulty requires pre-testing the newly
developed items on a representative sample of test
takers (usually a few hundreds), as if they were in
a regular exam, and empirically estimating various
statistical characteristics based on their responses.

Test items that are answered correctly by ei-
ther too many or too few test-takers fall outside
pre-determined difficulty boundaries and hence are
typically removed from consideration or undergo
changes before being pre-tested again. This pro-
cess, although effective, is labour-intensive, costly,
and time-consuming, necessitating the collection
and analysis of extensive data before any new item
can be used in live exams. Additionally, as also

noted by others (e.g., Ha et al., 2019; Settles et al.,
2020), it is sometimes impractical, or not even pos-
sible, due to constraints on exam duration, the lim-
ited availability of testing opportunities and the
logistic challenges associated with live testing.

To address these challenges, alternative ap-
proaches using Natural Language Processing
(NLP) have been proposed to estimate this diffi-
culty from the items’ text. Predicting item difficulty
has significant implications for the testing industry,
not only leading to savings but also allowing the
dynamic adaptation of tests to new populations.

In this paper, we describe our participation in the
BEA 2024 shared task, aimed at predicting item dif-
ficulty for multiple-choice questions (MCQ) from
a medical exam (Yaneva et al., 2024). We present
experiments using three different approaches: 1)
using a set of linguistic features from the items in
traditional machine learning regression models, 2)
using pre-trained language models with and with-
out the addition of the aforementioned features, and
3) building an ensemble model from the output of
the previous two.

2 Related work

Previous studies have adopted different methodolo-
gies to estimate the difficulty of items for assess-
ment. A vast majority of these have focused on
examining textual properties of items. While early
studies have used readability indices as predictors
(DuBay, 2004; Flesch, 1948), over time, studies
have evolved to utilize a wider range of complexity-
related features. These include surface lexical and
syntactic features (such as word/sentence length,
counts of clause types, etc. (Kintsch and Vipond,
2014; McNamara et al., 2014; Yaneva et al., 2017)),
NLP-enabled features (François and Miltsakaki,
2012), and features aimed at capturing the cogni-
tive aspects of language (Ha et al., 2019; Yaneva
et al., 2021) and cohesion (McNamara et al., 2014).
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Other studies have attempted to model diffi-
culty in terms of comprehensibility for humans.
Mostly centred around the domain of language
learning, such studies have primarily focused on
applying readability metrics to language compre-
hension tests (Beinborn et al., 2014; Gao et al.,
2018; Huang et al., 2017; Loukina et al., 2016;
Pandarova et al., 2019). In such tests, reading pas-
sages are strongly associated with the subsequent
comprehension questions, thereby establishing a
correlation between the text’s complexity and ques-
tion difficulty (Huang et al., 2017; Loukina et al.,
2016).

There have also been attempts to estimate diffi-
culty from the perspective of cognitive processes
and knowledge dimensions required to correctly re-
spond to a question (Padó, 2017). Such approaches
are mostly qualitative in nature and rely on heuris-
tic methods which define difficulty according to the
perceptions of learners, item writers and/or educa-
tors (AlKhuzaey et al., 2021) Item difficulty has
also been estimated as part of automated item gen-
eration processes, for example by measuring the se-
mantic similarity between an item’s distractors and
its prompt (Alsubait et al., 2013; Ha and Yaneva,
2018; Kurdi et al., 2020) or estimating the difficulty
and discrimination parameters of items employed
in e-learning tests (Benedetto et al., 2020).

In the context of MCQs, Ha et al. (2019) describe
models using an extensive set of linguistic features
and embeddings. The same set of linguistic fea-
tures were used in a subsequent study by Yaneva
et al. (2020), who obtained a strong baseline for
item survival by filtering out items that were too
difficult or too easy for the target test taker popula-
tion. In our paper, we build upon previous research
by replicating the linguistic features employed by
Ha et al. (2019) and Yaneva et al. (2020) as well as
fine-tuning a few transformer-based models.

3 Models

We investigated a range of different models for
the task, namely traditional feature-based models,
transformers and ensembles. The following sec-
tions describe these in detail.

3.1 Feature-based models

We extracted over a hundred linguistic features
from the MCQs in our dataset, most of which come
from previous work (i.e., Ha et al., 2019; Yaneva
et al., 2020, 2021) but were re-implemented in

Python, inspired by the codebase made available
by the researchers. These features aim to capture
several levels of linguistic information, ranging
from basic lexical and syntactic attributes to others
related to semantic, cognitive or readability char-
acteristics of language. They also include features
that look at the structural coherence of the text
and the frequency of words. In addition to these,
we incorporated several other predictors, such as
the average similarity between the key and distrac-
tors as well as amongst the distractors themselves,
and the number of distractors for a given item and
exam type (i.e. Step 1, Step 2 and Step 3). All the
features employed in our models are provided in
Appendix A.

To obtain an initial benchmark for our experi-
ments, we built our own internal baseline model
using the ZeroR algorithm, which assigns the mean
difficulty score of the training dataset to each in-
stance (RMSE = 0.3150). Further to that, we con-
ducted a correlational analysis between each fea-
ture and the item difficulty scores and added the top
five best correlated features. These include counts
of words not in top 4000, 5000, 3000, 2000 and ad-
jectives (with r ranging between 0.20 to 0.18), and
indicate a trend that the presence of less common
words and adjectives in an item may contribute to
increased difficulty.

3.2 Transformer models
Given their proven performance in NLP tasks, we
fine-tuned different pre-trained language models
built on the transformer architecture (Vaswani et al.,
2017). Since we framed the difficulty prediction
task as a regression problem, we added a dense
linear layer on top of the transformer to predict the
difficulty value.

Our transformer models take the full text of the
MCQ as the input, where the answer options are
reformatted using two additional special tokens:
[KEY] to introduce the key and [DIS] to introduce
each distractor (see Figure 1). The embeddings for
these new tokens were randomly initialised.

We experimented with four different pre-trained
models: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), bioBERT (Lee et al., 2019) and
XLNet (Yang et al., 2019). Given the evaluation
metric for the BEA 2024 shared task was RMSE,
we adopted the same metric as our loss function.

We also built versions of these models that in-
corporate the additional features described in Sec-
tion 3.1. This was done by concatenating the values
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A 13-month-old child is brought to the emergency de-
partment because of urticaria, swelling of the lips, and
difficulty breathing immediately after eating an egg. A
potential risk for hypersensitivity reaction is posed by
vaccination against which of the following illnesses?
[DIS] Hepatitis
[KEY] Influenza
[DIS] Pertussis
[DIS] Poliomyelitis
[DIS] Typhoid fever

Figure 1: Example representation of an MCQ for our
transformer models.

of the extracted features to the language model’s
pooler output, before being passed on to the linear
regression layer.

3.3 Ensemble models
In an attempt to exploit the strength of our models,
we also experimented with a number of ensemble
methods. These included models that returned the
minimum, maximum and average prediction from
our best feature-based and transformer models as
well as a linear regression stacking model.

4 Experiments

4.1 Setup
We experimented with a range of regression mod-
els and feature sets, which include: 1) the entire
feature set, 2) top 5 features identified through cor-
relational analysis and 3) several automated feature
selection techniques, including select-k-best (k =
10), select-from-model (Random Forest Regressor)
and recursive feature elimination (RFE) with 10
features to select. This allowed us to effectively
assess the impact of feature selection on model
performance and find the best settings.

All our regressors were implemented using the
scikit-learn library (Pedregosa et al., 2011). The
Random Forest Regressor, Decision Process Re-
gressor and Extra Trees Regressors were trained
with their default parameters. We used Linear Re-
gression with no regularization and Lasso Regres-
sion with an alpha level of ‘0.1’. The SGD Regres-
sor was set to focus on error minimization without
penalty while the Gaussian Process Regressor uti-
lized an RBF kernel by default. For Support Vector
Regression (SVR), different linear and non-linear
kernels were explored. SVR1 operated with a linear
kernel, with an increased penalty parameter (C =
100) and a kernel coefficient (gamma = 0.1) while
we set SVR2 to a linear kernel with a controlled

number of iterations (max iter = 200). SVR3 was
used with an RBF kernel and SVR4 with a polyno-
mial kernel, both with default parameters.

Our transformer models were implemented in
Pytorch using the transformers library by Hug-
ging Face (Wolf et al., 2020). Training was done
on an NVIDIA Tesla P100 GPU using the hyper-
parameters specified in Appendix B.

Our linear regression ensemble was trained on
the predictions of our best feature-based and trans-
former models, using the predictions on our train-
ing and development set.

4.2 Data
The shared task dataset is comprised of 667 re-
tired MCQs from past administrations of the United
States Medical Licensing Examination (USMLE).
USMLE consists of a series of exams (called
‘Steps’) administered by the National Board of
Medical Examiners (NMBE) and the Federation
of State Medical Boards, and is used for medical
licensing in the United States. The items for the
shared task came from Steps 1, 2 and 3 of the exam.
Each item had a stem (i.e. the text describing the
scenario), a key (correct answer) and a number
of distractors (incorrect responses) which varied
between 4 and 10. Each question was also accom-
panied by a couple of additional features, such as
the Steps level and whether the original question
included an image. The difficulty values ranged
between 0.02 and 1.38, where higher values indi-
cated greater difficulty. For further details about
the dataset, we refer the reader to the shared task
overview paper (Yaneva et al., 2024).

The training and test sets provided for the shared
task comprised 466 and 201 items respectively. For
our experiments, we further split the training data
into a training and development set using an 80%-
20% split, resulting in 372 and 94 instances respec-
tively. No additional data was used to train our
systems.

4.3 Results
Experiments reported in this section are based
on our training-development split. Model perfor-
mance was evaluated using Root Mean Squared
Error (RMSE), in line with the shared task evalua-
tion setup.

The performance of our feature-based models
using different algorithms and feature selection
methods is shown in Table 1. Two notable ob-
servations are the extreme RMSE values for the
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Model All features Top 5 SelectKBest SelectFromModel RFE
RandomForest 0.3398 0.3409 0.3246 0.3175 0.3323
Linear Regressor ∞ 0.3076 0.3041 0.3553 0.3276
SVR1 0.4242 0.3015 0.3048 0.3551 0.3164
SVR2 0.457 0.3083 0.3124 0.3656 0.322
SVR3 0.3506 0.3269 0.3184 0.3398 0.7024
SVR4 1.11 405.11 0.3222 0.5162 0.3238
LinearSVR 0.4031 0.3101 0.3094 0.3442 0.3073
SGDRegressor 0.3128 0.2928 0.3047 0.3076 0.3416
GaussianProcess 0.3654 0.5814 0.5845 0.4195 0.5845
DecisionTree 0.4822 0.404 0.4386 0.4381 0.4854
ExtraTrees 0.3524 0.3347 0.3241 0.316 0.3334
MLPRegressor 0.3862 0.2955 0.302 0.3241 0.3028
Lasso 0.315 0.315 0.315 0.315 0.315
ZeroR Baseline 0.3150

Table 1: RMSE on the development set for our feature-based models, using different feature selection methods.

Linear Regressor when using all features (denoted
by ∞), which was significantly higher than any
other model, as well as for SVR4 when using ei-
ther all features or just the top 5. Amongst all
our models, Linear Regressor, SGD Regressor and
MLP Regressor showed some of the lowest RMSEs,
ranging from 0.2928 to 0.3076. While these out-
performed the ZeroR baseline (RMSE = 0.3150),
their results were comparable. For this reason, we
selected the Linear Regressor using SelectKBest
(RMSE = 0.3041) as our final model, given its
simplicity and relatively lower error compared to
other methods. This model uses the following 10
features derived from feature selection: 2 readabil-
ity measures (FleshReadingEase, ColemanLiau), 6
cognitively-motivated features (average scores and
ratios of content words that do not have a rating
for imagability, familiarity and concreteness) and 2
frequency features (counts of content words not in
top 3000 and 4000 words).

Building an optimal transformer-based model re-
quired finding the best performing pre-trained lan-
guage model as well as additional hyper-parameter
optimisation. A comparison of model performance
using the training parameters in Appendix B is
shown in Table 2. As the results suggest, BERT-
based models perform better than XLNet, which
shows the least convergence. Out of the best per-
forming models, we chose RoBERTa for further
hyper-parameter tuning, as it showed better aver-
age performance across our training and dev sets,
something that we prioritised given the small size
of our datasets.

Hyper-parameter optimisation involved fine-
tuning our RoBERTa model using different val-
ues for dropout (0.1, 0.3, 0.5), weight decay (0
vs 1 × 10−5), learning rate (1 × 10−3, 1 × 10−4,

RMSE
Model Train Dev Average
BERT 0.3411 0.3142 0.3276

bioBERT 0.3567 0.3057 0.3312
XLNet 0.4861 0.3366 0.4114

RoBERTa 0.3101 0.3121 0.3111

Table 2: Comparison of pre-trained models using the
optimal hyper-parameters.

RMSE
Model Train Dev Average

Minimum 0.3061 0.3072 0.3066
Maximum 0.3024 0.3091 0.3057
Average 0.2979 0.3056 0.3018

Linear regression 0.2944 0.3037 0.2991

Table 3: Performance of our ensemble models on the
development set.

1× 10−5, 2× 10−5, 3× 10−5), additional features
(all/none) and special tokens (enabled/disabled).
However, none of those combinations were able to
beat our initial model.

Finally, our best feature-based and transformer-
based models were used to build different simple
ensemble models that combined their predictions,
as described in Section 3.3. The performance of
these models is included in Table 3. Despite the
small differences, results show that the linear re-
gressor outperforms simpler combinations based
on the minimum, maximum or average of predic-
tions, so we use it as our final ensemble model.

5 Official evaluation results

Our submission to the shared task included the
output of the best three models found in our experi-
ments: 1) a feature-based linear regressor (FEAT),
2) a RoBERTa-based model (ROBERTA) and 3) a
linear regression ensemble (ENSEMBLE) operat-
ing on the output of the previous two models. In all
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Rank Team name Run RMSE
1 EduTec electra 0.299
2 UPN-ICC run1 0.303
3 EduTec roberta 0.304
4 ITEC RandomForest 0.305
5 BC ENSEMBLE 0.305
6 Scalar Predictions 0.305
7 BC FEAT 0.305
8 BC ROBERTA 0.306

. . . . . . . . . . . .
16 Baseline DummyRegressor 0.311
. . . . . . . . . . . .
43 ITEC BERT-ClinicalQA 0.393

Table 4: Official performance evaluation of our models.

three cases, the final models used for our submis-
sion were re-trained using all the available training
data, unlike for our optimisation experiments where
we used only 80%.

An abbreviated version of the official results is
included in Table 4. As we can see, results from
different teams are very close, with an average
RMSE of 0.3246 (SD = 0.0207). Our submitted
systems ranked 5th (ENSEMBLE), 7th (FEAT) and
8th (ROBERTA), also showing little variation be-
tween them. However, it is interesting to see how
the ensemble model ended up in the top 5, con-
sidering it operates on the output of the other two
lower-ranked systems, which highlights the impor-
tance of model optimisation.

All of our systems were also able to beat the
baseline (RMSE = 0.311), which only 35% of the
systems did.

As all our systems directly or indirectly made use
of linguistically-motivated features, we can also
conclude that the explicit definition of features was
crucial to achieve competitive results. This is in
line with previous research, which has consistently
found that traditional feature-based models tend
to outperform deep learning models for regression
tasks, especially when the amount of training data
is very limited (Grinsztajn et al., 2022).

6 Analysis and discussion

This section looks at the performance of our best
model (ENSEMBLE) in more detail. Prediction
error for this model ranges from 0 to 0.8526, with a
mean of 0.2494, with the majority of items having
an absolute error under 0.4 (see Figure 2).

Correlation between gold standard difficulty vs
predicted difficulty is 0.2024 (p < .05), which is
considered weak (see Figure 3). In particular, we
observe that prediction error decreases when the
gold standard difficulty goes from 0 to roughly 0.4,
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Figure 2: Distribution of prediction errors.
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Figure 3: Correlation between gold standard difficulty
and predictions by our ENSEMBLE model.

then remains low between 0.4 and 0.6 and finally
steadily increases from that point onwards, as seen
in Figure 4. This reveals that the model is more
accurate for values in the middle of the range and
particularly inaccurate for very difficult items.

We also looked at the relationship between pre-
diction error and item similarity, where similarity
is given by the two principal components (PC1 and
PC2) from Principal Component Analysis on the
items’ BERT embeddings (Figure 5). However,
the plot shows no obvious correlations or clusters,
suggesting that similar items are not predicted with
the same degree of accuracy by our ENSEMBLE
model.

Performance by item type shows that text-only
items have a mean absolute error of 0.2506 while
items with pictures yield 0.2399. Although this
difference is probably negligible, it is somewhat
surprising that difficulty for items containing pic-
tures are slightly more accurately predicted when
none of our models take those pictures into account

507



0.2 0.4 0.6 0.8 1.0 1.2 1.4

Item Difficulty

0.0

0.2

0.4

0.6

0.8

A
bs

ol
ut

e
Pr

ed
ic

tio
n

E
rr

or
Prediction error vs. item difficulty - ENSEMBLE model

Figure 4: Gold standard difficulty vs predicted error.
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Figure 5: Prediction error and the relationship between
items.

(all our models are text-based and no pictures were
included in the dataset).

In terms of the exam level of each item, we found
that the average prediction error increases as the
Steps level is higher, which matches our intuition
that that difficulty increases by level (Steps 1/2/3
mean difficulties are 0.2264, 0.2557 and 0.2782
respectively).

The effect of the number of distractors, how-
ever, does not seem to follow a clear trend, as error
increases when using 4 and 7 distractors but it de-
creases when using 5, 6 and 8. The number of
distractors yielding the lowest prediction error is 6.

7 Conclusions

In this paper, we have described the three models
that were used in our submission to the BEA 2024
shared task: 1) a traditional feature-based regressor,
2) a transformer-based model and 3) an ensemble
model. Our best system, a linear regressor ensem-

ble, ranked 5th, producing near-optimal results. A
detailed analysis revealed that our ensemble model
is more accurate at predicting difficulty in the mid-
dle range, struggling to predict more difficult items.
Other aspects, such as the inclusion of pictures or
the number of distractors, do not have a significant
impact on prediction accuracy.

All in all, our experiments show that simple mod-
els based on linear regression or pre-trained lan-
guage models can achieve acceptable performance
without excessive fine-tuning.

In future work, we would like to explore the use
of custom loss functions in our transformer models
as well as new features and the addition of synthetic
data, since we believe that the performance of all
the systems that participated in the shared task was
hindered by the small size of the training data.
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A List of features

Group Features
Lexical Counts of: Words, Content Words, Content Words without Stop Words, Nouns, Verbs, Adjectives,

Numbers, Commas, Complex Words (> 3 syllables), and Types (unique words); Ratios of: Content
Words, Nouns, Verbs, Adjectives, Numbers, Commas, Complex Words and Types; Average Word
Length in Syllables.

Readability formulae Flesh Reading Ease, Flesh Kincaid Grade Level, Gunning Fog, Coleman Liau
Semantic Counts of Polysemic Words; Proportion of Polysemic Words; Average Number of Senses of:

Content Words, Nouns, Verbs, Adjectives and Adverbs; Average Distance to WN of Nouns, Verbs
and Nouns and Verbs, Ratio of Words in WN

Syntactic Average Length of: Sentences, Noun Phrases; Count of: Negation, Noun Phrases, Verb Phrases,
Prepositional Phrases, Active Verb Phrases, Passive Verb Phrases, Agentless Passive Verbs, Relative
Clauses; Ratio of: Negation, Noun Phrases, Verb Phrases, Prepositional Phrases, Passive Verbs,
Active Verbs, Relative Clauses; Average Number of Words Before Main Verb, Passive Active Ratio

Cognitively motivated Imageability, Familiarity, Age of Acquisition, Meaningfulness Ratio Colorado, Meaningfulness
Ratio Paivio

Cohesion-related Count and Ratio of: All Connectives, Temporal Connectives, Additive Connectives, Causal
Connectives, Referential Pronouns

Frequency-based Average Rank Frequency of Words and Content Words; Average Absolute Frequency of Words and
Content Words; Average Relative Frequency of Words; Count of Words and Content Words Not in
Top: 2000, 3000, 4000 and 5000 words

Similarity* Path Similarity, Cosine Similarity, Levenshtein Distance, Doc Similarity, Jaccard Similarity be-
tween Stem and Key; Average Cosine and Levenshtein Similarity: Between Key and Distractors
and Between Distractors

Other* Number of Distractors, Exam Type, Item Type

Table 5: List of features employed in our study. Features marked with * have been added to those adopted from Ha
et al. (2019)

B Training hyper-parameters

Learning rate 1× 10−5

Batch size 16
Weight decay 1× 10−5

Dropout 0.1
Number of epochs 3
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Abstract

This paper presents the results of our participa-
tion in the BEA 2024 shared task on the auto-
mated prediction of item difficulty and item re-
sponse time (APIDIRT), hosted by the NBME
(National Board of Medical Examiners). Dur-
ing this task, practice multiple-choice questions
from the United States Medical Licensing Ex-
amination® (USMLE®) were shared, and re-
search teams were tasked with devising systems
capable of predicting the difficulty and average
response time for new exam questions.

Our team, part of the interdisciplinary itec re-
search group, participated in the task. We ex-
tracted linguistic features and clinical embed-
dings from question items and tested various
modeling techniques, including statistical re-
gression, machine learning, language models,
and ensemble methods. Surprisingly, simpler
models such as Lasso and random forest re-
gression, utilizing principal component features
from linguistic and clinical embeddings, outper-
formed more complex models. In the competi-
tion, our random forest model ranked 4th out of
43 submissions for difficulty prediction, while
the Lasso model secured the 2nd position out
of 34 submissions for response time prediction.
Further analysis suggests that had we submit-
ted the Lasso model for difficulty prediction,
we would have achieved an even higher rank-
ing. We also observed that predicting response
time is easier than predicting difficulty, with
features such as item length, type, exam step,
and analytical thinking influencing response
time prediction more significantly.

1 Introduction

In the medical domain, standardized tests act as
crucial gatekeepers, allowing only the best health-
care professionals into the field. An example is

*supported by a fellowship from the Research Foundation
Flanders (FWO)

†supported by a Baekeland mandate from the Flanders
Innovation & Entrepreneurship (VLAIO)

the United States Medical Licensing Examination®
(USMLE®), a high-stakes exam administered by
the National Board of Medical Examiners (NBME)
to assess a medical student’s ability to provide safe
and effective patient care. However, for these ex-
ams to accurately gauge the competency of medi-
cal students, organizations like the NBME metic-
ulously design their assessments, with a specific
focus on balancing the difficulty and response time
of exam questions. This is essential for ensuring
the fairness and validity of the exams, as test items
should cover a wide range of difficulty levels, and
each question should be allocated an appropriate
amount of time.

Prior studies by NBME researchers have shown
that predicting the difficulty and response time
of medical exam questions is a challenging task
(Ha et al., 2019a; Xue et al., 2020; Yaneva et al.,
2020, 2021). As a result, the NBME launched
an international challenge where they provided re-
searchers with a set of retired exam questions from
the USMLE®. Research teams were tasked with
developing a system or model that takes as input
a multiple-choice question and produces as out-
put two estimates: (a) how challenging it is for
test-takers and (b) how long it would take them
to respond (see Figure 1 for an illustration). The
comprehensive details and results of this shared
task are outlined in the overview paper authored by
Yaneva et al. (2024).

We participated in the competition with the
ITEC1 team, an interdisciplinary research group
affiliated with KU Leuven and imec. Our collab-
orative efforts span various fields, including arti-
ficial intelligence, educational sciences, language
technology, machine learning, psychometrics, and
statistical modeling. Our strategy involved a fu-
sion of statistical models, machine learning mod-
els, and language models. We integrated traditional

1https://itec.kuleuven-kulak.be
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A 65-year-old woman comes to the physician for a
follow-up examination after blood pressure
measurements were 175/105 mm Hg and 185/110
mm Hg 1 and 3 weeks ago, respectively. She has
well-controlled type 2 diabetes mellitus. Her blood
pressure now is 175/110 mm Hg. Physical
examination shows no other abnormalities.
Antihypertensive therapy is started, but her blood
pressure remains elevated at her next visit 3 weeks
later. Laboratory studies show increased plasma
renin activity; the erythrocyte sedimentation rate and
serum electrolytes are within the reference ranges.
Angiography shows a high-grade stenosis of the
proximal right renal artery; the left renal artery
appears normal.

Which of the following is the most likely
diagnosis?

ITEM DIFFICULTY 

is measured as the

proportion of examinees
who answered the item
correctly, with a linear
transformation: lower
values indicate lower

difficulty, higher values
indicate higher difficulty.

RESPONSE TIME 
is measured as

the arithmetic mean
response time, measured

in seconds, across all
examinees who

attempted a given item in
a live exam. This includes
all time spent on the item

from the moment it is
presented on the screen
until the examinee moves
to the next item, as well

as any revisits.

Atherosclerosis

Congenital renal artery hypoplasia

Fibromuscular dysplasia

Takayasu arteritis

Temporal arteritis

(A)

(B)

(C)

(D)

(E)

0.60

87.78

Figure 1: Example of a multiple-choice question from
the USMLE® Step 1 provided by the NBME during the
shared task’s training phase. Each question had an item
stem and up to ten possible answers and was labeled
with item difficulty and average response time.

feature engineering with contemporary fine-tuning
and transfer learning approaches. The following
sections will delve into our method and results.

2 Method

The shared task unfolded into two phases. Dur-
ing the training phase, spanning from January 15
to February 9, 2024, we received 466 multiple-
choice questions along with additional metadata,
such as the item type and exam step. Our goal in
this phase was to develop models that could predict
two key targets: item difficulty and response time.
Transitioning to the evaluation phase, which took
place from February 10 to February 16, 2024, we
received an additional set of 201 multiple-choice
question items, accompanied by the same supple-
mentary metadata, excluding the two targets. Uti-
lizing our top-performing models from the previous
phase, our focus was on predicting the unknown
targets of difficulty and response time. Each target
allowed up to three final predictions to be submit-
ted, and the submissions were then ranked based on
the Root Mean Squared Error (RMSE). In this sec-
tion, we provide more detailed information about
our methodology.

2.1 Feature Extraction
As an initial step, we began by extracting features
from the multiple-choice questions. Drawing from
prior studies (e.g., Ha et al., 2019b), we employed
various methods to transform the test items and
answer choices into meaningful representations.

First, we used features that we could extract and
compute directly from the data provided by the or-
ganizers. We defined a set of raw features including
the answer key (A, B, C, D, E, F, G, H, I, or J),
item type (Text or PIX), exam (Step 1, 2, or 3), the
number of answer options (4, 5, 6, 7, 8, 9, or 10),
the ordinal position of the correct key within the
sequence of answers options, normalized between
0 and 1 (0.0, 0.11, 0.17, 0.2, 0.25, 0.29, 0.33, 0.4,
0.43, 0.5, 0.57, 0.6, 0.67, 0.75, 0.8, or 1.0).

Apart from the initial set of basic features, we
generated more sophisticated features using vari-
ous natural language processing tools. These tools
encompass Linguistic Inquiry and Word Count
2022 (LIWC-22; Pennebaker et al., 2022), evalua-
tions of lexical sophistication relying on TAALES
2.2 (Kyle and Crossley, 2015), and the extraction
of text embeddings with the Bio_ClinicalBERT
model (Alsentzer et al., 2019).

2.1.1 Linguistic Inquiry and Word Count
LIWC-22, created by Pennebaker et al. (2022), is
a text analysis tool that facilitates the exploration
of diverse linguistic dimensions within textual data.
Its utility extends across various fields, including
psychology and communication.

LIWC-22 offers variables including word count
(total words in a text), words per sentence (average
number of words per sentence), big words (percent-
age of words with seven letters or more), and dic-
tionary words. The 2022 version employed in this
study also evaluates newer summary variables such
as analytical thinking (Pennebaker et al., 2014),
clout, authenticity, and emotional tone. These met-
rics, derived from previous research, are calculated
using standardized scores from extensive compari-
son corpora (Boyd et al., 2022).

In addition to the summary variables, LIWC pro-
vides valuable insights into linguistic dimensions
by examining the relative frequencies of different
word categories such as personal pronouns and
negations, represented as percentages.

For this study, LIWC features were indepen-
dently extracted for (1) the item stem of the
multiple-choice question and (2) the aggregated
answer options.
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2.1.2 Lexical Sophistication
TAALES 2.2, developed by Kyle and Crossley
(2015), is a tool designed for the automated anal-
ysis of lexical sophistication, calculating over 400
measures in this domain. Its indices have found
applications in various fields such as educational
psychology, cognitive science, and artificial intel-
ligence. The tool addresses challenges associated
with both second language (L2) and first language
(L1) writing proficiency, L2 speaking proficiency,
as well as spoken and written lexical proficiency.

The five areas of lexical sophistication covered
by TAALES 2.2 include lexical frequency, range
(indicating how widely a word or word family is
used), n-gram frequency (measuring the frequency
of combinations of n number of words), academic
vocabulary, and psycholinguistic word properties
(e.g., age of acquisition, concreteness, familiarity).

The tool takes a single text as input and produces
a list of features for that text. In our study, we uti-
lized the tool to extract the same set of features for
five distinct input types: (1) for the item stem text,
(2) for the item stem text combined with the correct
answer, (3) for all the answer options combined,
(4) for the correct answer, and (5) for the combined
distractors.

2.1.3 Clinical Embeddings
In addition to the interpretable linguistic features
outlined in Sections 2.1.1 and 2.1.2, we also consid-
ered the feature dimensions of clinical embeddings
extracted from the publicly available pre-trained
Bio_ClinicalBERT model (Alsentzer et al., 2019).
These embeddings consist of 768-dimensional vec-
tors for each token within an input text. We ex-
tracted identical features for four distinct input
types:

1. For the item stem text.

2. For the scenario extracted from the item stem
text (i.e., the clinical case description, exclud-
ing the final sentence; e.g., A 65-year-old
woman comes to the physician for a follow-up
examination (...) the left renal artery appears
normal. in Figure 1).

3. For the question extracted from the item stem
text (i.e., retaining only the final sentence in
the item stem text; e.g., Which of the following
is the most likely diagnosis? in Figure 1).

4. For each of the at most ten different answer
options separately.

For each of these input types, we used Hugging
Face’s feature extractor pipeline to extract token
embeddings and compute the average vector over
all token embeddings in the input.

2.1.4 Features Summary
Utilizing the features outlined in Sections 2.1.1
to 2.1.3, we obtained a total of 4,479 features for
each of the 466 multiple-choice questions in the
training set. These features encompass:

1. 5 raw features

2. 235 LIWC-22 features (118 for the item stem
text, 117 for the answers)

3. 1,166 TAALES 2.2 features (202 for the item
stem text, 241 for the item stem text combined
with the correct answer, 241 for all answer
options combined, 241 for the correct answer,
and 241 for the combined distractors)

4. 3,072 clinical features extracted from the
BERT embeddings (768 for the scenario, 768
for the question, 768 for the correct answer,
768 for the aggregated distractors)

2.2 Model Development

Following the extraction of a comprehensive set
of features, as outlined in the preceding section,
our next step involved the development of various
models. We conducted experiments with both sta-
tistical (see Section 2.2.1) and machine learning
(see Section 2.2.2) models utilizing the set of ex-
tracted features (refer to Section 2.1). Additionally,
we explored the fine-tuning of biomedical and clin-
ical language models (see Section 2.2.3). Further-
more, we constructed an ensemble model (detailed
in Section 2.2.4) by leveraging the strengths of
these diverse models. Finally, we ran some feature
importance analysis (Section 2.4).

2.2.1 Statistical Models
In statistical models, adhering to Occam’s Razor
principle (Ortner and Leitgeb, 2011), the goal was
to find a simple yet effective model through two
steps: filtering features and building models using
the stepwise regression procedures (Venables and
Ripley, 2002). The two steps were conducted on
pre-processed data, where all features were nor-
malized to maintain consistency in their scale. Ad-
ditionally, features with missing values were ex-
cluded from the analyses. Ultimately, 3,952 fea-
tures were utilized for the subsequent analyses
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conducted under 10-fold cross-validation (see Sec-
tion 2.3).

Specifically, within each cross-validation fold,
we initially conducted feature selection based on
Pearson’s correlation coefficients between the tar-
get and all features, setting a minimum threshold
of 0.12 (Lovakov and Agadullina, 2021). This step
aimed to identify the most relevant features, con-
sidering that stepwise regression procedures for
building models could become unstable with an
excessively high number of features. The number
of selected features ranged from 60 to 90 across
folds. Next, the selected features underwent step-
wise regression analysis, which involved develop-
ing a series of simple linear regression models by
iteratively removing or adding features to the base-
line model. These models were then compared
based on the information criteria, Akaike Informa-
tion Criterion (AIC; Akaike, 1974) and Bayesian
Information Criterion (BIC; Schwarz, 1978). The
final selected model in each fold was determined
based on the lowest value of either AIC or BIC.
Since AIC or BIC could recommend different mod-
els for each fold, we calculated the average RMSE
across the 10 folds to compare them. Interestingly,
we found that the models recommended by BIC
yielded a lower RMSE compared to those recom-
mended by AIC. Finally, with the correlation filter-
ing and BIC setting applied, 10 simple regression
models were recommended for item difficulty and
response time tasks respectively. The final chosen
model was the one with the lowest RMSE across
all folds.

2.2.2 Machine Learning Models
The machine learning pipeline consisted of a di-
mensionality reduction step followed by a model
fitting step. As dimensionality reduction, we used
a separate principal component analysis (PCA) for
each extracted feature set (i.e., LIWC, TAALES,
and BERT). The number of principal components
retained for each feature set equaled the number
of components required to explain at least 60%
of the variance in the original features. On these
preprocessed features, we trained 4 different ma-
chine learning models: Lasso (regularized linear
regression), Random Forest (RF), Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN).

The Lasso model was used with regulariza-
tion α = 0.1. RF was used with default hy-
perparameters. The hyperparameters for SVM
and KNN were tuned using a grid search with

nested 5-fold cross-validation. For SVM we con-
sidered an RBF kernel with regularization param-
eter C ∈ {0.1, 1, 10, 100} and kernel width γ ∈
{1, 0.1, 0.01, 0.001}. For KNN we considered the
number of neighbors K ∈ {1, 5, 10, 15, 20, 100}.

2.2.3 Language Models
In addition to traditional statistical and machine-
learning models, we also experimented with fine-
tuning a transformer model to predict response time
and item difficulty as a multi-target prediction task.
Previously, Xue et al. (2020) utilized a pre-trained
model for a similar purpose, demonstrating the ben-
efits of transfer learning in enhancing predictions.
However, our methodology diverged in two impor-
tant ways. On the one hand, we framed this as
a multi-target regression task, contrary to treating
response time and item difficulty as separate regres-
sion tasks, thus capturing their interdependencies.
This approach is particularly meaningful as the re-
lationship between the two variables is not strictly
linear (Yaneva et al., 2021, p. 223).

On the other hand, we deliberately selected
domain-specific pre-trained models tailored for
biomedical or clinical texts, known to outper-
form nonspecific models (Alsentzer et al., 2019).
The domain-specific pre-trained language mod-
els under consideration were trained on datasets
from clinical sources such as MIMIC-III, as
well as biomedical corpora like PubMed and
PMC full-text articles and abstracts. These
models encompassed BERT-ClinicalQA (exaflu-
ence, 2021), Bio_ClinicalBERT (Alsentzer et al.,
2019), Bio_ClinicalBERT_emrqa (aaditya, 2022),
Clinical-BigBird (Li et al., 2022), Clinical-
Longformer (Li et al., 2023), and ClinicalBERT
(Wang et al., 2023).

For model training, we initiated the pre-trained
models sourced from Hugging Face (version 4.36),
employing a PyTorch backend (version 2.1). The
models were fine-tuned on an NVIDIA GeForce
RTX 3090 (CUDA 12.2). We employed a BERT-
ForSequenceClassification architecture equipped
with two regression outputs, tailored for predicting
both item difficulty and response time. We utilized
the RMSE loss function to minimize the predicted
item difficulty and response time over three epochs,
assigning equal weight to both targets within the
loss function. The optimization process employed
the AdamW optimizer with a learning rate of 5e−5,
alongside a linear scheduler and weight decay. To
accommodate the LongFormer and Big-Bird mod-
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els, a batch size of one was used.
It should be noted that, given the substantial

difference in scale between the two targets, we
rescaled response time from seconds to minutes
before training, thereby aiding smoother model
convergence. Subsequently, during the inference
stage, response time was transformed back from
minutes to seconds for accurate interpretation.

It is also important to note that we chose to uti-
lize a fixed initialization seed (15012024) for con-
ducting post-hoc predictions after the winner an-
nouncement, aiming to ensure the reproducibility
of the final reported predictions. However, it is im-
portant to acknowledge that the absence of a more
comprehensive hyperparameter search on model
initialization represents a limitation we intend to
address in future work.

We conducted experiments using two different
input formats: (1) solely focusing on the item stem
and (2) concatenating the item stem with the list
of answer options. Initial results suggested that
including the answers led to slightly improved pre-
dictions across all models.

Moreover, we investigated whether integrating
the classification of the exam step as an auxil-
iary task could improve the accuracy of predict-
ing item difficulty and response time. To facilitate
this classification, we introduced three extra out-
put dimensions, indicating the probability of be-
longing to each exam step. This model, denoted
as Bio_ClinicalBERT_FTMT, was initialized with
Bio_ClinicalBERT (Alsentzer et al., 2019) and was
optimized over ten epochs.

2.2.4 Ensemble Model
Motivated by the ‘no free lunch’ theorem (Wolpert
and Macready, 1997), we aimed to leverage the pre-
dictive power of the diverse models introduced in
the previous sections, including statistical, machine
learning, and language models. The goal was to
create an ensemble where individual models, each
with its specific errors, could compensate for one
another. Following the stacking concept, we used
predictions from all individual models on training
instances as features in the ensemble model.

Consistent with our approach in machine learn-
ing models, we applied dimensionality reduction
to the extracted features (i.e., LIWC, TAALES,
and BERT) using PCA. These reduced features
were then incorporated into the ensemble model
as part of its input. As for the choice of ensem-
ble model, we experimented with Lasso, RF, Extra

Trees, multi-layer perception, and gradient boost-
ing regressor.

2.3 Model Selection

During the training phase, we ran a 10-fold cross-
validation experiment on the training data, utilizing
the scikit-learn library. The data was divided into
ten folds, with these identical folds utilized for both
training and evaluating each of the models outlined
in Section 2.2. To maintain consistency, we utilized
a fixed random seed (15012024) for shuffling the
data before the splitting process. Subsequently,
we calculated the average RMSE to assess and
compare the performance of our various models.

2.4 Feature Importances

To better understand how the models used the input
features, we performed some post-hoc interpreta-
tion techniques. One of the model-agnostic tools
that we used is a permutation feature importance
analysis. Such an analysis first randomly shuffles
(i.e., permutes) the values for one of the features in
the dataset. Then, using the models trained before
on the non-shuffled data, cross-validated predic-
tions can be regenerated with the shuffled feature
and performance can be recalculated. In this way,
we can see the impact on the performance of the
model when one of the input features is ‘random-
ized’, and thus get a univariate feature importance
metric. To counter variability, the whole procedure
is repeated 5 times per feature with a different ran-
dom permutation each time, and the average impact
on performance is then reported.

3 Results

3.1 Phase 1: Cross-Validation

Regarding the difficulty, as reported in Figure 2,
the Ensemble and RF methods managed to pro-
vide slightly superior results. However, the dif-
ference in performance was rather subtle, as most
of the models reached RMSE values of approx-
imately 0.30 in most of the cases. Slightly dif-
ferently from that, Bio_ClinicalBERT_emrqa and
Clinical-Longformer performed marginally worse
by achieving an RMSE of 0.31, followed by the
statistical model and Bio_ClinicalBERT_FTMT,
which yielded roughly 0.32 and 0.33 of RMSE,
respectively.

As for the response time, as can be seen in Fig-
ure 3, a more noticeable difference in performance
was observed where Lasso and BERT-ClinicalQA
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Figure 2: Performance of models in predicting diffi-
culty on the training set, evaluated with 10-fold cross-
validation.
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Figure 3: Performance of models in predicting response
time on the training set, evaluated with 10-fold cross-
validation.

had the upper hand since both of them achieved
an RMSE score of approximately 21. As opposed
to that, Bio_ClinicalBERT_FTM, KNN, and SVM
performed relatively poorly, reaching RMSE val-
ues above 27.5. All the other compared methods
provided rather overlapping results.

Submission Strategy At the end of the training
phase, we devised a submission strategy. This
plan entailed submitting our top two models for
each track, with the final submission reserved for a
model distinct from the leading two. This approach
was particularly crucial for the difficulty predic-
tion, given its inherent complexity and the difficulty
in discerning superior models during the training.
With all models demonstrating performance close
to an average baseline (which we calculated our-
selves), uncertainty arose regarding which models
would outperform on the test set. Therefore, maxi-

mizing the diversity in our model selection became
paramount.

For the difficulty prediction, our Ensemble and
RF models achieved the lowest RMSE values.
Consequently, these two models were chosen for
submission during the test phase. To introduce
diversity into our approach, we included BERT-
ClinicalQA in the final run submission because
its predictions were different from the previous
runs and it was one of the top models for pre-
dicting response time. In terms of the response
time prediction, our Lasso and BERT-ClinicalQA
models achieved the highest scores, exhibiting
the lowest RMSE values, and were thus submit-
ted during the test phase. Additionally, to fur-
ther diversify our strategy, we utilized the final
run to submit a completely different model, i.e.,
Bio_ClinicalBERT_emrqa.

3.2 Phase 2: Leaderboard
Tables 1 and 2 present the final evaluation results
for all teams based on the test datasets released by
the leaderboard. For the difficulty prediction (See
Table 1), the baseline model achieved an RMSE
of 0.311. Our team’s RF model reached 0.305,
which was better than the baseline. Compared to
the RMSE results of other teams, the RF model
was in the 4th place out of 43 teams, and its RMSE
was slightly higher than the best (0.299). Apart
from our best model, our team’s ensemble model
also had a good performance, with an RMSE of
0.308 (slightly better than the baseline), ranking
12th out of 43 teams. For the response time pre-
diction (See Table 2), most teams achieved better
results in terms of RMSE compared to the baseline
model (31.68). Our team’s Lasso model performed
impressively better than other models, coming the
2nd out of 34 teams with an RMSE of 24.116, sig-
nificantly better than the baseline and close to the
best RMSE.

Tables 3 and 4 show the performance results of
all our models on the test set. It is evident from
these findings that the Lasso model exhibited su-
perior predictive capability for both difficulty and
response time. Despite our knowing of the Lasso
model’s effectiveness during the cross-validation
experiment (Figure 3) and subsequent winner an-
nouncement (Table 2), its unexpected success in
predicting difficulty on the test set was surprising.
Throughout the training phase, we encountered
challenges in distinguishing between models for
predicting difficulty, as all models performed simi-

517



# Team Run RMSE

1 EduTec electra 0.299
2 UPN-ICC run1 0.303
3 EduTec roberta 0.304
4 ITEC RandomForest 0.305
5 BC ENSEMBLE 0.305

12 ITEC Ensemble 0.308

16 Baseline DummyRegressor 0.311

43 ITEC BERT-ClinicalQA 0.393

Table 1: Our three submissions to the leaderboard on
difficulty prediction. The top 5 submissions are given
as well as the shared task baseline.

# Team Run RMSE

1 UNED run2 23.927
2 ITEC Lasso 24.116
3 UNED run1 24.777
4 UNED run3 25.365
5 EduTec roberta 25.64

25 BaselineDummyRegressor 31.68

32 ITEC BERT-ClinicalQA 53.844
33 ITEC Bio_ClinicalBERT_emrqa 54.719

Table 2: Our three submissions to the leaderboard on
the response time prediction. The top 5 submissions are
given as well as the shared task baseline.

larly close to baseline levels. This initial difficulty
hindered our recognition of the Lasso model as
the optimal choice, despite its strong performance
in predicting response time. Had we submitted
the Lasso model to the difficulty leaderboard, we
would have outperformed the second-best model,
securing the second position on difficulty as well.
As the Lasso model demonstrated superior perfor-
mance in predicting both difficulty and response
time, we will delve deeper into examining the fea-
ture importance of this model in the subsequent
section.

3.3 Feature Importances
The best models based on cross-validated training
RMSE turned out to be the RF for item difficulty
and the Lasso for response time. Therefore, we
conducted a permutation feature importance analy-
sis for these two models. For the item difficulty, the
top features for the RF were the word count from
LIWC (with an average increase in RMSE of 0.034

# Model RMSE

FEATURE-BASED MODELS

4 Lasso ∗ 0.301
7 Random Forest • 0.305
9 kNN 0.307

11 SVM 0.310
12 Statistical Model 0.343

FINE-TUNED LANGUAGE MODELS

1 Clinical-Longformer ◦∗ 0.294
2 ClinicalBERT ◦∗ 0.299
3 Bio_ClinicalBERT ◦∗ 0.300
5 Bio_ClinicalBERT_emrqa ◦∗ 0.302
6 Clinical-BigBird ◦∗ 0.303
8 BERT-ClinicalQA •◦ 0.306

13 Bio_ClinicalBERT_FTMT 0.350

ENSEMBLE MODEL

10 Ensemble • 0.308

Table 3: Performance and ranking of our models in
predicting difficulty on the test set. Models denoted by
• were submitted to the leaderboard. Models marked
with ◦ are reported with post-hoc predictions. Models
labeled with ∗ surpassed our best leaderboard model.

when this feature is randomly shuffled), one of
the BERT answer embeddings (0.022), one of the
BERT distractor embeddings (0.017), and the ana-
lytical thinking measure from LIWC (0.016). All
other features lead to an RMSE increase of at most
0.010. For the response time, the top features of
the Lasso model were the word count from LIWC
(with an average increase in RMSE of 6.8), the
exam step (1.0), the item type (0.69), the number
of answers (0.60), the analytical thinking measure
from LIWC (0.30), and the position of the correct
answer (0.20). All other features lead to an RMSE
increase of at most 0.03.

Both these models also have built-in feature im-
portance metrics: the RF through the heuristic val-
ues observed during training and the Lasso model
through the magnitude of its coefficients. These
metrics revealed that most of the total feature im-
portance weight for the RF and Lasso models was
given to the principal components (PCs) coming
from the BERT embeddings (78% and 76% respec-
tively). However, these PCs also represent 43 out of
the 58 features (74%) remaining after PCA. For the
RF model, each feature had a similar importance of
on average 2.0% ± 1.0% (mean ± standard devia-
tion). On the other hand, for the Lasso model, there
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# Model RMSE

FEATURE-BASED MODELS

1 Lasso • 24.116
8 Random Forest 26.527

11 Statistical Model 27.020
12 kNN 28.919
13 SVM 31.101

FINE-TUNED LANGUAGE MODELS

2 Clinical-Longformer ◦ 24.829
4 ClinicalBERT ◦ 25.643
5 BERT-ClinicalQA •◦ 26.014
6 Bio_ClinicalBERT ◦ 26.310
7 Bio_ClinicalBERT_FTMT 26.504
9 Clinical-BigBird ◦ 26.555

10 Bio_ClinicalBERT_emrqa •◦ 26.771

ENSEMBLE MODEL

3 Ensemble ◦ 25.298

Table 4: Performance and ranking of our models in
predicting response time on the test set. Models denoted
by • were submitted to the leaderboard. Models marked
with ◦ are reported with post-hoc predictions.

was a clear ranking of feature sets, with the raw
features first (4.7%± 4.3%) followed by the BERT
PCs (1.8% ± 1.4%) and the LIWC PCs (0.10%
± 0.069%). Interestingly, while the LIWC PCs
seem to have a low importance to the Lasso model
based on their coefficients, they had a big impact on
predictive performance based on the permutation
feature importance test.

4 Discussion

As previous research by the shared task organiz-
ers has shown (Ha et al., 2019a; Xue et al., 2020;
Yaneva et al., 2020, 2021), predicting response
time and difficulty of multiple-choice questions
for medical licensing exams is a challenging task.
In this study, our team tried to solve this challenge
by adopting a multidisciplinary perspective, com-
bining insights from statistical modeling, machine
learning, and natural language processing.

While previous studies have primarily concen-
trated on examining the influence of exam and item
metadata, along with certain linguistic complexity
features (e.g., Ha et al., 2019a; Yaneva et al., 2021),
we explored the integration of several novel, unex-
plored features. While our results validate the im-
portance of specific raw metadata features (such as
the number of answer options), they also highlight

the significance of features derived from LIWC
and TAALES, as well as embeddings from biomed-
ical language models. Notably, the LIWC feature
indicating the degree of “analytical thinking” for
answers emerged as particularly noteworthy for
predicting response time.

Regarding the models, it is noteworthy that the
more sophisticated ones did not surpass the less
intricate models. Simple models proved more ac-
curate in predicting the response time of multiple-
choice questions. This resonates with Occam’s
Razor principle, which favors simpler models as
long as their performance matches or exceeds that
of more complex alternatives (e.g., Ortner and Leit-
geb, 2011). In our study, models utilizing Lasso
or RF with principal component features outper-
formed the fine-tuned language model with em-
beddings. This suggests that, for this specific task,
traditional machine learning methods incorporating
dimensionality reduction were more effective and
robust compared to complex statistical models.

5 Conclusion

Our team’s contribution to the shared task of pre-
dicting the difficulty and response time of medical
exam questions demonstrates that simpler models
like Lasso (l1-regularized) or RF regression, which
utilize principal component features derived from
linguistic features and clinical embeddings, outper-
form more complex, fine-tuned NLP models. In
the winner announcement, the RF model secured
the 4th position out of 43 submissions for difficulty,
while the Lasso model attained the 2nd position
out of 34 for response time. Post-hoc analyses re-
vealed that if we had submitted the predictions of
the Lasso model of difficulty to the leaderboard,
we would have surpassed the second position in
predicting difficulty as well.

Moreover, predicting the response time for med-
ical multiple-choice questions has proven to be a
more straightforward task compared to predicting
the difficulty of such questions. Response time pri-
marily hinges on item length (i.e., word count and
number of answers), item type, exam step, and the
level of analytical thinking required for the answers,
as illustrated by permutation feature importance
analyses. Conversely, predicting item difficulty
poses greater challenges, with all models approach-
ing an average baseline performance. Neverthe-
less, post-hoc analyses suggest that more extensive
experimentation with fine-tuned language models
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could potentially aid in discerning the difficulty of
multiple-choice questions. While response time
can be more accurately predicted from linguistic
features like word count, predicting difficulty may
require more intricate modeling of deep clinical
text representations.

6 Limitations

In the future study, we could deepen our under-
standing of our findings, potentially shedding light
on the circumstances in which simpler models
might be advantageous.

One initial limitation we would have liked to
tackle is the utilization of student responses in-
stead of percentage- and mean-aggregated targets.
This limitation stems from the fact that we only
received aggregated or summarized data for diffi-
culty and response time per item, rather than the
individual-level data. Access to the individual-level
data would have allowed us to explore more ad-
vanced psychometric models that consider interac-
tions between items and students.

Another limitation we aim to address is conduct-
ing a more comprehensive study on fine-tuning
language models. Specifically, we plan to delve
into a more exhaustive grid search, which could
potentially illuminate the most optimal model ini-
tialization and hyperparameters.

Finally, another constraint of our study is the
possibility of overlooked features in the data. This
limitation arises from our focus on a predetermined
set of features, including LIWC, TAALES, and
the BERT clinical model, for feature selection. In
future research, additional methods for feature ex-
traction could be explored.
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Abstract

This paper summarizes our methodology and
results for the BEA 2024 Shared Task. This
competition focused on predicting item diffi-
culty and response time for retired multiple-
choice items from the United States Medical
Licensing Examination® (USMLE®). We ex-
tracted linguistic features from the item stem
and response options using multiple methods,
including the BiomedBERT model, FastText
embeddings, and Coh-Metrix. The extracted
features were combined with additional fea-
tures available in item metadata (e.g., item type)
to predict item difficulty and average response
time. The results showed that the BiomedBERT
model was the most effective in predicting item
difficulty, while the fine-tuned model based on
FastText word embeddings was the best model
for predicting response time.

1 Introduction

In standardized exams, the examination of item
characteristics is highly crucial for ensuring the
fairness and validity of test results. For example,
the difficulty of items pertains to the likelihood of
an examinee answering the items correctly. Incor-
porating a broad range of item difficulty levels in a
standardized exam can help reduce measurement
error and thereby improve the accuracy of the mea-
surement process (Kubiszyn and Borich, 2024). In
addition, while response time is often linked to item
difficulty (i.e., more difficult items require more
time to answer) (Yang et al., 2002), this variable it-
self can also offer new insights into examinees’ test
completion processes, such as their testing engage-
ment and cognitive processes, thereby supporting
the validity of test results. Furthermore, understand-
ing item characteristics can also be advantageous
for modern test administration methods, including
applications in automated item assembly, computer-
ized adaptive testing, and personalized assessments
(Baylari and Montazer, 2009; Wauters et al., 2012).

The difficulty of items and the average response
time required to answer them are typically esti-
mated based on empirical data collected during
test pretesting. However, pretesting and obtain-
ing robust results often require a large sample of
examinees, which can incur substantial test admin-
istration costs. As a result, researchers have ex-
plored various methods to predict item character-
istics without an actual test administration. For
instance, researchers have sought estimates of item
difficulty from domain experts and test develop-
ment professionals. However, this approach has not
consistently produced satisfactory or reliable esti-
mations (Bejar, 1983; Attali et al., 2014; Wauters
et al., 2012; Impara and Plake, 1998). Another line
of research seeks to predict item characteristics
based on only item texts, such as the passages in
source-based items, item stem, and response op-
tions (Yaneva et al., 2019; Hsu et al., 2018). This
approach employs text-mining techniques to ex-
tract surface features (e.g., the number of words
in the texts) and complex features (e.g., semantic
similarities of sentences) from item texts, to make
predictions using advanced statistical models.

Building on the second line of research in pre-
dicting item characteristics based on item texts, the
National Board of Medical Examiners (NBME)
initiated the BEA 2024 Shared Task (https://
sig-edu.org/sharedtask/2024) for automated
prediction of item difficulty and item response time.
The released dataset contained 667 previously used
and now retired items from the United States Med-
ical Licensing Examination® (USMLE®). The
USMLE is a series of high-stakes examinations
(also known as Steps; https://www.usmle.org/
step-exams) to support medical licensure deci-
sions in the United States. The items from USMLE
Steps 1, 2 Clinical Knowledge (CK), and 3 focus
on a wide range of topics relevant to the practice of
medicine.

In the BEA 2024 Shared Task, research teams
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were invited to utilize natural language processing
(NLP) methods for extracting linguistic features of
the items and using them to predict the difficulty
and response time of the items. Our team employed
state-of-the-art large language models (LLMs) to
extract the features and build predictive models
for item difficulty and response time. This paper
documents the methods and results of our best-
performing models for predicting item difficulty
and response time separately.

2 Related work

The interest and effort in predicting item difficulty
based on item texts dates back decades in the mea-
surement literature. Early work in item difficulty
prediction primarily focused on identifying how
item difficulty is influenced by a set of readily avail-
able, easily extracted, or manually coded item-level
features. For example, Drum et al. (1981) predicted
the difficulty of 210 reading comprehension items
using various surface structure variables and word
frequency measures for the text, such as the num-
ber of words, content words, or content-function
words. Freedle and Kostin (1993) predicted the dif-
ficulty of 213 reading comprehension items using
12 categories of sentential and discourse variables,
such as vocabulary, length of texts, and syntactic
structures (e.g., the number of negations). Perkins
et al. (1995) employed artificial neural networks
to predict the item difficulty of 29 items in a read-
ing comprehension test. They coded the items to
extract three types of features: text structure (e.g.,
the number of words, lines, paragraphs, sentences,
and content words), propositional analysis of pas-
sages and stems (e.g., the number of arguments,
modifiers, and predicates), and cognitive process
(e.g., identify, recognize, verify, infer, generalize,
or problem-solving).

Research focused on the prediction of item char-
acteristics such as difficulty and response time has
been significantly influenced by the availability and
application of emerging techniques in NLP and ma-
chine learning AlKhuzaey et al. (2023). For exam-
ple, Yaneva et al. (2019) employed NLP methods
to extract syntactic features to predict item diffi-
culty, which were identified as crucial predictors.
Another application of NLP methods involves as-
sessing the linguistic complexity or readability of
item texts to predict item difficulty. Benedetto et al.
(2020a), for instance, calculated readability indices
for item texts and combined them with other fea-

tures to predict item difficulty. However, readabil-
ity indices did not perform well as predictors of
item difficulty–a finding consistent with Susanti
et al. (2017) who noted that readability indices
were among the least important predictors of item
difficulty.

NLP methods can also be used to extract Term
Frequency-Inverse Document Frequency (TF-IDF)
features. TF-IDF measures the frequency of words
or word sequences in a document and adjusts this
count based on their frequency across a collection
of documents. This approach emphasizes the im-
portance of specific words to a particular docu-
ment, with higher values indicating greater poten-
tial importance (Salton, 1983). In a relatively re-
cent study predicting item difficulty for newly gen-
erated multiple-choice questions, Benedetto et al.
(2020b) extracted TF-IDF features and achieved a
root mean square error of 0.753.

An important application of NLP techniques is
the extraction of semantic features from item texts.
Word embedding is a technique that converts texts
into numerical values in vector space, capturing
the meanings of words across different dimensions
(Mikolov et al., 2013). Pre-trained NLP models
such as Word2Vec and GLoVe allow researchers to
extract word embedding features from item texts
(e.g., Firoozi et al., 2022). For example, Hsu et al.
(2018) transformed item texts into semantic vectors
and then used cosine similarity to measure the se-
mantic similarity between different pairs of items.
Additionally, (Yaneva et al., 2019) extracted word
embedding features from multiple-choice items in
high-stakes medical exams. Along with other lin-
guistic and psycholinguistic features in predicting
item difficulty, they found that word embedding
features contributed most to the predictive power.

More recently, a significant breakthrough in the
NLP field has been the development of LLMs such
as BERT (Devlin et al., 2018) and its variants,
which were trained using different mechanisms
or training datasets. For example, Zhou and Tao
(2020) utilized a BERT-variant model to predict
the difficulty of programming problems. Their
results showed that compared with BERT, Distil-
BERT, a small version of the BERT base model,
was the best-performing model when the only avail-
able data for fine-turning was the text of the items.
Benedetto et al. (2021) also compared the perfor-
mance of BERT and DistilBERT in predicting the
difficulty of multiple-choice questions and found
that the BERT-based models significantly outper-
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formed the two baseline models.

Unlike the prediction of item difficulty, the pre-
diction of response time has not been widely in-
vestigated in the literature. This is mainly due
to the limited availability of response time data.
However, with the increasing use of digital assess-
ments, such as computer-based and computerized-
adaptive tests, in operational testing, the collection
of response data has become easier, which moti-
vated researchers to employ predictive models to
predict the average response time required to solve
the items (e.g., Baldwin et al., 2021; Hecht et al.,
2017; Yaneva et al., 2019).

3 Methodology

3.1 Dataset

As mentioned earlier, this study utilized an empir-
ical dataset released by NBME, which included
667 multiple-choice items previously administered
in the USMLE series. Due to the requirements
of the BEA 2024 Shared Task, the data was re-
leased in two stages. Initially, 446 multiple-choice
items were provided for extracting linguistic fea-
tures from the items and building predictive models
based on the extracted features. For each item, the
dataset encompasses the source texts (typically a
clinical case followed by a question) and the texts
for each response option. The response options for
the questions vary and can include up to 10 options,
each represented in a separate column. When the
number of response options was less than 10, the
remaining columns were left empty.

Additionally, the dataset contained metadata
with four additional variables: Item type (text-only
items versus items containing pictures), exam steps
(Steps 1, 2, or 3 in the USMLE series), item dif-
ficulty, and average response time. Subsequently,
the predictive models trained in the first stage were
applied to make predictions for the remaining 201
items in the second stage, serving as the testing
set for evaluating the performance of the predictive
models for item difficulty and response time. The
structure of the second dataset mirrors that of the
first, with the exception that the item difficulty and
response time variables were not immediately avail-
able. These variables were released after the sub-
mission deadline for the BEA 2024 Shared Task, al-
lowing for the identification of the best-performing
trials among the participating teams.

3.2 Our Best Model for Difficulty Prediction
Here, we describe the details of our best-
performing model for predicting item difficulty
(RMSE = .318), which performed slightly worse
than a baseline dummy regressor (RMSE = .311)
and ranked at the 20th place out of 43 submissions
in the difficulty prediction leaderboard.

3.2.1 Feature Extraction
We extracted linguistic features from item stems
and response alternatives (i.e., the answer key and
the incorrect response options) by leveraging both
pre-trained large-language models and more inter-
pretable text representations such as connectivity,
cohesion, and text length. We started the feature ex-
traction process by concatenating the stem, key, and
alternatives of each item in a single data frame col-
umn and separated each item into individual data
files to extract Coh-Metrix features (McNamara
et al., 2014; Graesser et al., 2011). Concatenating
item stems and alternatives served two purposes:
(1) Adequately represent item length in terms of
stem and alternatives and (2) control for the dif-
ferential number of alternatives that each item in-
cludes. Coh-Metrix includes 108 features and ana-
lyzes a text on multiple measures of language and
discourse (Graesser et al., 2011).

Coh-Metrix focuses on six theoretical levels of
text representation: words, syntax, the explicit
textbase, the referential situation model, the dis-
course genre and rhetorical structure, and the prag-
matic communication level (Graesser et al., 2014).
It generates indices of text, including paragraph
count, sentence count, word count, narrativity, syn-
tactic simplicity, referential cohesion, deep cohe-
sion, noun overlap, stem overlap, latent seman-
tic analysis, lexical diversity, syntactic complex-
ity, syntactic pattern density, and readability. We
removed four features from Coh-Metrix indices
due to no variability, including paragraph count
(i.e., the number of paragraphs), the standard devia-
tion of paragraph length, the mean Latent Semantic
Analysis (LSA) overlap in adjacent paragraphs, and
the standard deviation of LSA overlap in adjacent
paragraphs.

In the next step, we utilized the BiomedBERT
model (Gu et al., 2020) to extract new features.
This model, which was previously named PubMed-
BERT, is a pretrained LLM based on abstracts from
PubMed and full-text articles from PubMedCen-
tral. We chose this particular model because it is
known to achieve state-of-the-art performance on
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many biomedical NLP tasks. By using Biomed-
BERT, we obtained sentence embeddings for the
item stems and alternatives and then computed the
cosine similarity between item sentence embed-
dings and alternative stem embeddings. Cosine
similarity, which is commonly used to quantify the
degree of similarity between two sets of informa-
tion, was computed as the cosine angle between
the embedding vectors of item stem and alterna-
tives. As cosine similarity, ranging between 0 and
1, gets closer to 1, it indicates more resemblance
between the embedding vectors obtained using the
item stem and alternatives.

In the final step, we also extracted word embed-
dings for the concatenated text using stems and al-
ternatives by tokenizing the text using the Biomed-
BERT model (Gu et al., 2020). BiomedBERT has
768 dimensions with a maximum length of 512
words. We extracted the last hidden layer of em-
beddings. We created a new data frame composed
of three sets of features extracted (i.e., Coh-Metrix
features using the stem, key, and alternatives of
each item, the cosine similarity between the stem
and alternatives, and word embeddings using the
stem, key, and alternatives) and the ground truth of
item difficulty. The final data frame is composed
of 882 features and the target variable of item diffi-
culty.

3.2.2 Model Training

To identify the best model with the lowest RMSE
value, we used 85% of the data as our training set
and 15% as our holdout test set. Because the sam-
ple size was too small (N = 466 of items shared in
total) and we had a very large set of features (N =
882), we first applied a dimension reduction tech-
nique, Principal Component Analysis (PCA) (Wold
et al., 1987). A PCA model with 30 components
explained 99% of variability in the dataset, and
thus, the final feature set included 30 components
extracted through the PCA analysis. We used lasso
regression (Tibshirani, 1996) with repeated 5-fold
cross-validation to select the best hyperparameter
(i.e., alpha). Alpha in lasso regression is the model
penalty that determines the amount of shrinkage
in the model. An advantage of lasso regression is
the application of a regularization algorithm that
controls for the irrelevant features in the model by
shrinking the contribution of irrelevant features to
zero. An alpha value of .01 yielded the best model
during the cross-validation stage.

3.2.3 Results
With our pseudo-test set held out from the shared
training set, we obtained a Mean Squared Error
(MSE) value of .064, a Root Mean Squared Error
(RMSE) value of .253, and a Mean Absolute Error
(MAE) value of .190, and a Pearson’s correlation
coefficient of .555.

3.3 Our Best Model for Response Time
Prediction

Our solution that achieved the best performance in
predicting response time differed from the one that
was best at predicting item difficulty. This solution
is briefly documented below.

3.3.1 Feature Extraction
First, FastText word embeddings were gener-
ated for each item stem and response option.
We employed the pre-trained FastText embed-
dings (wiki-news-300d-1m.vec.zip; obtained from
https://fasttext.cc/docs/en/english-vectors.html) to
map each word in the text to its corresponding 300-
dimensional vector representation. FastText is a
modified version of word2vec; the difference is that
it treats each word as composed of n-grams rather
than the original word in Word2Vec (Mikolov et al.,
2017). For each text option, the embeddings of the
first 60 words were concatenated to form a fea-
ture vector, resulting in a dimension of 18,000 (60
words × 300 dimensions) for each option. If the
text had fewer than 60 words, the corresponding
vector was padded with zeros.

Similar to the approach taken for item difficulty
predictions, cosine similarity scores between each
pair of alternatives (i.e., response options) were
calculated using the embeddings from the Biomed-
BERT model. For each pair, the cosine similarity
between their embeddings was computed to cap-
ture the semantic differences between different re-
sponse options. The extracted features were then
combined with the dummy-coded item develop-
ment information (e.g., text-based items only vs.
items including pictures; administration step in the
USMLE series) to form the final feature set. Unlike
in the item difficulty prediction, we did not extract
any other linguistic features in response time pre-
diction.

3.3.2 Model Training
Considering the extremely high dimensionality of
the features, we performed feature selection and
dimension reduction techniques. First, using the
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available information on response time in the train-
ing set (N = 466), we eliminated the feature
columns that had an absolute correlation coeffi-
cient smaller than 0.1. Then, we performed PCA
to extract principal components until they could
capture 95% of the information presented in the
original feature set. To this end, we obtained a final
feature set with 339 features to train an algorithm.

As before, the model training involved the use
of lasso regression due to its ability to perform
feature selection and handle multicollinearity in
high-dimensional data. The training process was
performed using 10-fold cross-validation to opti-
mize the hyperparameter (i.e., alpha) and evaluate
the model’s performance. In terms of the hyperpa-
rameter search space, the regularization strength
(alpha) was tuned using a randomized search over
a logarithmic scale from 1e-4 to 1e-0.05, with 1000
candidate values. An alpha value of .44 yielded
the best model during the cross-validation stage.
Additionally, the fit intercept parameter was tested
with both True and False values, while the selection
parameter was tested with ’cyclic’ and ’random’
options1.

3.3.3 Results
Upon comparing our predicted response time and
the released response time from the BEA 2024
Shared Task, we found this solution (RMSE =
31.48; MSE = 990.98; MAE = 23.54, r =
0.209) was slightly better than the baseline dummy
regressor (RMSE = 31.68), which ranked 24th

among the 34 submissions.

4 Discussion and Conclusion

The competition results for the BEA 2024 Shared
Task indicated that it is difficult to predict item
characteristics such as difficulty using linguistic
features (Yaneva et al., 2024). Only 15 teams out
of 43 managed to perform better than a baseline
dummy regressor when it comes to predicting item
difficulty using textual features extracted from the
items. These results suggest that linguistic features
may not be sufficient to capture the complex inter-
play between item features and item difficulty.

Unlike predicting item difficulty, predicting the
average response time using linguistic features ap-
pears to be a more promising task. Out of 34 sub-
missions, 24 teams performed better than a base-
line dummy regressor in predicting the average

1Our codes for predicting item difficulty and response time
are available at https://osf.io/dwe4n/.

response time. This finding is not necessarily sur-
prising because the average reading time required
for the items is likely to be correlated with the
linguistic features extracted from the items.

Overall, the results for the BEA 2024 Shared
Task indicate that predicting item characteristics
such as difficulty remains challenging and requires
factors beyond linguistic or textual features.
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Abstract

In this paper, we present the details of our
contribution to the BEA Shared Task on Au-
tomated Prediction of Item Difficulty and Re-
sponse Time. Participants in this collaborative
effort are tasked with developing models to pre-
dict the difficulty and response time of multiple-
choice items within the medical domain. These
items are sourced from the United States Med-
ical Licensing Examination® (USMLE®), a
significant medical assessment. In order to
achieve this, we experimented with two fea-
turization techniques, one using lingusitic fea-
tures and the other using embeddings gener-
ated by BERT fine-tuned over MS-MARCO
dataset. Further, we tried several different ma-
chine learning models such as Linear Regres-
sion, Decision Trees, KNN and Boosting mod-
els such as XGBoost and GBDT. We found that
out of all the models we experimented with
Random Forest Regressor trained on Linguistic
features gave the least root mean squared error,
securing fourteenth rank out of 43 for Item Dif-
ficulty Prediction and ninth rank out of 34 for
Response Time Prediction. We made our code
publicly available on GitHub.1.

1 Introduction

To conduct fair standardized tests for evaluating
the learning outcomes of students, it is necessary
to design tests that cover variety of questions of
all difficulty levels such as ‘easy’, ‘moderate’ and
‘difficult’ ones. Allowed exam time is another com-
ponent that impacts the difficulty of exam. Allow-
ing ample amount of time to solve the questions
can considerably reduce the difficulty whereas pro-
viding very little time to solve the exam questions
can on other hand, make the exam unreasonably
difficult. Thus, the difficulty level of questions and
the time taken to solve the questions(response time)

1https://github.com/rishikeshF/sig-edu-bea-2024-
predicting-response-time-and-question-difficulty

are two critical factors to determine the overall dif-
ficulty of exam.

Determining the difficulty of items as well as
the response time for this task, is a challenge in
itself. Conventionally, item difficulty and the re-
sponse time are gathered through pretesting, where
new items are incorporated into live exams along-
side scored items. However, this process is labor-
intensive and costly, often limiting the number of
items that can be created. Furthermore, the reliance
on pretesting poses security risks, as items may be
copied or leaked due to their repeated usage.

To tackle these challenges, there’s a growing in-
terest in predicting item characteristics such as diffi-
culty and response time directly from the item text.
This approach, known as the "cold-start parameter
estimation problem" (McCarthy et al., 2021) aims
to streamline the process and enhance fairness by
reducing the reliance on pretesting. By utilizing
predictive models, estimates of item difficulty and
response time can be generated, enabling a more ef-
ficient parameter estimation process with a smaller
sample of test-takers.

In this paper, we examine several approaches
which build on predictive machine learning mod-
els (for example, linear regression, decision trees)
and deep learning models(such as BERT). Our
best model for the task of item difficulty achieved
RMSE of 0.31 and the best model for the task of
predicting response time achieved RMSE of 31.68.
We hope that the exploration of models in this paper
is able to help future researchers in the evaluation
of exams.

2 Related Work

One of the earliest applications of predicting item
difficulty emerged in the realm of language test-
ing. Here, a framework was introduced to assess
learners’ language proficiency in English, German,
or French (Beinborn et al., 2015). Controlling the
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difficulty of tests has also been important for au-
tomated generation of MCQ format tests(Alsubait
et al., 2013). Another application can be found in
context of automated grading where question dif-
ficulty estimates guide test creation(Padó, 2017).
Thus, predicting item difficulty has been a subject
of growing research and with passage of time has
extended to high-stakes applications such as medi-
cal or clinical exam(Yaneva et al., 2020).

In order to automate difficulty prediction, ma-
chine learning and NLP based approaches using
word lengths, sentence lengths and tf-idf featuriza-
tion were proposed (Settles et al., 2020). A further
improvement to it can be seen in the form of intro-
duction of linguistic features (Yaneva et al., 2021)
which drastically improved the performance of ap-
proaches based on using machine learning models.

On similar lines, machine learning and deep
learning approaches have been researched upon
for predicting the response time (Baldwin et al.,
2021). Other techniques employed in this regard
include using transfer learning (Xue et al., 2020)
and language models such as BERT (Devlin et al.,
2019).

3 Experiments

For assessing performance, Root Mean Squared
Error (RMSE) serves as the metric for predicting
response times and item difficulty in regression
tasks. Its suitability stems from the intuitive nature
of RMSE, making it well-aligned with the nature
of these regression tasks.

3.1 Dataset
The data for both tasks, response time prediction
and difficulty prediction, consists of 667 previously
used and now retired Multiple Choice Questions
(MCQs) from USMLE Steps 1, 2 CK, and 3. The
USMLE is a series of examinations (called Steps)
to support medical licensure decisions in the United
States that is developed by the National Board of
Medical Examiners (NBME) (Yaneva et al., 2024)
and Federation of State Medical Boards (FSMB).
Here is a sample question from USMLE Step 1.

Q. A 65-year-old woman comes to the
physician for a follow-up examination after
blood pressure measurements were 175/105
mm Hg and 185/110 mm Hg 1 and 3 weeks
ago, respectively. She has well-controlled type
2 diabetes mellitus. Her blood pressure now is

175/110 mm Hg. Physical examination shows
no other abnormalities. Antihypertensive
therapy is started, but her blood pressure
remains elevated at her next visit 3 weeks later.
Laboratory studies show increased plasma
renin activity; the erythrocyte sedimentation
rate and serum electrolytes are within the
reference ranges. Angiography shows a
high-grade stenosis of the proximal right renal
artery; the left renal artery appears normal.
Which of the following is the most likely
diagnosis?
(A) Atherosclerosis
(B) Congenital renal artery hypoplasia
(C) Fibromuscular dysplasia
(D) Takayasu arteritis
(E) Temporal arteritis

The part describing the case is referred to as
stem, the correct answer is referred to as key, and
the incorrect answer options are known as distrac-
tors. All items are MCQs that test medical knowl-
edge and were written by experienced subject mat-
ter experts following a set of guidelines, stipulating
adherence to a standard structure. These guidelines
require avoidance of “window dressing” (extrane-
ous material not needed to answer the item), “red
herrings” (information designed to mislead the test-
taker), and grammatical cues (e.g., correct answers
that are longer or more specific than the other op-
tions). The goal of standardizing items in this man-
ner is to produce items that vary in their difficulty
and discriminating power due only to differences in
the medical content they assess. The items were ad-
ministered within a standard nine-hour exam. For
this shared task, the item characteristic data was
derived from first-time examinees from accredited
US and Canadian medical schools.

Each item is tagged with the following item char-
acteristics:

• Item difficulty A measure of item difficulty
where higher values indicate more difficult
items.

• Time intensity Arithmetic mean response
time, measured in seconds, across all exam-
inees who attempted a given item in a live
exam. This includes all time spent on the item
from the moment it is presented on the screen
until the examinee moves to the next item, as
well as any revisits.3. Feature engineering
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• ItemNum denotes the consecutive number of
the item in the dataset (e.g., 1,2,3,4,5, etc).

• ItemStem_Text contains the text data for the
item stem (the part of the item describing the
clinical case).

• Answer_A contains the text for response op-
tion A

• Answer_B contains the text for response op-
tion B

• Answer_C contains the text for response op-
tion C.

(...)

• Answer_J contains the text for response op-
tion J. For items that have fewer than J re-
sponse options, the remaining columns are
left blank. For example, if an item contains re-
sponse options A to E, the fields for columns
F to J are left blank for that item.

• Answer_Key contains the letter of the correct
answer for that item.

• Answer_Text contains the text of the correct
response for the item.

• ItemType denotes whether the item contained
an image (e.g., an x-ray image, picture of a
skin lesion, etc.) or not. The value “Text”
denotes text-only items that do not contain
images and the value “PIX” denotes items
that contain an image. Note that the images
are not part of the dataset.

• EXAM denotes the Step of the USMLE exam
the item belongs to (Step 1, Step 2, or Step
3). For more information on the Steps of
the USMLE see https://www.usmle.org/step-
exams.

• Difficulty contains the item difficulty measure.
Higher values indicate more difficult items.

• Response_Time contains the mean response
time for the item measured in seconds.

The training set comprised of 466 examples and
the test set contained 201 items. The combined
length of question, multiple choices and the answer
was mostly less than 200 words and maxed out at
379. Figure 1 shows a distribution on the number
of words in the examples.

Figure 1: Number of words histogram

4 Methods

4.1 Feature Engineering

For both the tasks, two featuring engineering ap-
proaches were tried. First, using embeddings the
entire text (comprised of question, multiple choices
and corresponding answer) was converted into a
768 dimensional vector. The second approach
used linguistic features. The details of both the
approaches are as follows:

4.1.1 Embeddings
In order to represent the textual features, sentence
Transformer based embeddings were used. The
sentence transformer model used is pritamdeka/S-
PubMedBert-MS-MARCO (Deka et al., 2022)
(from HuggingFace). It maps sentences and para-
graphs to a 768 dimensional dense vector space and
can be used for tasks like clustering or semantic
search. This sentence transformer model has been
developed by fine-tuning microsoft/BiomedNLP-
PubMedBERT-base-uncased-abstract-fulltext (Gu
et al., 2020) model on MS-MARCO (Nguyen et al.,
2016) dataset. It can be used for the information
retrieval task in the medical or health domain.

4.1.2 Text based/Linguistic Features
Another method explored for text representation in-
volved leveraging specific linguistic features: word
count, number of unique words, number of addi-
tives, number of unique additives, number of nor-
malized additives, as well as counts of numbers
and letters. Additionally, two additional features,
namely ’ItemType’ (indicating the presence of a
picture) and ’EXAM’ (exam level), were incorpo-
rated. Each question and word were consequently
encoded into a nine-dimensional vector, encom-
passing these precise linguistic characteristics for
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subsequent analysis.

4.2 Machine Learning Models
Various machine learning models were explored,
encompassing classical approaches like linear re-
gression, Decision Tree Regressor, and K-Nearest
Neighbours regressor, as well as advanced tech-
niques such as fine-tuned language models like
BERT, simple one-neuron networks, and ensemble
methods including random forest regressor. Ad-
ditionally, boosted models like gradient boosted
decision trees regressor and XGBoost regressor
were investigated.

4.2.1 Hyperparameters for difficulty
prediction

• Decision Trees Max-depth: 3

• KNN Number of neighbors: 7

• XGBRegressor Max-depth: 5

Number of estimators: 700

• GBDT: Max-depth: 3

Number of estimators: 600

• Random Forest Regressor: Max-depth: 3

Number of estimators: 700

4.2.2 Hyperparameters for response time
prediction

• Decision Trees Max-depth: 3

• KNN Number of neighbors: 7

• XGBRegressor Max-depth: 5

Number of estimators: 600

• GBDT: Max-depth: 3

Number of estimators: 600

• Random Forest Regressor Max-depth: 6

Number of estimators: 800

5 Observations and Results

Table 1 depicts the Root Mean Squared Error ob-
tained for different machine learning models and
neural networks along with the corresponding fea-
turization method used.

In our investigation employing various machine
learning models and featurization techniques, we
found Fine-Tuned BERT to yield consistently sta-
ble results, with the lowest RMSE of 0.31 in the

task of difficulty prediction. Conversely, our anal-
ysis revealed that the Random Forest Regressor,
particularly when paired with Linguistic Features,
exhibited superior performance in predicting re-
sponse time with RMSE of 31.68. These results
were based on the models trained on a subset of
training dataset instead of entire training set, as a
smaller subset was used for validation and testing
prior to the release of test set.

After training the models on entire training data,
the results obtained differed from the previous re-
sults. This time, Linguistic features used with Lin-
ear Regression gave the lowest RMSE of 0.302
on Difficulty prediction and RMSE of 26.181 on
Response Time prediction. These were closely
matched by Random Forest Regressor with scores
of 0.303 and 26.234 for Difficulty prediction and
Response Time prediction respectively. Table 1
displays the RMSE obtained for different models.

A noteworthy observation here is that Linear
Regression performed the worst(RMSE of 0.614)
with embeddings as features for Difficulty predic-
tion task but performed the best(RMSE of 0.302)
when used with Linguistic features, surpassing all
other models. This substantial improvement in the
performance can be attributed to the fact that total
number of input vector size was reduced from 768
dimensions(when used with embeddings) to 9 di-
mensions(when used with linguistic features), thus
eliminating the ’curse of dimensionality’.

Notably, linguistic features, encompassing syn-
tactic aspects such as word count and the pres-
ence of additives, emerged as pivotal predictors for
response time estimation (Baldwin et al., 2021).
Models utilizing embeddings exhibited an average
RMSE for the response time task exceeding that
of models leveraging linguistic features by 12 sec-
onds. This observation aligns with the intuitive
notion that a greater word count in a question corre-
lates with increased time required for student com-
prehension and analysis, consequently resulting in
extended response times. The rationale lies in the
fact that candidates typically need more time to
read a question with a higher word count, thereby
automatically increasing the response time.

6 Conclusion

In conclusion, our research demonstrates the effi-
cacy of machine learning models and feature engi-
neering in addressing key challenges of standard-
ized testing. Linear Regression coupled with lin-
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Serial
number

Model Featurization RMSE for Task 1:
Predicting Diffi-
culty

RMSE for Task 2:
Predicting Response
Time

1. One neuron network Embeddings 0.368 32.708
2. Fine-Tuned BERT Embeddings 0.321 78.837
3. Linear Regression Embeddings 0.614 49.583
4. Decision Trees Embeddings 0.320 29.927
5. KNN Embeddings 0.332 29.727
6. XGBoost Embeddings 0.319 29.657
7. GBDT Embeddings 0.32 29.927
8. Random Forest Linguistic Features 0.303 26.234
9. Linear Regression Linguistic Features 0.302 26.181
10. Decision Trees Linguistic Features 0.348 28.862
11. KNN Linguistic Features 0.324 29.574
12. XGBoost Linguistic Features 0.353 28.644
13. GBDT Linguistic Features 0.348 28.862

Table 1: RMSE for different models and the corresponding featurization method

Figure 2: Number of words versus Response time

guistic features gave the lowest RMSE scores of
0.302 and 26.181 for the Difficulty prediction and
response time prediction respectively. These find-
ings highlight the potential of predictive models
to streamline assessment processes and improve
fairness. By reducing reliance on labor-intensive
pretesting, our approach offers a scalable alterna-
tive while ensuring the integrity of assessment ma-
terials. Future research should explore additional
techniques and validate findings across diverse ed-
ucational contexts. Overall, our work advances
educational assessment by offering innovative so-
lutions to test design challenges.
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Abstract

This paper presents our system developed for
the Shared Task on Automated Prediction of
Item Difficulty and Item Response Time for
USMLE questions, organized by the Associa-
tion for Computational Linguistics (ACL) Spe-
cial Interest Group for building Educational Ap-
plications (BEA SIGEDU). The Shared Task,
held as a workshop at the North American
Chapter of the Association for Computational
Linguistics (NAACL) 2024 conference, aimed
to advance the state-of-the-art in predicting
item characteristics directly from item text,
with implications for the fairness and validity
of standardized exams. We compared various
methods ranging from BERT for regression to
Random forest, Gradient Boosting(GB), Linear
Regression, Support Vector Regressor (SVR),
k-nearest neighbours (KNN) Regressor, Multi-
Layer Perceptron(MLP) to custom-ANN using
BioBERT and Word2Vec embeddings and pro-
vided inferences on which performed better.
This paper also explains the importance of data
augmentation to balance the data in order to get
better results. We also proposed five hypothe-
ses regarding factors impacting difficulty and
response time for a question and also verified it
thereby helping researchers to derive meaning-
ful numerical attributes for accurate prediction.
We achieved a RSME score of 0.315 for Diffi-
culty prediction and 26.945 for Response Time.

1 Introduction

The automated prediction of item difficulty and
item response time is a critical task in the field of
educational assessment, with implications for the
fairness and validity of standardized exams. Tradi-
tionally, item characteristics such as difficulty and
response time have been obtained through labor-
intensive pretesting processes, posing challenges
related to time, cost, and security. To address these
challenges, there is a growing interest in leveraging
natural language processing (NLP) techniques to

predict item characteristics directly from the item
text. (Baldwin et al., 2021)

In this paper, we present our system developed
for the Shared Task on Automated Prediction of
Item Difficulty and Item Response Time, organized
by the Association for Computational Linguistics
(ACL) Special Interest Group for Building Educa-
tional Applications (BEA SIGEDU). The Shared
Task was held as a workshop at the North Ameri-
can Chapter of the Association for Computational
Linguistics (NAACL) 2024 conference. Our par-
ticipation in this Shared Task aimed to advance the
state-of-the-art in predicting item characteristics
and contribute to the ongoing efforts to improve
the efficiency and fairness of standardized testing.

In this paper, we provide an overview of our
system architecture, including methodologies em-
ployed for predicting item difficulty and item re-
sponse time. We describe the features utilized, the
model architectures, and the training procedures.
Furthermore, we present the experimental setup,
including the dataset used for training and evalua-
tion, data augmentation, as well as the evaluation
metrics employed to assess the performance of our
system as prescribed by shared task.

Through our participation in the Shared Task,
we aim to demonstrate the effectiveness of our ap-
proach in predicting item characteristics and con-
tribute to the collective efforts in developing more
accurate and efficient models for automated assess-
ment in educational contexts. Additionally, we
discuss the implications of our findings and poten-
tial future directions for research in this area. We
believe that our system holds promise for enhanc-
ing the fairness and effectiveness of standardized
testing, ultimately benefiting both test developers
and test takers alike.
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2 Related Work

The paper "Automated Prediction of Item Dif-
ficulty in Reading Comprehension Using Long
Short-Term Memory" by Li-Huai Lin, Tao-Hsing
Chang, Fu-Yuan Hsu focuses on utilizing Long
Short-Term Memory (LSTM) to predict the diffi-
culty of test items in reading comprehension. Tra-
ditional methods of estimating item difficulty re-
lied on expert validation or pretests, which were
labor-intensive and costly. By automating the pre-
diction process using LSTM, the study aims to
overcome these challenges. Experimental results
indicate that the proposed method shows a good
prediction agreement rate. The use of LSTM in pre-
dicting item difficulty offers a more efficient and
accurate approach compared to manual methods,
showcasing the potential of machine learning in
educational assessment (Štěpánek et al., 2023)

The paper Question Difficulty Prediction for
READING Problems in Standard Tests by
Huang, Z., Liu, Q., Chen, E., Zhao, H., Gao, M.,
Wei, S., Su, Y. and Hu, G. initially involves convert-
ing the input into embeddings, followed by passing
it through a Bidirectional Long Short-Term Mem-
ory (BI-LSTM) network to capture semantic re-
lationships. Subsequently, an Attention Layer is
employed to identify words within the document
or option that hold significant relevance to a given
question. This process aids in selecting pertinent
information. Finally, the Prediction Layer displays
the predicted difficulty scores. (Huang et al., 2017)

Jump-Starting Item Parameters for Adaptive
Language Tests by the authors McCarthy, A.D.,
Yancey, K.P., LaFlair, G.T., Egbert, J., Liao, M.
and Settles, B address the challenge of calibrating
test item difficulties in high-stakes language assess-
ments, either with limited pilot test data or without
any prior information. They propose a multi-task
generalized linear model utilizing BERT features to
jump-start the estimation of item difficulties. With
only 500 test-takers and a small sample of item
exposures from a large item bank, their approach
rapidly improves the quality of difficulty estimates.
This joint model facilitates the comparison of test-
taker proficiency, item difficulty, and language pro-
ficiency frameworks such as the Common Euro-
pean Framework of Reference (CEFR). Moreover,
it allows for the generation of new item difficulty
estimates without the need for piloting, reducing
item exposure and enhancing test security. The au-
thors validate their method using operational data

from the Duolingo English Test, demonstrating
strong correlations between the derived difficulty
estimates and lexico-grammatical features associ-
ated with reading complexity. (McCarthy et al.,
2021)

3 Task Description

In recent times, Efforts have been made to enhance
the prediction of item parameters for high-stakes
medical exams such as the USMLE, have been
hampered by challenges in sharing exam data. To
address this gap, A Shared Task is proposed focus-
ing on predicting item parameters using practice
item content and characteristics from the USMLE
Examination. Refer (Yaneva et al., 2024)

The objective of this Shared Task is to advance
the state-of-the-art in item parameter prediction,
specifically focusing on two tracks:

• Track 1 - Predicting Item Difficulty: Given
the item text and associated metadata, par-
ticipants are tasked with predicting the item
difficulty variable. Item difficulty represents
the proportion of examinees who answer the
item/question correctly, providing insights
into the relative complexity of the item.

• Track 2 - Predicting Item Response Time:
Given the item/question text and metadata,
participants are challenged to predict the time
intensity variable, reflecting the time required
by examinees to respond to the item. Under-
standing item response time aids in optimizing
exam administration and identifying potential
issues with overly time-consuming items.

4 Dataset Description

The dataset for this Shared Task comprises 466
previously utilized and retired Multiple Choice
Questions (MCQs) from the United States Med-
ical Licensing Examination (USMLE) Steps 1, 2
CK, and 3. The USMLE is a series of examinations
handled and developed by the National Board of
Medical Examiners (NBME) and the Federation of
State Medical Boards (FSMB) to support medical
licensure decisions in the United States.

The dataset is structured with the following at-
tributes:
ItemNum: Consecutive number assigned to the
item in the dataset.
ItemStem_Text: Textual description of the clinical
case or scenario presented in the MCQ stem.
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Answer_A to Answer_J: Text for response op-
tions A to J. Unused columns remain blank for
items with fewer than J response options.
Answer_Key: Letter denoting the correct answer
for the item.
Answer_Text: Text corresponding to the correct
response for the item.
ItemType: Denotes whether the item contained an
image (PIX) or not (Text). Images are not part of
the dataset.
EXAM: Indicates the Step of the USMLE exam to
which the item belongs (Step 1, Step 2, or Step 3).
Difficulty: Measure of item difficulty where higher
values indicate more difficult items.
Response_Time: Mean response time for the item
measured in seconds, including initial response and
revisits by examinees.

The guidelines for MCQ construction empha-
size adherence to a standard structure, avoiding
extraneous material, misleading information, and
grammatical cues. The items were authored by ex-
perienced subject matter experts to assess medical
knowledge.

The training data consists of 466 samples. Ad-
ditonally, to augment the sample dataset, we em-
ployed paraphrasing on the provided textual ques-
tions (ItemStem_Text) and expanded the training
dataset size.

5 Methodology

5.1 Baseline Model

We tried BERT for regression as baseline model.
We fine-tuned BERT specifically for regression
tasks, utilizing BERT embeddings of the questions.
Leveraged the CamembertTokenizer to process the
textual descriptions from our dataset.

To ensure with BERT’s maximum input se-
quence length of 512 tokens, we set a maximum
input sequence length of 300 tokens. Any descrip-
tions exceeding this length were filtered out to
avoid truncation, ensuring the integrity of the input
data.

The BERT architecture consists of an embed-
ding layer and 12 stacked transformers. Each input
sequence yields a sequence of vectors as output,
with each vector representing a token in the input.
However, for regression tasks, only the final hid-
den state of the first token, denoted by the "[CLS]"
token, is utilized. In line with BERT’s architecture,
we appended a dense linear layer with dropout after
the "[CLS]" token to serve as the final regression

(a) Difficulty (b) Response Time

Figure 1: Predicted v/s True Value plot on validation set
on finetuning BERT as regressor

(a) Original Data (b) After augmntation

Figure 2: True Value Distribution in 4 bins before and
after data augmentation

layer. This layer facilitates the regression task by
mapping the BERT embeddings to the correspond-
ing output labels.

5.2 Data Augmentation

The training dataset provided comprises 466 sam-
ples. Upon analyzing the distribution of diffi-
culty values, we observed a scarcity of samples
with difficulty greater than 0.7. Consequently, we
utilized GPT-3.5 LLM to generate additional in-
stances through paraphrasing techniques. Passed
on the question samples into the LLM and gave
a prompt to paraphrase the given samples. Refer
Fig.2a for imbalanced data and Fig.2b for balanced
data

5.3 Data Engineering

We propose the following hypotheses based on lit-
erature review and reviews from students, based on
experience:

• "The readability of a question influences its
difficulty and response time" : The tougher
the question is to read, the more the student
gets confused and hence difficulty and average
response time increases.

• "The average length of a question affects re-
sponse time and subsequently, difficulty" :
longer questions take long time to read.
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• "The number of options may lead to confu-
sion, potentially increasing difficulty"

• "The average length of options impacts re-
sponse time and difficulty"

• "The similarity among options influences
decision-making, thus affecting difficulty and
response time"

Consequently, we extracted these features from
the provided dataset. For readability assessment,
we utilized the SMOG index (Lin et al., 2019),
which is used in educational and medical settings
to calculate readability of a document.

Figure 3: Correlation of extracted features with target
variables

We can see the correlation heat-map as in
Fig.3. Clearly the extracted features seem to have
good correlation with difficulty and response time,
thence justifying the hypotheses.

5.4 Bio-BERT Embeddings
The dataset, being from the medical domain, ne-
cessitated the utilization of BioBERT to extract
embeddings. We fine-tuned BioBERT specifically
based on question-difficulty pairs. The embed-
dings encapsulate contextual information aligned
with the respective difficulty levels. (Yaneva et al.,
2019) (Yaneva et al., 2020). In our exploration,
we experimented with various methodologies and
approaches

5.5 Approach I - BERT + ANN
We designed 2 distinct Artificial Neural Networks
(ANNs) to explore the relationship between the
features extracted from the dataset, particularly in
the context of question difficulty.

(a) Difficulty (b) Response Time

Figure 4: Predicted v/s True Value plot on Val set for
ANN 1 trained on Embeddings + Num Features

(a) Difficulty (b) Response Time

Figure 5: Predicted v/s True Value plot on Val Set for
ANN 2 trained on embeddings + Num Features

For the first ANN architecture, we leveraged
BioBERT embeddings, which are representations
derived from a pre-trained language model specif-
ically tailored for the biomedical domain. These
embeddings, comprising vectors of size 768, served
as one input stream. Concurrently, we processed
seven numerical features independently. These fea-
tures likely included various attributes such as ques-
tion length, readability scores, and other relevant
metrics. Each stream of inputs traversed through its
respective hidden layers before being concatenated
at a later stage, in order to capture intricate relation-
ships between textual and numerical features.

The second ANN configuration adopted a differ-
ent strategy. Here, we fused both the text embed-
dings obtained from BioBERT and the numerical
feature vector derived from the dataset. By concate-
nating these representations, we aimed to create a
unified feature set that encapsulates both textual
and numerical attributes of the questions. This
combined input was then fed through the hidden
layers of the neural network, potentially enabling
the model to discern intricate patterns and corre-
lations between the textual content and numerical
characteristics of the questions.

By employing these two distinct architectures,
we aim to explore and compare the effectiveness of
different approaches in utilizing BioBERT embed-
dings and numerical features to predict question
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difficulty levels within the medical domain.

Table 1: Results Of the 2 ANN Models

Target labels ANN1 ANN2
Difficulty 0.32 0.29

Response Time 26.65 26.11

5.6 Approach 2 - Word2Vec + ML Models

The Deep learning models such as ANNs rely more
on larger databases for optimal performance, we’ve
opted for an alternative strategy. Hence we’ve
transitioned to utilizing Word2Vec embeddings,
a widely-used technique for generating word em-
beddings based on the distributional semantics of
words within a corpus. Unlike BERT, which thrives
on large datasets to capture contextual nuances,
Word2Vec offers a computationally efficient means
to represent words in a continuous vector space,
thereby capturing semantic relationships.

For this, we trained regression models on the
Word2Vec embeddings and specifically, we em-
ployed the following regression models:

1. Random Forest: An ensemble learning
method capable of handling non-linear relation-
ships and high-dimensional data, Random Forest
constructs a multitude of decision trees during train-
ing and outputs the mean prediction of individual
trees.

2. Linear Regression: A regression technique
that models the relationship between the dependent
variable and one or more independent variables by
assuming a linear relationship between them.

3. Support Vector Regression (SVR): A regres-
sion algorithm based on the Support Vector Ma-
chine (SVM) framework, SVR is adept at handling
non-linear relationships by mapping data into a
higher-dimensional feature space.

By leveraging Word2Vec embeddings and train-
ing on these regression models, we aim to capture
the intricate relationships between the textual rep-
resentations of medical questions and their corre-
sponding difficulty levels. (Yaneva et al., 2021)

Table 2: Word2Vec + ML Model (Linear Regression,
SVR, Random Forest Regressor

Target Values LR SVR RFR
Difficulty 0.37 0.356 0.324
Response Time 79.59 86.227 27.24

5.7 Approach 3 - BERT + ML Models

We performed experimentation utilizing BioBERT
embeddings in three distinct configurations: only
with text embeddings, only with numerical features,
and with a concatenated dataset combining text em-
beddings and numerical features. The numerical
features encompassed attributes such as average
length, readability scores, number of options, aver-
age length of options, and similarity scores derived
from the dataset. The concatenated dataset com-
bines the text embeddings from BioBERT with
the numerical features, aiming to leverage both
the textual and quantitative aspects of the data for
improved regression performance. Each of these
datasets underwent training on a range of regres-
sion models, including Random Forest, Gradient
Boosting, Linear Regression, Support Vector Ma-
chine (SVM), K-Nearest Neighbors (KNN), and
Multilayer Perceptron (MLP). By systematically
exploring various feature combinations and regres-
sion algorithms, we aimed to discern the most effec-
tive methodologies for predicting the desired output
labels.This comprehensive approach enables us to
evaluate the performance of various models and
feature combinations, thereby gaining insights into
the most suitable methodologies for our regression
task. (Settles et al., 2020)

6 Experimental Results and Discussion

Our baseline model, BERT Regressor, achieved
RMSE scores of 0.307 for predicting Difficulty and
88.502 for predicting Response Time. These scores
demonstrate the model’s performance in predict-
ing both the difficulty level of exam items and the
time intensity required for examinees to respond
to them. Fig.1a and Fig.1b shows that most of pre-
dicted values are in a specified range and hence
we assumed that the imbalance in data as shown
in Fig.2a. Hence we balanced the data. We also
extracted few numerical features as discussed in
feature engineering section and experimented with
them.

Instead of simply finetuning BERT, we trained
Bio-BERT embeddings with ANN and results are
as shown in table 1. We tried two ANNs whose ar-
chitecture is as mentioned in methodology section,
former concatenating numerical features and text
embeddings in a hidden layer and the latter initially
concatenating both. As shown in Fig.4a, Fig.4b
and Fig.5a, Fig.5b the dispersion of predicted val-
ues increased but still not upto the mark. ANN1
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(a) Random Forest Regressor (b) Gradient Boosting (c) Multilayer Perceptron

(d) Linear Regression (e) Support Vector Regressor (f) KNN Regressor

Figure 6: Plot of Predicted V/S true labels for validation dataset for Difficulty variable upon training ML models on
concatenated Input (Text Embedding + numerical features)

(a) Random Forest Regressor (b) Gradient Boosting (c) Multilayer Perceptron

(d) Linear Regression (e) Support Vector Regressor (f) KNN Regressor

Figure 7: Plot of Predicted V/S true labels for validation dataset for Response Time variable upon training ML
models on concatenated Input (Text Embedding + numerical features)

Target labels RFR GB LR SVM MLP KNN
Difficulty 0.294 0.283 0.480 0.296 0.329 0.293

Response Time 24.029 24.508 28301.258 31.959 25.363 26.918

Table 3: RMSE Scores for 6 models on two target labels: Difficulty and Response Time using only question
embeddings
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Target labels RFR GB LR SVM MLP KNN
Difficulty 0.346 0.331 0.370 0.363 0.390 0.417

Response Time 28.86 29.37 32.28 32.24 33.21 34.47

Table 4: RMSE Values across 6 models on two target labels: Difficulty and Response Time using only numerical
data

Target labels RFR GB LR SVM MLP KNN
Difficulty 0.292 0.297 0.489 0.362 0.39 0.288

Response Time 24.05 24.47 31.48 32.27 33.38 25.05

Table 5: RMSE Values accross 6 models on two target labels: Difficulty and Response Time using concatenated data

performed better than ANN2 in increasing range
of prediction. Hence we assumed it might be due
to BERT being a Large Language Model is unable
to capture the essence or overall context with such
small dataset, and hence shifted to more general
model Word2Vec with ML Models as we presume
DL models need more data.

Moving on to our 2nd approach consisting of
training ML models with Word2Vec embeddings,
the results are as in Table 2 . Clearly results are
worser when compared to that of training BERT
embeddings with ANN.

Hence we considered the issue is in ANN. Since
ANN being Deep Learning Model, with such lim-
ited data it is unable to capture patterns essen-
tially and hence we tried training ML models with
Bio-BERT embeddings. They outperformed ANN,
hence we came to conclusion of using ML models
for prediction.

In order to understand importance of extracted
numerical features, we used the same ML models
to perform regression on only question embeddings
and only numerical data and results for each are
shown in Table 3 and Table 4 respectively. This
clearly states that both text-embeddings and nu-
merical features engineered by our hypotheses are
crucial for predicting values.

Hence we concatenated both and trained the ML
models to get results as shown in Table 5. Clearly
Gradient Boosting, Random Forest Regressor and
Multi Layer Perceptron have performed best and
hence we considered them to be best models for
submission. Fig. 6a - Fig. 6f shows the plots for
actual v/s predicted Diffculty values. Fig. 7a - Fig.
7f shows the plots for actual v/s predicted Response
Time values

(a) Difficulty (b) Response Time

Figure 8: Actual v/s Predicted value plots for Random
Forest Regressor on gold_label test data

(a) Difficulty (b) Response Time

Figure 9: Actual v/s Predicted value plots for Gradient
Boosting on gold_label test data

(a) Difficulty (b) Response Time

Figure 10: Actual v/s Predicted value plots for Multi-
Layer Perceptron on gold_label test data
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Table 6: Test Data Results

Target labels RFR GB MLP
Difficulty 0.315 0.322 0.336

Response Time 28.768 27.481 26.945

7 Error Analysis

The final test data for shared task had 201 data
points and Team ScalarLab had made three sub-
missions/prediction files obtained by best three
models of which we trained viz. Random Forest
Regressor, Gradient Boosting and Multilayer Per-
ceptron trained on concatenated Bio-BERT embed-
dings and extracted numerical features. The RMSE
scores are as reported in Table6. Fig.8, Fig.9 and
Fig.10, we clearly can see they outperformed ANN
and BERT for regressor.

8 Conclusion and Future Work

We have achieved 0.315 RMSE for difficulty pre-
diction and 26.945 RMSE for response time pre-
diction. We successfully compared and explained
why Deep Learning model ANN failed in making
better predictions, we discussed the importance of
data augmentation and how results improved, and
also proposed five hypotheses that seem to impact
difficulty, response time of MCQs. As future work,
we would like to explore how Deep Learning Mod-
els can learn better with limited data and which
embeddings are better fir such tasks where lim-
ited data is available. We would also explore what
are ther factors that impact difficulty and response
time of questions (MCQs) and incorporate that info
in models to be trained to achieve better RMSE
scores.

References
Peter Baldwin, Victoria Yaneva, Janet Mee, Brian E

Clauser, and Le An Ha. 2021. Using natural lan-
guage processing to predict item response times and
improve test construction. Journal of Educational
Measurement, 58(1):4–30.

Zhenya Huang, Qi Liu, Enhong Chen, Hongke Zhao,
Mingyong Gao, Si Wei, Yu Su, and Guoping Hu.
2017. Question difficulty prediction for reading prob-
lems in standard tests. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31.

Li-Huai Lin, Tao-Hsing Chang, and Fu-Yuan Hsu. 2019.
Automated prediction of item difficulty in reading
comprehension using long short-term memory. In

2019 international conference on asian language pro-
cessing (ialp), pages 132–135. IEEE.

Arya D McCarthy, Kevin P Yancey, Geoffrey T LaFlair,
Jesse Egbert, Manqian Liao, and Burr Settles. 2021.
Jump-starting item parameters for adaptive language
tests. In Proceedings of the 2021 conference on
empirical methods in natural language processing,
pages 883–899.

Burr Settles, Geoffrey T. LaFlair, and Masato Hagiwara.
2020. Machine learning–driven language assessment.
Transactions of the Association for computational
Linguistics, 8:247–263.
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Abstract
We describe the second-best run for the shared
task on predicting the difficulty of Multi-
Choice Questions (MCQs) in the medical do-
main. Our approach leverages prompting
Large Language Models (LLMs). Rather than
straightforwardly querying difficulty, we simu-
late medical candidate’s responses to questions
across various scenarios. For this, more than
10,000 prompts were required for the 467 train-
ing questions and the 200 test questions. From
the answers to these prompts, we extracted a set
of features which we combined with a Ridge
Regression to which we only adjusted the regu-
larization parameter using the training set. Our
motivation stems from the belief that MCQ dif-
ficulty is influenced more by the respondent
population than by item-specific content fea-
tures. We conclude that the approach is promis-
ing and has the potential to improve other item-
based systems on this task, which turned out to
be extremely challenging and has ample room
for future improvement.

1 Introduction

The item difficulty is a core problem in the con-
struction of exams. The exam items should en-
compass a broad spectrum of difficulty levels to
efficiently ascertain the competencies of the test
takers being assessed. Traditionally, item diffi-
culty has been a manual task done by human ex-
perts (Lorge and Diamond, 1954; Haladyna et al.,
2002) despite its inherent disadvantages compared
to other approaches based on data (Wauters et al.,
2012; Choi and Moon, 2020). Nevertheless, recent
progress in Natural Language Processing (NLP)
has facilitated the automated prediction of item dif-
ficulty from textual content (Dueñas et al., 2015;
Benedetto, 2023), serving as an alternative to tradi-
tional pretesting and manual task (AlKhuzaey et al.,
2023; Benedetto et al., 2023).

These recent studies underscore the growing im-
portance and interest in the topic of item difficulty

prediction. In response, BEA has launched the
Shared Task “Automated Prediction of Item Dif-
ficulty and Item Response Time” (Yaneva et al.,
2024). This initiative represents an effort to push
the boundaries of current research in item param-
eter prediction. The data provided for this task
includes multiple-choice questions from Steps 1, 2
CK, and 3 of the USMLE, which is a sequence of
examinations used to facilitate medical licensing in
the United States.

Recent studies have leveraged NLP and Machine
Learning techniques to address these challenges,
providing insight into the factors that contribute to
difficulty of Multiple-Choice Questions (MCQs).
Four seminal studies are reviewed below that, to-
gether, show the approaches and advances that have
been made in the automated prediction of USMLE
item difficulty.

Ha et al. (2019) laid foundational work by de-
veloping a method to estimate the difficulty of
USMLE MCQs based on a diverse array of lin-
guistic features and embedding types (ELMo and
Word2Vec), including measures quantifying the
difficulty for an automated question-answering sys-
tem. Their approach surpassed various baselines
significantly (ZeroR, Word Count, Average Sen-
tence Length, Average Word Length in Syllables,
and the Flesch Reading Ease formula). The study
emphasized that information from all levels of lin-
guistic processing contributes to item difficulty,
with semantic ambiguity and psycholinguistic prop-
erties of words being particularly influential.

In an study by Yaneva et al. (2020), they provide
an approach towards predicting item survival us-
ing linguistic features, two types of embeddings
(Word2Vec and ELMo), and Information Retrieval
(IR) features in a high-stakes medical exam context.
They implemented these features within a Random
Forests algorithm framework and validated their
approach using a dataset of 5,918 pretested MCQs
from USMLE. Their findings indicated that the
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combination of all feature types outperformed the
baselines, with ELMo being the strongest individ-
ual predictor, followed by Word2Vec, linguistic
features, and IR features.

Xue et al. (2020) explored the application of
transfer learning to predict the item difficulty and
response time for approximately 18,000 MCQs
from USMLE. They used three types of item text
configurations as input: i) item stem, ii) item op-
tions, and iii) a combination of the stem and options.
They were used to train three different ELMo mod-
els. This research demonstrated that while transfer
learning significantly enhances predictions for re-
sponse time, when item difficulty is used as an
auxiliary task, the converse is not true. Difficulty
prediction was most effective using signals from
the item stem, while response time was best pre-
dicted using information from the entire item.

Building on Ha et al. (2019) approach, Yaneva
et al. (2021) classified 18,961 MCQs from Step 2 of
the USMLE into two categories in an unsupervised
way: low-complexity items and high-complexity
items, with the purpose of identifying interpretable
relationships between item text and item complex-
ity. They maintain that examining the linguistic
features of the items can assist test developers in
gaining a more detailed understanding of how cog-
nitively more complex items differ from those with
more straightforward solutions. Similar to previous
studies, they provide empirical evidence that lin-
guistic features, both syntactic and semantic, play
a crucial role in determining the complexity associ-
ated with the item response process.

Unlike previous studies, we investigated the hy-
pothesis that item difficulty depends more on the
features of the test-taking population than on the
items themselves. To explore this, we simulated
medical students’ answers to various MCQs across
different examinations by prompting a Large Lan-
guage Model (LLM). This approach allowed us to
understand how certain features influence item dif-
ficulty, providing insights that challenge previous
methods of educational assessment. In this paper
we describe our participating system in the BEA
2024 Shared Task: Automated Prediction of Item
Difficulty, which used a LLM as core approach.

2 System Description

2.1 Data

The data consist of a collection of 667 MCQs from
USMLE Steps 1, 2 CK, and 3, which were used

and now are retired (467 for training and 200 for
test). These items have the traditional information,
which is composed of a case (stem), the correct
answer (key), the incorrect answer options (distrac-
tors), and the answer text, which contains the text
of the correct response for the item. Moreover, each
item comes with supplemental details as follows:
item type, where “Text” indicates items composed
entirely of text without images, while “PIX” repre-
sents items that include images, but these are not
part of the dataset; EXAM specifies the Step of the
USMLE exam the item belongs to (Step 1, Step 2,
or Step 3); item difficulty, where higher values indi-
cate more difficult items, and time intensity, which
is the arithmetic mean response time, measured
in seconds, across all examinees who attempted a
given item in a live exam.

2.2 Features extracted from the items

The task consist of predicting automatically the
item difficulty using approximately the 70% of
items as training and the other part as test bed. Our
approach consists in extracting 4 different sets of
features from answers of ChatGPT-3.5 to different
prompts, and a regression algorithm for predicting
the ground truth labels in the test set.

2.2.1 Features from LLM answering the
questions

This first set of features has been extracted from the
process of asking the LLM to answer MCQs. The
prompt used for this purpose is described below:

PROMPT #1
{Item_Stem_Text}
A: {Answer__A}
B: {Answer__B}
...

First , answer the question by providing
only the letter of the option.
Second , provide a brief explanation
of your choice , but do not discuss
other options or alternative
scenarios.

Here, {Item_Stem_Text} is the text of the item,
encompassing a comprehensive explanation of the
medical case. The last sentence of the explana-
tion is the question to be answered (e.g. “Which
of the following is the most likely nutritional de-
ficiency?”). Moreover, {Answer__X} denotes the
textual content corresponding to each of the alter-
native option (e.g. “Vitamin D”). The context of
the role in the completion chat for GPT-3.5 was:
“Your are a medical doctor”.
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The main motivation for this prompt is to de-
termine whether or not the LLM is capable of an-
swering the questions. In principle, if the LLM is
unable to answer correctly, this is an indication that
the question is of high difficulty, and the opposite is
also true. Additionally, we asked the LLM to pro-
vide a justification for its response to the prompt1,
from which we assume that extensive explanations
are associated with high-difficulty questions and
the opposite. Finally, in this group of features, we
include some basic information about the item such
as the length of distractors, the length of the cor-
rect option, among others, as indicators of the item
difficulty. Below we detail the extracted features:

INCORRECT: Boolean indicating whether or not
the question was answered correctly by the
LLM.

JUSTIFICATION: Number of characters in the
LLM’s answer after removing the text of the
option selected.

DISTRACTORS: Length in characters of the
LLM response minus the length of the cor-
rect option text.

STEM: Length in characters of Item Stem Text.

KEY: Length in characters of the correct option.

STEM/KEY: The ratio between STEM and KEY
features.

GPT_RESPONSE_TIME: Time in milliseconds
reported by the LLM to answer the question.

COMPLETION_TOKENS: Number of tokens
in the response reported by the LLM.

PROMPT_TOKENS: Number of tokens in the
prompt reported by the LLM.

EXAM: Metadata of the item obtained from the
dataset denoting the Step of the USMLE exam
the item belongs to (Step 1, Step 2, or Step 3).

2.2.2 Features from splitting the items into
yes/no questions

Given that the set of features from the previous
subsection provides in the feature INCORRECT
only a Boolean indication of the item difficulty, we

1In our experiments, the LLM did not refuse to answer any
questions, and thus it never stated that it is unable to provide
information as an AI language model.

employ the strategy of generating for each item
a YES/NO sub-item for each option available in
the item. In this way, the correctness of the LLM
responses to these extracted sub-items provides
more detailed indications of the difficulty of the
original item. In this scenario, only one of the sub-
items has the answer YES, and NO for the others.
For this, we use the following prompt:

PROMPT #2:
{Item_Stem_Text}

First , answer clearly YES or NOT if
Answer X is the correct answer to
the question. Second , provide a
brief explanation of your answer ,
but do not discuss other options.

Thus, if a question has n answer options, we gen-
erate n prompts for the LLM, from whose answers
we extract the following features for each item:

YN_INCORRECT: Number of sub-items an-
swered correctly for the item.

YN_INCORRECT_KEY: Boolean indicating
whether the sub-item corresponding to the
correct option was answered correctly or not
by the LLM.

YN_OPTION_COUNT: Total number n of an-
swer sub-items (options) for the item.

YN_YES_ANSWERS: Number of sub-items to
which the LLM responded affirmatively.

YN_RESPONSE_TIME: Sum of the answer
times for all sub-items reported by the LLM.

YN_JUSTIFICATION_CHAR: Sum of the
lengths of the justifications (in characters) for
the answers provided by the LLM to each
sub-item.

YN_JUSTIFICATION_CORRECT: Sum of
the lengths of the justifications for the answers
to the sub-items that the LLM answered
correctly.

YN_JUSTIFICATION_INCORRECT: Sum of
the lengths of the justifications for the answers
to the sub-items that the LLM answered incor-
rectly.

YN_JUSTIFICATION_YES: Sum of the
lengths of the justifications for the answers
to the sub-items that the LLM answered
affirmatively.
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YN_JUSTIFICATION_NOT: Sum of the
lengths of the justifications for the answers
to the sub-items that the LLM answered
negatively.

YN_JUSTIFICATION_KEY: Length of the jus-
tification for the sub-item corresponding to
the correct option of the item.

YN_JUSTIFICATION_OPTIONS: Sum of the
lengths of the justifications for the sub-items
whose answer is NO.

YN_YES_OPTIONS Total number of affirmative
answers given by the LLM to the sub-items.

YN_NOT_OPTIONS: Total number of negative
answers given by the LLM to the sub-items.

YN_ALL_YES: Boolean indicating whether all
answers to the sub-items were affirmative.

YN_ALL_NOT: Boolean indicating whether all
answers to the sub-items were negative.

2.2.3 Features from using “mutilated” stems
In the features described in the previous subsec-
tions, the LLM has played a role equivalent to a
test taker who has read all the texts of the questions
and the options in detail. However, in real-life situa-
tions this is not always the case, and test takers have
time pressures or personal preferences in reading
with different “skimming” or “scanning” processes,
which lead them to voluntarily or involuntarily omit
some words while reading.

Our assumption is that highly-difficult items
should be read in detail so that they can be an-
swered correctly. On the contrary, in low-difficulty
items, some words of their content can be omitted
without this affecting their difficulty. To simulate
this situation, we generate different modified ver-
sions of each item by incrementally “mutilating”
the stem, randomly removing a percentage of its
content words.

For this, we first tokenize sentences and iden-
tify which words or tokens in the stem are content
words, marking the stopwords2, which we exclude
from the “mutilation” process. Likewise, we leave
the last sentence of the stem intact, which contains
the specific question of the item. Then, we set a
percentage p, say p = 0.20, and randomly remove

2We use sentence tokenizer and the list of stopwords for
English in the Natural Language Toolkit https://www.nltk.
org/search.html?q=stopwords

20% of the content tokens from the stem (i.e. no
stopwords). In this way, an item that remains an-
swerable after a certain degree of mutilation of the
stem would be an indicator of its level of difficulty.
For this, we use a prompt similar to Prompt 1, but
we mutilate the stem of each item at different per-
centages:

PROMPT #3:
{Item_Stem_Mutilated(P)}
A: {Answer__A}
B: {Answer__B}
...

First , answer the question providing
only the letter of the option.
Second , provide a brief explanation
of your choice , but do not discuss
other alternative options or
scenarios.

Here P represents the percentage of mutilation
of the stem. For each ítem, we used eight percent-
ages ranging from 10%, 20%, 30%, until 80%. The
following set of features is motivated by the as-
sumption described above. Below we detail the
extracted features:

MUT_10_INCORRECT: Boolean indicating if
the LLM answered correctly the question in
spite of the stem being mutilated at 10% of its
content words.

MUT_20_INCORRECT: Idem Boolean indicat-
ing if the LLM answered correctly the ques-
tion in spite of the stem being mutilated at
20% of its content words (other six features
for 30%, 40%, 50%, 60%, 70%, and 80%.

MUT_INCORRECT: Number of incorrect an-
swers out of the 8 levels of percentage of mu-
tilation.

FIRST_MUT_INCORRECT: The lowest per-
centage of mutilation in which the LLM failed
to answer the question correctly. If feature IN-
CORRECT value is true, then this feature is
zero.

LAST_MUT_INCORRECT: The highest per-
centage of mutilation where the LLM failed
to answer the question correctly. If feature
INCORRECT value is true, then this feature
is zero.

FIRST_MUT_CORRECT: The lowest percent-
age of mutilation where the LLM failed to
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answer the question correctly. If feature IN-
CORRECT value is false, then this feature is
zero.

LAST_MUT_CORRECT: The highest percent-
age of mutilation where the LLM failed to
answer the question correctly. If feature IN-
CORRECT value is false, then this feature is
zero.

2.2.4 Features from modified “temperatures”
“Temperature” is a parameter in ChatGPT that con-
trols the level of randomness or “creativity” in the
answers of this LLM. In the features described in
the previous subsections, this parameter was set at
t = 1.0, which is its default value that indicates an
intermediate value between the extremes p = 2.0
(maximum randomness) and p = 0.0 (fully deter-
ministic). By varying this parameter, it is possible
to simulate different test takers with a single LLM.

In principle, we assume that test takers with low
temperature are capable of objectively answering
questions of all levels of difficulty. As the temper-
ature gradually increases, the simulated test taker
begins to reduce their objectivity and begins to be
unable to correctly answer high-difficulty questions.
In this way, if an item is only answered correctly
by test takers with low temperature, then this is an
indication of high difficulty in the item. Similarly,
items that are answered correctly despite the high
temperature of the test takers should indicate a low
level of difficulty.

To extract features using this idea, we use
Prompt #1 by varying the parameter t in the Chat-
GPT API call. We use 11 values of t, starting at
t = 0.0 and increasing in increments of 0.2 up
to t = 2.0. The following is the set of features
obtained with this strategy:

TEMP_0.0_INCORRECT: Boolean indicating
whether the LLM answered incorrectly the
item using t = 0.

TEMP_0.2_INCORRECT: Boolean indicating
whether the LLM answered incorrectly the
item using t = 0.2.

TEMP_0.4_INCORRECT: Boolean indicating
whether the LLM answered incorrectly the
item using t = 0.4 and six other features that
range from t to 2.0 (t = 1.0 was omitted
because is identical to the feature INCOR-
RECT).

TEMP_INCORRECT: Number of incorrect an-
swers for the ítem out of the 11 values of t
used.

FIRST_TEMP_INCORRECT: The lowest
value of t where the LLM answered the
question incorrectly.

LAST_TEMP_INCORRECT: The highest
value of t where the LLM answered the
question incorrectly.

AVG_TEMP_INCORRECT: Feature
TEMP_INCORRECT divided by 11
(i.e. the number of used values for t).

FIRST_TEMP_CORRECT: The lowest value
of t where the LLM answered the question
correctly.

LAST_TEMP_CORRECT: The highest value
of t where the LLM answered the question
correctly.

AVG_TEMP_CORRECT: Number of correct
answers for the item of the 11 values of t used
divided by 11.

2.3 Experimental Setup
The official performance metric for the shared task
is the Root-Mean Squared Error (RMSE) between
the known difficulty levels of the items and the
predictions made by the automatic system being
evaluated. To use this metric in the evaluation of
individual features, we fit a simple linear regressor,
taking the feature as the independent variable and
the known difficulty levels as the dependent vari-
able. Since in this specific task the RMSE metric
shows little variance between the different features,
we propose the Spearman’s rank correlation coeffi-
cient as an alternative measure.

Unlike RMSE, Spearman’s correlation not only
indicates whether the feature is positively or neg-
atively correlated, but also provides the level of
statistical significance (p-value). Therefore, under
these two measures, a desirable feature will show
low values of RMSE and high absolute values in
Spearman’s correlation. The predictive model used
to combine the features with the training data was
a Ridge regression, in which the regularization pa-
rameter α was adjusted with the aim of selecting
a reduced the number of relevant features in the
model. To evaluate this model, the training data
was divided into 30 random partitions, assigning
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90% of the data for training and 10% for testing in
each partition. Subsequently, the RMSE measure
was calculated for each of the 30 test partitions and
the average of these results was reported.

3 Results

3.1 Feature performance

Table 1 shows the RMSE rates and Spearman’s
correlation for the features derived from the use of
Prompt #1. In this group, only the INCORRECT,
STEM, and KEY features produced significant cor-
relations. Among them, KEY was the only feature
that produced a negative correlation.

Feature RMSE Spearman
INCORRECT 0.298 0.259††
STEM 0.304 0.118†
DISTRACTORS 0.305 -0.085
KEY 0.306 -0.108†
EXAM 0.306 0.089
PROMPT_TOKENS 0.306 0.082
STEM/KEY 0.307 0.163††
JUSTIFICATION 0.308 0.028
GPT_RESPONSE_TIME 0.308 0.023
COMPLETION_TOKENS 0.308 0.019

††: p < 0.01; †: p < 0.05

Table 1: Performance of the features extracted from
Prompt #1

Table 2 shows the same types of results for the
features extracted from the use of Prompt #2. Un-
like the results presented in Table 1, RMSE and
Spearman measures show high agreement.

Table 3 shows the RMSE rates and correla-
tions obtained from the prompts that incremen-
tally mutilated the words in the items’ stem. All
of these features produced highly significant re-
sults. As anticipated based on our motivations, the
FIRST_MUT_INCORRECT feature exhibited a
strong negative correlation. This correlation sug-
gests that if the LLM can still answer effectively to
a highly distorted question, it serves as evidence of
the low-difficulty item.

Figure 1 presents the relationship between the
percentage of correct answers of the LLM and the
variation of the percentage of stem multilation. The
bars indicate a trend where the percentage of cor-
rect answers declines as the level of stem mutilation
increases.

Table 4 shows the results of Prompt #1 varying
the parameter t (temperature) of the LLM. This set

Feature RMSE Spearman
YN_JUSTIFICATION_CHAR 0.304 0.134††
YN_JUSTIFICATION_OPTIONS 0.304 0.122††
YN_JUSTIFICATION_INCORRECT 0.305 0.152††
YN_INCORRECT_KEY 0.305 0.145††
YN_RESPONSE_TIME 0.305 0.118†
YN_INCORRECT 0.306 0.131††
YN_JUSTIFICATION_NOT 0.306 0.087
YN_JUSTIFICATION_KEY 0.307 0.100†
YN_OPTION_COUNT 0.307 0.100†
YN_ALL_NOT 0.307 0.074
YN_YES_OPTIONS 0.307 0.065
YN_JUSTIFICATION_YES 0.308 0.022
YN_JUSTIFICATION_CORRECT 0.308 0.010
YN_YES_ANSWERS 0.308 -0.008
YN_NOT_OPTIONS 0.308 -0.007
YN_ALL_YES 0.308 0.022

††: p < 0.01; †: p < 0.05

Table 2: Performance of the features extracted from
Prompt #2 by using the strategy of dividing the item
into yes/no sub items.

Feature RMSE Spearman
FIRST_MUT_INCORRECT 0.300 -0.260††
MUT_INCORRECT 0.301 0.234††
LAST_MUT_INCORRECT 0.302 0.269††
LAST_MUT_CORRECT 0.303 -0.247††
INCORRECT_MUT_40 0.303 0.207††
INCORRECT_MUT_10 0.303 0.198††
INCORRECT_MUT_20 0.303 0.195††
FIRST_MUT_CORRECT 0.304 0.247††
INCORRECT_MUT_70 0.304 0.183††
INCORRECT_MUT_50 0.305 0.148††
INCORRECT_MUT_80 0.305 0.147††
INCORRECT_MUT_60 0.306 0.142††
INCORRECT_MUT_30 0.307 0.108†

††: p < 0.01; †: p < 0.05

Table 3: Performance of the features extracted from the
usage of the strategy of randomly mutilating words from
stems

of features produced the best results for both per-
formance measures. In particular, the best feature
is FIRST_TEMP_INCORRECT, which obtained
a negative correlation as expected by our motiva-
tions.

Figure 2 presents that increasing the tempera-
ture t reduces the LLM’s ability to answer items
correctly. Therefore, if the LLM set to a high tem-
perature can still answer an item correctly, this
reveals a low-difficulty item.
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Figure 1: Percentage of correct answers in training data
as stem mutilation varies.

Feature RMSE Spearman
FIRST_TEMP_INCORRECT 0.296 -0.293††
TEMP_INCORRECT 0.296 0.287††
TEMP_0.4_INCORRECT 0.297 0.261††
TEMP_0.2_INCORRECT 0.297 0.267††
TEMP_0.0_INCORRECT 0.298 0.254††
FIRST_TEMP_CORRECT 0.300 0.254††
TEMP_1.2_INCORRECT 0.300 0.236††
TEMP_1.6_INCORRECT 0.300 0.244††
TEMP_0.6_INCORRECT 0.301 0.232††
TEMP_0.8_INCORRECT 0.301 0.221††
LAST_TEMP_CORRECT 0.302 -0.181††
TEMP_1.4_INCORRECT 0.303 0.191††
LAST_TEMP_INCORRECT 0.303 0.17††
TEMP_1.8_INCORRECT 0.305 0.165††
TEMP_2.0_INCORRECT 0.305 0.131††

††: p < 0.01; †: p < 0.05

Table 4: Performance of the features extracted from
varying temperature parameter in LLM.

Finally, Figure 3 shows the results of the pre-
dictive system, which combines all the features
based on the regularization parameter α of the
Ridge Regression. As α increases, the RMSE
rate decreases rapidly until it reaches the interval
500 < α < 1000, where a minimum is reached
at α = 756, which was the value of the parameter
used for the final predictive model.

3.2 Submitted Run Results

This system generated predictions by extracting
the previously described features from all items
in the dataset. Next, a Ridge regression model
was trained using the designated dataset, as this re-
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Figure 2: Percentage of correct answers in training data
as the LLM temperature parameter varies.
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Figure 3: Performance in the training dataset of the
item-difficulty prediction system as the regularization
parameter α varies.

gression provided the best balance between perfor-
mance and interpretability. This model produced
the predictions for the test part of the dataset.

The official result obtained by our system (iden-
tified by the prefix UPN-ICC) is shown in Ta-
ble 5, along with those obtained by other 4 top-
performing systems out of 43 participating systems.
Our single run produced notably competitive re-
sults, ranking 2nd in the task of predicting item dif-
ficulty. However, the best results barely surpassed
the DummyRegressor baseline by a minimal mar-
gin, indicating that this task remains challenging.

4 Discussion

The results presented in Table 1 indicate that the
INCORRECT feature emerges as the most signifi-
cant predictor derived from the answers to Prompt
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Team Name Run RMSE
EduTec electra 0.299
UPN-ICC run1 0.303
EduTec roberta 0.304
ITEC RandomForest 0.305
BC ENSEMBLE 0.305
Baseline DummyRegressor 0.311

Table 5: Results for task. The team name UPN-ICC is
the system described in this document.

1. This feature is not directly derived from the item,
but rather from the result obtained after exposing
said item to a test taker, in this context simulated
by the LLM. This finding supports our initial hy-
pothesis, suggesting that an LLM can adequately
simulate a test taker human behavior when facing
the challenge of responding to MCQ items. How-
ever, contrary to our initial expectations, the lengths
of the explanations provided by the LLM (JUSTI-
FICATION feature) did not prove to be predictive
of the item difficulty.

Regarding the strategy of decomposing the MCQ
item into YES/NO questions, as presented in Table
2, the results suggest that the YN_INCORRECT
feature did not provide any additional significant
information to improve the understanding provided
by the INCORRECT feature, which constituted our
main motivation for exploring this set of features.
Nonetheless, the length of the justifications pro-
vided by the LLM to the YES/NO questions, in the
YN_JUSTIFICATION_CHAR, _OPTIONS, and
_INCORRECT features, resulted in a significant
improvement in the performance of the JUSTIFI-
CATION feature. This suggests that the strategy
of decomposing the item into sub-items is effec-
tive, as it provides detailed justifications for each
option of the MCQs, which are reliable indicators
for predicting of item difficulty.

The results from Table 3 and Figure 1 indicate
that the strategy of mutilating the stem text of the
items to different degrees produces good predictors
of item difficulty. This is an indication that this
strategy allows for the simulation of different test
takers with varying reading strategies using a sin-
gle LLM. Furthermore, the analysis of the results
presented in Table 3 reveals that the performance
measure RMSE does not indicate significant differ-
ences among the features evaluated in this group.
On the other hand, the Spearman correlation coeffi-
cient provides insightful results.

Similarly to the mutilation strategy, variations
applied to the temperature parameter t resulted in
efficient predictors of item difficulty (Table 4). It
is noteworthy that, within the total training set, the
percentage of correct responses ranges between
65% to 43% when varying both mutilation and
temperature. This suggests that these two distinct
strategies effectively simulate various types of test
takers.

Since item difficulty is determined from item
answers by a heterogeneous human population, the
implementation of strategies to simulate this popu-
lation is important in the effort to predict item diffi-
culty. Given that these two strategies produced the
most effective predictors in our system, exploring
combinations of these and other similar strategies
emerges as a promising research perspective for
addressing this challenging task.

Finally, Figure 3 shows that the single regression
system parameter, α, exhibits robust behavior over
a wide range of its values, which likely contributed
to the good performance of our system in the task.

5 Conclusion

We conclude that the strategy of simulating test
takers using LLMs offers a novel and promising
perspective for the prediction of MCQ difficulty.
The strategy of random and incremental mutilation
of the question stem appears to effectively simu-
late humans using different reading strategies of the
questions, such as skimming or scanning. Similarly,
the manipulation of the “temperature” parameter in
ChatGPT LLM appears to simulate human condi-
tions that could be influenced by emotions or other
factors experienced during the taking of an exam.

These strategies allow for the simulation, us-
ing a single LLM, of a heterogeneous population
responding to an exam and obtaining differential
results. This population of simulated humans pro-
duced the necessary input to obtain competitive
item difficulty predictions without using features
extracted from the item content. These results sup-
port the idea that item difficulty lies probably more
in the population answering these questions than
in the content or linguistic or cognitive factors ex-
tracted from the content of the items.
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Abstract

Prior knowledge of item characteristics, such
as difficulty and response time, without pretest-
ing items can substantially save time and cost
in high-standard test development. Using a va-
riety of machine learning (ML) algorithms, the
present study explored several (non-)linguistic
features (such as Coh-Metrix indices) along
with MPNet word embeddings to predict the
difficulty and response time of a sample of med-
ical test items. In both prediction tasks, the
contribution of embeddings to models already
containing other features was found to be ex-
tremely limited. Moreover, a comparison of
feature importance scores across the two predic-
tion tasks revealed that cohesion-based features
were the strongest predictors of difficulty, while
the prediction of response time was primarily
dependent on length-related features.

keywords: item difficulty, response time, ma-
chine learning, Coh-Metrix, MPNet embed-
dings

1 Introduction

Item difficulty and response time are among the im-
portant requirements in high-standard test develop-
ment. For instance, in large-scale assessment, there
is often a need to develop equivalent versions of the
same test to be administered to different groups of
people (DePascale and Gong, 2020). When decid-
ing on the inclusion of items in each version, it is
necessary to know the difficulty level of each item
and an estimate of the time needed to answer that
item. Such information is traditionally gained only
through pretesting (Martinková and Hladká, 2023).
Pretesting, however, is not a very efficient method,
as it is expensive (Antal, 2013) and raises security
concerns (Settles et al., 2020). Therefore, it would
be highly advantageous to devise a method to as-
certain item difficulty and response time without
resorting to the pretesting of items.

With this motivation, a shared task was orga-
nized as part of the Building Educational Appli-
cations (BEA) workshop at the 2024 Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL)
2024. The shared task invited people to develop
ML models for the prediction of item difficulty
and response time of a sample of 466 items from
the United States Medical Licensing Examination
(USMLE). The present study was conducted in re-
lation to this shared task. For a review of the com-
plete set of submissions to the shared task, please
see Yaneva et al. (2024).

2 Related Work

In the last decade, educational assessment has wit-
nessed a surge of interest in predicting item diffi-
culty. Having reviewed 38 papers on item difficulty
prediction, AlKhuzaey et al. (2021) provided a sum-
mary of the most frequent prediction models used,
most studied domains and item types, and features
with highest prediction power. ML algorithms such
as neural networks and support vector machines
(SVM) are commonly employed along with a va-
riety of natural language processing (NLP) tech-
niques used for feature extraction from text data.
Language assessment was found to be the most in-
vestigated domain, and multiple-choice items were
most frequently studied. A greater contribution of
AlKhuzaey et al. (2021) lies in its review of the
most influential features in item difficulty predic-
tion. While most features can be categorized as ei-
ther syntactic or semantic, a few studies have used
psycholinguistic features (e.g., Pandarova et al.,
2019), taking into account the processing of lin-
guistic elements in the brain. The Age of Acquisi-
tion (AOA), as one of such “cognitively-motivated”
features, offers an index of lexical difficulty based
on how early/late in life certain words are acquired
(Ha et al., 2019, p. 15). Word concreteness is
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another psycholinguistic feature. Concrete words
are assumed to be processed faster in the brain
and thus would expectedly be easier than abstract
words (Brysbaert et al., 2014). The use of psy-
cholinguistic features is not a novel approach, how-
ever. AOA and word concreteness, among similar
features such as word imaginability, have long been
on the list of the indices calculated by Coh-Metrix
(Bruss et al., 2004). A more recent trend is the
use of semantic similarity as a feature, which is
discussed further in the following.

Most recently, Štěpánek et al. (2023) compared
the performance of several ML algorithms in pre-
dicting the item difficulty of reading comprehen-
sion tests using features extracted from item texts.
Their extracted features include word counts, word
frequencies, readability indices, and lexical similar-
ity. For lexical similarity, using Euclidean distance
and cosine similarity, they calculated the textual
similarity between the question and the correct op-
tion as well as between the correct option and the
distractors. It was assumed that a higher similarity
in the former comparison can make the question
easier, while a larger similarity in the latter is asso-
ciated with higher difficulty (Alsubait et al., 2014).
Their results indicated that regularization-based
models in general, and the elastic net (RMSE =
0.666) in particular, outperformed other models.

Although we have recently seen an increasing
number of attempts to predict item characteristics
such as difficulty, the wide range of test domains
and other differing contextual factors make it rather
difficult to make generalizations across contexts.
Therefore, more studies are still needed before
more valid conclusions can be drawn regarding
the predictability of item characteristics. The pur-
pose of the present study was to contribute to the
line of research on predicting item characteristics
in medical tests (see, for example, Xue et al., 2020,
and Yaneva et al., 2021) by exploring how an assort-
ment of linguistic and non-linguistics features can
be utilized along with word embeddings to predict
the item difficulty and response time of multiple-
choice medical test items.

3 Methods

3.1 Corpus

The corpus of the study is a retired sample of 667
multiple-choice questions from the USMLE. The
USMLE is developed by the National Board of
Medical Examiners (NBME) and the Federation

of State Medical Boards (FSMB) and is adminis-
tered to both US and Canadian medical students. It
consists of three steps, which altogether take nine
hours to write. The items are written by experi-
enced medical experts following a set of standard-
ization guidelines. The guidelines help produce
high-quality items, the difficulty of which is depen-
dent on the difficulty of the medical content rather
than any other extraneous factors.

3.2 Features
A variety of features were extracted mostly from
the item stems to be used in our prediction models.

1. Item Type: The items in our sample of medi-
cal tests can be divided into two groups: text-
only and text-and-picture items. Of the 466
items used in the train set, 10.7% (50 items)
had a picture supporting the stem text. The use
of pictures might help with better and faster
understanding of the question.

2. Exam Part (Step): As mentioned in the Cor-
pus section, the USMLE has three parts or
steps. On average, Step 3 and Step 1 have the
highest and lowest item difficulty, respectively.
The difference between the exam steps is less
considerable in terms of item response time.

3. Stem Length: Stem length was measured by
counting the number of words in each stem.
Longer stems usually take more time to read
and understand, and thus they can be more
difficult. The stem length of the train set items
ranged from 32 to 301 words.

4. Sentence Length Average: A very long text
can be easy to read if it contains short sen-
tences, while a fairly short text with long sen-
tences can be cumbersome. Therefore, we
measured sentence length (as the number of
words in a sentence) along with stem length.

5. Sentence Length Maximum: Sometimes one
single lengthy (or complex) sentence can con-
siderably interfere with comprehension, so we
included Sentence Length Maximum as a sep-
arate feature in addition to Sentence Length
Average.

6. Option Count: The higher number of answer
options means a higher number of distractors,
which is expected to make an item more dif-
ficult and time-consuming. Compared to the
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Figure 1: Models 1-3 used for predicting difficulty and response time

minimum of four options, some items in the
train set have as many as 10 options. The most
common number of options is five.

7. Challenging Topics: Based on our obser-
vations of several highly difficult items, we
formed a short list of potentially more chal-
lenging topics in our sample. The list includes
the following keywords: ‘kidney’, ‘bleeding’,
‘abdominal’, ‘emergency’, ‘fever’, ‘lung’, ‘ab-
normality’, and ‘history’. We counted these
keywords in lemmatized stems and then as-
signed each stem a count number accordingly.
Items with higher count numbers were ex-
pected to be more difficult.

8. Rare Words Sum: Less frequent words are
usually more difficult (Brysbaert et al., 2011).
To calculate the rareness (or difficulty) of the
vocabulary of item stems, we looked up each
word in the BNC/COCA list (version 2.0.0),
a frequency-based list of 25k English words
(Nation, 2016). The BNC/COCA list classi-
fies 25k words into 25 frequency groups based
on their appearance in the two well-known cor-
pora of BNC (British National Corpus) and
COCA (Corpus of Contemporary American
English).

9. Medical Terms Sum: We used a publicly
available list of medical terms (under GNU
General Public License v3.0), consisting of
terms from two well-known medical dictio-

naries, namely OpenMedSpel by e-MedTools
and Raj&Co-Med-Spel-Chek by Rajasekha-
ran N. of Raj&Co. We counted the number
of medical terms in each stem and used that
as an indicator of difficulty, assuming that
stems with a higher number of medical terms
are more difficult and time-consuming to pro-
cess. Nevertheless, it should be noted that
terms can be a double-edged sword, as they
can both facilitate the accessibility of informa-
tion (Baleghizadeh and Yousefpoori-Naeim,
2013) and create obstacles in comprehension
(Yousefpoori-Naeim et al., 2018). Moreover,
not all terms in a specific domain are equal;
they can be placed in a wide range of diffi-
culty (Yousefpoori-Naeim and Baleghizadeh,
2018).

10. Coh-Metrix Features: Coh-Metrix is a com-
putational tool that provides 108 indices for
text analysis. These indices represent text
in terms of its coherence (McNamara et al.,
2014). The Coh-Metrix indices used in this
study include CNCCaus, CNCTemp, CR-
FANPa, CRFAO1, CRFCWO1, DESWLlt,
LDTTRc, LDVOCDa, LSAGN, LSASSpd,
PCCNCz, PCCONNz, PCDCz, PCREFz, PC-
SYNz, PCTEMPz, RDFRE, SMCAUSlsa,
WRDADJ, WRDADV, WRDFRQa, WRD-
MEAc, WRDNOUN, and WRDVERB. The
complete names of these features are provided
in Table 2 in the appendix. For more informa-
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tion on what each of these features refers to
and how they are calculated, see Coh-Metrix
version 3.0 indices.

11. Embeddings: We used the MPNet encoder
to obtain embeddings for each stem text. MP-
Net is a pre-trained transformer-based lan-
guage model, which has been shown to outper-
form similar well-known pre-trained models,
such as BERT and RoBERTa, in several tasks
(Song et al., 2020). MPNet encoder generates
embeddings in the form of 768-dimension vec-
tors. The embeddings represent text in various
aspects, including its context, meaning, and
syntactic structure.

3.3 Algorithms

We deployed 15 ML algorithms to achieve the high-
est performance: Linear Regression, Ridge Regres-
sion, Lasso Regression, ElasticNet, Stochastic Gra-
dient Descent (SGD), Support Vector Regression
(SVR), Decision Tree, Random Forest, Gradient
Boosting, Extra Trees, AdaBoost, K-Neighbors,
Multilayer Perceptron (MLP), XGBoost, and Cat-
Boost. These algorithms cover a broad spectrum
of ML techniques, each with its own strengths and
use cases.

3.4 Procedures

Irrespective of the algorithm used, three models
were built for each prediction task incrementally.
First, a selection of features excluding embeddings
was used to train Model 1. Next, embeddings
were added to build Model 2. Finally, an ensemble
method was utilized to find the best combination of
algorithms to be used in Model 3. Figure 1 depicts
the structure of the three models in more detail.

Given the high number of our features, we made
attempts at different stages of the models to filter
out the less relevant features, as feature reduction
can enhance model efficiency and lower the risk
of overfitting (Ying, 2019). Initially, using a heat
map, we detected instances of high correlation in
every possible pair of features to address multi-
collinearity. We marked a correlation coefficient of
0.8 and higher as the presence of multicollinearity
(Hae, 2019) and removed one of the two features
in the pair. The choice of features for removal was
based on theoretical justification and/or literature
insights. In a later stage, after Model 1 was initially
trained, we gradually removed a few more features
based on feature importance results and retrained

the model with the truncated list of features. If
model performance remained relatively stable, we
kept the removed features out of the feature set;
otherwise, we re-inserted the removed features one
by one to reach comparable performance results.
The final lists of selected features used for each pre-
diction task are provided in Table 3 in the appendix.
The feature of embeddings went through a reduc-
tion process as well. Principal component analysis
(PCA) was used to reduce the 768 dimensions of
embeddings to 15 components. This number of
components was chosen after experimenting with
a range of components from 5 to 20, with 15 com-
ponents yielding the best result.

Cross-validation (CV) was utilized to make the
best of the limited data. After randomly leaving
20% of the data out for testing the final models,
we ran a 5-fold cross-validation on the remaining
80% subset. Root mean square error (RMSE) re-
sults were reported on both the test set and the five
folds of the CV subset. A comparison of model
performance in training and test sets helps with the
detection of overfitting (Ying, 2019).

RMSE was used as the main evaluation metric
in the study. It is calculated based on the following
formula:

RMSE =

√∑N
i=1(yi − ŷi)2

N
(1)

where yi is the actual outcome value and ŷi is the
predicted one for the i-th data, with N denoting the
total number of data. RMSE is thus an indicator
of the prediction error, i.e., the difference between
predicted and actual outcome values. Lower RMSE
values indicate lower prediction error.

4 Results

Table 1 presents the RMSE results of all three mod-
els in the test and CV subsets for both prediction
tasks. In both tasks, Model 2 has a marginally bet-
ter performance (i.e., lower RMSE) than Model
1, indicating that the addition of embeddings only
slightly enhances model performance. Addition-
ally, using the ensemble method (Model 3) did not
lead to any performance improvement in either of
the tasks.

Unlike the RMSE results, the feature importance
results were relatively different in the two predic-
tion tasks. In particular, Coh-Metrix features had
a stronger presence in the top features for the dif-
ficulty task. In predicting difficulty, PCTEMPz,
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Table 1: Model comparisons for predicting difficulty and response time

Models Difficulty Response Time

Method Test RMSE CV RMSE Method Test RMSE CV RMSE

Model 1 CatBoost 0.277 0.314 K-Neighbors 23.743 25.586

Model 2 AdaBoost 0.269 0.315 K-Neighbors 23.271 24.898

Model 3 Ensemble∗ 0.269 0.315 Ensemble∗∗ 23.271 24.898
∗{AdaBoost} ∗∗{K-Neighbors}

Figure 2: Feature importance scores for predicting difficulty using the CatBoost method

LSASSpd, and Rare Words Sum are the top three
features (Figure 2), while Sentence Length Max,
Stem Length, and Medical Terms Sum stand out
as the top three features predicting response time
(Figure 3). Moreover, unlike the prediction task of
difficulty, a few Coh-Metrix features were found
to have a weak negative relationship with response
time.

5 Discussion

A comparison of the RMSE results across the three
models in both prediction tasks indicates that the
addition of embeddings (i.e., Model 2) had a very
small contribution to model performance. While
this finding was against our initial expectation, it
does bear credence when taking into account the
large number of features already fed into Model 1.
The selected Coh-Metrix indices coupled with our

extracted features (such as Rare Words Sum and
Medical Terms Sum) captured most of the variance,
leaving not much else to be explained by embed-
dings. A similar scenario has been present in some
other studies. In (Ha et al., 2019), for example,
adding either Word2vec or ELMo embeddings to a
list of various linguistic features improved RMSE
results by minimal margins.

As for Model 3 in both prediction tasks, the en-
semble method was ineffective in reducing RMSE
values because there was no possible combination
of algorithms that would result in a better model
performance. In both tasks, the difference between
the top-performing algorithm and the rest of the
algorithms was wide; therefore, combining the top
algorithm with any other one would only harm the
performance. Another reason could be that the al-
gorithms are making similar predictions, meaning
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Figure 3: Feature importance scores for predicting response time using the K-Neighbors method

that there is a high correlation between their pre-
dictions. The ensemble method usually works best
when models trained by different algorithms have
different strengths and weaknesses, so combining
models could lead to one model compensating for
deficiencies in another.

The feature importance scores exhibited dissim-
ilar patterns in the two prediction tasks. Features
measuring the cohesion of the stem text played a
major role in predicting difficulty: The vast major-
ity of the top predictors of difficulty are cohesion-
based Coh-Metrix features. On the other hand,
non-Coh-Metrix features, especially length-related
ones, constituted the main group of predictors of
item response. Length, measured as either the max-
imum number of words in a sentence (i.e., Sen-
tence Length Max) or the total number of words
in the stem text (i.e., Stem Length), is the predom-
inant predictor of item response. Compared to
difficulty, response time can be considered less
complicated to explain, as it is highly dependent
on simple length-related features.

6 Limitations

Two limitations need to be taken into account when
interpreting the results of the study. Firstly, the
quality of extracted features was dependent on the
quality of stem text preprocessing. While prepro-
cessing text data (e.g., tokenization and lemmatiza-
tion) is generally challenging, the text of medical

items can pose additional challenges. The stem
of many medical items typically contains a tabu-
lation of data, e.g., laboratory results and blood
pressure measures. When embedded within the
text, such data can negatively impact the accuracy
of feature calculations. For example, a list of items
and numbers within a syntactically simple sentence
can make it appear as a complex sentence in mea-
sures of sentence complexity. It can also interfere
with coherence measures calculated through the
Coh-Matrix.

The second limitation concerns the results of
feature importance. Different algorithms may pro-
duce relatively different feature importance sets
as they try to reach their highest prediction accu-
racy. Therefore, the top three or five features in
one algorithm can differ from those in another al-
gorithm even with a very close RMSE. To better
understand the contribution of each feature to the
prediction model, experimental studies are recom-
mended, as the direct effect of individual variables
can be more reliably examined through experimen-
tal control and manipulation (Yousefpoori-Naeim
et al., 2023).

7 Conclusion

The present study explored a selection of diverse
features to predict the difficulty and response time
of a sample of multiple-choice medical test items
using a variety of ML algorithms. In either of

556



the prediction tasks, the addition of embeddings
to the list of features did not make a considerable
contribution to model performance, and the use of
the ensemble method was not effective either. In
feature importance scores, however, the two tasks
showed dissimilar patterns. Features measuring
cohesion were especially effective in predicting
difficulty, while length-related features were the
main predictors of response time.

While future studies can examine the role of
many other features in predicting item characteris-
tics of medical tests, we would like to draw atten-
tion to collecting data from item writers to be used
as a potential feature. Especially in the case of item
difficulty, medical test writers can be asked to rate
the difficulty of the items they develop. While stu-
dents might perceive items differently from what
test writers would assume, item writers’ ratings
could still correlate highly with actual difficulty
values. This feature enjoys high practicality and
low cost, as item writers can give difficulty ratings
as they write their own items. A more advanced,
but also more expensive approach is to have item
writers rate each others’ items as well.
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A Appendix

Table 2: Coh-Metrix feature labels and their descriptions

Feature Label Description
CNCCaus Causal connectives incidence
CNCTemp Temporal connectives incidence
CRFANPa Anaphor overlap, all sentences
CRFAO1 Argument overlap, adjacent sentences binary, mean
CRFCWO1 Content word overlap, adjacent sentences proportional, mean
DESWLlt Word length, number of letters, mean
LDTTRc Lexical diversity, type-token ratio, content word lemmas
LDVOCDa Lexical diversity, VOCD, all words
LSAGN LSA given/new, sentences, mean
LSASSpd LSA overlap, all sentences in a paragraph, standard deviation
PCCNCz Text Easability, PC Word concreteness, z score
PCCONNz Text Easability, PC Connectivity, z score
PCDCz Text Easability, PC Deep cohesion, z score
PCREFz Text Easability, PC Referential cohesion, z score
PCSYNz Text Easability, PC Syntactic simplicity, z score
PCTEMPz Text Easability, PC Temporality, z score
RDFRE LSA verb overlap
SMCAUSlsa Flesch Reading Ease
WRDADJ Adjective incidence
WRDADV Adverb incidence
WRDFRQa CELEX Log frequency for all words, mean
WRDMEAc Meaningfulness, Colorado norms, content words, mean
WRDNOUN Noun incidence
WRDVERB Verb incidence
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Table 3: List of features used in each prediction task

Features Difficulty Item Response
Item Type • •
Exam Part (Stem) • •
Stem Length • •
Sentence Length Average • •
Sentence Length Maximum • •
Option Count • •
Challenging Topics • •
Rare Words Sum • •
Medical Terms Sum • •
CNCCaus •
CNCTemp •
CRFANPa • •
CRFAO1 • •
CRFCWO1 • •
DESWLlt • •
LDTTRc • •
LDVOCDa • •
LSAGN • •
LSASSpd • •
PCCNCz • •
PCCONNz • •
PCDCz • •
PCREFz • •
PCSYNz • •
PCTEMPz •
RDFRE • •
SMCAUSlsa • •
WRDADJ • •
WRDADV •
WRDFRQa • •
WRDMEAc •
WRDNOUN • •
WRDVERB • •
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Abstract

This work presents a novel framework for the
automated prediction of item difficulty and re-
sponse time within educational assessments.
Utilizing data from the BEA 2024 Shared Task,
we integrate Named Entity Recognition, Se-
mantic Role Labeling, and linguistic features
to prompt a Large Language Model (LLM).
Our best approach achieves an RMSE of 0.308
for item difficulty and 27.474 for response time
prediction, improving on the provided baseline.
The framework’s adaptability is demonstrated
on audio recordings of 3rd-8th graders from the
Atlanta, Georgia area responding to the Test of
Narrative Language. These results highlight
the framework’s potential to enhance test devel-
opment efficiency.

1 Introduction

Standardized tests are essential tools for evaluat-
ing knowledge and ability for academic and pro-
fessional purposes, and thus must be rigorously
designed and meet stringent criteria. Key as-
pects include diverse item difficulty for compre-
hensive skill evaluation and appropriate response
time allocation – insufficient time compromises
fairness, while excessive time leads to inefficien-
cies (Huggins-Manley et al., 2022). Traditionally,
item difficulty and response time optimization have
relied on pretesting, where new items are embed-
ded in live exams. However, this labor-intensive
process limits the number of new items and in-
troduces security risks through potential overuse
(Settles et al., 2020). In high-stakes examinations
like the United States Medical Licensing Exam-
ination (USMLE) 1, these challenges necessitate
the exploration of alternative approaches for more
secure and efficient test design.

In response to these challenges, recent research
explores automated prediction using the text of
items themselves. This approach promises to

1https://www.usmle.org/

streamline test development, enhance exam fair-
ness, and mitigate security risks associated with
item overexposure. The automated prediction of
item difficulty and item response time shared task
at the 19th BEA Workshop aims to address this
gap (Yaneva et al., 2024). Advancements in Large
Language Models (LLMs), trained on massive text
corpora, hold significant potential for discerning
language patterns indicative of item difficulty and
response time. This paper outlines our methodol-
ogy for automated prediction of these characteris-
tics, leveraging named entity recognition, semantic
role labeling, and LLMs. We further evaluate the
framework’s validity across modalities by applying
it to a dataset of children’s oral responses to the Test
of Narrative Language. Our approach integrates
these technologies to analyze the complexities of
test item texts, aiming to accurately predict both
difficulty level and response time.

2 Related Works
In recent years, the prediction of item difficulty
and response time has garnered significant atten-
tion in the field of educational assessment research.
Prior work in this field employed techniques rooted
in classical test theory and item response theory.
More recently, the advent of sophisticated machine
learning approaches has enabled novel methods for
modeling these parameters (Yaneva et al., 2020,
2021).

In Lin et al. (2019) an LSTM-based method
for Chinese reading comprehension tests was pro-
posed. It achieved high accuracy utilizing word
embeddings and text correlation networks. Sim-
ilarly, Hochreiter and Schmidhuber (1997) em-
ployed word embeddings within a semantic space
to analyze relationships between multiple-choice
test components, finding correlations between se-
mantic similarity and item difficulty. Research on
item difficulty prediction in medical exams has also
advanced significantly with Qiu et al. (2019) intro-
ducing the Document enhanced Attention based
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neural Network (DAN) framework using seman-
tic relevance and similarity for difficulty assess-
ment. Ha et al. (2019) further demonstrated that
embeddings and linguistic features extracted from
test documents outperform simple text complexity
measures in predicting construct-relevant difficulty
in MCQs. Baldwin et al. (2021) incorporated item
response time prediction, emphasizing the impor-
tance of understanding how test-takers interact with
items. In a similar vein, Xue et al. (2020) found
transfer learning beneficial for USMLE item diffi-
culty prediction, suggesting stems alone are opti-
mal for difficulty, while the entire question benefits
response time prediction. Despite these advance-
ments, the joint prediction of item difficulty and
response time remains under-explored, motivating
our proposed technique designed to address this
gap.

3 Data
We evaluate our framework primarily on the 2024
BEA shared task dataset constructed from the
USMLE. As an auxiliary task, we also test its va-
lidity on the Test of Narrative Language.
3.1 Shared Task Description
The BEA 2024 Shared Task focuses on the auto-
mated prediction of item difficulty and item re-
sponse time for standardized exams, with an em-
phasis on the USMLE. This task seeks to enhance
the fairness and validity of standardized exams by
streamlining the estimation of item characteristics,
reducing the reliance on extensive pretesting. The
shared task comprises two tracks:
• Track 1: Item Difficulty Prediction predicts the

difficulty level of test items using item text and
relevant metadata.

• Track 2: Item Response Time Prediction pre-
dicts the average time required by test-takers to
answer an item utilizing item text and metadata.

3.1.1 Dataset
This task utilizes a dataset of 667 retired questions
from USMLE Steps 1, 2 CK (Clinical Knowledge),
and 3. These items cover a range of medical knowl-
edge and were authored by experts. The dataset
includes the following components for each item:
• Item Text (Stem): Clinical scenario/question

presented.
• Answer Options: Response choices (A-J, some

items may have fewer options).
• Correct Answer (Key): Correct response letter.
• Item Type: Indicates text-only or image-based

(images not provided).

• Exam Step: Which USMLE step the item be-
longs to.

• Item Difficulty: Numerical difficulty value
(higher=more difficult).

• Response Time: Average response time (sec-
onds) from live exam data.

USMLE
Question 
Passage

Named 
Entity 

Recognition

Semantic 
Role 

Labeling

Linguistic 
Features

Response 
Options

Large Language 
Model for Difficulty 

Prediction

Large Language 
Model for 

Response Time 
Prediction

Item 
Response 

Time

Item 
Difficulty

Figure 1: The proposed framework for item difficulty
and response time prediction

3.2 Test of Narrative Language (TNL)
This work also uses audio recordings of 185 3rd-
8th grade students from the Atlanta, Georgia, area
as they perform the “Test of Narrative Language
(TNL)" assessment (data collected in Fisher et al.
(2019)). In "Task 2 - Picture Description" in the
TNL, the children were shown an image containing
a character and several elements to describe. The
students were then asked to tell a story about the
image, making their story as complete as possible.
Each child’s response to the prompt was recorded,
and each child, on average, took about 3 minutes
to complete their story. Each child’s assessment
was administered and audio recorded by a trained
member of the project staff according to the TNL
protocols. Recordings were then independently
scored by two speech-language pathologists. If
disagreements occurred in scoring, the two scor-
ers reviewed the audio and discussed differences
to reach a consensus. Each child’s score was an
integer value between 0 and the total number of
test keywords. Recordings were taken at the child’s
school. Audio was recorded in stereo at a sampling
rate of 48kHz. All recordings were resampled to
mono audio with a sampling rate of 16kHz for ex-
perimentation.

3.3 Evaluation
The evaluation for both tracks of the shared task,
and the Test of Narrative Language, is based on the
Root Mean Squared Error (RMSE) metric, offering
an objective measure of the accuracy of predictions
made by the proposed pipeline.
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4 Methodology
4.1 Item Difficulty Prediction
Our item difficulty prediction methodology inte-
grates multiple advanced NLP techniques to en-
hance the precision of our predictions. We out-
line our approach in three main steps: Named En-
tity Recognition (NER), Semantic Role Labeling
(SRL), and the final difficulty prediction.

4.1.1 Named Entity Recognition
For Named Entity Recognition (NER), we employ
a dual-model strategy using both Longformer (Belt-
agy et al., 2020) and a choice between three Large
Language Models (LLMs), Mistral-7B (Jiang et al.,
2023), Llama-7B (Touvron et al., 2023), or Gemma-
7B (Team et al., 2023) to extract named enti-
ties from the entire question text. For LLMs,
we provide input as the question and specifically
prompt them as follows: Understand the input
sentence and annotate the named entities
from the Input Context. This process can be
represented as follows:

NERlongformer = Extractlongformer(Question)

NERLLM = ExtractLLM (Question)

NERUnion = NERlongformer +NERLLM

This process yields three combinations of NER
outputs, one for each LLM, by taking the union
of NERs extracted from Longformer and the se-
lected LLM. This approach ensures a more com-
prehensive and accurate set of named entities by
leveraging the strengths of each model.

4.1.2 Semantic Role Labeling
Following Named Entity Recognition (NER), we
employ Semantic Role Labeling (SRL) utilizing
both AllenNLP SRL Model (BERT Variant) (Gard-
ner et al., 2018) and the selected LLM. SRL func-
tions to identify semantic relationships within the
sentence, attributing roles to entities according to
their contextual significance. For SRL, the process
is analogous to that of NER, employing both Al-
lenNLP SRL and LLM to analyze the text. This
process can be represented as:

SRLBERT = AnalyzeBERT (Question)

SRLLLM = AnalyzeLLM (Question)

SRLUnion = SRLBERT + SRLLLM

For LLMs to generate SRL, we provide the
question and specifically prompt them as fol-
lows: Understand the input context, which
consists of the input sentence and the

associated named entities, then annotate
the semantic role labels of the input
context. This step deepens our pipeline’s com-
prehension of the question’s structure and content,
thus facilitating more precise predictions of item
difficulty.

4.1.3 Difficulty Prediction
Finally, we integrate NER and SRL outputs to pre-
dict item difficulty. The LLM is prompted to esti-
mate difficulty based on the complexity of relating
the correct answer to the identified entities and their
semantic roles.
Difficulty = PredictLLM (NERunion, SRLoutput)

We prompt the LLMs by providing input as the
question, NER, SRL, answer, and the prompt as:
For answer option set, understand the
input context consisting of an input
sentence, a collection of named entities
and semantic role information, summarize
the association with the ith answer
option. Depending on the difficulty level
of the linkages between input context
and [answer options], assign the input
context a score in the range of 0 to 1.4.
This approach leverages the LLM’s language un-
derstanding capabilities, enriched by the detailed
insights from NER and SRL, enabling a more in-
formed prediction of item difficulty.

4.2 Item Response Time Prediction
For item response time prediction, as shown in Fig.
1, we use linguistic features in addition to the NER
and SRL features. For NER and SRL features, we
follow the same steps as for the difficulty prediction
subtask.

4.2.1 Linguistic Features from Question
For item response time prediction, we begin by
extracting a subset of the 255 hand-crafted lin-
guistic features from LingFeat (Lee et al., 2021).
Among all features, we only take numerical and
syntactic features. The LLM is then prompted to
estimate response time using the question, NER,
SRL, answer, linguistic features and the following
prompt: For answer option set, understand
the input context consisting of an input
sentence, a collection of named entities,
semantic role information, Concatenate
lingfeat numerical and syntactic features
to summarize the association with the
ith answer option. Depending on
the exhaustiveness of the linkages
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demonstrated with input context and
[answer options], assign the entire input
context a response time in the range
of 25.0 to 230.00. Higher value would
indicate longer response time and higher
exhaustiveness.

Both item difficulty and response time predic-
tions are performed utilizing the Langchain library
(LangChain, 2024) for chaining API calls to the
LLM models in different stages, as well as to post-
process the outputs after each stage.

4.3 Difficulty and Item Response Time for
Oral Assessments

For recordings from the Test of Narrative Language,
we first generate Automatic Speech Recognition
(ASR) transcripts using the Whisper model (Rad-
ford et al., 2023) as in Veeramani et al. (2023).
Prior studies on literacy development (MEIERS
and MENDELOVITS, 2016), highlight the role
played by item response theory in measuring narra-
tive proficiency and literacy among school children.
Item difficulty is assessed utilizing two metrics: 1)
Transcription Word Accuracy: Calculated as de-
scribed in Oliveira et al. (2022). 2) Proportion of
Correct Responses: We measure the percentage of
children who correctly answer a test item, provid-
ing an additional indicator of item difficulty. To
model item response time, we analyze the time
taken by disfluencies exhibited by speakers dur-
ing the assessment. These disfluencies, classified
as filled pauses (FP), partial words (PW), repeti-
tions (RP), revisions (RV), and restarts (RS), are
extracted using models pretrained on the Switch-
board corpus (Godfrey et al., 1992) following the
methodology outlined in Romana et al. (2023).

4.4 System Design
As per the BEA 2024 Shared Task guidelines, we
attempt the item difficulty and response time pre-
diction task with three separate pipelines. The runs
use identical pipelines and differ only in the choice
of the LLM, with Run 1 using Llama2-7B, Run 2
Mistral-7B, and Run 3 using Gemma-7B.

5 Results and Discussion
5.1 BEA 2024 Shared Task
We first report our results on the BEA 2024 shared
task, comparing the baseline with three variants
of our proposed pipeline. Our findings (Table 1)
demonstrate that prompting Llama2-7B (Run 1) for
simultaneous prediction of response time and item
difficulty outperforms the DummyRegressor base-

line and other LLMs. Similarly, Gemma-7B (Run
3) also exceeds the baseline. We did not perform
any ablation studies. However, these results align
with prior research on LLM reasoning capabilities
(Johnson et al., 2023), supporting the value of our
chosen handcrafted features as supplementary in-
put.

Table 1: RMSE values of different runs on the BEA
2024 Shared Task. Numbers in bold represent best
results

Method Item Difficulty Response Time

Baseline 0.311 31.68

Run 1 0.308 27.474
Run 2 0.329 31.962
Run 3 0.308 28.191

5.2 Test of Narrative Language

Table 2: RMSE values from different runs on the TNL -
Task 2 data

Method Item Difficulty Response Time

Baseline 4.043 4.941

Run 1 2.162 2.038
Run 2 2.0578 2.0237
Run 3 2.007 2.022

As shown in Table 2, Gemma-7B (Run 3) demon-
strates superior performance in predicting both re-
sponse time and item difficulty, exceeding the base-
line and other LLMs. Similar to the results seen
in the BEA 2024 Shared Task, the inclusion of nu-
merical, lexical, and linguistic features likely aides
in understanding the complex interplay of within
the input and the syntactic/semantic relationships
needed to correctly identify the answer.

5.3 Conclusion
This paper introduces a novel framework for au-
tomating the prediction of item difficulty and re-
sponse time, a crucial aspect of educational assess-
ment design. Our system, utilizing Named Entity
Recognition, Semantic Role Labeling, and linguis-
tic features in conjunction with a Large Language
Model, demonstrates promising performance on
the BEA 2024 Shared Task data, achieving RMSE
values of 0.308 (item difficulty), and 27.474 (item
response time). The framework’s adaptability was
further evidenced by its successful application to
audio recordings from the Test of Narrative Lan-
guage, highlighting the potential of this approach
to streamline test development.
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Limitations

While promising, our framework has limitations:
Model Interpretability: The LLM’s decision-
making process lacks transparency. Future research
should explore methods for increasing interpretabil-
ity and providing human-understandable explana-
tions.
Linguistic Feature Scope: Our current implemen-
tation analyzes a specific set of linguistic features
for item response time prediction. It is possible that
additional features, such as specific domain-related
vocabulary, could further enhance prediction accu-
racy.
Domain Specificity: While our framework shows
promise for both written and oral assessments, its
performance may vary across different domains
and test formats. Further research is needed to
evaluate and potentially adapt the framework for
optimal performance in specific testing contexts.

Addressing these limitations will improve the
framework’s accuracy, efficiency, and fairness in
educational assessments.
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Abstract
This paper presents the description and primary
outcomes of our team’s participation in the
BEA 2024 shared task. Our primary explo-
ration involved employing transformer-based
systems, particularly BERT models, due to
their suitability for Natural Language Process-
ing tasks and efficiency with computational re-
sources. We experimented with various input
formats, including concatenating all text ele-
ments and incorporating only the clinical case.
Surprisingly, our results revealed different im-
pacts on predicting difficulty versus response
time, with the former favoring clinical text only
and the latter benefiting from including the cor-
rect answer. Despite moderate performance in
difficulty prediction, our models excelled in re-
sponse time prediction, ranking highest among
all participants. This study lays the groundwork
for future investigations into more complex ap-
proaches and configurations, aiming to advance
the automatic prediction of exam difficulty and
response time.

1 Introduction

In this paper, we describe the proposals sent by our
team to the BEA 2024 shared task (Yaneva et al.,
2024). This task aims to predict standardized ex-
ams’ difficulty (Track 1) and response time (Track
2). The data used in this task is from a high-stakes
medical exam called the United States Medical Li-
censing Examination1. The exams are provided in
a multiple-choice format, with answer candidates
ranging from 4 to 10.

Adjusting the difficulty of exams to align with
the intended level of evaluation is crucial for en-
suring the validity and fairness of assessments.
Educators can accurately gauge students’ under-
standing and proficiency within the targeted subject
matter by calibrating the difficulty appropriately.
This practice also promotes an equitable assess-
ment environment where students can handle their

1https://www.usmle.org/

challenges, allowing for a more reliable measure
of their knowledge and skills. Moreover, it en-
courages a more constructive learning experience,
as students are motivated to engage with material
that appropriately matches their abilities, fostering
growth and development. Ultimately, the careful
adjustment of exam difficulty supports the effec-
tiveness and integrity of the assessment process.

Several human examiners showed us these diffi-
culties and asked for our help, opening the possibil-
ities for an exciting application of language tech-
nologies to this problem. This is why our group is
quite interested in this problem and participated in
this task. Actually, we are working on automati-
cally predicting the difficulty of examinations for
new language learners. The exams of our work are
also in a multiple-choice format but, the number of
options is lower (3 or 4, depending on the exam).

Our primary objective in this task was cen-
tered on the initiation of experiments utilizing
transformer-based systems (Vaswani et al., 2017)
to explore their applicability to the given problem
domain. Instead of using the most modern genera-
tive models such as ChatGPT2, Llama-2 (Touvron
et al., 2023) or Mixtral (Jiang et al., 2024), we ex-
plored the use of several BERT-based models (De-
vlin et al., 2019), which require less computational
resources. We experiment with different input se-
quences and use the same data and approaches for
both tracks. While our results in Track 1 (Item
Difficulty Prediction) were relatively low (13th po-
sition for our best run), we obtained good results
in Track 2 (Response Time Prediction), where we
ranked in 1st, 3rd, and 4th position with our pro-
posed systems.

The paper is structured as follows: we describe
the main features of our approach in Section 2,
while we detail the runs submitted to the task in
Section 3. Then, we analyzed our results in Section

2https://chat.openai.com/
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4. Finally, we give some conclusions and future
work in Section 5.

2 Systems Description

In this Section, we describe the main features of
our systems. In the development period, we tested
different configurations using 10% of the training
collection as test data. All our experiments are
based on a BERT-base model3 fine-tuned for re-
gression (Devlin et al., 2019). We experimented
with similar models like DeBERTa (He et al., 2021)
and DistilBERT (Sanh et al., 2020), obtaining the
best results with BERT. We focused on the base
versions of these models instead of the large ones
because we wanted to study the use of simple ap-
proaches that do not require big GPU units.

We applied the same pre-processing to all our
models and focused on testing the effect of using
different inputs for the model. We provide more
details in the next subsections.

2.1 Pre-processing
We only used text from the item and the answers as
input to our systems. More in detail, we only used
the following text fields provided by the organizers:

• ItemStem_Text: contains the clinical case and
the question.

• Answer_N: contains the text of the n-
candidate answer.

• Answer_Text: contains the text of the correct
answer,

We did not apply any special pre-processing to
these input texts and used the tokenizer provided
by the BERT model.

We scale the target variables (Difficulty for
Track 1 and Response_Time for Track 2) into the
[0, 1] scale using the MinMaxScaler from sklearn4,
which gave us the best results in the development
period.

2.2 Input Formats
We tested different input formats in our experi-
ments. We wanted to explore the effects of using
different combinations of text and study the impor-
tance of different text elements for solving the task.
We explored the following input formats:

3https://huggingface.co/google-bert/bert-base-uncased
4https://scikit-learn.org/stable/modules/

generated/sklearn.preprocessing.MinMaxScaler.
html

• All text together: we concatenate the Item-
Stem_Text field with all the Answer_N fields.
With this format, we wanted to study how
including all the answer candidates can help
predict the difficulty of the item. We tried to
include the separator token before each candi-
date, but we had several problems. Therefore,
we just concatenated the answer candidates
with the text.

• Text and correct answer: we include the
ItemStem_Text and Answer_Text fields and
use the separator token to mark the separation
between the two fields. With this format, we
wanted to study the impact of including only
the correct answer without having access to
the other answer candidates.

• Only text: we only include the Item-
Stem_Text field. We wanted to study the ef-
fect of the clinical case text, without any in-
formation about the answer candidates, when
predicting the difficulty and response time.

3 Submitted Runs

We submitted the same three configurations to each
Track, where the only difference between tracks is
the target label used for training the models. All
the runs were trained using the whole training set
provided by the organizers, with the hyperparame-
ters selected in the development period. The only
difference among the three runs was the input for-
mat. All the runs were trained using a V100 GPU
in Google Colab, selecting the best model after ten
training epochs. The details of the three runs are:

• Run 1: it uses the ”All text together” input
format described in Section 2.2. Hence, this
run uses the clinical text and the candidates
to make predictions. We use a batch size of 8
and a learning rate of 2e-5.

• Run 2: it uses the ”Text and correct answer”
input format described in Section 2.2. This
run gives us information about including the
correct answer without including the other
candidates. We use a batch size of 8 and a
learning rate of 2e-5.

• Run 3: it uses the ”Only text” input format
described in Section 2.2. The objective of this
run was to make the predictions without in-
cluding any information about the candidates
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or the correct answer. We use a batch size of
4, a learning rate of 1e-6.

Each run’s batch size and learning rate were se-
lected based on our experiments in the develop-
ment period. We use the Adam optimizer and the
mean-squared error as the loss function for all our
experiments, while the other hyperparameters were
the default provided by the transformers5 library.

4 Analysis of Results

The official measure for both tracks was the Root
Mean Squared Error metric (RMSE), which com-
pares the prediction with the correct value. Systems
are ranked according to RMSE, with the best sys-
tems obtaining the lowest error scores. We show
and discuss the results of each track in the next
subsections.

4.1 Track 1: Item Difficulty Prediction

In Table 1, we show the results of our three runs, the
best system, and the proposed baseline in Track 1.
Our best submission in this track was Run 3, which
only included the clinical text as input. Thus, it
seems that, at least with our approach and this data,
any answer candidate’s inclusion was harmful. We
think this information must be helpful and want
to perform a more profound study about correctly
including it. Regarding the other two runs, the
best one was Run 1, which included all the answer
candidates.

Concerning other participants, our Run 3 was
quite close to the winner system, with several sys-
tems ranking better. Besides, only Run 3 obtained
better results than the proposed baseline.

Table 1: Results in Track 1, including the best system
and the proposed baseline.

System RMSE Rank
Best system 0.299 1

Run 3 0.308 13
Baseline 0.311 16
Run 1 0.337 35
Run 2 0.363 40

4.2 Track 2: Response Time Prediction

In Table 2, we show the results of our three runs
and the proposed baseline in Track 2. Our results in

5https://huggingface.co/docs/transformers/
index

this task were quite good, obtaining the best result,
the third and the fourth, despite using the same
approaches in Track 1.

The results of the three runs were quite similar,
so we must be careful with the conclusions we draw
from them. According to the scores obtained, the
best submission was Run 2, which included only
the clinical text and the correct answer. In contrast,
the submission, including the clinical text and all
the answer candidates (Run 1), ranked third. There-
fore, in this track, it was pretty useful to include
information from the answers (in contrast to the
results obtained in Track 1).

Table 2: Results in Track 1, including the best system
and the proposed baseline.

System RMSE Rank
Run 2 23.927 1
Run 1 24.777 3
Run 3 25.365 4

Baseline 31.68 25

5 Conclusions and Future Work

Automatic prediction of exam difficulty remains
an open challenge for both humans and machines.
This is why the BEA 2024 Shared Task proposed
evaluating systems predicting difficulty and re-
sponse time in medical exams, opening a common
framework for researching this challenge.

We have tested the use of BERT-based models
with different input formats. Our objective was to
establish a set of first results with simple systems
and continue our research with the most complex
approaches in the future.

We have tested the impact of using 1) only the
text containing the clinical text and the question,
2) including the correct answer, and 3) including
all the candidates. Our results differ depending on
the track (predicting difficulty or response time).
While we obtained our best results for predicting
difficulty using only the clinical text, our best re-
sults for predicting response time were obtained
including the correct answer.

Comparing results with other participants, we
ranked at the middle of the ranking when predicting
difficulty. On the other hand, we obtained the best
results among all the participants when predicting
response time, with our three runs in the first four
positions of the final ranking.

Future work aims to study new configurations
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for both predictions and include more systems in
the study.
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Abstract

We report the findings of the 2024 Multi-
lingual Lexical Simplification Pipeline shared
task. We released a new dataset1 comprising
5,927 instances of lexical complexity predic-
tion and lexical simplification on common con-
texts across 10 languages, split into trial (300)
and test (5,627). 10 teams participated across
2 tracks and 10 languages with 233 runs eval-
uated across all systems. Five teams partici-
pated in all languages for the lexical complex-
ity prediction task and 4 teams participated in
all languages for the lexical simplification task.
Teams employed a range of strategies, making
use of open and closed source large language
models for lexical simplification, as well as
feature-based approaches for lexical complex-
ity prediction. The highest scoring team on
the combined multilingual data was able to ob-
tain a Pearson’s correlation of 0.6241 and an
ACC@1@Top1 of 0.3772, both demonstrating
that there is still room for improvement on two
difficult sub-tasks of the lexical simplification
pipeline.

1 Introduction

The lexical simplification pipeline is a family of
systems designed to automatically identify and
replace complex vocabulary with simpler alter-
natives (North et al., 2023b). The lexical sim-
plification pipeline provides a more targeted ap-
proach to simplification than automated text sim-
plification (Al-Thanyyan and Azmi, 2021; Alva-
Manchego et al., 2020; Saggion, 2017) which di-
rectly rewrites entire sentences. The two core

1https://github.com/MLSP2024/MLSP_Data/

operations included in the lexical simplification
pipeline are (1) lexical complexity prediction
(LCP) and (2) the replacement of complex words
with simple synonyms.

LCP (Shardlow et al., 2020, 2022; North et al.,
2023b,c), a form of Complex Word Identification
(CWI) (Shardlow, 2013), involves assigning con-
tinuous values (0-1) to given tokens in context, rep-
resenting the difficulty that an intended reader pop-
ulation may associate with that target word.

The second task, often referred to just as lexical
simplification (LS) (Saggion et al., 2022) involves
generating simple substitutions for target words in
context. This task has been explored for single
words and multi-word expressions, and is related
to the identification of simple paraphrases (Mad-
dela et al., 2021).

We previously identified two shortcomings of
current work on the lexical simplification pipeline
(Shardlow et al., 2024) as follows:

1. Current datasets only explore one pipeline op-
eration, but no dataset exist with multiple op-
erations on the same target words in context.
This means that systems that are trained on
one task are unsuitable for the other. Systems
trained using multiple datasets may experi-
ence ‘genre drift’, where the text type across
datasets differs.

2. The existing data is overwhelmingly in the
English language. Whereas recent efforts ex-
ist to provide open source data in languages
other than English, there is no guarantee that
these datasets are created using the same pro-
tocols.
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We introduce the Multilingual Lexical Simpli-
fication Pipeline (MLSP) shared task, which pro-
vides a newly annotated dataset across 10 lan-
guages for LCP and LS. The annotations for both
these tasks are provided on common targets in
common contexts allowing further exploration of
the interplay between the two tasks and evaluation
of the full pipeline on common datasets. We re-
lease data in English, Spanish, French, Portuguese,
Sinhala, Filipino, Japanese, Italian, German and
Catalan. Of these languages, there were previ-
ously no available LCP resources for Portuguese,
Sinhala, Filipino, Italian or Catalan and no LS
resources available for Sinhala, Filipino, Italian,
German or Catalan.

In the remainder of this Findings paper, we
overview previous related shared tasks (Section 2);
give a description of the task (Section 3); overview
the preparation of our shared task dataset (Section
4); the participating systems (Section 5) and the
results (Section 6). We conclude with a discussion
of wider factors affecting our task (Section 7).

2 Related Tasks

LS 2012 at SemEval: The first shared task in
LS was proposed for SemEval 2012. It addressed
English LS (Specia et al., 2012) and offered the op-
portunity to evaluate systems able to rank substitu-
tion candidates in relation to their simplicity. The
dataset used was taken from the Lexical Substitu-
tion task at SemEval 2007 (McCarthy and Navigli,
2007) which was enriched with simplicity rank-
ings provided by second language learners with
high proficiency levels in English. The task at-
tracted five different institutions which provided
nine systems in total.

CWI 2016 at SemEval: At SemEval 2016, the
CWI task (Paetzold and Specia, 2016) requested
participants predict which words in a given sen-
tence would be considered complex by a non-
native English speaker. A new dataset composed
of 9,200 instances was created. The task attracted
21 teams which produced a total of 42 systems. A
post-completion analysis (Zampieri et al., 2017)
highlighted the difficulty of the shared-task. The
authors claimed that a disproportionate train/test
split with over 40 times more test data, together
with low inter-annotator agreement, was to blame
for poor system performances.

CWI 2018 at BEA: The BEA 2018 CWI shared
task (Yimam et al., 2018) proposed to tackle CWI
in English, German, and Spanish (training and test
data were provided), together with a multilingual
task with French as a target language without train-
ing data. Teams were asked to classify words as
either complex or simple (binary) and/or provide a
probability for the complexity of each word. The
shared task attracted eleven teams.

ALexS 2020 at IberLEF: Additionally, the
IberLef 2020 forum proposed a shared task
on Spanish CWI(Ortiz-Zambranoa and Montejo-
Ráezb, 2020). This workshop attracted seven
teams, of which three submitted to the final
task. The teams competed on the newly anno-
tated VYTEDU-CW corpus which provided bi-
nary complexity judgments over educational texts.

LCP 2021 at SemEval: The SemEval 2021
shared task on LCP (Shardlow et al., 2021) also
provided a new dataset for complexity detection
for single words and multi-word expressions in En-
glish attracting 55 teams. Annotations were pro-
vided as continuous complexity judgements as op-
posed to binary complexity values. Teams made
use of deep learning based approaches to predict
lexical complexity values across the corpus.

SimpleText 2021 at CLEF: The SimpleText
workshop (Ermakova et al., 2022) has been run-
ning at CLEF since 2021. This workshop aims to
provide benchmarks and datasets for the improve-
ment of the accessibility of scientific information.
The workshop provides datasets that participants
can compete on each year in the areas of: (1) pas-
sage selection for the creation of simplified extrac-
tive summaries; (2) identification of difficult con-
cepts and (3) query-based simplified rewriting of
scientific abstracts.

TSAR 2022 Shared Task on LS: The TSAR-
2022 shared task (Saggion et al., 2022) provided
annotations for LS in English, Spanish and Por-
tuguese. Participants were required to predict up
to 10 simple substitutions for a complex word in
each language. Participants were free to contribute
to one, two or all three languages. 14 Teams sub-
mitted 60 runs across the three languages. Suc-
cessful systems made use of prompt engineering
(Aumiller and Gertz, 2022; Vásquez-Rodríguez
et al., 2022) with large language models, as well as
incorporating feature-based approaches (Li et al.,
2022).
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3 Task Description

Our dataset consists of instances of marked words
in context, where participants are required to de-
velop systems that first identify the complexity
level of the marked word and then provide sugges-
tions for appropriate simplifications. This unites
the two previous tasks of LCP and LS into a sin-
gle task, executed on common data. We have
provided test data in 10 languages (Catalan, En-
glish, Filipino, French, German, Japanese, Ital-
ian, Portuguese, Sinhala, Spanish) with our final
dataset totalling 300 trial instances and 5627 test
instances. Participants were free to choose which
tasks and language tracks they participated in.

4 Data and Resources

We initially provided participants with labelled
trial data only (30 instances across 10 contexts per
language, designed to indicate the format of the
task). We did not provide training data, but instead
pointed participants to existing resources for LCP
and Complex Word Identification arising from pre-
vious shared tasks. We have provided a simplified
example of the task presented to participants be-
low:

(1) That period of intense regulatory scrutiny is
a routine part of the purchasing process.

Token Complexity Substitutions
intense 0.5 strong, forceful
scrutiny 0.8 examination,

observation,
inspection

purchasing 0.6 buying, acquir-
ing, obtaining

In the table above, the first column shows the to-
kens that were selected by the organisers for an-
notation. The second column shows the complex-
ity label assigned to each word, which is pro-
vided by the participant systems. The final col-
umn shows the substitutions for each word, also
provided by the participant systems. Participants
provided similar annotations across their chosen
language tracks, which were compared to the gold
evaluation data.

4.1 Dataset Collection

Each section of the dataset was provided by a
team of organisers consisting of at least one native

speaker for the given language. We collected an-
notations from a minimum of 10 annotators per in-
stance. Annotators were required to annotate lexi-
cal complexity for each identified token on a scale
of 1-5. Annotators were also asked to provide
up to 3 possible simplifications for each instance.
More information on the trial dataset creation is
given at Shardlow et al. (2024) and the MultiLS
protocol we used at North et al. (2024).

Depending on the availability of appropriate
texts requiring simplification and target popula-
tions to provide annotations, the organisers respon-
sible for each language made autonomous deci-
sions on the most appropriate method to gather lan-
guage specific LCP and LS annotation. Informa-
tion on language-specific concerns are described
below.

4.1.1 Catalan
The Catalan dataset is comprised of sentences se-
lected from the news section on education of the
TeCla corpus2 (Armengol-Estapé et al., 2021) of
Catalan news texts. Target words were annotated
by proficient Catalan speakers, in part recruited
from persons of the social environment of the data
collectors (10 participants) and in part from work-
ers recruited via Prolific3 crowdsourcing platform
(74 participants). Although only 22% of partici-
pants were native speakers, all annotators had a
high level of Catalan proficiency. The annotation
process in Prolific was monitored in order to detect
workers who were not following the annotation
guidelines, for example, annotators who always re-
turned the same target word as the substitute, or
provided synonyms in Spanish. Non-compliant an-
notators were given the chance to repeat the anno-
tation and, if they failed again, excluded.

4.1.2 English
The English dataset takes WikiBooks as a source
text. English targets were identified using fre-
quency profiling for 200 contexts. 2 additional
words were identified per context ensuring that all
selected words in the set were unique. The lex-
ical complexity annotations and LS annotations
were completed jointly by 21 annotators (10 na-
tive speakers, 11 non-native), all of whom were
registered as students at the Manchester Metropoli-
tan University. Each annotator saw 300 instances,

2https://huggingface.co/datasets/
projecte-aina/tecla

3https://www.prolific.com/
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with a total of 10-11 annotations across 600 in-
stances.

4.1.3 Filipino
The Filipino data is composed of sentences re-
trieved from early-grade level books accredited by
the Department of Education in the Philippines
and sampled from a larger collection of Filipino
resource works (Imperial and Kochmar, 2023a,b;
Imperial and Ong, 2021). The genre of the sen-
tences varies and includes samples from fiction, bi-
ographies, and instructional reference books. The
annotations for the dataset were provided by 10
university staff who were native speakers of Fil-
ipino and were asked to consider the reading level
of a second-grade elementary student while anno-
tating each sentence. Instances of borrowed En-
glish words in the data were transliterated to Fil-
ipino to preserve the uniformity of phonetics (e.g.
basketball is converted to basketbol).

4.1.4 French
The French dataset was compiled from a collec-
tion of texts that are used in French as a Foreign
Language (FFL) classes in France, which is still
under construction. The corpus contains texts tar-
geting learners with CEFR levels going from A1
to B2. Various genres are represented, including
encylopedia articles, news articles, social media,
commercial and professional communication, fic-
tion and non fiction books, or legal and political
texts. Sentences that appear in the shared task
dataset contain at least one word marked as B2
in the FLELex graded lexicon (François et al.,
2014). Two other words were chosen manually for
each sentence. The complexity annotation was per-
formed by 10 FFL students in Belgium, attending
A2 and B1 classes (5 from each level). The substi-
tutions were provided by 10 native French speak-
ers – Belgian master’s students attending literature
or social science classes.

4.1.5 German
The German data consists of Wikipedia (50%) and
literary texts (50%). The data was chosen based
on topics and texts mandatory for German stu-
dents in their last year of secondary education in
history lessons (e.g. Berlin Wall) and German
lessons (e.g. Der goldene Topf by E. T. A. Hoff-
mann). Annotations were provided by German na-
tive speakers employed at universities, who were
asked to take the perspective of the target group:

students in their last year before graduation with
a first language other than German. Simplifica-
tions that required context changes were only con-
sidered acceptable if the gender or number of a
simplification required agreement with a preced-
ing determiner, pronoun, or adjective. Example
for the simplification of Tempo, where the deter-
miner (underlined) changes: mit dem Tempo (“at
the pace”) is substituted by mit der Schnelligkeit
(“at the speed”).

4.1.6 Japanese
The Japanese data targets non-native Japanese
speakers, whose native language is neither Chi-
nese nor Korean, as Chinese or Korean L1 back-
ground constitutes a considerable advantage in
comprehension of Japanese due to partially shared
vocabulary (Koda, 1989), and therefore affects per-
ceived lexical complexity (Ide et al., 2023).

The Japanese sentences were extracted from
Wikipedia (50%), web pages with practical infor-
mation, e.g. from local authorities (21%), liter-
ary fiction (19.5%), news texts (5.5%), and texts
about Japanese culture and history (4%). The tar-
get words were selected to represent a wide range
of word frequencies and character (kanji) frequen-
cies, as well as diverse parts of speech (nouns,
verbs, adjectives, adverbs, particles, and auxil-
iaries). Additionally, the targets include specific
types of words known to be difficult for learners
(compound verbs, compound particles, and ono-
matopoeia).

We recruited 10 non-native annotators for LCP
annotation, and 10 native annotators for LS an-
notation. The LCP annotators were holders of
Japanese Language Proficiency Test (JLPT)4 lev-
els 1 (N1) or 2 (N2) and their native language
was neither Chinese nor Korean. The LS annota-
tors had at least one year of experience teaching
Japanese as a second language.

4.1.7 Italian
The Italian dataset comprises texts related to Ital-
ian literature, a subject taught across all school
levels and grades. Specifically, 50% of the sen-
tences have been extracted from Wikibooks, while
the remaining 50% consist of sentences from 20th-
century Italian authors sourced from Wikisource.
We selected modern authors to avoid words con-
sidered too arcane for contemporary speakers. The
task was designed for a ‘general Italian speaker’,

4https://www.jlpt.jp
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and therefore, annotations were provided by na-
tive speakers with varying levels of education and
literacy. A total of 215 individuals participated
in the annotation process, ensuring a minimum
of 10 annotations per sentence. For the substitu-
tion task, it was specified that annotators could
replace target terms with words of different gen-
ders, thus not limiting the choice of possible sub-
stitutes. Additionally, annotators were instructed
to treat pronominal verbs as single entities, which
could also be replaced with other verbs, for exam-
ple, replacing “mobilitarsi” with “agire”.

4.1.8 Portuguese
The Portuguese dataset contains sentences taken
from Bible extracts (47%), news articles (35%),
and biomedical papers (17%). Bible instances
were obtained from the Bíblia Sagrada (North
et al., 2024). News instances were taken from
the PorSimplesSent dataset (Leal et al., 2018) and
from the CC-News (Common Crawl-News) cor-
pus (North et al., 2022, 2023a). Biomedical in-
stances were extracted from abstracts of biomed-
ical literature provided by WMT-2019 (Bawden
et al., 2019). Only one target word per sentence
was annotated, rather the three target words per
context. 21 Portuguese annotators were crowd-
sourced using Amazon Mechanical Turk (MTurk)
and were selected from Brazil.

4.1.9 Sinhala
The Sinhala data consists of sentences extracted
from a recent Sinhala news corpus (Hettiarachchi
et al., 2024) and Sinhala translation of Tripitaka;
the standard collection of scriptures in the Ther-
avada Buddhist tradition written originally in Pali.
Approximately 30% of the sentences were ex-
tracted from Tripitaka, and the rest of the sen-
tences were from the news corpus. We recruited
ten university students who were studying for a
BA in Sinhala and were also native speakers of
Sinhala for the annotation process.

4.1.10 Spanish
The Spanish dataset derives from a corpus of over
5K sentences for sentence simplification currently
under development. The sentences were extracted
from four online university educational books in
the area of finance and were simplified following
a set of simplification guidelines borrowed from
the Simplext project (Saggion et al., 2015). The
annotation was undertaken by 60 students who are

native Spanish speakers and by 10 persons from
social contacts of the data collectors, half of whom
were native speakers. Out of all annotators, 8%
were non-native speakers with high Spanish lan-
guage proficiency.

4.2 Evaluation Metrics

For the evaluation of the LCP task we use Pear-
son’s correlation, Spearman’s rank, and the co-
efficient of determination (R2) in line with the
2021 shared task on LCP.

For the evaluation of the LS task (see (Štajner
et al., 2022)) we use Accuracy@k@top1 and
MAP@K defined as follows the 2022 shared task
on LS: Accuracy@k@top1 is the percentage of
instances where at least one of the k top-ranked
substitutes matches the most frequently suggested
synonym in the gold data. MAP@k uses a ranked
list of generated substitutes, which can either
be matched (relevant) or not matched (irrelevant)
against the set of the gold-standard substitutes.

As some of the instances are not simplifiable
or have less than k gold standard simplifica-
tions, the maximum achievable results in Accu-
racy@k@top1 and MAP@k are less than 1. Ap-
pendix A shows the number of unsimplifiable in-
stances as well as maximum achievable values in
all metrics.

4.3 Baselines

For LCP, we provide a baseline modelled as a lin-
ear regression on log-frequency. The frequency
baseline is trained using log-frequency (minimum
value if the target consists of multiple tokens) on
the trial set for each language. We use frequencies
provided by the wordfreq package5 when possi-
ble. Additionally, since the package uses an in-
compatible tokenization for Japanese and does not
provide any data for Sinhala, we use TUBELEX-
JA6 for Japanese, and a word frequency list for Sin-
hala7 by Fernando and Dias (2021).

For LS, we provide a baseline based on zero-
shot prompting a large language model. We em-
ploy the chat-finetuned Llama 2 70B model8 (Tou-
vron et al., 2023) in 4-bit quantisation. We use
the following zero-shot prompt template and tem-

5https://pypi.org/project/wordfreq/
6https://github.com/adno/tubelex
7https://github.com/nlpcuom/

Word-Frequency-List-for-Sinhala
8https://huggingface.co/meta-llama/

Llama-2-70b-chat-hf
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perature 0.3 to generate a maximum of 256 new
tokens.

Context: {context}ê
Question: Given the above context, list ten
alternative {language} words for "{word}"
that are easier to understand. List only the
words without translations, transcriptions
or explanations.ê
Answer:

Only the ê symbols represent line breaks. To
construct the prompt, the placeholders in curly
braces are replaced by the context, the language
of the instance, and the target word to be simpli-
fied. For English, the placeholder {language}
and the subsequent space is omitted. The prompt
is identical to a zero-shot prompt employed for LS
using a ChatGPT model by Aumiller and Gertz
(2022), except for the the underlined sentence
(List only. . . ), which we have added to reduce
unnecessary translations to English, transcriptions
to Latin alphabet, or explanations. Such extra in-
put was generated frequently when we applied the
original prompt to trial data. The addition of the
sentence results in both faster inference and higher
accuracy.

Our postprocessing also builds on the work by
Aumiller and Gertz (2022). Based on an exam-
ination of outputs using the trial data, we made
minor changes reflecting a broader array of lan-
guages and scripts as well as a different model. For
instance, we allow words to be separated by ideo-
graphic commas (、) commonly used in Japanese,
or lists enumerated using letters (e.g. a), b), . . . ),
which occurred in Llama 2 output.

5 Participating Systems

ANU (Seneviratne and Suominen, 2024) The
ANU team relied on a prompting strategy with
GPT-3.5 (i.e. GPT-3.5-turbo-instruct) for both
tasks using zero, one, and few-shot strategies. The
zero-shot strategy included the context and target
word while the non-zero strategies relied on in-
structing the model with one or three random sam-
ples from the trial data according to the prompting
template. For LS, a combination of filtering and
substitution was applied. Overall, the authors in-
dicate under-performance for the LCP task while
strong performance for English in LS.

Archaeology (Cristea and Nisioi, 2024) The
Archaeology team participated in both LCP and
LS. For both tasks, they make use of machine

translation software to convert all texts to En-
glish. The LCP values are generated using a
feature-based approach with word-level, syntactic-
level and semantic-level features. An XGBoost
regressor is trained on the Semeval 2021 English
test dataset and used to predict lexical complex-
ity values for all languages. The simplifications
for the LS task were generated in English using
the translated data by prompting a large language
model (OpenHermes 2.5) to produce JSON data
containing the candidate replacements and back-
translated to the target language.

CocoNut The CocoNut team submitted LAE-
LS, which introduced a novel method for LS,
trained without the use of parallel corpora or ex-
ternal linguistic resources. LAE-LS employed an
Adversarial Editing System with guidance from a
confusion loss and an invariance loss to predict
lexical edits in the original sentences. An LLM-
enhanced loss was tailored to distill high-quality
knowledge from LLMs into the Edit Predictor.
Complex words within sentences were masked
and a Difficulty-aware Filling module crafted to
replace masked positions with simpler words. For
LCP, the team used the probability of a word be-
ing masked by the Edit Predictor as the complex-
ity value of the word in context. For LS, complex
words were masked and the Difficulty-aware Fill-
ing module was used to predict substitute words.

GMU (Goswami et al., 2024) The GMU team
participated in both subtasks. For LCP they em-
ployed a weighted ensemble of mBERT, XLM-R
and language specific BERT models. All trial data
was used for cross-lingual training and evaluation.
For the combined track, an ensemble of language
specifc models was used. For LS GPT4-turbo
zero shot prompting was used, as well as mBERT,
XLM-R and language specific BERT models. Co-
sine similarity between the target token and the
substitutions generated by all the models were gen-
erated. Sentence transformer LaBSE is used to
find the embeddings of the substitutions. The top
10 substitutions with the highest cosine similarity
are selected for the output.

ISEP Presidency University (Dutilleul et al.,
2024) The ISEP team also relied on a GPT-3
language model (i.e. GPT-3.5-turbo-instruct) and
prompt engineering to solve the LS task. More
concretely, several prompt generation strategies
are used: a context-free strategy asks for ten sim-
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pler substitutes for the target word without speci-
fying the context, a zero-shot strategy instead pro-
vides the context and the target word, a one-shot
strategy is similar to zero-shot but provides one
example of how to answer, and finally a few-shots
strategy provide several examples to the model be-
fore testing. Responses from all strategies are ag-
gregated and answers ranked to produce the final
list of substitutes. The team reports satisfactory ag-
gregated performance in most languages they ap-
plied this method to.

ITEC (Tack, 2024) The ITEC team participated
only in the LCP subtask for French. They relied
on two pre-trained models, previously developed
for personalised LCP. Due to the characteristics
of the shared task data, the personalisation compo-
nent was removed. The team employed two mod-
els of similar architectures: a mix of character and
FastText embeddings that are fed to either a BiL-
STM or a feed-forward network, in order to con-
sider contextual information or not, respectively,
for predictions.

RETUYT-INCO (Sastre et al., 2024) The
RETUYT-INCO team make use of a range of
methods for their submitted runs, including word
embeddings and frequency baselines for Spanish,
English and Portuguese (LS). Feed forward net-
works with BERT-based embeddings for Span-
ish and English (LCP). Fine-tuning Mistral-7B
for English (LCP) and with synthetic data and
self-consistency for English, Spanish, Catalan and
Portuguese (LCP and LS) and finally, prompting
strategies using models available in the Groq API
for Spanish (LS).

SCaLAR The SCaLAR team participated
across both tasks, employing Mistral-7B for
LS in a few shot learning setup with post-
processing. Similarity scores were obtained
through Word2Vec to identify the the top 10
similar words for each complex word. For LCP,
the team used a weighted sum of 2 approaches: (1)
MPNet Hidden State to Image Regression with Ef-
ficientNet: Transforms MPNet hidden states into
image format and employs EfficientNet for image
regression, bridging text data to convolutional
neural networks. (2) XGBoost Regressor with
TF-IDF and Zipf Frequency Features: Utilizes
XGBoost regressor with features derived from
TF-IDF and Zipf frequency.

SDJZUandUU The Complex Word Identifica-
tion (CWI) model of team SDJZUandUU com-
prises of three integral modules: the Feature Col-
lection Module, Feature Fusion Module, and Re-
gression Model. The Feature Collection Module
is designed to gather diverse feature sets includ-
ing 16 commonly utilized handcrafted features,
GloVe embeddings, and dynamic dependency em-
beddings. This module incorporates Gaussian vec-
torization techniques to vectorize the handcrafted
features effectively. Subsequently, the Feature Fu-
sion Module combines the aforementioned feature
types into a vector representation, which is then
passed to the Regression Model. The Regression
Model is composed of three layers: two Support
Vector Regression (SVR) polynomial layers for
feature refinement within the feature vectors, and
one feedforward layer aimed at predicting the final
complexity value.

TMU-HIT (Enomoto et al., 2024) TMU-HIT
employed a GPT-4 based approach in both tasks.
In System 1, the team used GPT-4 to generate 10
alternative words for the target word in a zero-
shot setting. In the case of Japanese, rather than
solely generating alternative words, the team di-
rected GPT-4 to generate sentences wherein the
target words were substituted with each alterna-
tive word. This approach was necessary to en-
sure that the “katsuyou” (inflection) appropriately
suited the context in Japanese. substitues were
reranked through (a) prompting and (b) fine-tuned
XGLM. For LCP, the team use a chain-of-thought
based prompting method employing GPT-4 to gen-
erate an instruction in English, and subsequently
assigning complexity scores to target words across
all languages based on the English instruction.

6 Results

The full results for LCP and LS are displayed in
Appendix B and Appendix C respectively. Each
team was permitted to submit up to 3 runs per
language track, with teams permitted to submit to
both the combined track and the individual lan-
guage tracks. The ID field indicates the run ID of
the participants systems. Where teams submitted a
separate system to the combined track, the results
for each individual language were also separately
processed and included in the results tables for the
individual language tracks, these are indicated by
a run ID preceding with ‘A’. All team outputs can
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be found via GitHub9.
Whilst all systems provide interesting insights

into the nature of the lexical simplification
pipeline, we have chosen to highlight a small num-
ber of systems below. The full descriptions of each
system are available in the proceedings.

The results demonstrate that the GPT-4 based
approach of the TMU-HIT team performed well
across both tasks and all language tracks. This
system consistently outperforms the baseline and
is consistently the first or second highest ranked
system. Prompt-based strategies have previously
proved to be effective for LS, but not for the LCP
task.

The Archaeology submission based on machine
translation performs well for LCP, ranking as the
second team in the combined track. This sys-
tem uses a feature-based regression, demonstrat-
ing that this is still a competitive approach. The
system does not perform as well on the LS task,
and this is likely due to the challenge of correctly
identifying targets after back-translation.

The RETUYT-INCO submission attains second
place in LCP for Catalan, Filipino, Sinhala and
Spanish. This submission made use of bespoke re-
sources, including synthetic data for low-resource
languages. The competitive performance of this
submission on these tracks indicates that this ap-
proach may be appropriate for future low-resource
languages that cannot be handled through a con-
ventional prompt-based approach.

The GMU team attained first place for the EN-
LCP task, setting a new hard to beat baseline for
this dataset. Their approach also attains strong
LS results for all languages, consistently attaining
the 2nd or third ranked team in each language and
ranking as the second team on the combined track.

Finally, the ISEP team chose to only compete in
a reduced set of languages for the LS task. This
focus allowed them to submit a competitive sys-
tem for Catalan (1st place), Portuguese (1st place),
French (2nd team) as well as English (4th Team)
and German (4th team), outperforming the base-
line in all cases.

We provided a simple baseline for LCP based
on word-frequency and for LS based on a sim-
ple LLM-prompting strategy following prior work.
The baseline is included in all results tables as
‘Baseline’, except for the combined results table,

9https://github.com/MLSP2024/MLSP_
Participants/

where we have not included a baseline result. We
have sorted each results table, including the base-
lines, according to the Pearson’s Correlation for
LCP and Acc@1@Top1 for LS and we refer to
systems ‘above the baseline’ in this context.

For LCP our baseline system was generally
competitive, expect for Sinhala. The system was
based on word frequencies and the frequencies we
had available for Sinhala were not suitable for the
task. Our baseline received a negative correlation
to the gold labels for Sinhala (as did several par-
ticipant systems). For other systems, our baseline
performs strongly (ranking between the 2nd and
4th system for all languages except for English and
Sinhala) confirming our hypothesis that word fre-
quency would be a strong indicator of lexical dif-
ficulty. For English, the baseline system attains a
strong correlation of 0.7480, but is outperformed
by 9 other systems. The English LCP track was
more subscribed than any other.

For LS, our baseline system received mixed re-
sults, generally attaining a mid-table ranking. Our
approach was to reuse the prompt from the previ-
ous LS shared-task winner, which is a similar strat-
egy to many of the submitted systems which also
further improved on this same approach. Our sys-
tem performs particularly poorly for Filipino and
for Sinhala, and this is likely the result of the base
language model lacking training data for these lan-
guages.

Although we have ranked our systems accord-
ing to Pearson’s correlation for LCP, it is also in-
teresting to observe the R2 metric of each system
as compared to the baseline. The R2 metric de-
scribes the proportion of variance captured by the
system’s results, i.e., how well do the LCP values
returned by the system describe the LCP values in
the gold labels. A negative R2 indicates that the
returned values are a poor fit to the gold values,
whereas a positive R2 indicates a good fit.

Our baseline attains a positive R2 for all sys-
tems, except for Catalan and Sinhala. Notably, for
English the baseline system attains the highest R2

of any system. This is also true for Filipino (all
other systems have negative R2), German and Por-
tuguese. This indicates that although systems are
able to provide correlative LCP judgements, addi-
tional factors are still required to fully represent
the underlying data distributions.
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7 Discussion

We provided 10 languages for the evaluation of
LCP and LS. Unsurprisingly, the most subscribed
language track was English, with the most prior
work and existing resources in NLP concentrated
on English. We hope to address the imbalance in
LCP/LS research by providing equal amounts of
data for all languages that we have included. The
English submissions attained the highest scores
overall for LCP and LS, demonstrating that the
English task is better resourced. Further devel-
opments in multilingual NLP and in bespoke re-
sources for individual target languages will help
to improve the performance of other systems on
the tasks in our dataset.

Our dataset covers widespread global languages
such as English, Spanish and French. There are
a disproportionate number of languages in our
dataset that are influenced from the romance fam-
ily (Spanish, Catalan, French, Italian, Portuguese).
We hope to extend the dataset in further iterations
to include other widespread languages such as
Mandarin Chinese, Hindi, Modern Standard Ara-
bic and Bengali.

In addition to focussing future development on
widespread languages, our work has also shown
that LCP and LS can be effectively applied to
low-resource languages. Future work to develop
LCP/LS resources using the MultiLS framework
(North et al., 2024) which we have followed will
be incorporated into our dataset to enable the LS
task for wider digital communities.

Whereas previous approaches to LCP have fo-
cussed on regression studies, e.g., using a lan-
guage model with a regression head, it is interest-
ing to note that many of the systems were able to
use a prompting strategy to get good results for
the LCP task. The TMU-HIT system relies on
prompting to generate N judgements, effectively
forcing the LM to undertake the annotation task.
This proves effective across many languages. The
use of language models to replicate the annotators
is an interesting area of future exploration which
may have significant repercussions across other
similar lexical semantics tasks such as hate speech
or sentiment analysis. Nonetheless, feature based
systems such as the frequency baseline and the
feature-based regression of the Archaeology team
still performed competitively, demonstrating that
this can be an effective method for LCP, especially
when large language models are not available for

the target language.
The principal strategy for the LS task em-

ployed by our participants was through prompt
engineering. It is worth noting that several of
the top-ranked submissions on this task used
GPT4/GPT3.5, both of which are closed-source
proprietary models. Whilst differing prompt engi-
neering strategies were employed throughout the
task, it is very difficult to separate the differences
in performances that can be attributed to (a) the
prompting strategies used and (b) the language
models that they have been applied to. A possi-
ble future strategy to prevent model-variance may
be to provide all teams access to some common
model and enforce its use in a task.

8 Conclusion

We present the findings of the 2024 Multilingual
Lexical Simplification Pipeline shared task hosted
at the 19th Workshop on Innovative Use of NLP
for Building Educational Applications. We pro-
vided the first multilingual dataset for LCP and
LS on common targets, spanning ten languages
and nearly 6,000 instances. Ten teams partici-
pated in our task employing a range of LLM-
based strategies at the forefront of modern NLP.
Seven teams submitted system description papers.
Our shared task has progressed the forefront of
lexical simplification research and the organisers
look forward to seeing future multilingual lexical
simplification research born of these efforts. All
datasets, baselines and participant submissions are
available through the MLSP2024 GitHub Organi-
sation10.
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A Dataset Statistics and Maximum Achievable Results

Language # Test # Unsimplifiable Max. MAP@1, Max. MAP@3 Max. MAP@5
Instances Accuracy@k@Top1

All 5627 133 0.9763 0.9081 0.7963
Catalan 445 1 0.9977 0.9910 0.9793
English 570 0 1.0000 0.9491 0.8115
Filipino 570 130 0.7719 0.5222 0.3466
French 570 0 1.0000 0.9953 0.9673
German 570 0 1.0000 0.9309 0.7908
Italian 570 0 1.0000 0.9859 0.9228
Japanese 570 0 1.0000 0.9988 0.9957
Portuguese 568 1 0.9982 0.9241 0.7220
Sinhala 600 0 1.0000 0.8072 0.4873
Spanish 593 1 0.9983 0.9966 0.9885

B Lexical Complexity Prediction Results

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT All 2 0.6241 0.6215 0.2456
TMU-HIT All 1 0.5609 0.5697 -0.3111

Archaeology All 2 0.5316 0.5415 0.2560
RETUYT-INCO All 1 0.4858 0.4892 -0.6746

GMU All 1 0.3494 0.3642 0.1094
SCaLAR All 1 0.0979 -0.0104 -0.0301

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Catalan A2 0.6158 0.5989 -0.1610
TMU-HIT Catalan A1 0.5279 0.5327 -0.9634

RETUYT-INCO Catalan 1 0.3948 0.3862 -1.3972
RETUYT-INCO Catalan A1 0.3608 0.3564 -1.5394

Baseline Catalan 1 0.3011 0.3106 -0.3698
Archaeology Catalan 1 0.2960 0.3029 -0.0342
Archaeology Catalan 2 0.2744 0.2649 0.0110

GMU Catalan 1 0.1549 0.1574 -0.3378
GMU Catalan A1 0.1137 0.1081 -0.1453

SCaLAR Catalan A1 0.0424 0.0065 -0.2236

Team Name Language ID Pearson’s Spearman’s R2

GMU English 1 0.8497 0.7984 0.5247
TMU-HIT English 2 0.8198 0.7552 0.5147

SDJZUandUU English 3 0.8123 0.7754 0.5245
SDJZUandUU English 1 0.8111 0.7414 0.3731

RETUYT-INCO English 1 0.8061 0.7596 0.3154
TMU-HIT English 1 0.8036 0.7017 0.3161

Archaeology English 2 0.7904 0.7547 0.4393
SDJZUandUU English 2 0.7820 0.7182 0.3529

RETUYT-INCO English 3 0.7599 0.7406 -0.1796
Baseline English 1 0.7480 0.7451 0.5475

RETUYT-INCO English 2 0.5502 0.4923 0.1062
ANU English 1 0.3358 0.3591 -3.0241
GMU English A1 0.3118 0.3183 0.0585

CocoNut English 1 0.1972 0.2160 -5.1596
ANU English 3 0.1915 0.2402 -0.5842
ANU English 2 0.1789 0.2285 -0.0917

SCaLAR English A1 0.0126 0.0139 -0.2984
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Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Filipino A1 0.5692 0.5816 -0.3536
TMU-HIT Filipino A2 0.5013 0.5244 -2.4778

RETUYT-INCO Filipino A1 0.4640 0.4540 -1.4847
Archaeology Filipino 2 0.4427 0.4476 -0.0763

Baseline Filipino 1 0.3892 0.4178 0.0036
Archaeology Filipino 1 0.3620 0.4133 -0.9131

GMU Filipino A1 0.2823 0.2767 -0.0457
GMU Filipino 1 0.1942 0.1908 -0.0824

SCaLAR Filipino A1 -0.0700 -0.0792 -0.2649

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT French A1 0.6253 0.6302 0.2704
Archaeology French 1 0.5335 0.5310 0.2136
TMU-HIT French A2 0.5278 0.5343 0.2391
Baseline French 1 0.5166 0.5221 0.1458

RETUYT-INCO French A1 0.4868 0.4651 0.0279
Archaeology French 2 0.4411 0.4188 0.1862

ITEC French 2 0.3607 0.4972 -4.4459
ITEC French 1 0.3253 0.3533 -3.3488
GMU French 1 0.3193 0.3207 0.0484
GMU French A1 0.1557 0.1756 0.0039

SCaLAR French A1 0.1035 0.0674 0.0061

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT German A2 0.7177 0.7365 -0.5585
TMU-HIT German A1 0.6582 0.6813 -0.7654
Baseline German 1 0.5912 0.6096 0.0727

Archaeology German 2 0.5577 0.5774 -0.1320
Archaeology German 1 0.5508 0.5726 0.0686

RETUYT-INCO German A1 0.3909 0.3981 -0.3463
GMU German A1 0.1402 0.1473 -0.5279

SCaLAR German A1 0.0310 0.0177 -1.2467
GMU German 1 0.0123 0.0095 -1.1301

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Italian A2 0.6011 0.6220 0.2425
TMU-HIT Italian A1 0.5391 0.5557 -1.7874

Archaeology Italian 1 0.5341 0.5320 -0.4175
Baseline Italian 1 0.5186 0.5417 0.2265

RETUYT-INCO Italian A 0.4945 0.5128 -2.6399
Archaeology Italian 2 0.4790 0.4805 -0.0599

GMU Italian 1 0.2919 0.2961 0.0770
GMU Italian A1 0.1797 0.1706 -0.0064

SCaLAR Italian A1 -0.0234 -0.0425 -0.0643

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Japanese 2 0.7333 0.7305 0.4129
TMU-HIT Japanese 1 0.6448 0.6479 -0.0958
Baseline Japanese 1 0.6420 0.6684 0.3395

Archaeology Japanese 2 0.4851 0.5126 -0.0983
RETUYT-INCO Japanese A1 0.4054 0.4073 -0.5215

Archaeology Japanese 1 0.2803 0.2648 -2.2358
GMU Japanese A1 0.1775 0.1827 0.0241
GMU Japanese 1 0.0350 0.0408 -0.0393

SCaLAR Japanese A1 -0.0660 -0.0784 -0.1007

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Portuguese A2 0.7858 0.7988 0.1533
TMU-HIT Portuguese A1 0.7638 0.7729 -0.4987
Baseline Portuguese 1 0.7126 0.7427 0.4890

Archaeology Portuguese 1 0.7143 0.7102 -0.2612
Archaeology Portuguese 2 0.6831 0.6923 0.2419

RETUYT-INCO Portuguese 1 0.6772 0.7121 -1.5487
RETUYT-INCO Portuguese A1 0.6571 0.6899 -1.5931

SCaLAR Portuguese A1 0.0490 0.0270 -0.1825

585



Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Sinhala A2 0.3081 0.3343 -1.6030
TMU-HIT Sinhala A1 0.2482 0.3261 -3.0794

RETUYT-INCO Sinhala A1 0.1344 0.1094 -7.2755
GMU Sinhala 1 0.1246 0.1303 -0.0370
ANU Sinhala 2 0.0534 0.0866 -2.3263

SCaLAR Sinhala A1 0.0450 0.0279 -0.9819
Archaeology Sinhala 2 0.0437 0.0298 -0.4590

GMU Sinhala A1 0.0263 0.0284 -0.1142
ANU Sinhala 1 -0.0108 -0.0105 -15.5689
ANU Sinhala 3 -0.0162 0.0487 -1.5636

Archaeology Sinhala 1 -0.0290 -0.0272 -9.3516
Baseline Sinhala 1 -0.1955 -0.2564 -0.2875

Team Name Language ID Pearson’s Spearman’s R2

TMU-HIT Spanish A2 0.7616 0.7460 0.4940
TMU-HIT Spanish A1 0.7201 0.6796 -0.0991

RETUYT-INCO Spanish 2 0.6641 0.6547 0.2808
RETUYT-INCO Spanish A1 0.6397 0.6296 0.2541

Baseline Spanish 1 0.5513 0.5299 0.2556
Archaeology Spanish 1 0.5274 0.4793 0.2507
Archaeology Spanish 2 0.5034 0.4588 0.2304

RETUYT-INCO Spanish 1 0.3126 0.2369 0.0131
GMU Spanish 1 0.2438 0.1984 -0.0731
GMU Spanish A1 0.1957 0.1772 -0.0806

SCaLAR Spanish A1 -0.0009 0.0180 -0.0367
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C Lexical Simplification Results

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT All 1 0.3772 0.5498 0.4652 0.3421
TMU-HIT All 2 0.3573 0.5498 0.457 0.3371

GMU All 1 0.3345 0.4828 0.379 0.2754
TMU-HIT All 3 0.2933 0.5498 0.4461 0.3306

RETUYT-INCO All 1 0.2156 0.3324 0.2412 0.165
RETUYT-INCO All 2 0.2074 0.3216 0.2351 0.1608

GMU All 2 0.1331 0.2999 0.1981 0.1561
Archaeology All A1 0.0538 0.134 0.0882 0.0713

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
ISEP Catalan 1 0.2719 0.3932 0.5003 0.3759

TMU-HIT Catalan A1 0.2584 0.3707 0.469 0.3547
TMU-HIT Catalan A2 0.2516 0.3707 0.4578 0.348

GMU Catalan 1 0.2247 0.328 0.362 0.2641
RETUYT-INCO Catalan A1 0.1977 0.2943 0.3024 0.21

Baseline Catalan 1 0.1977 0.2898 0.3000 0.2121
TMU-HIT Catalan A3 0.1955 0.3707 0.4528 0.345

RETUYT-INCO Catalan A2 0.1932 0.2831 0.3077 0.2106
GMU Catalan 2 0.0651 0.1595 0.172 0.1408

Archaeology Catalan 2 0.0404 0.1101 0.1203 0.0972
Archaeology Catalan 1 0.0292 0.0651 0.069 0.0556

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT English 1 0.5245 0.7456 0.5762 0.4142

GMU English 1 0.5157 0.6894 0.513 0.3691
ANU English 3 0.5105 0.6649 0.5324 0.3744
ANU English 1 0.4684 0.6561 0.5069 0.3652
ISEP English 1 0.4684 0.6754 0.5351 0.3877
ANU English 2 0.4631 0.6421 0.4978 0.3524

TMU-HIT English 2 0.4438 0.7456 0.5595 0.4042
Baseline English 1 0.3877 0.5631 0.4241 0.2956

RETUYT-INCO English 3 0.3789 0.5701 0.3832 0.2634
RETUYT-INCO English 2 0.3438 0.5526 0.3718 0.2542

CocoNut English 1 0.2298 0.3877 0.2303 0.1674
GMU English A2 0.1929 0.4157 0.2339 0.1869
GMU English 2 0.1859 0.3561 0.1945 0.1454

Archaeology English 2 0.0947 0.2578 0.151 0.1272

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT Filipino A1 0.065 0.0878 0.1807 0.1189
TMU-HIT Filipino A2 0.0615 0.0878 0.1736 0.1147

GMU Filipino A1 0.0562 0.0685 0.1395 0.0916
GMU Filipino 1 0.0561 0.0684 0.1392 0.0914

TMU-HIT Filipino A3 0.0404 0.0878 0.1592 0.1061
Archaeology Filipino 1 0.0175 0.0298 0.0313 0.0215

GMU Filipino 2 0.0157 0.0245 0.0449 0.0338
RETUYT-INCO Filipino A1 0.0087 0.0087 0.0154 0.0094

Archaeology Filipino 2 0.007 0.0122 0.0141 0.0095
RETUYT-INCO Filipino A2 0.007 0.0087 0.0082 0.0051

Baseline Filipino 1 0.007 0.007 0.0225 0.014
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Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT French A1 0.426 0.6197 0.6977 0.5466
TMU-HIT French A2 0.4242 0.6197 0.694 0.5443

ISEP French 1 0.3743 0.5711 0.6484 0.4996
GMU French A1 0.3661 0.514 0.5148 0.3946
GMU French 1 0.3655 0.5131 0.5141 0.394

TMU-HIT French A3 0.3257 0.6197 0.6815 0.5368
RETUYT-INCO French A1 0.301 0.4559 0.3974 0.2754

Baseline French 1 0.2952 0.3760 0.3674 0.2626
RETUYT-INCO French A2 0.2764 0.4278 0.3776 0.2662

GMU French A2 0.0845 0.2394 0.1725 0.149
Archaeology French 2 0.072 0.1704 0.1447 0.121
Archaeology French 1 0.065 0.1265 0.1044 0.0819

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT German A1 0.4885 0.6695 0.4882 0.3548
TMU-HIT German A2 0.4411 0.6695 0.481 0.3504

GMU German A1 0.42 0.5817 0.4002 0.2874
GMU German 1 0.4192 0.5824 0.4004 0.2874

TMU-HIT German A3 0.355 0.6695 0.4633 0.3398
RETUYT-INCO German A1 0.3022 0.434 0.2699 0.1787
RETUYT-INCO German A2 0.2671 0.4165 0.2626 0.1765

ISEP German 1 0.2187 0.25 0.1984 0.1344
Baseline German 1 0.1719 0.2192 0.1562 0.1054

GMU German 2 0.1192 0.3 0.1852 0.1463
Archaeology German 1 0.0614 0.114 0.0626 0.0484
Archaeology German 2 0.028 0.0771 0.0388 0.0294

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT Italian A1 0.4762 0.7188 0.5661 0.4126
TMU-HIT Italian A2 0.4657 0.7188 0.558 0.4078

ISEP Italian 1 0.4245 0.6614 0.5064 0.3788
GMU Italian A1 0.4042 0.6309 0.4615 0.3328
GMU Italian 1 0.4035 0.6315 0.4616 0.3328

TMU-HIT Italian A3 0.3708 0.7188 0.5454 0.4002
RETUYT-INCO Italian A1 0.3163 0.4973 0.3511 0.2434
RETUYT-INCO Italian A2 0.3022 0.485 0.3305 0.2253

Baseline Italian 1 0.2964 0.4684 0.3310 0.2254
GMU Italian A2 0.1546 0.3567 0.246 0.1965

Archaeology Italian 2 0.0947 0.1929 0.1145 0.092
Archaeology Italian 1 0.0491 0.1508 0.0975 0.0755

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT Japanese 1 0.4 0.5771 0.4883 0.3588
TMU-HIT Japanese A1 0.3989 0.5764 0.4881 0.3586
TMU-HIT Japanese 2 0.3824 0.5771 0.4779 0.3526

GMU Japanese A1 0.2583 0.4393 0.3618 0.2599
GMU Japanese 1 0.2578 0.4385 0.3612 0.2595

Baseline Japanese 1 0.1561 0.2421 0.1735 0.1173
GMU Japanese A2 0.1195 0.2847 0.2144 0.171

RETUYT-INCO Japanese A1 0.0949 0.137 0.1026 0.0665
RETUYT-INCO Japanese A2 0.0878 0.1405 0.0949 0.0607

Archaeology Japanese 2 0.0368 0.0929 0.0592 0.0441
Archaeology Japanese 1 0.0263 0.0824 0.0516 0.0391

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
ISEP Portuguese 1 0.485 0.6684 0.3538 0.2421

TMU-HIT Portuguese A1 0.4432 0.6595 0.3451 0.2285
TMU-HIT Portuguese A2 0.4095 0.6595 0.3341 0.2219
TMU-HIT Portuguese A3 0.3776 0.6595 0.3297 0.2193
Baseline Portuguese 1 0.3509 0.4973 0.2330 0.1516

RETUYT-INCO Portuguese 2 0.2768 0.4514 0.2094 0.136
RETUYT-INCO Portuguese A1 0.2748 0.4503 0.2088 0.1356
RETUYT-INCO Portuguese A2 0.2606 0.4202 0.207 0.1341

Archaeology Portuguese 2 0.097 0.2539 0.092 0.0704
Archaeology Portuguese 1 0.0864 0.2116 0.079 0.0574
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Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
GMU Sinhala A1 0.2284 0.3163 0.1387 0.0894
GMU Sinhala 1 0.2283 0.32 0.14 0.0902

TMU-HIT Sinhala A2 0.2214 0.3585 0.1673 0.108
TMU-HIT Sinhala A1 0.2144 0.3585 0.1709 0.1101

GMU Sinhala A2 0.13 0.3057 0.1147 0.0759
TMU-HIT Sinhala A3 0.1195 0.3585 0.1469 0.0957

Archaeology Sinhala 1 0.0466 0.0783 0.0359 0.0242
ANU Sinhala 1 0.0133 0.0166 0.0074 0.0045

RETUYT-INCO Sinhala A1 0.0017 0.0017 0.0041 0.0024
Archaeology Sinhala 2 0 0 0 0

RETUYT-INCO Sinhala A2 0 0 0.0032 0.0019
Baseline Sinhala 1 0.0000 0.0033 0.0028 0.0017

Team Name Language ID Acc@1@Top1 Acc@3@Top1 MAP@3 MAP@5
TMU-HIT Spanish A1 0.4536 0.6526 0.6763 0.5276
TMU-HIT Spanish A2 0.4502 0.6526 0.6721 0.5251

GMU Spanish 1 0.4182 0.6087 0.5987 0.4653
GMU Spanish A1 0.4165 0.6053 0.5948 0.4627

TMU-HIT Spanish A3 0.3642 0.6526 0.6592 0.5174
RETUYT-INCO Spanish 3 0.3288 0.4839 0.4124 0.298

Baseline Spanish 1 0.3254 0.4519 0.4157 0.3019
RETUYT-INCO Spanish A1 0.3187 0.4957 0.4075 0.2879
RETUYT-INCO Spanish A2 0.3069 0.4688 0.399 0.2789

GMU Spanish A2 0.236 0.4704 0.4371 0.3542
Archaeology Spanish 2 0.0674 0.1736 0.1565 0.1292
Archaeology Spanish 1 0.0455 0.1112 0.0951 0.0756
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Abstract

Lexical simplification (LS) is a process of re-
placing complex words with simpler alterna-
tives to help readers understand sentences seam-
lessly. This process is divided into two primary
subtasks: assessing word complexities and re-
placing high-complexity words with simpler al-
ternatives. Employing task-specific supervised
data to train models is a prevalent strategy for
addressing these subtasks. However, such ap-
proach cannot be employed for low-resource
languages. Therefore, this paper introduces a
multilingual LS pipeline system that does not
rely on supervised data. Specifically, we have
developed systems based on GPT-4 for each
subtask. Our systems demonstrated top-class
performance on both tasks in many languages.
The results indicate that GPT-4 can effectively
assess lexical complexity and simplify com-
plex words in a multilingual context with high
quality. The code used in our experiments is
available at the following URL 1.

1 Introduction

The presence of unfamiliar words within a sen-
tence can significantly impede its comprehension
for readers. Such complex words may cause misun-
derstandings of the sentence’s content or result in
wasted time as readers may find themselves com-
pelled to consult definitions of unfamiliar words.
The development of a system capable of automat-
ically simplifying complex words would enable
readers to proceed without interruption. To achieve
this, it is essential to first identify complex words
and then replace them with more comprehensible
alternatives. Numerous researchers have been un-
dertaken focusing on each challenge, engaging in
specialized endeavors known as Lexical Complex-
ity Prediction (LCP) (Paetzold and Specia, 2016;
Shardlow et al., 2021) and Lexical Simplification

*These two authors contributed equally to this work.
1https://github.com/tmu-nlp/GPT4MLSP

(LS) (McCarthy and Navigli, 2007; Specia et al.,
2012; Saggion et al., 2022).

LCP is a task that assesses the complexity of a
target word, i.e. its level of difficulty for under-
standing. Various methodologies have been pro-
posed to tackle this task. A classical strategy is the
frequency-based approach (Kajiwara and Komachi,
2018), which attributes higher complexity scores
to words of lower frequency. Given the availability
of supervised data, one viable option is to train a
regression model to evaluate the word’s complexity
(Bani Yaseen et al., 2021; Pan et al., 2021). How-
ever, such abundant linguistic resources for super-
vised learning are scarce for many languages (Joshi
et al., 2020). Therefore, there exists a need for an
approach capable of determining lexical complex-
ity without reliance on supervised data.

LS is a task that replaces a complex word with
easier synonyms while maintaining the original
meaning or information of the sentence. The
LS pipeline comprises three primary components
(North et al., 2023): substitute generation (SG),
substitute selection (SS), and substitute ranking
(SR). SG returns several candidate alternative
words for the target word in a given sentence. SS
then shifts through these alternatives, eliminating
those unsuitable for the target word, such as more
complex words or words with different parts of
speech. SR sorts the candidate alternatives to prior-
itize words more suitable as alternatives, ensuring
they appear higher in the ranking. Recent LS stud-
ies (Qiang et al., 2019; Przybyła and Shardlow,
2020) have often employed pre-trained language
models, and systems using GPT-3.5 (Aumiller and
Gertz, 2022) have demonstrated particularly effec-
tive performance.

This paper outlines our approach to the MLSP-
2024 Shared Task (Shardlow et al., 2024a). Our
system was based on GPT-4 and exclusively uti-
lized the trial data provided by the organizers (Bott
et al., 2024; North et al., 2024; Shardlow et al.,
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2024b), without incorporating any supplementary
datasets. In the LCP task, our system achieved the
highest Pearson’s correlations in nine out of the
ten languages. Additionally, in the LS task, our
system exhibited the highest performance in seven
out of the ten languages. The findings indicate that
GPT-4 has capabilities of assessing lexical com-
plexity and replacing complex words with simpler
alternatives in a multilingual context with a high
level of quality.

2 LCP Subtask

In Lexical Complexity Prediction (LCP), we as-
sessed the complexities using GPT-42 based sys-
tem. Specifically, we employed G-EVAL (Liu et al.,
2023), a scoring framework using large language
models with a chain-of-thoughts, for our system.

2.1 G-EVAL for LCP
We constructed a base prompt following G-EVAL.
Specifically, we first manually designed a prompt
that contains the definition of the LCP task and the
desired evaluation criteria as follows:

You will be given a sentence and a word
included in the sentence. Your task is
to rate the word on one metric. Please
make sure you read and understand these
instructions carefully. Please keep this
document open while reviewing, and re-
fer to it as needed.

Evaluation Criteria:

Complexity (0.0, 0.25, 0.5, 0.75, 1.0):
the complexity of a word in terms of how
difficult the word is to understand.

Then, we added a line of “Evaluation Steps:” to
the prompt and let GPT-4 generate the following
chain-of-thoughts (CoT) automatically:

Evaluation steps:

1. Read the sentence and word carefully
to understand the context.

2. Determine the complexity of the word
based on the following criteria:

- 0.0: The word is simple and easily
understandable to most people.

- 0.25: The word may have some com-
plexity or be specific to a certain field,

2We used gpt-4-0613 following Liu et al. (2023) for LCP.

but can still be understood with some
effort.

- 0.5: The word is moderately complex
and may require some background knowl-
edge or explanation to understand fully.

- 0.75: The word is quite complex and
may be difficult to understand without
significant knowledge or explanation.

- 1.0: The word is extremely complex
and likely only understood by experts or
individuals with specialized knowledge.

3. Assign a complexity rating to the
word.

We denote this prompt as Pbase. We added a test
example (sentence and target word) to Pbase and let
GPT-4 generate the complexities for the example
n times. We used the average of those as the final
complexity.

We had multiple options regarding the type of
language to use for a prompt. Although the lan-
guage of the test example is expected to be the
most intuitive and effective, previous studies (Lin
et al., 2022; Ahuja et al., 2023) demonstrated that
English prompt achieves the best performance for
most test languages. Furthermore, we manually
and automatically translated Pbase to Japanese and
French, respectively, and compared performances
of Pbase and the translated prompt in each language
using trial data. The Pearson’s correlation of Pbase

and the translated prompt were 0.821 and 0.600 in
Japanese 0.416 and 0.205 in French, respectively.
Therefore, we used Pbase regardless of languages.

2.2 Prompts to Specify Language and Role
In addition to Pbase, we defined and added a prompt
to specify the language of the test example. Specifi-
cally, we added “Please assign a complexity rating
to the LANG_NAME word” to the end of Pbase where
LANG_NAME is a language name of a test example,
such as English, Japanese, and French. We denote
the prompt with the language as Plang.

In our preliminary observation, the complexi-
ties generated by Pbase distributed nearly 0.0 to
0.1, which means that almost all words are easy to
understand for GPT-4. Furthermore, this distribu-
tion differed from that of the gold complexities as
shown in Figure 1. One of the potential reasons
is that GPT-4 is familiar with the target words un-
like human annotators because it was pre-trained
by massively data. To fill the gap between GPT-4
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Ca En Fil Fr De It Ja Pr Si Es

Pbase 0.646 0.733 0.462 0.416 0.793 0.615 0.821 0.836 0.347 0.641
Plang 0.493 0.734 0.516 0.516 0.783 0.666 0.674 0.802 -0.077 0.659
Prole 0.470 0.783 0.513 0.513 0.740 0.537 0.794 0.849 0.292 0.654
Plang+role 0.484 0.729 0.595 0.595 0.771 0.672 0.598 0.803 0.056 0.631

Table 1: Pearson correlations on trial datasets for each language. The best scores are indicated in bold.

Pearson Spearman MAE MSE R2

Zero-shot (Run 1) 0.5609 0.5697 0.1771 0.0487 -0.3111
Three-shot (Run 2) 0.6241 0.6215 0.1327 0.0280 0.2456

Table 2: LCP results on the all language’s test dataset. MAE and MSE denote Mean Absolute Error and Mean
Squared Error.

and human annotators, we gave the role to GPT-4.
Specifically, we added “You are an individual with-
out specialized knowledge or expertise in a specific
area.” to the first of Pbase. We denote the prompt
with the role as Prole.

We compared performances of Pbase, Plang,
Prole, and Plang+role, the prompt to which both of
the language and role are added, per each language
using trial data. Table 1 shows Pearson’s corre-
lations of each prompt per each language. The
table indicates that the best prompts differ for each
language.

2.3 Experiments

Experimental settings. We used the test datasets
provided by Shardlow et al. (2024a)3 for our evalu-
ations. The datasets encompass those for ten lan-
guages, and a composite test dataset that amalga-
mates the individual datasets for all languages. For
details about the languages and the size of each
dataset, please refer to the Appendix.

For evaluation metrics, we employed both Pear-
son’s and Spearman’s correlations, Mean Absolute
Error (MAE), Mean Squared Error (MSE), and R2
following Shardlow et al. (2021). We reported the
performance of the composite test dataset.

We chose prompts for each language that
achieved the highest Pearson’s correlation in Ta-
ble 1. We scored the complexities in zero- and
three-shot settings.4 In the three-shot setting, we
randomly sampled three examples from the trial
data.

3https://github.com/MLSP2024/MLSP_Data/tree/
main

4We indicated the hyperparameters, such as n, temperature,
and frequency_penalty, in Table 4.

Experimental results. Table 2 shows the result
on the test set of all languages and indicates that
the three-shot settings consistently outperform the
zero-shot one. The findings indicate the importance
of providing demonstration examples in LCP and
suggest the possibility that performance will be
enhanced by increasing the number of shots.

3 LS Subtask

In TSAR-2022 Shared Task (Saggion et al., 2022)
of LS, the system using GPT-3.5 (Aumiller and
Gertz, 2022) demonstrated a significant lead over
other neural approaches such as those using mask
language models. Following these findings, we
employed a GPT-based method using the latest
available GPT-45 for LS.

3.1 Substitution Generation
The Base system. We manually designed a
prompt 6 that instructs GPT-4 to generate ten alter-
native words for the target word as follows:

I will give you a LANG_NAME sentence
and a word in the ‘Sentence’ and ‘Word’
format. List ten alternatives for the Word
that are easier to understand, separated
by ‘,’.
You must follow these four rules.
1. Take into account the meaning of the
Word in the Sentence.
2. Alternatives must be easier to
understand than the Word.
3. Each alternative consists of one word.
4. Do not generate an explanation.

5We used gpt-4-0125-preview in LS experiments.
6We designed a specific prompt for the Japanese. Please

refer to Appendix A for details.
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ACC@k@Top1 Potential@k MAP@k

k=1 k=2 k=3 k=1 k=3 k=5 k=10 k=3 k=5 k=10

Base system (Run 1) 0.3772 0.4919 0.5498 0.6739 0.8071 0.8407 0.8759 0.4652 0.3421 0.2026
w/ RankingGPT−4 (Run 2) 0.3573 0.4792 0.5498 0.6391 0.8071 0.8407 0.8759 0.4570 0.3371 0.2001
w/ RankingXGLM (Run 3) 0.2933 0.4554 0.5498 0.5918 0.8071 0.8407 0.8759 0.4461 0.3306 0.1969

Table 3: LS results on the test dataset for all languages.

The rules 3 and 4 are to ensure generating an al-
ternative word consisting of a single word. We ob-
served that GPT-4 generates “descriptions” rather
than truly synonymous expressions without the
rules. For instance, “neither positive nor negative”
was generated as an alternative word for “neutrally.”
Since these “descriptions” were not appropriate as
alternative words, we added the rules 3 and 4 to the
prompt.

We let GPT-4 generate alternatives using the
prompts for n times. Then, we ensemble the n×10
alternatives following Aumiller and Gertz (2022).
We refer to this approach as “Base” (Run 1).

3.2 Substitution Ranking

We observed that the Base system exhibited high
Potential@3 scores in the trial dataset 7, indicat-
ing that in numerous instances, at least one of the
top three alternatives predicted by the system was
present in the gold annotations. Therefore, we hy-
pothesized that scores on metrics such as ACC@1
can be enhanced by re-ranking the top three words.
In Run2 and Run3, we undertook the re-ranking of
the top three alternatives for each instance from the
Base system.

GPT-4-based re-ranking. Previous studies
ranked alternative words based on their semantic
similarity to the target word (Seneviratne et al.,
2022; Whistely et al., 2022) or their familiarity
to people (frequency of occurrence in a corpus)
(Li et al., 2022; North et al., 2022). Following
the studies, we designed two distinct prompts
for re-ranking the generated alternatives in terms
of semantic similarity to the target word and the
alternatives’ ease, respectively. We re-ranked
the alternatives through each prompt and used a
composite ranking as the final prediction. We refer
to the approach as “RankingGPT−4” (Run 2).

XGLM-based re-ranking. In addition, we hy-
pothesized that words’ preference varies between

7Table 6 shows the scores of the Base system on the trial
dataset for each language.

human annotators and GPT-4 due to disparities in
the extent of knowledge accumulated. Therefore,
we trained a re-ranking model to fill the gap and
reflect annotators’ preferences. Specifically, we
performed an instruction-tuning of XGLM (Lin
et al., 2022) using the trial data8. We re-ranked
alternatives using the resulting model. We refer to
this approach as “RankingXGLM” (Run 3).

3.3 Experiments

Experimental settings. We employed the same
datasets as described in Subsection 2.3 for
evaluation. For evaluation metrics, we used
ACC@k@Top1, Potential@k, and MAP@k fol-
lowing Saggion et al. (2022).

Experimental results and discussions. Table 3
shows results on the test set of all languages. The
Base system outperformed the re-ranking systems,
and this trend held in nine out of the ten languages
except for Sinhala.

These results indicate that the ranking of al-
ternatives generated by GPT-4 within the Base
system is comparatively appropriate, whereas
RankingGPT−4 and RankingXGLM do not yield
appropriate rankings. Notably, the scores of
RankingXGLM are significantly degraded, suggest-
ing that it is difficult to train a re-ranking model
using only the trial data (i.e. 30 examples for each
language). Developing a better re-ranking strat-
egy is one of the challenges to further enhance the
scores.

4 Conclusion

In this paper, we introduced GPT-4-based systems
designed to assess word complexities and replace
complex words with simpler ones. Our systems
achieved superior performance in multiple lan-
guages for both LCP and LS tasks within MLSP-
2024 Shared Task.

8The details about how to create instruction-tuning data
are described in Appendix B.
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To score complexities, we created a base prompt
following G-EVAL (Liu et al., 2023) and added to
the base prompt supplementary prompts to delin-
eate the language of the test example and the role
of the LLM. Our prompt, when applied within a
three-shot setting, consistently achieved the high-
est Pearson’s correlation across the majority of lan-
guages. Furthermore, our experiments suggest the
potential for performance enhancement through the
augmentation of few-shot examples. Therefore, we
plan to explore the change in performance result-
ing from an increment in the number of few-shot
examples.

For the task of replacing complex words
with simpler alternatives, we manually crafted
prompts. The experimental results indicate that
these prompts yield alternatives of commendable
quality. Additionally, we explored the possibility of
enhancing the selection of generated alternatives by
employing a re-ranking strategy using either GPT-
4 or XGLM that were instruction-tuned by trial
data. However, the re-raking approaches degraded
the scores compared to the ones before re-ranking.
For future work, we plan to devise an improved
re-ranking methodology.

5 Limitations

Our approach leverages the OpenAI API, which
can be costly. In order to make Lexical Simpli-
fication easily available to many users, it might
be essential to devise an approach built on open-
source models, achieves comparable performance
to this study.
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Figure 1: The histograms of the gold complexities and
those derived from GPT-4 using the base prompt Pbase.
This figure shows that the complexities generated by
GPT-4 are distributed predominantly within the range
of 0.0 to 0.1.

LCP
LS

SG SG (ja) SR

temperature 0.7 0.7 0.7 0.7
frequency_penalty 0.0 0.5 0.0 0.0
presence_penalty 0.0 0.3 0.0 0.0
n 20 10 10 10

Table 4: Hyperparameters

A Japanese Specific Prompt

In the case of Japanese, instead of generating only
alternative words, we instructed GPT-4 to gen-
erate sentences in which the target word was re-
placed with each alternative word. Unlike the other
nine languages, Japanese doesn’t have spaces be-
tween words. Additionally, Japanese verbs, ad-
jectives, adjectival verbs and auxiliary verbs un-
dergo “Katsuyou” (inflection), wherein the ending
of a word changes depending on the subsequent
word. Some target words in the Japanese dataset
are in Katsuyou-form; for instance, “募集し” is
in the Katsuyou-form, while “募集する” is in the
Basic-form. We observed that when we instructed
GPT-4 to generate alternative words for a target
word in Katsuyou-form, it often generated words
in Katsuyou-form that did not suit the sentence or
words in Basic-form. On the other hand, when we
instructed GPT-4 to generate sentences in which
the target word was replaced with each alternative
word, GPT-4 could generate alternative words that
have the correct Katsuyou-form to fit the sentence.
Table 7 shows examples of GPT-4 outputs for each
method. The details of the prompt are shown in
Table 8.

Language Number of Examples

English 570
Catalan 445
French 570
German 570
Spanish 593
Italian 570
Portuguese 569
Filipino 570
Japanese 570
Sinhala 600

Table 5: The size of test datasets.

Language ACC@1
Potential@k

k=3 k=5 k=10

Catalan 0.600 0.866 0.866 0.900
English 0.766 0.833 0.866 0.866
Filipino 0.566 0.633 0.633 0.700
French 0.866 0.966 0.966 0.966
German 0.800 0.933 0.933 0.933
Italian 0.866 0.933 0.933 0.933
Japanese 0.800 0.966 0.966 0.966
Portuguese 0.666 0.766 0.800 0.900
Sinhala 0.600 0.733 0.766 0.800
Spanish 0.766 0.833 0.866 0.900

Table 6: LS results on the trial dataset for each language.

B Dataset Creation for
Instruction-Tuning of XGLM

The alternative words listed as gold are ranked by
frequency of suggestion by the annotators. We used
this ranking to create data for instruction-tuning
of XGLM from the trial data in eight languages
except Filipino and Sinhala. 9 The query of the
created data consisted of a contextual sentence,
a target word, two alternative words in the trial
data, and an instruction letting a model select a
more suitable alternative word. The answer was the
alternative with the highest ranking among the two
alternatives. When Alternative 1 was ranked higher
than Alternative 2 in the trial data, the template is
as follows:

### Instruction： I will give you a
{LANG_NAME} sentence, a word con-
tained in the sentence and alternatives

9Since Filipino and Sinhala are not included in the XGLM
pre-training data, we exclude these languages from the fine-
tuning data.
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Sentence ドラマに関する感想を募集し、週ごとにピックアップして回答も掲載した。

Target word 募集し

Gold 集め,促し,募り,探し,集めて,呼びかけ,広く集め,呼びかけて,たくさん求め,書いてもらい, ...

Only word 集めています,求めています,探しています,募っています,応募を受け付けています,呼びかけ
ています,求めている,探している,求人しています,集めている

With sent 集め,求め,探し,求めて,探して,招待し,募って,要求し,呼びかけ,呼びかけて

Table 7: Examples of GPT-4 output in Japanese. “Gold” represents the correct answer in the trial data. “Only word”
and “With sent” represent outputs when we instructed GPT-4 to generate ten alternative words and sentences where
the target words are replaced with each alternative word, respectively.

for the word in the ‘Sentence’, ‘Word’
and ‘Alternatives’ format. Choose a
more suitable alternative word to the
Word in the Sentence.
### Sentence： {SENTENCE}
### Word： {TARGET_WORD}
### Alternatives： {ALTERNATIVE 1,
ALTERNATIVE 2}
### Response： {ALTERNATIVE 1}

We conducted re-ranking by employing a
XGLM instruction-tuned on this dataset to predict
the portion following “### Response:”.
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Setting Prompt Template

SG (non ja)

I will give you a {LANG_NAME} sentence and a word in the ‘Sentence’ and ‘Word’ format. List ten alternatives for the Word
that are easier to understand, separated by ‘,’.
You must follow these four rules.
1. Take into account the meaning of the Word in the Sentence.
2. Alternatives must be easier to understand than the Word.
3. Each alternative consists of one word.
4. Do not generate an explanation.
Sentence: {SENTENCE}
Word: {TARGET_WORD}
Alternatives:

SG (ja)

I will give you a Japanese sentence and a word in the ‘Sentence’ and ‘Word’ format. Think ten easier alternatives for the
Word in the Sentence. Then, output sentences where you have replaced the Word with each alternative enclosed by ‘**’.
You must follow these three rules.
1. Take into account the meaning of the Word in the Sentence.
2. Alternatives must be easier to understand than the Word.
3. Do not generate an explanation.
Sentence: {SENTENCE}
Word: {TARGET_WORD}
Alternative sentences:

SR (ease)

I will give you a {LANG_NAME} sentence, a word and alternatives for the word in the ‘Sentence’, ‘Word’ and ‘Alternatives’
format. Arrange the Alternatives in order of their ease. Do not generate an explanation.
Sentence: {SENTENCE}
Word: {TARGET_WORD}
Alternatives: {ALTERNATIVES}
Sorted Alternatives:

SR (sim)

I will give you a {LANG_NAME} sentence, a word and alternatives for the word in the ‘Sentence’, ‘Word’ and ‘Alternatives’
format. Arrange the Alternatives in order of their semantic similarity to the Word, taking into account the meaning of the
Words in the Sentence. Do not generate an explanation.
Sentence: {SENTENCE}
Word: {TARGET_WORD}
Alternatives: {ALTERNATIVES}
Sorted Alternatives:

Table 8: Prompt templates used for GPT-4 in LS experiments. “SG” and “SR” represent the Substitute Generation
and Substitute Ranking, respectively. LANG_NAME is empty when the language is English. In SG (ja), SENTENCE is a
sentence with the target word encloseed by ‘**’. In SR, “ease” represents ranking based on ease of each alternative
word, and “sim” represents ranking based on semantic similarity of each alternative word to the target word.
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Abstract
Lexical simplification, the process of simplify-
ing complex content in text without any mod-
ifications to the syntactical structure of text,
plays a crucial role in enhancing comprehen-
sion and accessibility. This paper presents an
approach to lexical simplification that relies on
the capabilities of generative Artificial Intelli-
gence (AI) models to predict the complexity of
words and substitute complex words with sim-
pler alternatives. Early lexical simplification
methods predominantly relied on rule-based
approaches, transitioning gradually to machine
learning and deep learning techniques, leverag-
ing contextual embeddings from large language
models. However, the the emergence of gener-
ative AI models revolutionized the landscape
of natural language processing, including lex-
ical simplification. In this study, we proposed
a straightforward yet effective method that em-
ploys generative AI models for both predicting
lexical complexity and generating appropriate
substitutions. To predict lexical complexity,
we adopted three distinct types of prompt tem-
plates, while for lexical substitution, we em-
ployed three prompt templates alongside an
ensemble approach. Extending our experimen-
tation to include both English and Sinhala data,
our approach demonstrated comparable perfor-
mance across both languages, with particular
strengths in lexical substitution.

1 Introduction

Lexical simplification, an essential component in
making complex text more understandable, in-
volves replacing complex words with simpler alter-
natives while preserving the meaning and syntax
(Bott and Saggion, 2011; Seneviratne et al., 2022b).
This task is specifically valuable for people with
limited knowledge in certain languages or domains
or for people with low literacy skills (Gooding and
Kochmar, 2019). Lexical simplification can be
composed as a cascade of complex word identifi-
cation and lexical substitution. Addressing both

these tasks is vital for improved language under-
standability.

Complex word identification task is the first step
in lexical simplification (Shardlow, 2014). This
task can be formulated as identifying the com-
plex words in text or as predicting the level of
lexical complexity for each word. Various tech-
niques have been employed for this task, rang-
ing from rule-based (Devlin, 1998; Carroll et al.,
1999) through threshold-based (Zeng et al., 2005)
to lexicon-based approaches (Miller, 1995). Fol-
lowing these methods, researchers have also ex-
plored feature-based machine learning methods
(Wróbel, 2016; Malmasi et al., 2016) that also in-
corporate word embedding models and more so-
phisticated approaches like deep learning models
such as long short-term memory (LSTM) networks,
modelling the problem as a sequence labelling task
(Gooding and Kochmar, 2019). Recently, contex-
tual embedding models like Bidirectional Encoder
Representation from Transformers (BERT) have
gained attention for complex word identification
due to their ability to capture nuanced contextual in-
formation (Qiang et al., 2021; Seneviratne, 2024).

Similar to complex word identification, lexi-
cal substitution is an important sub-task for lex-
ical simplification. Early methods relied on lex-
ical resources to generate simpler, suitable, rele-
vant substitutes for complex or target words (Biran
et al., 2011; Pavlick and Callison-Burch, 2016).
This evolved with the introduction of word embed-
ding models like Word2Vec (Mikolov et al., 2013),
Global Vectors for Word Representation (GloVe)
(Pennington et al., 2014), and Embedding from
Language Models (ELMo) (Peters et al., 2018).
More recently, contextual embedding models such
as BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019) have become
popular for lexical substitution, sometimes com-
bined with lexical resources for improved perfor-
mance (Seneviratne et al., 2022a).

599



Even though many natural language processing
tasks have relied on more complex or sophisticated
methods based on deep learning models and contex-
tual embeddings, with the emergence of generative
Artificial Intelligence (AI), most of the methods
have shifted to exploring simpler approaches based
on prompt engineering (Aumiller and Gertz, 2022).
Prompt engineering presents straightforward and
effective approaches for a wide range of tasks, in-
cluding for lexical complexity prediction and sub-
stitution. In this study, we leveraged prompt engi-
neering for both tasks, focusing on improving the
accuracy and efficiency.

2 Experiments

2.1 Datasets

Our experiments and evaluations used the English
and Sinhala language datasets provided by the
MLSP-2024 shared task (Shardlow et al., 2024b;
North et al., 2024).

Lexical Complexity Prediction. The trial sub-
set of both English and Sinhala lexical complexity
prediction datasets comprised 30 sentences each,
and consisted of samples with the context, target
word, and their respective lexical complexities. The
data from the trial subset of the data was used for
one-shot and few-shot prompt template creation.
The test subset of the dataset consisted of 600 sam-
ples each for both English and Sinhala, which was
used for the evaluation of the proposed prompt-
based methods.

For lexical complexity prediction, since the
dataset had samples where the same sentence had
been associated with different target words, we first
grouped the sentences together and obtained lexi-
cal complexities for each target word in a sentence.
This facilitated a comparative perspective on the
complexity levels of the target words relative to one
another. Moreover, this enhanced the information
included in the prompt template allowing a better
understanding of the distinctions and variations in
lexical complexity.

Lexical Substitution. For the lexical substitu-
tion task, we employed datasets in both English
and Sinhala, each consisting of context sentences
with words requiring simplification, along with
sets of alternative words. Similar to the complex-
ity prediction task, the trial subset of the both the
datasets consisted of 30 samples, which were used
for prompt template creation. The test subset of
the data, that was used for evaluation, comprised

570 samples for English and 600 samples for Sin-
hala, respectively.

2.2 Methods

We relied on prompt-based methods for both lex-
ical complexity prediction and lexical simplifica-
tion through substitution generation. We relied
on Generative Pre-trained Transformer– GPT3.5-
turbo-instruct model with a temperature of 0.5 and
top_p value of 1 for our experiments. This specific
model has a context window of 4, 096 tokens.

Lexical Complexity Prediction. For lexical
complexity prediction, we explored the following
three distinct prompt templates to study how vary-
ing levels of additional information can affect the
final prediction: zero-shot, one-shot, and few-shot.
Each of these widely recognized templates pro-
vided unique information as to how additional con-
textual information influences lexical complexity
prediction. Namely, the zero-shot template, which
only used the given sample input to determine lex-
ical complexity of the target word, served us as
a baseline to compare with the other two prompt-
template methods. For the one-shot approach, we
selected a single random sample from the processed
trial dataset. Conversely, the few-shot approach in-
volved incorporating three examples from the trial
dataset into the prompt. Since we processed the
dataset to consolidate the same contexts and their
target words, the samples included in the prompt
consisted of context sentence along with their target
words and the lexical complexity values.

Context: {context}
Question: Given the above context, give the lexical com-
plexity for each word as a value between 0 and 1. The
words are {words}
Lexical complexity:

Table 1: Zero-shot prompt template used for lexical com-
plexity prediction. For one-shot and few-shot prompt
templates, examples were incorporated.

Lexical Substitution for Simplification. Simi-
lar to the lexical complexity prediction task, we re-
lied on three prompt templates for the initial genera-
tion of simpler, relevant, and suitable substitutes for
a given target work. While our zero-shot approach
only included the given context and the target word
for substitution generation, we incorporated in the
one-shot and few-shot prompt templates one and
three samples from the trial dataset, respectively. In
the latter two approaches, our prompt included the
given context sentence, target word, and their pos-
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sible substitutes for the generation process. In each
prompt template, we asked the model to provide
ten simpler substitutes for the target word.

Context: {context}
Question: Given the above context, list ten alternative
words for {word} that are easier to understand.
Alternative susbtitutes:

Table 2: Zero-shot prompt template used for lexical sub-
stitution. For one-shot and few-shot prompt templates,
examples were incorporated.

We further filtered the results obtained from the
three prompt templates. To combine the results
from the prompt templates, we followed (Aumiller
and Gertz, 2022), where the authors computed a
combination score V (Eq. 1) for each distinct pre-
diction, where rankSp(s) is the ranked position of a
possible substitute s for a given prompt p.

V (s) =
3∑

p=1

max(5.5− 0.5× rankSp(s), 0). (1)

2.3 Evaluation metrics
We based the evaluation of the proposed methods
on the metrics used in the MLSP-2024 shared task
(Shardlow et al., 2024a). For lexical complexity
prediction, Pearson’s R, Spearman’s Rank, Mean
Absolute Error (MAE), and Mean Squared Error
(MSE) were used. For the lexical substitution task,
we relied on Accuracy@K (K ∈ {1, 2, 3}), Po-
tential@K (K ∈ {1, 3}), and Mean Average Pre-
cision@K (MAP@K) (K ∈ {3, 5}).

3 Results

The results of the prompt-based lexical complexity
prediction methods did not reach the performance
levels of the top submissions in the lexical com-
plexity prediction task (Table 3). While the best
submission achieved Person’s R of 0.8497, the best
system from our experiments — the zero-shot ap-
proach — had Person’s R of 0.3358. Among our
prompt-template-based methods for Sinhala, the
one-shot approach yielded the most promising re-
sults. However, its Pearson’s R of 0.0534 was
placed fifth among the submissions for Sinhala.

In lexical simplification for English, our pro-
posed few-shot approach showed strong perfor-
mance, achieving comparable results with respect
to the best submissions for the task across all met-
rics (Table 4). The proposed method gave the Accu-
racy@1 score of 0.5105, while the best submission

gave 0.5245. However, for Sinhala, our submission
(which was the ensemble approach) did not show
satisfactory performance.

4 Discussion

In this paper, we have explored the applicability
of prompt-templates for both lexical complexity
prediction and lexical substitution for simplifica-
tion in English and Sinhala. Our investigation pri-
marily focused on three prompting methodologies:
zero-shot, one-shot, and few-shot. The experiments
demonstrated diverse performance levels across the
two tasks and languages under consideration.

The most effective approach of our experiments
for predicting complexity in English relied on the
zero-shot method, while for Sinhala, the one-shot
approach gave the best results. This difference may
stem from differences in language data availabil-
ity and the complexity of each language and task.
Compared to Sinhala, English has more language
data available, providing the model with a more
extensive information base. This could be a reason
why for English the zero-shot approach performed
better, as the model could leverage enough con-
textual information. However, Sinhala, being less
extensively studied, likely has fewer linguistic re-
sources and data available for training. Therefore,
the one-shot approach, which provides additional
context, may be better suited to capture the patterns
and dependencies in the language.

Considering the performance of the prompt-
based methods for complexity prediction in Sin-
hala, the few-shot approach did not perform as well
as the one-shot approach, even though more addi-
tional information was provided. This discrepancy
could be attributed to the quality of the samples
included in the prompt template. If the chosen
examples fail to adequately represent the lexical
features and patterns of the language, it may lead to
a degradation in performance, resulting in poorer
results compared to the one-shot approach.

The results from the lexical substitution for sim-
plification indicated varied performance. In En-
glish, out of our experiments, the few-shot ap-
proach gave the best results, closely followed by
the ensemble approach, which combined results
from all three prompt templates. This suggests
that the few-shot approach provided good exam-
ple instances that helped in capturing the lexical
intricacies of the language. Therefore, while the
ensemble approach gave comparable performance,
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Team Name Run ID Pearson’s R Spearman’s
Rank

Mean Absolute
Error

Mean Squared
Error

English
GMU 1 0.8497 0.7984 0.1137 0.0175
TMU-HIT 2 0.8198 0.7552 0.1108 0.0178
SDJZUandUU 3 0.8123 0.7754 0.1071 0.0175
RETUYT-INCO 2 0.5502 0.4923 0.1561 0.0328
ANU 1 0.3358 0.3591 0.3484 0.1478
GMU A 0.3118 0.3183 0.1389 0.0346
CocoNut 1 0.1972 0.2160 0.4150 0.2263
Sinhala
TMU-HIT A 0.3081 0.3343 0.1666 0.0422
TMU-HIT A 0.2482 0.3261 0.2126 0.0661
RETUYT-INCO A 0.1344 0.1094 0.3355 0.1340
GMU 1 0.1246 0.1303 0.1018 0.0168
ANU 2 0.0534 0.0866 0.1741 0.0539
SCaLAR A 0.0450 0.0279 0.1576 0.0321
Archaeology 2 0.0437 0.0298 0.1239 0.0236
GMU A 0.0263 0.0284 0.1066 0.0180

Table 3: Results of the experimented approaches on the test subsets of the English and Sinhala datasets provided at
the MLSP-2024 shared task for lexical complexity prediction.

Team Name Run ID Accuracy@1 Accuracy@2 Accuracy@3 Potential@1 Potential@3 MAP@3 MAP@5
English
TMU-HIT 1, A1 0.5245 0.6807 0.7456 0.7982 0.9035 0.5762 0.4142
GMU 1, A1 0.5157 0.635 0.6894 0.7491 0.8754 0.513 0.3691
ANU 3 0.5105 0.6175 0.6649 0.7684 0.8824 0.5324 0.3744
ANU 1 0.4684 0.5929 0.6561 0.735 0.8684 0.5069 0.3652
ISEP_Presidency 1 0.4684 0.607 0.6754 0.7649 0.8859 0.5351 0.3877
ANU 2 0.4631 0.5807 0.6421 0.7228 0.8614 0.4978 0.3524
TMU-HIT 2 0.4438 0.6298 0.7456 0.7333 0.9035 0.5595 0.4042
RETUYT-INCO 3 0.3789 0.5105 0.5701 0.5947 0.7824 0.3832 0.2634
RETUYT-INCO 2 0.3438 0.4701 0.5526 0.5789 0.7666 0.3718 0.2542
Sinhala
GMU A1 0.2284 0.2829 0.3163 0.311 0.4165 0.1387 0.0894
GMU 1 0.2283 0.2866 0.32 0.3116 0.4183 0.14 0.0902
TMU-HIT A2 0.2214 0.3286 0.3585 0.3198 0.4903 0.1673 0.108
TMU-HIT A1 0.2144 0.304 0.3585 0.3444 0.4903 0.1709 0.1101
GMU A2 0.13 0.2372 0.3057 0.195 0.3848 0.1147 0.0759
TMU-HIT A3 0.1195 0.2759 0.3585 0.2249 0.4903 0.1469 0.0957
Archaeology 1 0.0466 0.0633 0.0783 0.0666 0.1383 0.0359 0.0242
ANU 1 0.0133 0.015 0.0166 0.0133 0.0183 0.0074 0.0045
RETUYT-INCO A1 0.0017 0.0017 0.0017 0.0123 0.0123 0.0041 0.0024
RETUYT-INCO A2 0 0 0 0.0087 0.0105 0.0032 0.0019

Table 4: Results of the experimented approaches on the test subsets of the English and Sinhala datasets provided at
the MLSP-2024 shared task for lexical susbtitution for simplification.

it did not filter the best predictions as effectively
as the few-shot method. However, for Sinhala lex-
ical substitution, we only employed the ensemble
approach. Unfortunately, the results indicated sub-
par performance. This suggests that the ensem-
ble approach did not effectively capture the lexical
patterns, dependencies of Sinhala language, that
resulted in unsatisfactory outcomes.

The findings indicate the importance of inves-
tigating the influence of the factors such as data
availability, language complexity, and sample qual-
ity on the outcomes of lexical simplification tasks.
Additionally, refining prompt tuning methods could
enhance the effectiveness and outcomes.

5 Conclusion

In this work, we have used prompt-based methods
for both lexical complexity prediction and lexical
substitution for simplification, focusing on explor-
ing the applicability of generative AI methods. The
results from the different methods indicate varied
performance levels across the two tasks and lan-
guages, giving evidence of challenges related to
data availability, representations, quality of the sam-
ples, language complexity, and adaptability of the
models for the lexical simplification task. This
encourages further investigations that could poten-
tially improve the performance differences.
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6 Limitations

The experiments were conducted using GPT-based
models, which posed challenges primarily due to
their significant resource requirements (Aumiller
and Gertz, 2022). Thus, to facilitate these exper-
iments, we accessed the GPT model through an
Application Programming Interface (API), which
costed approximately $8 for all experiments. Fur-
thermore, the utilization of these models raises
ethical concerns surrounding data privacy and
transparency limitations. Additionally, our find-
ings highlighted variations in results based on the
prompt template, the examples included in the
prompts, and the parameters used, highlighting the
need for further investigation on the usability of
these models for NLP tasks.
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Abstract

Lexical substitute generation is a task where
we generate substitutes for a given word to fit
in the required context. It is one of the main
steps for automatic lexical simplification. In
this paper, we introduce an automatic lexical
simplification system using the GPT-3 large
language model. The system generates simpli-
fied candidate substitutions for complex words
to aid readability and comprehension for the
reader. The paper describes the system that we
submitted for the Multilingual Lexical Simpli-
fication Pipeline Shared Task at the 2024 BEA
Workshop. During the shared task, we experi-
mented with Catalan, English, French, Italian,
Portuguese, and German for the Lexical Sim-
plification Shared Task. We achieved the best
results in Catalan and Portuguese, and were
runners-up in English, French and Italian. To
further research in this domain, we also release
our code upon acceptance of the paper1.

1 Introduction

Test simplification is an important educational ap-
plication. It aims to simplify text to make the gen-
erated simpler text easier for reading and compre-
hension by different readers who may be either
young learners, people with language disabilities
(Eg. aphasia), second-language learners, etc. A lot
of the research done in the area of text simplifica-
tion is split into mainly 2 parts, namely syntactic
simplification and lexical simplification.

Syntactic simplification involves splitting the
sentences into smaller sentences (Klerke et al.,
2016). Lexical simplification, on the other hand,
involves simplifying the text by replacing more
complex words and phrases with simpler, and in
context, synonyms (Shardlow, 2014).

The lexical simplification pipeline consists of
multiple sub-tasks, (Shardlow, 2014) as shown in

1The code for the paper is available at: https://github.
com/lwsam/ISEP-LS

Figure 1. These subtasks are complex word iden-
tification (where we identify which word we have
to consider for simplification), substitution gen-
eration (where we generate candidate synonyms
for the given complex word), substitution selection
(where we select the candidate synonyms which
are contextually correct), and substitution ranking
(where we rank the selected candidates from easiest
to most complex).

With the advent of large language models
(LLMs) like GPT-3, the potential for automating
this task has increased significantly. These mod-
els, trained on vast amounts of text, have shown
remarkable proficiency in understanding context
and generating human-like text. Unlike pre-trained
language models like BERT (Devlin et al., 2019),
LLMs are significantly harder to fine-tune due to
the massively larger number of parameters (BERT
has about 110 million parameters, while GPT-3 has
about 175 billion parameters). Because of this, we
use GPT-3 using prompt-engineering, where we
provide a prompt to the system to generate substi-
tutes.

1.1 Organization of the Paper

The rest of the paper is organized as follows. We
define the problem statement of our work in Sec-
tion 2. Section 3 summarizes some of the recent
related work in this domain. We discuss the dif-
ferent datasets used in Section 4. We describe our
system in Section 5. Our results are reported and
discussed in Section 6 and we conclude our paper
and mention future work in Section 7.

2 Problem Statement

The Multilingual Lexical Simplification Pipeline
(MLSP) Shared Task dealt with 2 problems. The
first was Lexical Complexity Prediction (LCP). In
this task, the participants had to develop a system
where they were given a context and word in a

605

mailto:email@domain
https://github.com/lwsam/ISEP-LS
https://github.com/lwsam/ISEP-LS


Figure 1: Lexical Simplification Pipeline showing the different tasks traditionally used in lexical simplification. In
this example, we simplify a complex sentence (“The dog devoured his dinner.”) to a simplified sentence (“The dog
ate his dinner.”).

given language, and they had to assess how easy
/ complex the word was2. This is similar to the
SemEval 2021 Shared Task on Lexical Complexity
Prediction (Shardlow et al., 2021).

The second problem was called Lexical Simpli-
fication (LS), where we are given an input con-
text and complex word and we need to generate a
ranked list of upto 10 simplifications in increasing
order of complexity (i.e. from the simplest substi-
tute to the most complex substitute). This is similar
to the 2022 Text Simplification, Accessibility and
Readability Shared Task on Lexical Simplification
(Saggion et al., 2022).

Both these problem statements required par-
ticipants to build systems in multiple languages,
such as English, Catalan, French, German, Italian,
Brazilian Portuguese, Spanish, Bengali, Sinhala,
Filipino, and Japanese. In our paper, we mainly
focus on the second task (lexical simplification) for
the first 6 languages listed (English to Brazilian
Portuguese). More details on the shared task are
available inn the shared task report (Shardlow et al.,
2024).

3 Related Work

There has been a number of shared tasks dealing
with different aspects of the lexical simplification
pipeline.

2We attempted to participate in this task as well, but due to
some issues with the formatting in the output, we were unable
to make a good submission by the shared task deadline.

For complex word identification, one of the ear-
liest shared tasks was held in 2016 (Paetzold and
Specia, 2016a). The winners of that shared task
used a system of soft voting with different “voters”,
where the voters are either lexicon based, threshold-
based, or machine-learning assisted (Paetzold and
Specia, 2016b). In 2018, another shared task on
complex word identification was held as part of
the BEA Workshop collocated with NAACL (Yi-
mam et al., 2018). It had a monolingual track and
multilingual tracks where the systems would be
tested on German, French and Spanish. The win-
ning team (Gooding and Kochmar, 2018), used a
similar approach as Paetzold and Specia (2016b),
but with a much wider range of features.

One of the challenges is trying to assess a score
for how simple / complex a word is, given the con-
text. This step is critical for complex word iden-
tification. In light of this, Shardlow et al. (2021)
conducted a lexical complexity prediction task at
SemEval 2021.

The advent of LLMs inspired a significant
change in task specification. The 2022 TSAR
Shared Task on Lexical Simplification (Saggion
et al., 2022) had 3 languages - English, Spanish
and Brazilian Portuguese. The participants in that
shared task had to generate a set of substitutes
for each language. While some systems such as
Whistely et al. (2022) used a procedure of candi-
date generation (using pre-trained language models
like BERT (Devlin et al., 2019)), cosine similar-
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ity and part-of-speech tagging as filters, the win-
ning team (Aumiller and Gertz, 2022) used prompt-
engineering on a large language model.

4 Datasets

Language Test Set Size
English 570
Catalan 445
French 570
German 570
Italian 570

Portuguese 569

Table 1: Sizes of the testing dataset for each language.

For the shared task, participants were provided
only with trial data. That is, a very few context-
complex word pairs. Each language had a trial
dataset of 30 context-complex word pairs3. Our
systems were then evaluated on test sets of varying
sizes. Table 1 shows the sizes of each language’s
testing dataset.

5 Experiment

5.1 System Used

For our system, we utilize Open AI’s GPT 3.5
model4. We use a maximum of 256 tokens in the
prompt with a frequency penalty of 0.5 and a pres-
ence penalty of 0.3.

The first step that we do is detect the language
of the context. Based on the language chosen, we
select a prompt for simplification. If no language
is detected, then we default to the English prompt.

Once we detect the language, we next generate
the prompt from a set of templates. We use 3 types
of templates, similar to (Aumiller and Gertz, 2022).

5.2 Types of Prompts

Context-Free Prompt. This is a prompt that asks
for synonyms of the complex word without provid-
ing any context. This tests the model’s general
knowledge of synonyms generation.

Context-Free Prompt. Template: “Give me ten
simplified synonyms for the following word {com-
plex word}”. Example: “Give me ten simplified
synonyms for the following word {distraught}”

3NOTE: The number of contexts for most of the languages
are less than 30, as some contexts were repeated with different
complex words.

4Model name - gpt-3.5-turbo-instruct-0914

Zero-Shot Prompt. This type of prompt pro-
vides the context and the complex word, and asks
the LLM for simpler synonyms without any addi-
tional examples. This is used to gauge the model’s
ability to generate synonyms based solely on the
given context and complex word.

Zero-shot Prompt. Template: “Context: {con-
text} Question: Given the above context, list ten
alternative words for {complex word} that are eas-
ier to understand. Answer:” Example: “Context:
{After Ron nearly dies drinking poisoned mead that
was apparently intended for Professor Dumbledore,
Hermione becomes so distraught that they end their
feud for good.} Question: Given the above context,
list ten alternative words for {distraught} that are
easier to understand. Answer:”

Single-shot Prompt. This is a prompt that in-
cludes one example of a complex word and its syn-
onyms, followed by the target complex word. This
aims to guide the model by showing an example of
the desired output.

Single-shot Prompt. Template: “Question:
Find ten easier words for prerequisite. Answer:
1. requirement 2. required 3. essential 4. need
5. precondition 6. prior 7. necessary 8. necessity
9. prior 10. prescribed. Question: Find ten easier
words for {complex word}. Answer:”

Few-Shot Prompt. This is similar to the single-
shot prompt, but with multiple examples provided
to give the model a clearer understanding of the
task.

5.3 Prompting the LLM
For each generated prompt, we send a request to
the GPT-3.5 API. The predictions from GPT-3.5
are cleaned. Predictions from different prompts
are aggregated and ranked and the top (at most)
10 synonyms are submitted as the output for our
system.

5.4 Evaluation Metrics
We used the same evaluation metrics as given in
the shared task. However, in Section 6, we report
an aggregate of the evaluation metrics.

The different evaluation metrics used for auto-
matic evaluation are:

• MAP@K. This metric uses an ordered list
of gold-standard substitutes to compare the
system output with. This metric takes into
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English Catalan French
System Performance System Performance System

TMU-HIT 0.677 ISEP_PU 0.547 TMU-HIT 0.697
ISEP_PU 0.643 TMU-HIT 0.524 ISEP_PU 0.660

GMU 0.639 GMU 0.445 GMU 0.590
ANU 0.636 RETUYT-INCO 0.397 RETUYT-INCO 0.497

RETUYT-INCO 0.530 Archaeology 0.215 Archaeology 0.258
CocoNut 0.386 — — — —

Archaeology 0.288 — — — —
German Italian Portuguese

System Performance System Performance System Performance
TMU-HIT 0.626 TMU-HIT 0.673 ISEP_PU 0.571

GMU 0.548 ISEP_PU 0.635 TMU-HIT 0.551
RETUYT-INCO 0.413 GMU 0.607 RETUYT-INCO 0.379

ISEP_PU 0.257 RETUYT-INCO 0.225 Archaeology 0.230
Archaeology 0.142 Archaeology 0.225 — —

Table 2: Results of our system compared with the best performances from all other systems based on the mean of
all the evaluation metrics. Our system is highlighted in blue. Due to space constraints, we refer to it as “ISEP_PU”.

account the ranking of each of the generated
outputs. Here, K = {3, 5, 10}.

• Accuracy@k@top1. This is the percent-
age of instances, where, out of the top k
outputs given by the system, at least one of
them matches the top gold-standard substitute.
Here, k = {1, 2, 3}.

• Potential@k. This is similar to the MAP@K
metric, where we take k = {3, 5, 10}.

Based on the above metrics, we calculate our
aggregate metric, Performance, which is the arith-
metic mean of the other metrics.

6 Results and Analysis

We report the results of our experiments in Table
2. From the above table, we observe that we per-
form quite well compared to other systems, in al-
most all the languages except for German. We
have achieved the best performances in Catalan
and Brazilian Portuguese, as well as the second-
best performances in English, French and Italian.

One of the challenges that we faced was in
constructing the prompts for different languages.
While the authors of the paper are L1 / fluent speak-
ers of English and French, we needed the help
of Google Translate to translate the prompts from
English to other languages like German / Italian /
Portuguese.

One of the challenges of using LLMs currently
is that they are computationally intensive, requir-

ing hundreds of GB of GPU power to fine-tune.
Another challenge is that the current LLMs are fo-
cused on generating ranked substitutes irrespective
of the target user. For example, young learners
may have different requirements for simplification,
as opposed to second-language learners, or people
with reading disabilities. This can be tackled by
modifying the prompts (especially the one-shot /
few-shot prompts) to generate different simplifica-
tions based on the target user.

7 Conclusion and Future Work

Although we have performed reasonably well in
the shared task for lexical simplification, we would
like to extend our work for other languages which
we were not able to participate in. Most of the other
languages possess orthographic challenges because
they do not use the Roman script, such as Bengali,
Japanese, etc.

In the future, we would also like to focus on in-
struction tuning to improve the performance for per-
sonalizing the LLM for simplification. Currently,
the predictions from the LLM are independent of
the user. This means that a system built using this
approach may generate the same output irresppec-
tive of the user the text should be simplified for.
One method for resolving this is to utilize a user’s
cognitive information to try to perform complex
word identification, as well as generate and rank
candidate simplifications.

608



References
Dennis Aumiller and Michael Gertz. 2022. UniHD at

TSAR-2022 shared task: Is compute all we need for
lexical simplification? In Proceedings of the Work-
shop on Text Simplification, Accessibility, and Read-
ability (TSAR-2022), pages 251–258, Abu Dhabi,
United Arab Emirates (Virtual). Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sian Gooding and Ekaterina Kochmar. 2018. CAMB at
CWI shared task 2018: Complex word identification
with ensemble-based voting. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 184–194,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1528–1533, San Diego,
California. Association for Computational Linguis-
tics.

Gustavo Paetzold and Lucia Specia. 2016a. SemEval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569,
San Diego, California. Association for Computa-
tional Linguistics.

Gustavo Paetzold and Lucia Specia. 2016b. SV000gg at
SemEval-2016 task 11: Heavy gauge complex word
identification with system voting. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 969–974, San Diego,
California. Association for Computational Linguis-
tics.

Horacio Saggion, Sanja Štajner, Daniel Ferrés,
Kim Cheng Sheang, Matthew Shardlow, Kai North,
and Marcos Zampieri. 2022. Findings of the TSAR-
2022 shared task on multilingual lexical simplifica-
tion. In Proceedings of the Workshop on Text Simpli-
fication, Accessibility, and Readability (TSAR-2022),
pages 271–283, Abu Dhabi, United Arab Emirates
(Virtual). Association for Computational Linguistics.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications.

Matthew Shardlow, Fernando Alva-Manchego, Riza
Batista-Navarro, Stefan Bott, Saul Calderon Ramirez,
Rémi Cardon, Thomas François, Akio Hayakawa,
Andrea Horbach, Anna Huelsing, Yusuke Ide,
Joseph Marvin Imperial, Adam Nohejl, Kai North,
Laura Occhipinti, Nelson Peréz Rojas, Nishat Raihan,
Tharindu Ranasinghe, Martin Solis Salazar, Sanja
Štajner, Marcos Zampieri, and Horacio Saggion.
2024. The BEA 2024 Shared Task on the Multilin-
gual Lexical Simplification Pipeline. In Proceedings
of the 19th Workshop on Innovative Use of NLP for
Building Educational Applications (BEA).

Matthew Shardlow, Richard Evans, Gustavo Henrique
Paetzold, and Marcos Zampieri. 2021. SemEval-
2021 task 1: Lexical complexity prediction. In Pro-
ceedings of the 15th International Workshop on Se-
mantic Evaluation (SemEval-2021), pages 1–16, On-
line. Association for Computational Linguistics.

Peniel Whistely, Sandeep Mathias, and Galiveeti Poorn-
ima. 2022. PresiUniv at TSAR-2022 shared task:
Generation and ranking of simplification substitutes
of complex words in multiple languages. In Proceed-
ings of the Workshop on Text Simplification, Accessi-
bility, and Readability (TSAR-2022), pages 213–217,
Abu Dhabi, United Arab Emirates (Virtual). Associa-
tion for Computational Linguistics.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi,
Gustavo Paetzold, Lucia Specia, Sanja Štajner, Anaïs
Tack, and Marcos Zampieri. 2018. A report on the
complex word identification shared task 2018. In Pro-
ceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 66–78, New Orleans, Louisiana. Association
for Computational Linguistics.

609

https://doi.org/10.18653/v1/2022.tsar-1.28
https://doi.org/10.18653/v1/2022.tsar-1.28
https://doi.org/10.18653/v1/2022.tsar-1.28
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W18-0520
https://doi.org/10.18653/v1/W18-0520
https://doi.org/10.18653/v1/W18-0520
https://doi.org/10.18653/v1/N16-1179
https://doi.org/10.18653/v1/N16-1179
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.18653/v1/S16-1149
https://doi.org/10.18653/v1/S16-1149
https://doi.org/10.18653/v1/S16-1149
https://doi.org/10.18653/v1/2022.tsar-1.31
https://doi.org/10.18653/v1/2022.tsar-1.31
https://doi.org/10.18653/v1/2022.tsar-1.31
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.18653/v1/2022.tsar-1.22
https://doi.org/10.18653/v1/2022.tsar-1.22
https://doi.org/10.18653/v1/2022.tsar-1.22
https://doi.org/10.18653/v1/W18-0507
https://doi.org/10.18653/v1/W18-0507


Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 610–617
June 20, 2024 ©2024 Association for Computational Linguistics

Archaeology at MLSP 2024: Machine Translation for
Lexical Complexity Prediction and Lexical Simplification

Petru Theodor Cristea
petru-theodor.cristea@s.unibuc.ro

Sergiu Nisioi
sergiu.nisioi@unibuc.ro

Human Language Technologies Research Center
Faculty of Mathematics and Computer Science

University of Bucharest

Abstract

We present the submissions of team Archae-
ology for the Lexical Simplification and Lex-
ical Complexity Prediction Shared Tasks at
BEA2024. Our approach for this shared task
consists in creating two pipelines for gener-
ating lexical substitutions and estimating the
complexity: one using machine translated texts
into English and one using the original lan-
guage. For the LCP subtask, our xgb regressor
is trained with engineered features (based pri-
marily on English language resources) and shal-
low word structure features. For the LS subtask
we use a locally-executed quantized LLM to
generate candidates and sort them by complex-
ity score computed using the pipeline designed
for LCP. These pipelines provide distinct per-
spectives on the lexical simplification process,
offering insights into the efficacy and limita-
tions of employing Machine Translation versus
direct processing on the original language data.

Our results and experiments are released
at https://github.com/senisioi/MLSP_
Participants

1 Introduction

In the realm of Natural Language Processing
(NLP), the twin challenges of lexical complexity
prediction and language simplification play pivotal
roles in advancing text comprehension and promot-
ing accessibility. Lexical complexity prediction
refers to the difficulty of understanding phrases
based on their lexical features, while simplification
aims to enhance accessibility by offering simplified,
easier-to-understand alternatives. The importance
of addressing these challenges is underscored by
their wide-ranging implications across various do-
mains (Gooding, 2022; North et al., 2023; Saggion
et al., 2023).

Our approach is guided by the idea to extend
such methods beyond the languages that currently
have available data sets or corpora; thus, our first

set of submissions to the 2024 MLSP Shared Task
(Shardlow et al., 2024a) uses machine translation
to translate all datasets and languages into English,
which has been the central language of text sim-
plification and complexity research in recent years
(North et al., 2023). Both the lexical simplification
(LS) and the lexical complexity prediction (LCP)
pipelines are using only data in English in this case
1.

The second approach is trained on the origi-
nal texts as released by Shardlow et al. (2024b)
and uses an LCP pipeline trained with language-
independent hand-crafted features such as word
length, syllables, vowels, etc. and a regression
method trained on the small trial data from the
original language.

For generating candidates for lexical simplifi-
cation, we have opted for an LLM that can be
run locally using a quantized version of OpenHer-
mes 2.5 based on Mistral (Jiang et al., 2023) that
has been fine-tuned on code. According to the au-
thors2, the model was trained on a good ratio of
code instruction (7-14% of the total dataset) that
boosted several noncode benchmarks, including
TruthfulQA, AGIEval, and GPT4All suite. The
quantized LLM is not inherently multilingual, how-
ever, in our small-scale tests we have observed
some ability to generate simplification candidates
for non-English language,

The LLM we used to generate the alternatives
does not guarantee the correct form of the gener-
ated alternative and this problem is amplified by
using Machine Translation to get the phrases in
original languages, which could incorrectly trans-
late words without context. Regarding Machine

1Because of a bug in our submission code, the first LCP
submission was run with a LCP regression model trained
purely on English data with no other language involved.

2https://huggingface.co/teknium/OpenHermes-2.
5-Mistral-7B
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Figure 1: Density plots of LCP submitted scores predicted on the test set using (a) translated sentences and Englsh
original sentences and (b) original-language texts. The model run on original texts generally observes two peaks,
one with smaller values for simple words and one with larger values associated with complex words. Back-translated
words show quite a different pattern with only a single peak of words marked as simple.

es fil si ja pt de fr it ca en

Trans.
mean 1.36 1.52 1.49 1.74 1.32 1.23 1.39 1.29 1.52 -
max 8.2 6 12.71 8.75 8.25 5 6.5 4.3 6.3 -
empty 0.2 0 1.3 0.4 0 0.4 0.5 0.5 0.7 -

Orig.
mean 1.27 1.33 1.14 2.3 1.22 1.11 1.29 1.19 1.39 1.31
max 3.44 4.1 3 8.4 5.1 3.2 5.5 6.2 6 3.4
empty 14.2 2.8 3.2 0.7 8.6 3.2 3.7 12.5 2 5.3

Table 1: Average lengths of multi-word expressions that our systems suggested as alternative lexical simplifications.
Row empty indicate the percentage of empty suggestions for each language. The upper part of the table shows
that the number of empty suggesions of OpenHermes2.5 are low for texts translated into English, but the average
number of new words is higher than for prompts using texts in the original language.

Translation, we used DeepL3 for French, Spanish,
Japanese, German, Portuguese, Italian, and Google
Translate for Sinhala, Catalan, and Filipino, thus
obtaining only sentences in English to be able to
effectively apply feature extraction.

In many cases, during the translation process,
contextual information or expressions may be lost,
significantly affecting the correlation between fea-
tures. Table 1 shows the average number of multi-
word expressions introduced by the translation step
or by the predictions of the LLM model. Our LLM
suggested in many cases empty strings, we did not
check for those cases. As it stands, 14% of Span-
ish 12% of Italian are empty, however the overall
scores with LLMs for these languages exceed the
scores with MT (by a small margin). With MT,
the number of empty suggestions is considerably
smaller, but strangely enough 5% of original En-
glish sugestions are empty.

The LLM works better at generating candidates
directly using English translations as the number

3https://deepl.com

of empty candidates is lower; however, the actual
candidates generated tend to be multi-word expres-
sions instead of simple lexical substitutions.

In summary, combining our approach for pre-
dicting lexical complexity and simplification in a
unified framework may not be the best solution for
text comprehension, but it can provide a source of
interesting results for different languages.

2 Lexical Complexity Prediction

For lexical complexity prediction we reuse an
approach that has been previously tested at the
LCP2021 Shared Task (Shardlow et al., 2021) that
obtained a Pearson correlation of .75 using a re-
gression method trained on hand-crafted features.

Shallow Word Structure Features

We believe that this set of characteristics is as much
as possible language independent when additional
Latin-alphabet transliterations are used:

• character length of word
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• zipf_frequency from wordfreq library (Speer,
2022) (except for Sinhala)

• is title (not applicable for non-Latin glyphs)
• number of vowels (not applicable for non-

Latin glyphs)
• number of syllables from pyphen library4 (not

applicable for non-Latin glyphs)

Medical Research Council Psycholinguistic
Database

The MRC database (Wilson, 1988) is one of the
most widely used feature source for LCP (De-
vlin, 1998; Yimam et al., 2018; Shardlow et al.,
2021; North et al., 2023) demonstrating over three
decades of high usability (Scott et al., 2019) built
on top of word annotations (Thorndike and Lorge,
1944) and highlighting the necessity of such datab-
ses beyond the English language. Each lexical item
is lemmatized using the spacy English large model
(Montani et al., 2023) and searched in the database.
The features we employ are:

• aoa - age of acquisition 1-7 Likert scale
multiplied by 100 (Carroll and White, 1973;
Gilhooly and Logie, 1980)

• conc - concreteness rating from the method-
ology of Spreen and Schulz (1966); Gilhooly
and Logie (1980): "words referring to objects,
materials, or persons were to receive a high
concreteness rating, and words referring to ab-
stract concepts that could not be experienced
by the senses were to receive a low concrete-
ness rating"

• fam - (Noble, 1953; Gilhooly and Logie,
1980) familiarity rating (100-700)

• imag - imagability / imagery rating (Paivio
et al., 1968; Gilhooly and Logie, 1980):
"words arousing images most readily were
to be rated 7, and words arousing images with
great difficulty or not at all were to be rated
1" scores multiplied by 100

• meanp - meaningfulness - defined as "the
mean number of associations given in a 30-
sec production period" from the Paivio et al.
(1968)

• meanc - meaningfulness - Colorado Norms
(Toglia and Battig, 1978) obtained using a
different methodology from meanp (Wilson,
1988)

• brown_freq - Brown verbal frequency (Brown,
1984)

4https://doc.courtbouillon.org/pyphen

• Kucera-Francis number of categories, samples
and frequency (Kučera et al., 1967)

• tl_freq - Thorndike-Lorge written frequency
(Thorndike and Lorge, 1944)

Syntactic Features
For all lanugages except Filipino and Sinhala, we
load spacy medium-sized models (Montani et al.,
2023) using the latest version available. The only
syntactic features are the number of immediate
children in syntactic dependency parse. We use
spacy here to introduce additional boolean features
such as: is entity, is sentence start, is sentence
end. Such words could be markers of conceptual
complexity (Stajner et al., 2020).

WordNet Features
Similar to the MRC features, these are only avail-
able for English. We access WordNet (Miller,
1994) from NLTK (Bird et al., 2009) to extract
the number of synsets, hypernyms, and hyponyms.

External Lists
The system also incorporates external datasets,
such as the Dale-Chall (Dale and Chall, 1948) list
to create a boolean feature set. Furthermore, ad-
ditional frequency data is derived from non-native
speakers in the European Parliament (Nisioi et al.,
2016).

Similar features to ours have been used for the
CWI identification Shared Task in 2018 (Gooding
and Kochmar, 2018) obtaining excellent results on
a related task.

Regression Model

We use an XGBoost Regressor (Chen and Guestrin,
2016), which operates within a gradient boosting
framework, sequentially training weak learners to
minimize a specified loss function. For this task,
we do not employ hyperparameter tuning. All fea-
tures are passed through a scikit learn standard
scaler (Pedregosa et al., 2011) which standardizes
the features to zero mean and a standard deviation
of one. Although it might have been advisable to
check which features are good for scaling, we did
not proceed with this step, but rather passed all the
features (including the Boolean ones) through the
scaler.

We train our model on the English dataset re-
leased during LCP2021 (Shardlow et al., 2021)
concatenated with all the languages from the cur-
rent year’s shared task (Shardlow et al., 2024b).
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We use the same amount of features for all lan-
guages, which presents an interesting corner case
where words with similar forms are found in the
English-only resources. Such examples can be in
Filipino: amin (En. us), ate (En.: sister) or the
French words: notice, question, coach, Portuguese
words such as: bases, rigor, and Catalan: decimals.
This idea might point to a future research direction
to explore where false friends, borrowings, and
cognates (Dinu et al., 2023) could have the ability
to preserve lexical traits across languages that have
a history of contact.

3 Lexical simplification

For lexical simplification, we employ the locally
run quantized OpenHermes 2.5 based on Mistral
(Jiang et al., 2023) using llama-cpp5 and langchain
(Chase, 2022) libraries. The context contains the
entire sentence and the target word, and the model
is prompted to generate a json with potential re-
placement candidates. We run the model on the
English-translated texts and the results are then
back-translated into the initial language. The model
prompt is as follows: This sentence "TRANSLA-
TION" is a translation of "ORIGINAL" and the
word "TRANSLATED_WORD" is a translation of
"ORIGINAL_WORD" Provide a list of 10 alter-
native simpler words (as a json object) that a
child would understand easily to replace the word
""TRANSLATED_WORD"" in the following sen-
tence. It is mandatory for pattern of the answer
to be displayed as a JSON with words as keys
and complexity scores as values with all the 10
alternatives.

The second set of submissions is generated with
the model running on the original language date.
Nevertheless, it is imperative to acknowledge that
the model’s capability is constrained when han-
dling multilingual data, often leading to hallucina-
tions. The prompt used for original language data
is: Provide a list of 10 alternative simpler words
(as a json object) that a child would understand
easily to replace the word "ORIGINAL_WORD" in
the context of the following sentence. It is manda-
tory to use suitable meanings for the context of the
sentence and for the pattern of the answer to be
displayed as a JSON with words as keys and com-
plexity scores as values with all the 10 alternatives.
Provide only words in "LANGUAGE". Sentence:
"ORIGINAL. Here are some possible synonyms:

5https://github.com/ggerganov/llama.cpp

"SYNONYMS" The synonyms are given in the con-
text extracted from ConceptNet (Speer et al., 2017)
with a quick request to the API.

4 Results

Our first set of submissions (suffixed with
"*_1.tsv") contain LCP only run with English-only
models and LS predictions run on translated texts.
The translation model tends to increase the number
of words, as seen in Table 1 because we translate
words out of their context, and some translations
might not end up being found in the text mot-à-
mot. We identify a target word in the context of the
sentence (which will become our target for LCP)
by doing a proximal cosine similarity search using
spacy embeddings.

Our second set of submissions (suffixed with
"*_2.tsv") are LCP predictions run on the original
target words. Figure 1 shows the density plots of
the predictions on the test set. The translations-
to-English complexity scores (a) are in the same
range for all langauges (except for Sinhala) while
the predictions on the original texts (b) show more
divergent patterns due to different features avail-
able for each language. Here we only report the
results on the LCP task as these are the only ones
that proved to be competitive in the shared task.
For a complete set of results we point the reader to
the official task page6.

We perform several experiments on the trial data
to verify which features of the original language
have the strongest correlation with the complexity
scores provided. This should give us a rough idea
of the features that contribute the most to the final
prediction. The correlations computed on the trial
data are reported as a proxy for potential feature
impact; given the small sample size, they may also
show accidentally high values.

For English-language predictions (originals and
translations included) word frequency achieves be-
tween -.64 and -.7 ρ, followed by MRC features,
such as the Kucera-Francis (Kučera et al., 1967)
number of categories feature (-.55 ρ). MRC fea-
tures are generally well correlated among each
other. Sparse features such as Dale-Chall, EuroParl
frequency, hyponyms, synsets, and other MRC-
based features contribute significantly because they
create a boundary between words that are not in
the external resource (feature value 0) and words

6https://sites.google.com/view/
mlsp-sharedtask-2024/home

613

https://github.com/ggerganov/llama.cpp
https://sites.google.com/view/mlsp-sharedtask-2024/home
https://sites.google.com/view/mlsp-sharedtask-2024/home


that are (value > 0). For French: word frequency
(-.4 ρ) and the number of immediate children in
syntactic dependency parse (.4 ρ) show the best
correlation with the complexity annotations. Ger-
man trial data shows that word frequency is at -.76
ρ followed by character length .46 ρ, this could be a
lucky coincidence from the small size or the distri-
bution in the trial data. Similarly, Filipino (-.61 ρ),
Spanish (-.6 ρ), Portuguese (-.71 ρ), and Italian
(-.63 ρ) show relatively good correlations between
complexity scores and word frequency. Catalan
shows weak correlations of all individual charac-
teristics (-.2 ρ on frequency), which also confirms
our overall scores (Shardlow et al., 2024a), and so
is Japanese (-.58 ρ). Sinhala is a special case of
language where we do not use word frequency nor
other resource and the only relevant features is the
character length (-.3 ρ).

5 Conclusions

Translating documents into English and making
lexical simplification predictions using translated
texts introduces noise and severely limits the abil-
ity of the model to produce coherent substitutions,
especially since our approaches with translations
did not take into consideration the proper morpho-
logical form of the substitution or of the original
word. Our results (reported in the Appendix) show
that complexity prediction is significantly affected
by the translation as much as lexical simplification.
Our MT approach was surpassed by models trained
only on English data, which appear to have a better
ability to generate good LCP predictions on other
languages (especially Latin-script languages or lan-
guages with a historical contact). This approach
can yield decent results, achieving similar corre-
lations to models trained directly on the source
language or models using LLMs and transformer
features (Shardlow et al., 2024a). Last but not least,
we conclude that frequency- and string-based ap-
proaches might be a powerful alternative for LCP
on low-resource languages.

6 Limitations

We observe several limitations of our approaches:

• potential innacuracies stemming from the
translation system

• using MT for the low resource setting could be
detrimental to the development of resources

in the original language; translating all lan-
guages into English is not always feasible and
depends on cultural factors, availability of re-
sources and so on

• the performance of the MT systems them-
selves can vary depending on factors such
as language pair, domain specificity, and the
quality of the training data; in our case we
have used closed-source models which is not
desirable for open research

• our work is focused only on a single LLM that
is English-centric, however the model was not
able to generate suggestions that are in the
correct tense or syntactic agreement with the
rest of the sentence
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Language Run ID Pearson’s R Spearman’s Rank Mean Absolute Error Mean Squared Error R2
Catalan 1 0.2960 0.3029 0.1270 0.0246 -0.0342
Catalan 2 0.2744 0.2649 0.1236 0.0235 0.0110
Catalan T 0.243333 0.200048 0.186026 0.050979 -1.146786
English 2 0.7904 0.7547 0.1225 0.0206 0.4393
Filipino 1 0.3620 0.4133 0.1729 0.0416 -0.9131
Filipino 2 0.4427 0.4476 0.1251 0.0234 -0.0763
Filipino T 0.170322 0.200824 0.152792 0.039501 -0.817912
French 1 0.5335 0.5310 0.1898 0.0487 0.2136
French 2 0.4411 0.4188 0.1851 0.0504 0.1862
French T 0.507726 0.502782 0.178938 0.046882 0.243141
German 1 0.5508 0.5726 0.1217 0.0252 0.0686
German 2 0.5577 0.5774 0.1369 0.0306 -0.1320
German T 0.158362 0.18251 0.313923 0.129138 -3.779821
Italian 1 0.5341 0.5320 0.1705 0.0398 -0.4175
Italian 2 0.4790 0.4805 0.1426 0.0298 -0.0599
Italian T 0.29937 0.309153 0.148348 0.03802 -0.353931
Japanese 1 0.2803 0.2648 0.2650 0.0894 -2.2358
Japanese 2 0.4851 0.5126 0.1440 0.0303 -0.0983
Japanese T 0.038864 0.067513 0.181906 0.053068 -0.920658
Portuguese 1 0.7143 0.7102 0.1454 0.0276 -0.2612
Portuguese 2 0.6831 0.6923 0.1068 0.0166 0.2419
Portuguese T 0.42688 0.446644 0.122814 0.026359 -0.206013
Sinhala 1 -0.0290 -0.0272 0.3920 0.1676 -9.3516
Sinhala 2 0.0437 0.0298 0.1239 0.0236 -0.4590
Sinhala T 0.10023 0.065891 0.122526 0.028593 -0.76549
Spanish 1 0.5274 0.4793 0.1312 0.0265 0.2507
Spanish 2 0.5034 0.4588 0.1255 0.0272 0.2304
Spanish T 0.326812 0.245494 0.20517 0.067601 -0.912674

Table 2: Lexical Complexity prediction of our models. The submissions marked with 1 are using a model trained
only on the English language. The ones marked with 2 are trained on the entire multilingual data. And the ones
marked with T are predictions only on translated data. It is clear from this table that translations significantly
underperform predictions on original language even if the model was only trained on English data.
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Abstract

In this paper we present the participation of the
RETUYT-INCO team at the BEA-MLSP 2024
shared task. We followed different approaches,
from Multilayer Perceptron models with word
embeddings to Large Language Models fine-
tuned on different datasets: already existing,
crowd-annotated, and synthetic. Our best mod-
els are based on fine-tuning Mistral-7B, either
with a manually annotated dataset or with syn-
thetic data.

1 Introduction

History has shown that technology can mean a
step forward for inclusion and social development.
For instance, NLP can change how different social
groups interact with texts, by automatically adapt-
ing texts to the reader’s needs and hence improving
digital accessibility. One of the many NLP tasks
devoted to this objective is lexical simplification,
where systems are built to replace complex words
by simpler ones. This has an immediate impact on
language learners and children, but also on people
with different types of learning or reading difficul-
ties (Paetzold and Specia, 2016).

The BEA-MLSP 2024 shared task (Shardlow
et al., 2024a) proposes an excellent opportunity to
explore two problems related to this path: to score
how complex a word is in a given context (task 1),
and to find simpler substitutes for that word (task 2).
The dataset used both as trial and test sets covers
10 different languages: Catalan, English, Filipino,
French, German, Italian, Japanese, Portuguese, Sin-
hala and Spanish (Shardlow et al., 2024b). This
dataset was annotated using the MultiLS Frame-
work (North et al., 2024).

In this paper we present the participation of the
Uruguayan RETUYT-INCO team at this shared
task, describing the approaches followed and the
datasets used. The main challenge to solve these
tasks is the scarcity of data: only 30 examples

for each language were given as trial data, and
no training data. We decided to use the trial data
as a development set to compare our experiments
against each other, and rely on other sources of
data (already existing datasets, crowd-sourced, or
synthetic).

2 Related Work

Lexical complexity prediction and lexical simplifi-
cation tasks have been addressed in different chal-
lenges in the past. We discuss the most recent ones
for each task.

In the SemEval-2021 Task 1: Lexical Complex-
ity Prediction (Shardlow et al., 2021), participants
developed systems that, given a word within a sen-
tence, assign it a complexity value on a continuous
scale. An extended version of the CompLex Cor-
pus (Shardlow et al., 2020) was used, with 10,800
instances of words and multi-word expressions
scored according to their complexity. Deep Learn-
ing based systems performed the best, followed
closely by feature-based approaches.

The TSAR-2022 Shared Task on Lexical Simpli-
fication (Saggion et al., 2022) hosted a shared task
on Multilingual Lexical Simplification for English,
Portuguese, and Spanish. The participants had to
propose simpler substitutes for a complex word in a
given context. Some trial examples were provided
in each language (10 for English, 10 for Portuguese,
and 12 for Spanish). The best results were obtained
by approaches based on masked language models.

3 Approaches

In this section we detail the five different ap-
proaches followed. We experimented with static
word embeddings, contextual embeddings, fine-
tuning Mistral 7B on synthetic data, crowd-sourced
data and existing data, and also with the Groq plat-
form. We describe each of them next.
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3.1 Word Embeddings + Frequency Baselines

We created baseline approaches to the two tasks
based on the use of word embeddings and word
frequencies. In these baselines we prioritized us-
ing collections of embeddings and word frequency
lists that were collected in the same way for all the
languages in the task, so we used the Polyglot (Al-
Rfou et al., 2013) word embedding collections, and
the word frequency datasets collected from subti-
tles by Hermit Dave1. These resources are available
for many languages, including all the languages in
the shared task with the exception of the specific
Filipino variety of the Tagalog language. In that
case we used the corresponding resources for Taga-
log, even if they could have some differences.

The approach for task 1 (Complex Word Predic-
tion) is non-contextual, as no information from the
context sentence is used: we take the 10 closest
words to the target word in the embeddings col-
lection, then use the frequency as a proxy to how
complex a word is, assuming that more frequent
words are simpler than less frequent ones. We sort
the 10 closest words plus the target word by fre-
quency and estimate the complexity of the target
word as the relative position in this list, being 0 if
it is the most frequent of the set and 1 if it is the
least frequent.

The approach for task 2 (Lexical Simplification)
was similar: finding the 10 most similar words
to the target in the embeddings set, and sorting
them by frequency. Besides the Polyglot embed-
dings and subtitle word frequency lists, for task
2 we also tried variants of this baseline approach
using bigger and richer word embedding collec-
tions and frequency lists. For Spanish we used
the SBW-vectors-300-min5 embeddings2 trained
with the Spanish Billion Word Corpus3; for En-
glish the googlenewsvectors collection4, and for
Portuguese a word2vec collection trained from the
ConLL17 corpus5.

We also used other word frequency lists: for
Spanish we used the Wiktionary Spanish frequency
list6, for English the Kaggle English Word Fre-

1https://github.com/hermitdave/FrequencyWords/
2https://github.com/dccuchile/

spanish-word-embeddings
3https://crscardellino.github.io/SBWCE/
4https://www.kaggle.com/datasets/adarshsng/

googlenewsvectors
5http://vectors.nlpl.eu/repository/
6https://en.wiktionary.org/wiki/User:

\Matthias_Buchmeier#Spanish_frequency_list

quency dataset7 compiled from the Google Web
Trillion Word Corpus, and for Portuguese the fre-
quency counts of the wordfreq library8. Another
variant of this approach was sorting the replace-
ment candidates by the distance with respect to the
target word, without using word frequencies at all.

Besides these static word embedding ap-
proaches, we also tried with pre-trained contextual
word embeddings such as BERT (Devlin et al.,
2019) and ALBERT (Lan et al., 2019). We encode
the context sentence and substitute the target
word with the [MASK] token to obtain the 10 most
probable replacements, that could be sorted either
by probability or with word frequencies. In this
case we used the BETO (Cañete et al., 2020) mod-
els dccuchile/bert-base-spanish-wwm-cased
and dccuchile/albert-xxlarge-spanish
for Spanish and HuggingFace models
google-bert/bert-large-cased and
albert/albert-xlarge-v2 for English.

3.2 Fine-tuning Mistral 7B

This section presents two different approaches to
fine-tuning an LLM to solve these tasks.

3.2.1 Fine-tuning on a Synthetic Dataset from
Claude 3

It is well known that larger and more complex
LLMs like the GPT family or Claude 3 Opus
LLM from Anthropic9 generally have good results
in many NLP tasks. However, these are closed
models, and we wanted to try if it was possible
to at least distill some of their capabilities into a
smaller model that is more resource-efficient, open
and accessible to run in our available environment.
To achieve this, and to alleviate the data scarcity
problem, given that preliminary experiments with
Claude 3 using the trial data showed promising
results in a zero-shot scenario, we built a synthetic
dataset using this LLM.

Generation of the synthetic data
Figure 1 shows a diagram of the synthetic dataset

generation process. The complete prompts for each
step can be found in Appendix C, while a com-
prehensive explanation of the entire process is pro-
vided in Appendix A. Below is a concise overview.

7https://www.kaggle.com/datasets/rtatman/
\english-word-frequency

8https://pypi.org/project/wordfreq/
9https://www.anthropic.com/news/

claude-3-family
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Figure 1: Diagram illustrating the process used to generate the synthetic dataset.

The process starts prompting the Claude model
multiple times, including four random sentences
from the trial dataset (i.e. following a few-shot
strategy (Brown et al., 2020)) to get 250-500 sen-
tences for each language. Then, each generated
sentence is processed to generate different (con-
text,target) pairs, as needed for the task 2 of the
shared-task. Finally we generate the complexity
score (1 to 5) and simpler alternatives for a given
(context, target) pair, as needed for the task 1. In
this final step we prompt the Claude model with an
example of a word with a score of 1 and another
one with a score of 5. Additionally we also in-
clude a Chain-of-Thought analysis (CoT, Wei et al.
(2022)) to improve the performance of the model.

Each row of the resulting dataset consists of
the context sentence, the target word, the analy-
sis (CoT), the complexity score and the simpler
alternatives. We elaborated a dataset of 2211 ex-
amples: 961 in Spanish, 750 in English and 500 in
Portuguese. Our decision to focus on these three
languages was due to time constraints and also be-
cause these are languages that we are familiar with,
so we were able to check the overall quality of the
synthetic text.
Fine-tuning details In order to fine-tune a smaller
model for both task 1 and 2, each example of the
dataset is transformed into a string which is a con-
catenation of the context sentence, the target word,
the complexity score, and the simpler alternatives.
Each of the parts is separated using XML tags, as
can be observed in appendix C.4.

We tried adding the analysis (CoT) before the
score when using the Spanish dataset. Table 3
and 4 in appendix B show the results for all the
combinations of these techniques (CoT and SC).
As can be seen, using a variation of SC without CoT
gave the best results. Because of this, we decided
to use this method for the rest of the languages.

These formatted examples are utilized for fine-
tuning Mistral 7B Instruct v0.210. Due to
resource constraints, the model is 4-bit quantized
and is fine-tuned using the Low-Rank Adaptation
(LoRA) method (Hu et al., 2022).

Three different models were trained this way:
using only the Spanish portion of the dataset, using
Spanish and English, and using the whole dataset
(Spanish, English and Portuguese). As a conse-
quence, these were also the languages we focused
more on evaluating. We also tried the last model
on the Catalan language, given the similarity with
Spanish and for testing the generalization capabili-
ties of the fine-tuned model.

When doing inference with these models, a vari-
ation of the Self-Consistency technique (SC, Wang
et al. (2023)) was employed. For the Lexical Sim-
plification task, inference is conducted 10 times
per example with a temperature of 0.7, resulting
in up to 30 simpler alternatives with repetitions.
These are then counted and arranged in order or
frequency, with the most frequent ones appearing
first, and any repeated occurrences are eliminated.

For the Lexical Complexity Prediction task, the
prompt is structured such that the immediate next
token represents the score, so only one token is
sampled.This process is performed concurrently
100 times (within one batch) with temperature set
to 1. The average score is then computed and nor-
malized to the 0-1 range.

3.2.2 Fine-tuning on an existing English
Dataset

We also tried another approach to fine-tune Mistral
by curating the LCP2021 (Shardlow et al., 2020)
dataset for English11, recommended by the organiz-

10https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

11https://github.com/MMU-TDMLab/CompLex
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Experiment Lang. Pearson Spearman MAE MSE RMSE r2
LoRA Mistral-7B, LCP2021 en 0.8061 0.7596 0.1405 0.0252 0.1587 0.3154
MLP with RoBERTa embeddings en 0.5502 0.4923 0.1561 0.0328 0.1811 0.1062
LoRA Mistral7B, SC en-es dataset en 0.7599 0.7406 0.1867 0.0433 0.2081 -0.1796
MLP with BETO embeddings es 0.3126 0.2369 0.1433 0.0349 0.1868 0.0131
LoRA Mistral7B, SC en-es-pt dataset es 0.6641 0.6547 0.1311 0.0254 0.1594 0.2808
LoRA Mistral7B, SC en-es-pt dataset pt 0.6772 0.7121 0.2067 0.0557 0.2360 -1.5487
LoRA Mistral7B, SC en-es-pt dataset ca 0.3948 0.3862 0.199 0.0569 0.2385 -1.3972
LoRA Mistral7B, SC en-es-pt dataset all 0.4858 0.4892 0.2089 0.0623 0.2496 -0.6746

Table 1: Results for Task 1 over the test data.

Experiment Lang. MAP@1/POT@1 MAP@3 MAP@5 MAP@10 Pot@3 Pot@5 Pot@10 Acc@1@tg1 Acc@2@tg1 Acc@3@tg1
LoRA Mistral7B, SC es dataset es 0.6138 0.4124 0.2980 0.1595 0.7875 0.8246 0.8532 0.3288 0.4435 0.4839
Groq Prompting + CREA Freq es 0.3136 0.2412 0.1650 0.089 0.5233 0.556 0.5893 0.1045 0.1905 0.2698
Baseline ALBERT + Distance es 0.2563 0.154 0.1193 0.0731 0.4097 0.4907 0.5986 0.1079 0.1551 0.1854
LoRA Mistral7B, SC en-es dataset en 0.5789 0.3718 0.2542 0.1355 0.7666 0.8087 0.8578 0.3438 0.4701 0.5526
LoRA Mistral7B, SC en-es-pt dataset en 0.5947 0.3832 0.2634 0.1394 0.7824 0.828 0.8543 0.3789 0.5105 0.5701
Baseline ALBERT + Distance en 0.1596 0.0920 0.0629 0.0379 0.2771 0.3438 0.4649 0.0824 0.1263 0.1561
LoRA Mistral7B, SC en-es dataset pt 0.4021 0.2094 0.1360 0.0712 0.5784 0.6137 0.6631 0.2768 0.3844 0.4514
LoRA Mistral7B, SC en-es-pt dataset pt 0.3756 0.2062 0.1336 0.0695 0.5414 0.5855 0.6172 0.2592 0.3562 0.4197
Baseline Static Embeddings + Word Freq pt 0.0670 0.0380 0.0251 0.0136 0.1604 0.1922 0.2204 0.0582 0.0934 0.1358
LoRA Mistral7B, SC dataset en-es all 0.3925 0.5233 0.5560 0.5893 0.2412 0.1650 0.0890 0.2156 0.2912 0.3324
LoRA Mistral7B, SC dataset en-es-pt all 0.3818 0.2351 0.1608 0.0862 0.5091 0.5436 0.5772 0.2074 0.2851 0.3216

Table 2: Results for Task 2 over the test data.

ers, formatting this dataset to align with the task re-
quirements. We fine-tuned the Mistral-7B-v0.1
model, using a customized LoRA (Hu et al., 2022),
choosing specific configurations to disable cache
usage during training and to adapt the tokenizer for
the corresponding task.

3.3 BERT and MLP models

As a totally different approach for task 1, we tried
to use BERT embeddings as a text-representation
input for Multilayer Perceptron models. For En-
glish we used the original BERT (Devlin et al.,
2019), while for Spanish we used BETO (Cañete
et al., 2020).

3.3.1 English (BERT)
To fine-tune the English BERT model we used
the previously mentioned LCP2021 dataset. We
trained for over 10 epochs with validation splits to
monitor overfitting and batch processing for effi-
ciency.

3.3.2 Spanish (BETO)
We had an additional problem when trying
to fine-tune the BETO model, because there
was not a Spanish dataset that was similar to
LCP2021. The most similar set we found was the
EASIER_CORPUS (Alarcon et al., 2023) dataset,
but it only categorizes words in a binary way
between easy and complex, and in this case we
needed a more fine-grained distinction.

We first tried to generate synthetic text in Span-
ish using gpt-3.5-turbo-0125. In order to get

data as balanced as possible, the prompts for the
API were designed to produce sentences of two
complexity levels, with a 50% probability each.

Then we gathered crowd-sourced data using a
public website developed by us. This website al-
lowed users to rate the complexity of words within
sentences on a scale from 1 to 5. First we included
only the synthetic sentences, and later on we also
added the EASIER_CORPUS sentences, trying to
include a wider range of linguistic contexts. We
got approximately 2300 entries over a seven-day
period12.

After normalizing the scores of the whole dataset
to match the expected score ranges, we fed BETO
with all this Spanish text.

3.4 Use of pretrained models in Groq

As a final experiment for task 2 in Spanish, we used
the Groq platform13 to leverage the prompting ca-
pabilities of several pretrained LLMs: LLAMA
(llama2-70b-4096), GEMMA (gemma-7B-it),
and MIXTRAL (mixtral-8x7B-32768). We cre-
ated a pipeline that prompts each of these models
into giving simpler alternatives to a word in the con-
text of a sentence, following a one-shot mechanism
to illustrate the expected response. Using the Groq
API, we collected the responses of the three mod-
els, combined them and used the word frequencies
of the CREA corpus14 to sort the possible answers.

12This manually annotated dataset will be published.
13https://groq.com/
14https://www.rae.es/banco-de-datos/crea
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4 Results

In the appendix B we include tables 3 and 4, which
show the results of our methods over the trial data.
We used those preliminary results to choose which
submissions to send to the competition, trying to
keep the most promising systems but also a mix
of different approaches. The experiments selected
for submission are underlined in the tables. Tables
1 and 2 show the results of the submitted systems
over the test set.

5 Conclusions

We presented a series of experiments for solving
the Complex Word Prediction and Lexical Simplifi-
cation tasks, ranging from simpler non-contextual
static embeddings baselines, to more advanced fine-
tuning of LLMs. The most important challenge
in these tasks was the data scarcity, and because
of this we had to use different resources like syn-
thetic datasets, adapting existing datasets, or crowd-
annotating new data. Our best approaches for both
tasks where achieved by fine-tuning Mistral 7B,
either with synthetic data or with already existing
resources.

6 Limitations

Due to time constraints there were many experi-
ments and combinations that we did not try, being
the most salient one the fine-tuning of Mistral 7B
with the manually annotated data collected through
crowd-sourcing. We look forward to complete this
experiment in the future.
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A Synthetic data generation using Claude
3

In section 3.2.1 we briefly described the strategy to
generate synthetic data, summarized by figure 1.
In this appendix we will describe this pipeline in
detail.

(1) Generation of synthetic sentences
A prompt was designed using four different sen-

tence examples from the trial dataset as few-shot
examples (Brown et al., 2020). To increase the
diversity of the generated sentences and avoid over-
fitting, the examples are selected at random, so the

prompt is not always the same. In some cases, to
enhance variety, an additional phrase is added to
the prompt asking the model to generate sentences
containing at least one complex word.

The inference of the model is done multiple
times with temperature or top-p set to 1 for
maximizing diversity, and 250-500 sentences are
created for each language, half of them with the
complex word restriction added to the prompt.

(2) Selection of the target word
Given a generated sentence, we need to select a

target word to generate (context, target) pairs, so
we first tokenize the sentence to obtain a list of
candidate words. Our simple tokenization means
lower-casing, separating by spaces and removing
punctuation and stopwords from NLTK (Bird and
Loper, 2004)).

We explored two methods for selecting the
words from the list of candadates. One approach
was two select two or three words at random, not
taking into account the complexity of the words.
The other was to order the candidate words by
decreasing complexity by prompting the LLM for
this task, and then selecting the most complex and
least complex words as target words.

(3) Generation of the complexity score and sim-
pler alternatives

The prompt used to generate the complex-
ity score and simpler alternatives for a given
(context, target) pair consists of instructions for
the model to generate the following three parts:
a Chain-of-Thought analysis (CoT, Wei et al.
(2022)) of the complexity of the target word in
the given context sentence; a 1 to 5 complexity
score for the target word, following the annotation
guidelines used for the trial dataset; a list of
at most three simpler alternatives for the target
word. If no simpler alternatives exist, the model
should return the same target word. Two hand-
crafted score examples are added to the prompt:
one with a score of 1 and the other with a score of 5.

Each row of the resulting dataset consists of
the context sentence, the target word, the analysis
(CoT), the complexity score and the simpler
alternatives. We elaborated a dataset of 2212
examples: 961 in Spanish, 750 in English and 500
in Portuguese.
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Experiment Lang. Pearson Spearman MAE MSE RMSE r2
BERT emeddings into MLP en 0.3813 0.4331 0.2084 0.0543 0.2330 -0.3981
LoRA Mistral7B, LCP2021 en 0.8640 0.8574 0.1678 0.0330 0.1816 0.1514
MLP with RoBERTa embeddings en 0.3957 0.2948 0.1607 0.0375 0.1936 0.0333
LoRA Mistral7B, SC en-es dataset en 0.7363 0.7126 0.2243 0.0591 0.2431 -0.5199
MLP with BETO embeddings es 0.4528 0.3925 0.2079 0.0622 0.2493 -0.1815
LoRA Mistral7B, es dataset es 0.3892 0.3592 0.1942 0.0557 0.2360 -0.0570
LoRA Mistral7B, CoT es dataset es 0.6355 0.6282 0.1458 0.0349 0.1867 0.3385
LoRA Mistral7B, SC es dataset es 0.6461 0.6260 0.1483 0.0307 0.1754 0.4164
LoRA Mistral7B, SC-CoT es dataset es 0.6102 0.6708 0.1575 0.0357 0.1890 0.3219
LoRA Mistral7B, SC en-es dataset es 0.7283 0.7522 0.1337 0.0262 0.1618 0.5030
LoRA Mistral7B, SC en-es-pt dataset es 0.7369 0.7180 0.1351 0.0259 0.1608 0.5090
LoRA Mistral7B, SC en-es-pt dataset pt 0.7410 0.7754 0.1541 0.0415 0.2036 -0.5839
LoRA Mistral7B, SC en-es-pt dataset ca 0.5460 0.5624 0.1299 0.0276 0.1662 -0.8219
LoRA Mistral7B, SC en-es-pt dataset all 0.5301 0.5427 0.2060 0.0618 0.2486 -0.3930
Baseline Polyglot Embeddings + Word Freq all 0.2106 0.2014 0.3711 0.2130 0.4615 -3.8008

Table 3: Results for Task 1 over the trial data. The underlined experiments are the ones we chose to send as
submissions for the shared task.

Experiment Lang. MAP@1/POT@1 MAP@3 MAP@5 MAP@10 Pot@3 Pot@5 Pot@10 Acc@1@tg1 Acc@2@tg1 Acc@3@tg1
LoRA Mistral7B, es dataset es 0.7666 0.5240 0.3144 0.1572 0.8666 0.8666 0.8666 0.5333 0.6000 0.6000
LoRA Mistral7B, CoT es dataset es 0.6666 0.4722 0.2833 0.1416 0.8333 0.8333 0.8333 0.4000 0.4666 0.5333
LoRA Mistral7B, SC es dataset es 0.9333 0.6000 0.4173 0.2298 0.9333 0.9666 1.000 0.5666 0.6666 0.7000
LoRA Mistral7B, SC-CoT es dataset es 0.8000 0.5944 0.4510 0.2549 0.9000 0.9000 0.9333 0.4333 0.6333 0.6666
LoRA Mistral7B, SC en-es dataset es 0.8666 0.5925 0.4405 0.2305 0.9333 0.9666 0.9666 0.5666 0.6333 0.7333
LoRA Mistral7B, SC en-es-pt dataset es 0.8666 0.6333 0.4736 0.2658 0.9333 0.9333 0.9666 0.5000 0.6666 0.7333
Groq Prompting + CREA Freq es 0.4666 0.2888 0.2213 0.1386 0.7000 0.7666 0.9333 0.2000 0.3666 0.4333
Baseline Static Embeddings + Distance es 0.3333 0.1759 0.1355 0.0842 0.5000 0.6000 0.6666 0.1666 0.2333 0.2666
Baseline ALBERT + Distance es 0.3333 0.2296 0.1714 0.1047 0.5333 0.5666 0.6333 0.1666 0.3000 0.3666
Baseline Static Embeddings + Word Freq es 0.3000 0.2129 0.1511 0.0929 0.6000 0.6666 0.6666 0.1333 0.2333 0.3000
Baseline BERT + Distance es 0.2666 0.2222 0.1810 0.1022 0.5000 0.5333 0.5666 0.1000 0.2333 0.2666
Baseline ALBERT + Word Freq es 0.2000 0.1055 0.0730 0.0547 0.3666 0.4666 0.5666 0.1000 0.1666 0.2000
Baseline BERT + Word Freq es 0.1333 0.0962 0.0677 0.0479 0.2333 0.3333 0.5333 0.0666 0.1000 0.1333
LoRA Mistral7B, SC en-es dataset en 0.5666 0.3462 0.2371 0.1267 0.8333 0.8333 0.8333 0.4000 0.5666 0.7333
LoRA Mistral7B, SC en-es-pt dataset en 0.5000 0.3166 0.2326 0.1201 0.7333 0.8333 0.8333 0.3666 0.5666 0.6333
Baseline Static Embeddings + Word Freq en 0.1666 0.1074 0.0831 0.0480 0.3666 0.4666 0.5000 0.1000 0.2333 0.3000
Baseline BERT + Distance en 0.1333 0.0981 0.0832 0.0462 0.3666 0.4666 0.5333 0.1000 0.2000 0.3000
Baseline Albert + Distance en 0.1333 0.0814 0.0675 0.0387 0.3666 0.4666 0.5000 0.0666 0.1333 0.3000
Baseline Statitc Embeddings + Distance en 0.0666 0.0574 0.0451 0.026 0.2333 0.3000 0.4000 0.0333 0.0666 0.2000
Baseline ALBERT + Word Freq en 0.0666 0.0314 0.0245 0.0167 0.1333 0.2666 0.3666 0.0333 0.0666 0.1000
Baseline BERT + Word Freq en 0.0333 0.0222 0.0183 0.0125 0.1333 0.1666 0.3666 0.000 0.000 0.0333
LoRA Mistral7B, SC en-es dataset pt 0.3000 0.1925 0.1278 0.0695 0.6000 0.6666 0.7000 0.2333 0.4333 0.5000
LoRA Mistral7B, SC en-es-pt dataset pt 0.3000 0.1759 0.1258 0.0646 0.6333 0.6333 0.6666 0.2333 0.3666 0.4333
Baseline Static Embeddings + Word Freq pt 0.1333 0.0555 0.0333 0.0175 0.2000 0.2000 0.2666 0.1000 0.1333 0.1333
Baseline Static Embeddings + Distance pt 0.0333 0.0166 0.0130 0.0078 0.0666 0.1333 0.2333 0.000 0.0333 0.0333
LoRA Mistral7B, SC dataset en-es all 0.4066 0.2199 0.1319 0.0659 0.5300 0.5300 0.5300 0.2666 0.3333 0.3600
LoRA Mistral7B, SC dataset en-es-pt all 0.4066 0.2257 0.1354 0.0677 0.4866 0.4866 0.4866 0.2466 0.3166 0.3566
Baseline Polyglot Embeddings + Word Freq all 0.1133 0.0562 0.0384 0.022 0.1766 0.2133 0.2833 0.0500 0.0800 0.0866

Table 4: Results for Task 2 over the trial data. The underlined experiments are the ones we chose to send as
submissions for the shared task.

B Results over the trial data

Tables 3 and 4 show the results of our methods over
the trial data.

C Prompts

C.1 Generation of synthetic sentences prompt

System prompt: not used.

Message with role user:

Your task is to create new sentences in
{language}.

Here are some examples of the type of

sentences we expect:

{few_shot}

Try to write similar sentences to the
examples provided. {complex_sentence}
You should write {n} different and
diverse sentences, each in a new line.
No other text should be written.

Where:

1. language is the expected language of the sen-
tences. For example: Spanish.

2. few_shot is a list of four examples of sen-
tences from the trial dataset, separated by new-

624



lines.

3. complex_sentence is either an empty string
or the sentence: It is essential for the
new sentences to use some extremely
complex words.

4. n is the amount of sentences the model should
create in one run.

C.2 Order candidate words by complexity
prompt

System prompt:

You are an annotator for a dataset of
lexical simplification.

<task_description>
Given a context sentence and an a list
of words from that context, your task
is to order these words by decreasing
complexity. The most complex word should
go first, and the least complex word
should go last.
</task_description>

<answer_format>
Your answer must follow the following
format: Each word should be written in a
new line. Nothing else should be written.
</answer_format>

Message with role user:

<context>
{context}
</context>

<words>
{words}
</words>

Where:

1. context is the sentence where the words ap-
pear.

2. words is the candidate words list separated by
newlines.

C.3 Complexity score and simpler
alternatives prompt

System prompt:

You are an annotator for a dataset of
lexical simplification.

<task>

Given a context sentence and an a
identified (whole-word) target to be
evaluated, your task is to annotate the
following information:

1) An step-by-step analysis of the target
in the context to justify you following
decisions.

2) A complexity score for the target in
its context on a scale of 1 (easy) to 5
(difficult). This number should come as
a consequence of the analyisis.

3) A list of no more than 3 simpler
alternatives for the target, or the
target itself if no simpler alternative
can be found. The words should appear in
increasing order of complexity. Do not
add the target if simpler alternatives
exist.

</task>

<considerations>

- The analysis should always have language
learners in mind, not just native
speakers.

- It is important to make decisions based
on how other words could be evaluated, to
make a grounded decision.

- If there are no simpler alternatives,
the alternatives should only be the word
itself.

</considerations>

<expected_answer>

Your answer must follow the following
format:

- Inside XML tags <analysis></analisis>
you must write (1) as free form text in
english (regardless of source language).
Remember to write in english.

- Inside XML tags <score></score> you must
write (2) as one of the following numbers:
1, 2, 3, 4 or 5. Write only the number,
without periods or text.

- Inside XML tags <simpler_alternatives>
</simpler_alternatives> you must write
(3) as a list of words separated by commas.
No newlines between words should be used.
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</expected_answer>

<score_examples>
Example of a score of 5:
- Context: {example_context_1}
- Target: {example_target_5}

Example of a score of 1:
- Context: {example_context_1}
- Target: {example_target_1}

</score_examples>

Message with role user:

<context>
{context}
</context>

<target>
{target}
</target>

Where:

1. example_context_5 and example_target_5
correspond to a hand-crafted score 5 example
of a sentence and a target word respectively.
Varies depending on the language.

2. example_context_1 and example_target_1
correspond to a hand-crafted score 1 example
of a sentence and a target word respectively.
Varies depending on the language.

3. context is the context sentence where the tar-
get word occurs.

4. target is the target word to evaluate.

C.4 Fine-tuning prompt format
The following is the prompt format used for the
fine-tuning examples:

<context>
{context}
</context>
<target>
{target}
</target>
<score>
{score}
</score>
<simpler_alternatives>
{simpler_alternatives}

</simpler_alternatives>

Where:

1. context is the context sentence where the tar-
get word occurs.

2. target is the target word to evaluate.

3. score is a number between 1 and 5 correspond-
ing to the complexity score.

4. simple_alternatives is a list of simpler alter-
natives for the target word, separated by com-
mas.
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Abstract

This paper presents GMU’s submission to the
Multilingual Lexical Simplification Pipeline
(MLSP) shared task at the BEA workshop 2024.
The task includes Lexical Complexity Predic-
tion (LCP) and Lexical Simplification (LS) sub-
tasks across 10 languages. Our submissions
achieved rankings ranging from 1st to 5th in
LCP and from 1st to 3rd in LS. Our best per-
forming approach for LCP is a weighted ensem-
ble based on Pearson correlation of language
specific transformer models trained on all lan-
guages combined. For LS, GPT4-turbo zero-
shot prompting achieved the best performance.

1 Introduction

Understanding LCP and LS is crucial for enhancing
communication accessibility and readability across
diverse linguistic contexts. LCP involves analyz-
ing linguistic features to understand text difficulty,
while LS focuses on making complex language
more readable without losing its meaning. There-
fore, LCP and LS provide inclusive communica-
tion and broadening access to information. Nowa-
days, NLP research is interested in identifying com-
plex words which may be difficult for certain read-
ers (Shardlow, 2013; Paetzold and Specia, 2016a).
These difficult words requires various types of in-
tervention, such as direct replacement in the setting
of LS (Gooding and Kochmar, 2019), or generating
further explanation (Rello et al., 2015)

Previously, the task of LCP involved labelling
the complex words by binary classification (Paet-
zold and Specia, 2016a; Zampieri et al., 2017; Yi-
mam et al., 2018). This approach was referred to as
Complex Word Identification (CWI) which means
a word can either be complex or not. However, in
practice, word complexity should be a continuous
value representing from the least to the most com-
plex. Shardlow et al. (2021) and Shardlow et al.
(2020b) were the first to introduce the task of LCP

where a continuous value is assigned to identify a
word’s complexity. LS is the task of replacing diffi-
cult words with easier synonyms while preserving
the information and intelligibility of the original
text. This is a sub-task of Automatic Text Simplifi-
cation (ATS) (Saggion and Hirst, 2017). Recently,
similar to LCP, this task has also gained consider-
able amount of attention (Štajner et al., 2022).

In this paper, we use a cross-lingual weighted
ensemble of transformer models to find LCP of a
word in context of a sentence for 10 languages. For
LS, we use GPT4-turbo (OpenAI, 2023) zero-shot
prompting and also top 10 suggestions of GPT4-
turbo and transformers models in terms of cosine
similarity for 10 languages.

2 Related Work

2.1 Lexical Complexity Prediction

North et al. (2023c) is considered a comprehensive
survey on LCP which provides us with a chrono-
logical journey of this task. LCP researchers tradi-
tionally used lexical features like word2vec, POS
tag, frequency features including maximum en-
tropy as traditional approaches (Paetzold and Spe-
cia, 2016a). Moreover, features like word length,
frequency, n-gram features and word embeddings
were also explored (Yimam et al., 2018) for LCP.
On top of that, Binary classifiers such as SVMs, De-
cision Trees, Random Forests and threshold based
metrics, variety of traditional machine learning
classifiers and Neural Networks were used in dif-
ferent LCP systems. For example, the winning
system CWI shared task of 2016 used a threshold-
based methods and features extracted from Simple
Wikipedia (Paetzold and Specia, 2016b) and Ad-
aboost with WordNet features, POS tags, depen-
dency parsing relations and psycholinguistic fea-
tures were used by the winning system (Gooding
and Kochmar, 2018) of BEA 2018.

From the approach of binary classification, LCP
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gradually shifted towards regression or probabilis-
tic classification and thus transformer based mod-
els show better performance. A few years later,
the idea of expressing complexity of words with
a continuous value was first introduced on LCP
shared task 2021 (Shardlow et al., 2021). A pre-
trained transformer models fine-tuned for LCP (Pan
et al., 2021) and a weighted ensemble of BERT and
RoBERTa (Yaseen et al., 2021) respectively won
the single word multi-word expressions sub-task of
the shared task of 2021.

2.2 Lexical Simplification
LS research has utilized the word embedding mod-
els for retrieval or substitution generation (Glavaš
and Štajner, 2015; Paetzold and Specia, 2016b). A
pipeline of Substitute Generation (SG), Substitute
Selection (SS) and Substitute Ranking (SR) was
developed for this task. SG returns top-k most ap-
propriate substitution of the complex word which
are easy to understand and also preserve the orig-
inal complex word’s meaning and context. SS
filters the generated top-k candidate substitutions
and removes the unsuitable substitutions. SR or-
ders the remaining top-k candidate substitutions by
the decreasing order of simplicity and replace the
complex word with the most suitable substitution
(North et al., 2023b). Such approaches have proven
better compared to earlier systems.

The state of the art for English LS was the LS-
BERT system (Qiang et al., 2020) before 2022. It
used a BERT (Devlin et al., 2018) based masking
technique to find suitable simplifications for com-
plex words and employed unsupervised ranking
using various feature combinations. In 2022, Fer-
rés and Saggion (2022) introduced a benchmark
dataset for LS in Spanish named ALEXSIS, and
conducted experiments with various neural and un-
supervised systems. They also evaluated an adap-
tation of LSBERT for Spanish, achieving state-of-
the-art performance. Similarly, North et al. (2022b)
developed and evaluated transformer models for
Portuguese in 2022, based on a new corpus derived
from ALEXSIS, following the BERT masked ap-
proach for substitute generation.

The first multilingual LS shared task was TSAR-
2022 (Saggion et al., 2023). On this shared task,
the best ranking for English was achieved using
GPT-3 zero shot and few shot prompting (Aumiller
and Gertz, 2023). For Portuguese, two customized
pre-trained monolingual transformers and a large
pre-trained monolingual model BERTimbau for

masked language modeling achieved the best per-
formance (North et al., 2022a). This prompting
technique was further introduced in ALEXSIS+
(North et al., 2023a). Likewise, a masked language
model followed by candidate token generation, can-
didate word selection and candidate word pruning
along cosine similarity and parts of speech check-
ing for substitution ranking (Whistely et al., 2022)
was used for Spanish LS. Recently, a detailed Multi-
task LS framework has been proposed by (North
et al., 2024) which enables the creation of a multi-
task LS dataset and training of a full LS pipeline.

3 Datasets

The MLSP shared-task (Shardlow et al., 2024a)
covers 10 different languages - Catalan, English,
Filipino, French, German, Italian, Japanese, Por-
tuguese, Sinhala, Spanish and it has two sub-tasks-
LCP and LS. LCP data instances include a sen-
tence of a specific language and a specific word
from that language of various text genre like news,
religious, educational, Wikibooks etc. (Shardlow
et al., 2024b). Then a complexity value ranging
from 0-1 of that specific word in the context of
that sentence is given. LS also has similar types of
data instances but instead of a complexity value 10
simplified substitutions of the target word are pro-
vided for each instance. Moreover, MultiLS SP/CA
dataset was used for both the LCP and LS task for
Spanish and Catalan language (Bott et al., 2024).
For each language, the data annotators are from
different age group and professions like students,
language learners, university faculty, freelancers.
The data was annotated by both native and non-
native speakers of each specific language. The data
count for all the languages are shown in Table 1.

Language Test
Catalan 445
English 570
Filipino 570
French 570
German 570
Italian 570
Japanese 570
Portuguese 569
Sinhala 600
Spanish 593
All Combined 5,627

Table 1: Data Distribution of Lexical Complexity Pre-
diction and Lexical Simplification Dataset
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There is no training data for this task. 30 Trial
data was provided for each of the languages. For
both the tasks we used all the trial data for valida-
tion. We performed cross-lingual transfer learning
for the target language for LCP task. Moreover,
only for the LCP task in English, we used Com-
pLex dataset (Shardlow et al., 2020a) as training
set for additional experiment. We merged 421 trial,
7,662 train and 917 test instances of this dataset and
used these 9,000 instances together for the training
purpose of English. We used the English trial data
provided for this shared task as validation data in
this case.

4 Experiments

Trial data provided for all the languages of the LCP
task is very small. In general, it is common to
use data augmentation and back-translation tech-
niques to increase the number of data instances in
such conditions (Akhbardeh et al., 2021). How-
ever, it will not work here as these techniques can
change the word or even the context of the word
after augmentation and back-translation causing
change to the complexity also. As such, we use
the idea of cross-lingual weighted ensemble ap-
proach by using trial data of all the languages for
training and validation. We used 80-20 train and
validation split. After that we use the test data
of the target language for predicting lexical com-
plexity. For training we have used weighted en-
semble of mBERT (Devlin et al., 2018), XLM-R
(Conneau et al., 2020) and language specific BERT
models. For Catalan, Filipino, French, German,
Italian, Japanese, Sinhala and Spanish we used cal-
BERT (Codegram, 2020), RoBERTa-tagalog (Cruz
and Cheng, 2021), flauBERT (Le et al., 2020), ger-
manBERT (Dbmdz, 2020b), italianBERT (Dbmdz,
2020a), japaneseBERT (Tohoku-NLP, 2020), sin-
halaBERTo (Dhananjaya et al., 2022) and span-
ishBERT (Cañete et al., 2020) respectively. For
English we used BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2021) as language specific model. For
all language combined - ensemble of mBERT,
XLM-R calBERT, DeBERTa, RoBERTa-tagalog,
flauBERT, germanBERT, italianBERT, japanese-
BERT, BERTimbau, sinhalaBERTo and spanish-
BERT were used. Pearson correlation coefficient
was used as weight for the ensemble.

We use GPT4-turbo (Achiam et al., 2023) zero
shot prompting which provides the best result for

LS on both trial and test phase. Additionally, we
used the same set up of BERT based models like
LCP for all the languages to find the best 10 sim-
plified substitutions for trial and test data. Then for
each instances of a language, we took the set of
all the words suggested by the BERT based mod-
els and GPT4-turbo together. After that, we find
the embeddings of those words and the target to-
ken by LaBSE sentence transformer (Feng et al.,
2020). Furthermore, we find the cosine similarity
of the target token to the set of suggested word
embeddings. Lastly, we choose the best 10 words
by the decreasing order of cosine similarity of the
embeddings.

5 Results

For LCP in English, we used the English trial data
merged with the CompLex dataset and performed
weighted ensemble. We rank 1st with this proce-
dure with Pearson correlation coefficient 0.8497.
For the other 8 languages and all language com-
bined we used the cross-lingual weighted ensemble.
For Sinhala, we secure 3rd rank with Pearson co-
efficient score 0.1246. For all language combined,
Italian, Filipino, Spanish, Japanese, Catalan and
German our rank is 4th with Pearson coefficient
0.3494, 0.2919, 0.2823, 0.2438, 0.1775, 0.1549
and 0.1402 respectively. Lastly, we rank 5th for
French with 0.3193 Pearson coefficient. Test re-
sults for LCP are shown in Table 2.

For LS, zero-shot prompting by GPT-4 turbo
performs the best for the 9 languages and all lan-
guage combined. For Sinhala, we ranked 1st with
Accuracy@1@Top1 score 0.4182. For German,
Spanish, all language combined, Japanese and Fil-
ipino - we stand 2nd with Accuracy@1@Top1 0.42,
0.4182, 0.3345, 0.2583 and 0.0562 respectively.
Lastly in the 3rd position, we have English, Italian,
French and Catalan with 0.5157, 0.4042, 0.3661
and 0.2247 Accuracy@1@Top1 respectively. The
detailed explanation of the evaluation metrics used
for LS is available at (Saggion et al., 2023). Test
results for LS are shown in Table 2.

Trial results of LCP and LS are available in Table
4 and 5 of Appendix.

6 Error Analysis

For LCP the highest mean absolute and squared
error are 0.2089 and 0.0589 for French and the
lowest mean absolute and squared error are 0.1018
and 0.0168 for Sinhala. This is an acceptable mar-
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Test Scores (Target Language)
Language Pearson Spearman MAE MSE R2
Catalan 0.1549 0.1574 0.1462 0.0318 -0.3378
English (CompLex) 0.8497 0.7984 0.1137 0.0175 0.5247
Filipino 0.2823 0.2767 0.1164 0.0227 -0.0457
French 0.3193 0.3207 0.2089 0.0589 0.0484
German 0.1402 0.1473 0.1567 0.0413 -0.5279
Japanese 0.1775 0.1827 0.1363 0.0270 0.0241
Sinhala 0.1246 0.1303 0.1018 0.0168 -0.0370
Spanish 0.2438 0.1984 0.1630 0.0379 -0.0731
All Combined 0.3494 0.3642 0.1464 0.0331 0.1094

Table 2: Test Results of LCP (Weighted Ensemble of the Models Used for Corresponding Languages in Trial Phase)

Language Models A@1@Top1 A@2@Top1 A@3@Top1 MacAvgPrec@1 MacAvgPrec@3 MacAvgPrec@5 MacAvgPrec@10 MAP@3 MAP@5 MAP@10
Catalan GPT4-turbo 0.2247 0.3056 0.328 0.537 0.7101 0.7573 0.8044 0.362 0.2641 0.1582

Top10Suggestion 0.0651 0.1191 0.1595 0.2426 0.5191 0.6404 0.755 0.172 0.1408 0.0893
English GPT4-turbo 0.5157 0.635 0.6894 0.7491 0.8754 0.907 0.928 0.513 0.3691 0.2095

Top10Suggestion 0.1929 0.3228 0.4157 0.335 0.6315 0.7649 0.8649 0.2339 0.1869 0.1106
Filipino GPT4-turbo 0.0562 0.0632 0.0685 0.2934 0.3989 0.4358 0.4868 0.1395 0.0916 0.0491

Top10Suggestion 0.0157 0.0228 0.0245 0.0807 0.1842 0.2859 0.3859 0.0449 0.0338 0.0201
French GPT4-turbo 0.3661 0.4559 0.514 0.7411 0.8679 0.889 0.9154 0.5148 0.3946 0.2447

Top10Suggestion 0.0845 0.1672 0.2394 0.2271 0.5316 0.6971 0.8257 0.1725 0.149 0.1023
German GPT4-turbo 0.42 0.5043 0.5817 0.6414 0.7908 0.8312 0.8558 0.4002 0.2874 0.1631

Top10Suggestion 0.1192 0.2228 0.3 0.2578 0.5491 0.6666 0.7982 0.1852 0.1463 0.092
Italian GPT4-turbo 0.4042 0.5641 0.6309 0.7346 0.8822 0.9244 0.9402 0.4615 0.3328 0.1966

Top10Suggestion 0.1546 0.2724 0.3567 0.3567 0.6625 0.7855 0.8717 0.246 0.1965 0.1242
Japanese GPT4-turbo 0.2583 0.3708 0.4393 0.5413 0.6801 0.7223 0.7627 0.3618 0.2599 0.1529

Top10Suggestion 0.1195 0.2144 0.2847 0.3075 0.5817 0.6731 0.7469 0.2144 0.171 0.1107
Sinhala GPT4-turbo 0.2284 0.2829 0.3163 0.311 0.4165 0.4815 0.536 0.1387 0.0894 0.0469

Top10Suggestion 0.13 0.2372 0.3057 0.195 0.3848 0.4639 0.5272 0.1147 0.0759 0.0394
Spanish GPT4-turbo 0.4182 0.5362 0.6087 0.801 0.9173 0.9477 0.9612 0.5987 0.4653 0.2853

Top10Suggestion 0.236 0.3558 0.4704 0.5919 0.86 0.9106 0.9392 0.4371 0.3542 0.2244
All Combined GPT4-turbo 0.3345 0.4291 0.4828 0.5934 0.7276 0.7695 0.803 0.379 0.2754 0.1614

Top10Suggestion 0.1331 0.2261 0.2999 0.2876 0.5374 0.6467 0.7386 0.1981 0.1561 0.0971

Table 3: Test Results of LS (Top 10 Suggestions are Selected from the Output of GPT4-turbo and the Models Used
for Corresponding Languages in Trial Phase)

gin of error when we are training a model with
cross-lingual data and testing with language spe-
cific data. This is also a reason of getting negative
R2 score for 4 languages which testifies that the
data struggles to fit the regression model for those
languages.

For LS, zero-shot prompting by GPT4-turbo
alone provides the best result but when we try to
find the best 10 suggestions from the set of sug-
gestions generated by the BERT based models and
GPT4-turbo together, the result significantly de-
creases. This was because the target token in the
sentence varied be in different grammatical form.
Therefore, finding proper simplified suggestions
that fits the context proves to be a struggle for the
BERT based model.

7 Conclusion

Our team GMU’s approaches in MLSP 2024 shared
task achieved competitive results across multiple
languages for both the LCP and LS sub-tasks. The
weighted ensemble technique based on transformer
models proved effective for LCP, while GPT-4 zero-

shot prompting excelled at LS. The multilingual
nature of this shared task also highlights the impor-
tance of developing techniques that can generalize
across languages.

One key limitation of our approach is the re-
liance on cross-lingual transfer due to limited
language-specific training data for most languages.
While this allowed sharing resources across lan-
guages, having larger datasets to each language
could potentially boost performance. Additionally,
the error analysis revealed some remaining chal-
lenges in handling complex word expressions and
phrases during LS. Further improvements in mod-
eling could address these cases more effectively for
MLSP in future.
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Validation Scores (Combined Dataset)
Language Models Pearson Spearman MAE MSE R2

mBERT 0.5839 0.5965 0.1296 0.0272 0.2676
Catalan XLM-R 0.4131 0.3881 0.1496 0.0333 0.1051

calBERT 0.4724 0.4868 0.1384 0.031 0.1653
mBERT 0.5926 0.57 0.1422 0.0297 0.2012
XLM-R 0.4245 0.4345 0.1496 0.0335 0.0982

English (All Trial) BERT 0.4396 0.4489 0.1593 0.0349 0.0621
RoBERTa 0.5418 0.5525 0.1375 0.0266 0.2848
DeBERTa 0.5437 0.5234 0.138 0.0276 0.257
BERT 0.7732 0.751 0.1478 0.0288 0.2604

English (CompLex) RoBERTa 0.6454 0.7072 0.156 0.0325 0.1635
DeBERTa 0.8144 0.7434 0.1486 0.0269 0.3094
mBERT 0.5814 0.577 0.1299 0.027 0.2744

Filipino XLM-R 0.4447 0.4368 0.1453 0.031 0.1665
RoBERTa-tagalog 0.4162 0.3686 0.1504 0.0342 0.0807
mBERT 0.5703 0.6264 0.1402 0.027 0.2734

French XLM-R 0.4588 0.4576 0.1466 0.0306 0.1778
flauBERT 0.3742 0.3068 0.1485 0.0322 0.1345
mBERT 0.6061 0.6159 0.1382 0.0263 0.29933

German XLM-R 0.4586 0.4481 0.1469 0.0296 0.2043
germanBERT 0.4511 0.4669 0.1415 0.0306 0.1778
mBERT 0.6196 0.5757 0.1225 0.0244 0.3441

Italian XLM-R 0.4934 0.4625 0.144 0.0297 0.2003
italianBERT 0.5577 0.5419 0.1353 0.0262 0.2946
mBERT 0.5551 0.5568 0.1378 0.0301 0.1914

Japanese XLM-R 0.5479 0.5355 0.1422 0.028 0.2462
japaneseBERT 0.4286 0.4285 0.1521 0.0341 0.083
mBERT 0.5948 0.6375 0.1333 0.0263 0.2929

Sinhala XLM-R 0.4396 0.4569 0.1414 0.0304 0.181
sinhalaBERTo 0.3766 0.4027 0.1568 0.0337 0.0923
mBERT 0.5412 0.5861 0.136 0.0282 0.2428

Spanish XLM-R 0.5119 0.5022 0.1391 0.0289 0.2225
spanishBERT 0.4141 0.3909 0.1559 0.0328 0.1188
mBERT 0.4511 0.495 0.1546 0.0326 0.1223
XLM-R 0.4588 0.4576 0.1466 0.0306 0.1778
calBERT 0.4044 0.4069 0.1517 0.0326 0.1226
DeBERTa 0.4511 0.4745 0.1482 0.0318 0.1454
RoBERTa-tagalog 0.4626 0.4588 0.1564 0.0354 0.0489

All Combined flauBERT 0.4416 0.4236 0.1583 0.036 0.0306
germanBERT 0.4383 0.4261 0.1531 0.0345 0.718
italianBERT 0.5577 0.5419 0.1353 0.0262 0.2946
japaneseBERT 0.4183 0.4461 0.1543 0.0347 0.0675
BERTimbau 0.5274 0.5701 0.1306 0.0271 0.2697
sinhalaBERTo 0.4249 0.4622 0.156 0.0338 0.0919
spanishBERT 0.4679 0.4499 0.1535 0.0356 0.0433

Table 4: Trial Results of LCP
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Language Models A@1@Top1 A@2@Top1 A@3@Top1 MacAvgPrec@1 MacAvgPrec@3 MacAvgPrec@5 MacAvgPrec@10 MAP@3 MAP@5 MAP@10
mBERT 0.0666 0.1333 0.1333 0.1 0.1666 0.1666 0.2 0.0999 0.0866 0.0437

Catalan XLM-R 0.0066 0.2333 0.3 0.1333 0.3666 0.4 0.4 0.1351 0.1094 0.0547
calBERT 0.0666 0.1666 0.1666 0.1 0.1666 0.2333 0.2333 0.0999 0.0893 0.0446
GPT4-turbo 0.4666 0.4666 0.5 0.4666 0.6 0.7333 0.7333 0.2407 0.1634 0.0888
Top10Suggestion 0.2 0.2666 0.3333 0.2333 0.5 0.5666 0.6666 0.1259 0.0932 0.0524
mBERT 0.1 0.2 0.26 0.2 0.4666 0.5 0.6333 0.1481 0.1012 0.0577
XLM-R 0.1 0.1666 0.2666 0.1666 0.4333 0.5666 0.6333 0.1222 0.0796 0.0484

English BERT 0.1666 0.1666 0.2 0.3 0.5333 0.5666 0.7 0.174 0.1297 0.0766
RoBERTa 0.066 0.2 0.2333 0.2 0.4666 0.6333 0.7333 0.1648 0.1335 0.0815
DeBERTa 0.1666 0.1666 0.1666 0.2333 0.2333 0.2333 0.2333 0.2 0.1446 0.0733
GPT4-turbo 0.4 0.5 0.5666 0.7 0.8 0.8666 0.8666 0.4444 0.3136 0.1728
Top10Suggestion 0.1333 0.2666 0.3666 0.2666 0.6666 0.6666 0.6666 0.174 0.1224 0.0612
mBERT 0.0333 0.0666 0.0666 0.0333 0.0666 0.0666 0.1 0.0166 0.01 0.0054

Filipino XLM-R 0.1333 0.2 0.2 0.1333 0.2 0.2 0.2333 0.0888 0.0533 0.0271
RoBERTa-tagalog 0.2 0.2666 0.3 0.2333 0.3333 0.4 0.4333 0.1037 0.0652 0.0352
GPT4-turbo 0.3666 0.3666 0.3666 0.4 0.4333 0.4666 0.5 0.1611 0.1053 0.055
Top10Suggestion 0.0666 0.1333 0.2333 0.0666 0.2333 0.3333 0.4 0.0555 0.0373 0.0206
mBERT 0.2 0.3333 0.4 0.2666 0.4333 0.5 0.5 0.1611 0.0996 0.052

French XLM-R 0.1666 0.3 0.3666 0.2333 0.4333 0.5 0.5333 0.1185 0.0711 0.0402
flauBERT 0.0166 0.0266 0.0366 0.0166 0.0266 0.0366 0.0366 0.0107 0.0071 0.0046
GPT4-turbo 0.5 0.6333 0.6666 0.7 0.8 0.8 0.8 0.3759 0.2305 0.1169
Top10Suggestion 0.2 0.2333 0.2333 0.2333 0.4333 0.5666 0.7333 0.1296 0.0927 0.0518
mBERT 0.0333 0.0666 0.0666 0.0333 0.0666 0.0666 0.1 0.0287 0.019 0.0111

German XLM-R 0.0333 0.0666 0.1333 0.1 0.1666 0.3 0.3333 0.0446 0.03 0.0168
germanBERT 0.1666 0.2 0.2333 0.1333 0.2333 0.2333 0.2333 0.0814 0.0592 0.0299
GPT4-turbo 0.6 0.8666 0.9666 0.7333 0.9 0.9 0.9 0.3944 0.2603 0.137
Top10Suggestion 0.0333 0.0666 0.1666 0.0666 0.2666 0.4333 0.7 0.0555 0.053 0.0337
mBERT 0.0333 0.0666 0.0666 0.0333 0.1 0.1333 0.2 0.0222 0.015 0.0092

Italian XLM-R 0.1 0.1 0.1 0.1333 0.1333 0.1666 0.2333 0.0444 0.028 0.0158
italianBERT 0.2333 0.3666 0.4 0.2666 0.4666 0.5333 0.6 0.1537 0.1038 0.0518
GPT4-turbo 0.5 0.6 0.7 0.3518 0.2334 0.1267 0.6 0.3518 0.2334 0.1267
Top10Suggestion 0.1666 0.2 0.2333 0.2 0.3666 0.5666 0.7666 0.1259 0.0905 0.0566
mBERT 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0518 0.0427 0.0213

Japanese XLM-R 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0666 0.0518 0.0427 0.0213
japaneseBERT 0.1 0.1333 0.1666 0.1333 0.1666 0.1666 0.1666 0.137 0.0955 0.0477
GPT4-turbo 0.4333 0.4666 0.4666 0.5333 0.6333 0.7333 0.8 0.2629 0.1767 0.0936
Top10Suggestion 0.0333 0.0666 0.1 0.0666 0.1333 0.2333 0.5 0.0407 0.0321 0.0226
mBERT 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0833 0.0599 0.0299

Sinhala XLM-R 0.0333 0.0666 0.0666 0.1 0.0133 0.0133 0.0233 0.0481 0.0288 0.0159
sinhalaBERTo 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0111 0.0066 0.0033
GPT4-turbo 0.3666 0.5 0.5666 0.5333 0.7333 0.7666 0.8333 0.2851 0.1757 0.0961
Top10Suggestion 0.2 0.3333 0.4 0.3666 0.5666 0.6 0.7666 0.2037 0.1412 0.0786
mBERT 0.1 0.1333 0.1333 0.1333 0.1333 0.1333 0.1333 0.1018 0.0744 0.0418

Spanish XLM-R 0.1666 0.3 0.3666 0.2333 0.4333 0.5 0.5333 0.1185 0.0711 0.0402
spanishBERT 0.2666 0.3333 0.4333 0.3333 0.5666 0.6666 0.7333 0.2055 0.133 0.0698
GPT4-turbo 0.4 0.6333 0.7666 0.6333 0.8666 0.9333 0.9333 0.4018 0.2721 0.1433
Top10Suggestion 0.2666 0.3333 0.4666 0.3 0.6333 0.7333 0.7666 0.1888 0.132 0.0716
mBERT 0.0233 0.04 0.0566 0.0433 0.1 0.11 0.1533 0.0287 0.019 0.0111
XLM-R 0.0466 0.0833 0.1033 0.0866 0.1533 0.2033 0.2366 0.0446 0.03 0.0168
calBERT 0.0333 0.0366 0.0366 0.0333 0.0366 0.0366 0.0366 0.03 0.02 0.01
DeBERTa 0.0333 0.0366 0.0366 0.0333 0.0366 0.0366 0.0366 0.03 0.02 0.01
flauBERT 0.0166 0.0266 0.0366 0.0166 0.0266 0.0366 0.0366 0.0107 0.0071 0.0046

All Combined germanBERT 0.0166 0.02 0.0233 0.02 0.03 0.0333 0.0333 0.0081 0.0056 0.0028
italianBERT 0.0266 0.04 0.0433 0.0333 0.0533 0.0666 0.0766 0.0175 0.0118 0.006
japaneseBERT 0.0333 0.0366 0.04 0.0366 0.04 0.04 0.04 0.0303 0.0202 0.0101
BERTimbau 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0022 0.0013 0.0006
sinhalaBERTo 0.0033 0.0033 0.0033 0.0166 0.03 0.04 0.0533 0.0083 0.0062 0.0035
spanishBERT 0.0033 0.0033 0.0033 0.0066 0.0166 0.02 0.03 0.0033 0.0022 0.0012
GPT4-turbo 0.39 0.48 0.5333 0.5966 0.7433 0.7933 0.8366 0.3122 0.2088 0.1111
Top10Suggestion 0.1166 0.2166 0.2933 0.1833 0.45 0.5833 0.6833 0.1248 0.0942 0.0526

Table 5: Trial Results of LS
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Abstract

This paper presents the results of our team’s
participation in the BEA 2024 shared task on
the multilingual lexical simplification pipeline
(MLSP; Shardlow et al., 2024a). During the
task, organizers supplied data that combined
two components of the simplification pipeline:
lexical complexity prediction and lexical sub-
stitution. This dataset encompassed ten lan-
guages, including French. Given the absence of
dedicated training data, teams were challenged
with employing systems trained on pre-existing
resources and evaluating their performance on
unexplored test data.

Our team contributed to the task using previ-
ously developed models for predicting lexical
difficulty in French (Tack, 2021). These mod-
els were built on deep learning architectures,
adding to our participation in the CWI 2018
shared task (De Hertog and Tack, 2018). The
training dataset comprised 262,054 binary de-
cision annotations, capturing perceived lexical
difficulty, collected from a sample of 56 non-
native French readers. Two pre-trained neu-
ral logistic models were used: (1) a model for
predicting difficulty for words within their sen-
tence context, and (2) a model for predicting
difficulty for isolated words.

The findings revealed that despite being trained
for a distinct prediction task (as indicated by a
negative R2 fit), transferring the logistic predic-
tions of lexical difficulty to continuous scores
of lexical complexity exhibited a positive cor-
relation. Specifically, the results indicated that
isolated predictions exhibited a higher correla-
tion (r = .36) compared to contextualized pre-
dictions (r = .33). Moreover, isolated predic-
tions demonstrated a remarkably higher Spear-
man rank correlation (ρ = .50) than contextual-
ized predictions (ρ = .35). These results align
with earlier observations by Tack (2021), sug-
gesting that the ground truth primarily captures
more lexical access difficulties than word-to-
context integration problems.

1 Introduction

The aim of predicting and simplifying lexical dif-
ficulty is to enhance text readability by focusing
on vocabulary. Drawing from a simplified perspec-
tive on reading (Hoover and Gough, 1990), we
can divide these difficulties into two main cate-
gories: decoding and comprehension. Decoding
issues relate to difficulties in accessing words (also
known as “lexical access”), where readers struggle
to recognize and recall the form and meaning of
words from memory. Conversely, comprehension
difficulties involve struggles in integrating words
into the broader textual context (sometimes termed
“word-to-context integration”). Therefore, simpli-
fying lexical difficulty entails employing various
strategies to boost clarity and comprehension. This
may involve substituting complex terms with sim-
pler alternatives or providing contextual clues or
definitions. Ultimately, the goal is to enhance ac-
cessibility while maintaining the integrity of the
conveyed message.

Over the last decade, several tasks have been or-
ganized to advance the development of automated
models, including the complex word identification
shared task (Paetzold and Specia, 2016), the second
complex word identification shared task (Yimam
et al., 2018), the shared task on lexical complexity
prediction (Shardlow et al., 2021), and the shared
task on multilingual lexical simplification (Sag-
gion et al., 2022). Lastly, Shardlow et al. (2024a)
organized the shared task on multilingual lexical
simplification pipeline (MLSP).1

This system description paper outlines our
team’s involvement in the MLSP shared task, fo-
cusing on our approach. Specifically, we lever-
aged predictions of lexical difficulty for French
from previous research (Tack, 2021) in the initial
phase of the lexical simplification pipeline, known

1https://sites.google.com/view/
mlsp-sharedtask-2024/

635

https://sites.google.com/view/mlsp-sharedtask-2024/
https://sites.google.com/view/mlsp-sharedtask-2024/


as lexical complexity prediction. Our approach
also entailed comparing predictions for individual
words (approximating lexical access difficulties)
with predictions for words within context (approx-
imating word-to-context integration difficulties).
Subsequent sections detail our methodology and
findings.

2 Method

The shared task progressed through two distinct
phases. In the development phase, which took
place from February 15 to March 14, 2024, teams
were tasked with developing systems using existing
resources. Due to the absence of dedicated training
data and the small size of only 30 trial items per lan-
guage, our emphasis was on employing pre-trained
models for making zero-shot predictions of lexical
difficulty (see Section 2.1).

During the evaluation phase, from March 15 to
March 26, 2024, teams were provided with test data
for ten languages within the MultiLS framework
(Shardlow et al., 2024b; North et al., 2024). During
this phase, we used our pre-trained models to pre-
dict scores of lexical complexity for the French test
set (see Section 2.2) and made two submissions. In
the subsequent sections, we will provide a more
detailed description of the pre-trained models and
test data.

2.1 Pre-Trained Models for French

We employed two neural models for predicting lex-
ical difficulty in French, previously developed by
Tack (2021) in her Ph.D. thesis. These models
represented an improved version of the deep learn-
ing architecture developed by De Hertog and Tack
(2018) for the second shared task on complex word
identification (Yimam et al., 2018) and the earlier
models developed by Tack et al. (2016b).

The first model featured a bidirectional long
short-term memory neural network architecture,
depicted in Figure 1. This model, constructed us-
ing TensorFlow, incorporated two word represen-
tations as input: character embeddings (generated
through a convolutional neural network) and pre-
trained FastText word embeddings. Furthermore,
the model integrated learner-specific encodings to
tailor predictions accordingly. However, in the
transfer approach, personalization was not possi-
ble, resulting in these encodings being set to zero
for the shared task.

The second model comprised a feedforward neu-
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Figure 1: Bidirectional Long-Short Term Memory Neu-
ral Network Architecture in Tack (2021), Making Con-
textualized Predictions of Lexical Difficulty for French
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Figure 2: Feedforward Neural Network Architecture
in Tack (2021), Making Isolated Predictions of Lexical
Difficulty for French
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ID Language Sentence Context Target Word

fr_549 french Bien sûr, on peut me rétorquer que je n’ai qu’à acquérir la nation-
alité française.

rétorquer

fr_550 french Bien sûr, on peut me rétorquer que je n’ai qu’à acquérir la nation-
alité française.

acquérir

fr_551 french Bien sûr, on peut me rétorquer que je n’ai qu’à acquérir la nation-
alité française.

nationalité

Figure 3: Examples of Items in the French Test Data

ral network architecture, as depicted in Figure 2.
Built using TensorFlow, this model utilized two
word representations as input: character embed-
dings (generated through a convolutional neural
network) and pre-trained FastText word embed-
dings. Additionally, learner-specific encodings
were incorporated into the model to customize pre-
dictions. However, in the transfer approach where
personalization wasn’t possible, these encodings
were also set to zero, as depicted in the figure.

It’s worth mentioning that Tack (2021) con-
ducted fine-tuning on contextualized BERT models.
However, these models were not employed due to
their underperformance compared to the previous
two models, as indicated by the results presented
in Tack (2021).

The two models presented in Figures 1 and 2
were trained using the dataset detailed in Chapter 5
of Tack’s thesis, which expanded upon the initial
data collected by Tack et al. (2016a). This training
dataset comprised 262,054 binary decision anno-
tations gathered from a sample of 56 non-native2

French readers. These annotations captured per-
ceived lexical difficulty, as participants were in-
structed to read texts and highlight words they did
not understand. This method differed from mea-
suring actual lexical difficulty. Since participants
were prompted to highlight words, they could po-
tentially overlook genuinely challenging words that
they didn’t recognize while reading the text.

2.2 Test Data for French
The French test data, as supplied by Shardlow et al.
(2024a), contained 570 items. Each item included
an identifier, the language, contextual word usage,
and the target word requiring difficulty prediction,
as depicted in Figure 3. Among the total 570 tar-
get words, the dataset comprised 560 unique word
types and covered 191 distinct sentence contexts.

2Most readers were native Dutch speakers, with a minority
being speakers of Chinese, Japanese, and Spanish.

For the lexical complexity prediction track, the
French test data was annotated by 10 raters, all of
whom were non-native French speakers. Their na-
tive languages included Arabic (2), Mandarin (2),
German (1), Hindi (1), Italian (1), Japanese (1),
Spanish (1), and Turkish (1).

3 Results

Figure 4 illustrates the model predictions for the
French test dataset. As shown, both models gen-
erally predicted a high difficulty level (> 0.5) for
most test items, with the isolated model (run 2)
indicating a higher difficulty level compared to the
contextualized model (run 1).

1 2
model

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed
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ns

Figure 4: Predictions of Lexical Complexity for the
French Test Data

Table 1 showcases the leaderboard results for
the French test dataset. Notably, the R2 metric
suggests that both models exhibited a negative fit
with the true complexity scores, as supported by
the high (worse) scores for MAE and MSE. One
likely explanation is that both models were trained
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# Team Run r ρ MAE MSE R2

1 TMU-HIT A 0.6253 0.6302 0.1669 0.0452 0.2704
2 Archaeology 1 0.5335 0.5310 0.1898 0.0487 0.2136
3 TMU-HIT A 0.5278 0.5343 0.1744 0.0471 0.2391
4 RETUYT-INCO A 0.4868 0.4651 0.2063 0.0602 0.0279
5 Archaeology 2 0.4411 0.4188 0.1851 0.0504 0.1862
6 Archaeology A 0.4411 0.4188 0.1851 0.0504 0.1862

→ 7 ITEC 2 0.3607 0.4972 0.5302 0.3373 −4.4459
→ 8 ITEC 1 0.3253 0.3533 0.4545 0.2694 −3.3488

9 GMU 1 0.3193 0.3207 0.2089 0.0589 0.0484
10 GMU A 0.1557 0.1756 0.2136 0.0617 0.0039
11 SCaLAR A 0.1035 0.0674 0.2093 0.0616 0.0061

Table 1: Leaderboard of Lexical Complexity Prediction for French Including the Predictions by the Two Models

for a notably distinct prediction task, namely lo-
gistic regression instead of linear regression. An-
other conceivable factor contributing to the nega-
tive fit is the variation in native languages among
the non-native readers who annotated the data in
Tack (2021) compared to those who annotated the
French test dataset (see Section 2.2). Since anno-
tators’ native languages influence their perception
of word difficulty, this variation is likely to impact
the accuracy of the predictions.

However, the findings presented in Table 1 also
demonstrate that, despite the weak fit, the models
still exhibited a modest positive correlation with
the true complexity scores. Specifically, the find-
ings indicated that isolated predictions showed a
slightly stronger correlation (r = .36) compared to
contextualized predictions (r = .33).

These results align with earlier observations by
Tack (2021), indicating that the ground truth pre-
dominantly reflects greater challenges in lexical ac-
cess (i.e., difficulty recognizing the form and mean-
ing of the word, regardless of its context) rather
than issues in word-to-context integration (i.e., dif-
ficulty in interpreting the word within its context).
Specifically, Tack (2021) noted that words identi-
fied as challenging by non-native readers exhibited
more lexical access difficulties, as indicated by the
higher predictive power of features associated with
isolated word surprisal compared to contextualized
word surprisal. This finding is unsurprising, given
that the annotators had elementary to intermediate
proficiency levels and, therefore, had a significantly
smaller vocabulary size compared to native speak-
ers. Consequently, it is reasonable to assume that
the non-native annotators of the French test dataset

also had a lower vocabulary size and were thus
more susceptible to encountering words not yet in-
grained in their mental lexicon, resulting in greater
challenges in recognizing the form and meaning of
words.

Furthermore, the results depicted in Table 1 re-
veal that isolated predictions demonstrated a no-
tably higher (and fourth-best) Spearman rank cor-
relation (ρ = .50) compared to contextualized pre-
dictions (ρ = .35). This suggests that although the
logistic scores predicted by the model might not
closely match the continuous complexity scores,
they still preserve the same ranking of difficulty as
the continuous complexity scores would. There-
fore, even though transferring the difficulty scores
may pose uncertainty, there is an interesting poten-
tial in transferring the ranking of lexical difficulty
from this model to new data.

4 Conclusion

This study delved into predicting lexical complex-
ity in French test data employing two models: an
isolated model and a contextualized model. The
findings underscore that while the transfer of dif-
ficulty scores remains uncertain, the ranking of
lexical difficulty from this model can still be ap-
plied to new data. This emphasizes the potential
usefulness of the models in comprehending lexical
complexity in French texts, while also spotlight-
ing the limitations in transferring the raw predicted
scores. Moving forward, we also intend to explore
the implications of transferring zero-shot predic-
tions made with pre-trained French models to other
languages.
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