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Preface

The international RANLP conference is a well-established biennial forum for computational linguists
and Natural Language Processing (NLP) practitioners which continues to report important trends in the
field. In 2023 the programme was dominated by research on developing or exploiting pre-trained large
language models (LLMs) and the deep learning technology which was the reason to assign the subtitle
‘LLMs for NLP’ to the volume. The highlights of this year included the urgent and challenging topics
such as responsible and explainable machine learning, quality of the existing datasets, multimodality and
multilinguality.

The conferences attracted 165 submissions and accepted 31 regular papers, 59 short papers, 41 posters,
and 4 demos (excluding workshops). The event was attended by over 170 participants from over 35
countries.

The conference in 2023 features six keynote speakers:

* Eduard Hovy (University of Melbourne, Australia and Carnegie Mellon University, USA),
* Tharindu Ranasinghe (Aston University, UK),

» Sandra Kiibler (Indiana University Bloomington, USA),

* Lucas Beyer (Google Brain, Switzerland),

* Isabelle Augenstein (University of Copenhagen, Denmark),

 Efstathios Stamatatos (University of the Aegean, Greece).

The proceedings cover a wide variety of NLP topics, including training, adaptation, evaluation and
explanation of language models, multimodal studies, language resources, machine translation, NLP for
social sciences and literary studies, simplification and summarisation, topic modelling, opinion-mining
and sentiment analysis, fake news, bias and hate speech detection.

In 2023 RANLP was preceded by the summer school ‘Deep Learning for NLP’ and pre-conference
tutorials, and hosted a record number of post-conference workshops on popular NLP topics:

* LT-EDI 2023 — Third Workshop on Language Technology for Equality, Diversity and Inclusion

* DravidianLangTech 2023 — Third Workshop on Speech and Language Technologies for Dravidian
languages

* TSAR 2023 — Workshop on Text Simplification, Accessibility and Readability
* ALP 2023 — Workshop on Ancient Language Processing

* HumEval 2023 — Third Workshop on Human Evaluation of NLP Systems

* BUCC 2023 - 16th Workshop on Building and Using Comparable Corpora

* CASE 2023 — 6th Workshop on Challenges and Applications of Automated Extraction of Socio-
political Events from Text

* ConTeNTS 2023 — Computational Terminology in NLP and Translation Studies
* NLP4TIA 2023 — NLP tools and resources for translation and interpreting applications

In addition to thanking the keynote speakers and workshop organisers who accepted our invitation, we
would like to thank the lecturers and tutors of the Summers school and tutorials.

We are grateful to the members of the Programme Committee and all additional reviewers. They ensured
that the best papers were included in the Proceedings and provided invaluable comments to the authors.
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We would like to use this paragraph to acknowledge the members of the Organising Committee, who
worked very hard during the last few months and whose dedication and efforts made the organisation
of this event possible. The members of the Organising Committee (listed in alphabetical order below)
carried out numerous organisational tasks and were eager to step in and support the organisation of
the conference whenever needed: Khadija Ait ElFqih, Elena Blagoeva, Marie Escribe, Emma Franklin,
Amal Haddad Haddad, Jessica Lopez Espejel, Teodora Mihajlov and Nikolai Nikolov.

A big THANK YOU to all of you, this conference could not have taken place so smoothly without you!

Finally, many thanks go to Lancaster University and the Institute of Information and Communication
Technologies at the Bulgarian Academy of Sciences for their unreserved support of RANLP. Our
gratitude goes also to our generous sponsors as well: Bulgarian National Research Fund, Ontotext,
Iris.Al, Senso, Cambridge University Press and ELDA.

Varna, 9 September 2023
Galia Angelova, Maria Kunilovskaya and Ruslan Mitkov
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Caution: This paper contains examples, from
datasets, of what some may consider as stereo-
types or offensive text.

Abstract

We investigate five English NLP benchmark
datasets (on the superGLUE leaderboard) and
two Swedish datasets for bias, along multiple
axes. The datasets are the following: Boolean
Question (Boolq), CommitmentBank (CB),
Winograd Schema Challenge (WSC), Wino-
gender diagnostic (AXg), Recognising Textual
Entailment (RTE), Swedish CB, and SWEDN.
Bias can be harmful and it is known to be com-
mon in data, which ML models learn from. In
order to mitigate bias in data, it is crucial to be
able to estimate it objectively. We use bipol, a
novel multi-axes bias metric with explainability,
to estimate and explain how much bias exists
in these datasets. Multilingual, multi-axes bias
evaluation is not very common. Hence, we also
contribute a new, large Swedish bias-labeled
dataset (of 2 million samples), translated from
the English version and train the SotA mT5
model on it. In addition, we contribute new
multi-axes lexica for bias detection in Swedish.
‘We make the codes, model, and new dataset
publicly available.

1 Introduction

Recent advances in artificial intelligence (Al), large
language models (LLM), and chatbots have raised
concerns about their potential risks to humanity
(Bender et al., 2021; Adewumi et al., 2022; Yud-
kowsky et al., 2008).! One major concern is the
issue of social bias, particularly with the data Al
models are trained on. Bias, which can be harmful,
is the unfair prejudice in favor of or against a thing,
person or group (Maddox, 2004; Dhamala et al.,
2021; Mehrabi et al., 2021; Antoniak and Mimno,

"bbe.com/news/world-us-canada-65452940
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2021). Measuring bias in text data can be challeng-
ing because of the axes that may be involved (e.g.
religious or gender bias).

In this work, our motivation is to determine
whether social bias exists in NLP benchmark
datasets and estimate it. After reviewing some po-
tential bias methods, as discussed in Section 2, we
settled for the recent bipol (Alkhaled et al., 2023)
because of its advantages. It is a metric that es-
timates bias along multiple axes in text data and
provides an explanation for its scores, unlike other
metrics. We investigate social bias in benchmark
datasets that are available on the English Super-
GLUE leaderboard and two Swedish datasets. The
SuperGLUE was introduced by Wang et al. (2019)
and provides benchmark datasets for different NLP
tasks. Benchmark datasets are datasets for com-
paring the performance of algorithms for specific
use-cases (Dhar and Shamir, 2021; Paullada et al.,
2021). Such datasets have been the foundation for
some of the significant advancements in the field
(Paullada et al., 2021). We investigate the follow-
ing English datasets: Boolq (Clark et al., 2019),
CB (De Marneffe et al., 2019), WSC (Levesque
et al., 2012), AXg (Rudinger et al., 2018a), and
RTE (Wang et al., 2019). The Swedish datasets are
the Overlim CB and SWEDN. We discuss more
about the datasets in Section 3.2.

Our contributions Firstly, we show quantita-
tively and through explainability that bias exists
in the datasets. The findings correlate with charac-
teristics of bias, such as heavy lopsidedness (Zhao
et al., 2018). This work will provide researchers
with insight into how to mitigate bias in text data
and possibly add impetus to the conversation on
whether it is even ethical to remove these social
biases from data, because they represent the real
world. Secondly, we create and release, possibly,
the largest labeled dataset and lexica for bias de-
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tection in Swedish (multi-axes bias dataset (MAB)-
Swedish) and train a model based on the state-of-
the-art (SotA) multilingual T5 (mT5) (Xue et al.,
2021). We release our codes, dataset and artefacts
publicly. 2

The rest of this paper is structured as follows.
Section 2 discusses some of the previous related
work. Section 3 describes the methodology, includ-
ing details of the characteristics of bipol and the
new MAB-Swedish dataset. Section 4 presents the
results and discusses some of the qualitative results.
In Section 5, we give concluding remarks.

2 Related Work

There have been considerable effort in identifying
and measuring the level of bias in datasets (Cryan
et al., 2020; Dhamala et al., 2021; Stanley, 1977;
Chandrabose et al., 2021). These are usually tar-
geted at gender bias in a binary form (Zhao et al.,
2018; Rudinger et al., 2018a). However, studies
have shown that the biases in language models for
the intersection of gender and race can be greater
than those for gender and race individually and
that addressing bias along only one axis can lead
to more issues (Tan and Celis, 2019; Subramanian
et al., 2021). To determine the level of bias in NLP
datasets along multiple axes can be a significant
challenge, more so that many of these methods ad-
mit their approaches may demonstrate the presence
of bias but not prove its absence (Zhao et al., 2018;
Rudinger et al., 2018a). Table 1 compares some of
the methods that have been introduced.

Metric/Evaluator Axis Terms
WinoBias (Zhao et al., 2018) 1 40
Winogender (Rudinger et al., 2018a) 1 60
StereoSet (Nadeem et al., 2021) 4 321
Hurtlex (Nozza et al., 2021) 6 1,072
CrowS-Pairs Nangia et al. (2020) 9 3,016

Bipol (Alkhaled et al., 2023) >2,13*%< >45,466%<

Table 1: Comparison of some bias evaluation methods.
(*The upper bounds are not limited by the bipol algorithm but
the dataset & lexica.)

Furthermore, Bassignana et al. (2018) proposed
a multi-language approach using HurtLex to tar-
get misogyny because addressing bias in only the
English language is not sufficient for addressing
the potential harm to society. In the English lan-
guage, there are common biases that associate fe-
male terms with subjects such as liberal arts and
family while associating male terms with subjects

2github.com/LTU-Machine-Learning/bipolswedish. git

such as science (Nosek et al., 2002). There are also
more words that sexualize females more than males
(Stanley, 1977). Other languages have their own
peculiarities (Nozza et al., 2021).

In addition to the various methods identified in
Table 1 for quantifying the extent of discrimination
or bias, there is also odds ratio (OR), which com-
pares the chance of a specific outcome happening,
with a certain exposure, to the likelihood of that
outcome happening without the exposure (Szumi-
las, 2010). Another method is the impact ratio (IR),
which calculates the ratio of positive outcomes for a
protected group to the general group. In Cryan et al.
(2020), they compare lexicon method to model clas-
sification for gender bias in English language only.
Our approach combines the strengths of both ap-
proaches and evaluates on English and Swedish
data across multiple axes.

3 Methodology
3.1 Bipol

There are two stages in the implementation of bipol
(see 1a) before it gives a final score between 0.0
(zero or undetected bias) and 1.0 (extreme bias).
The first stage involves the classification of the data
samples (into biased and unbiased categories) us-
ing a trained model (see 1b). Ideally, it is the ratio
of the number of true positives (tp) to the total sam-
ples (true positives (tp), false positives (fp), true
negatives (tn), and false negatives (fn)), where fp is
preferably zero. However, since the trained models
will be evaluated on unseen data, the predicted bi-
ased samples are likely to have fp in the numerator
as expressed in the equation. The evaluations thus
come with positive error rate (L ot t ) to establish
the lower bound of error for the predictions. A
good classifier should minimize the number of fp
and maximize the number of tp but there’s hardly
any perfect classifier, even in other tasks such as
spam detection or hate speech (Heron, 2009; Feng
etal., 2018).

be.bs,
e

tp+ fp
tp+ fp+tn+ fn

S (i (Fe ) ) e

r=1

if bs >0
otherwise

(1a)

(1b)

e =

The second stage evaluates the biased samples
for sensitive terms listed in the multi-axes lexica



(see 1c). It involves finding the difference be-
tween the two maximum summed frequencies in
the types (e.g. female) of an axis (e.g. gender)
(| >0 1 as — > ot ¢s]), which is then divided by
the summed frequencies of all the terms in that
axis (Z§:1 ds). The average over all the axes
(% >°9_,) is then averaged over all the biased sam-

ples (% >i_1)- Table 2 provides the Swedish lex-
ica sizes. The lexica are derived from Adewumi
et al. (2020a,b) and Wikipedia3 and may be ex-
panded as needed. They include terms that may
be stereotypically associated with certain groups
and specific gender (Cryan et al., 2020; Zhao et al.,
2018). The English lexica contain more and are
also derived from public sources (Alkhaled et al.,
2023).

Axis Axis type 1  Axis type 2
Gender 17 (female) 19 (male)
Racial 10 (black) 10 (white)

Table 2: Swedish lexica sizes. These may be expanded.

The rationale for using bipol is because of the
strengths of the metric. These include 1) the rel-
ative simplicity of calculating a score, 2) it is
straight-forward to implement since it is based on
existing concepts like lexica and classifiers, 3) it
captures semantic and term frequency (TF) aspects
of data, 4) it has explainability built in, 5) it’s pos-
sible to determine the error rate of predictions, and
6) it is not limited in the total number of axes that
may be used. We acknowledge, however, that it
has limitations that are based on the limitations of
the tools that may be used to calculate it.

3.2 Datasets
3.2.1 The New MAB-Swedish Dataset

The dataset was machine-translated (from MAB
(Alkhaled et al., 2023)) using the Helsinki-NLP
model (Tiedemann and Thottingal, 2020), which
was mostly trained with guided alignment. The
automatic translation took over 48 hours on one
GPU. It has 1,946,975 samples, as given in Table
3. Quality control (QC) for the MAB-Swedish
involved translation verification by back-translating
some random samples using Google NMT before a
review by a Swedish speaker. The English version
was constructed from two datasets: Jigsaw* and
the Social Bias Inference Corpus v2 (SBICv2) by

3en.wikipedia.org/wiki/Swedish_profanity
“medium.com/jigsaw/creating-labeled-datasets-and-
exploring-the-role-of-human-raters-56367b6db298

(Sap et al., 2020). Personal identifiable information
(PII) were removed from the dataset. More details
about the annotation of the base datasets for the
MAB can be found in Alkhaled et al. (2023). Some
examples in the MAB-Swedish are given in Table
4,

Machine-Translation concerns Bias is a univer-
sal concern, though there can be culture-specific
biases. A stereotype or degrading comment can
be considered of universal concern if it is relevant
across cultures. For instance, the first example in
Table 4 is of universal concern because women
should be respected, regardless of nationality or
culture. This also applies to the other biased exam-
ples in the table. Hence, MAB-Swedish is relevant
for bias detection in Swedish, though it was trans-
lated. A limitation of the dataset, however, is that
it may not contain examples that are specific to the
Swedish culture since the original dataset is from
English, with specific references to the USA and
Canada.

Set Biased  Unbiased Total
Training 533,544 1,209,433 1,742,977
Validation 32338 69649 101987
Test 33470 68541 102011
599,352 1,347,623 1,946,975

Table 3: MAB-Swedish dataset split.

label
biased

old_id | id
239612] 1212584

comment_text

Den hir slynan ér galen som
skulle ldsa en bok av en
kvinna.

(This b*tch is nuts. Who
would read a book by a
woman.)

9 av 10 ménniskor njuter
av mobbning. Jag kommer
alltid att vara den 10: e

(9 out of 10 people enjoy
bullying. I will always be
the 10th.)

“Forfattaren sdger att det
finns ;, manga, manga fler
anledningar till att jag an-
tar att en uppfoljare finns i
verken, da?”

("The author says that there
are many, many more rea-
sons I am assuming a sequel
is in the works, then?”)
Vad kallar du underkldder
for araber?

(What do you call lingerie
for Arabs? Socks.)

biased none 1517517

unbiased| 383811| 110831

biased none 1618146

Table 4: Examples from the MAB-Swedish (The En-
glish in the original is in italics.)



3.2.2 Boolq

It is a question-answering (QA) task where each
example has a short passage and a yes/no ques-
tion about the passage (Clark et al., 2019) . These
questions were provided anonymously by Google
search users and afterwards paired with a paragraph
from a Wikipedia article that has the answer. We
evaluated the passage column of the dataset.

323 CB

This contains short texts in which, at least, one sen-
tence has an embedded clause (De Marneffe et al.,
2019). The resulting task is framed as three-class
textual entailment on examples that are drawn from
the following datasets: Wall Street Journal, fiction
from the British National Corpus, and Switchboard.
We evaluated the premise column of the dataset.

3.24 WSC

This is a coreference resolution dataset (Levesque
et al., 2012). Examples consist of a sentence with
a pronoun and a list of noun phrases from the sen-
tence. We evaluated the text column of the dataset.

325 AXg

It is designed to measure gender bias in coreference
resolution systems (Rudinger et al., 2018b). Each
example consists of a premise sentence having a
male or female pronoun and a hypothesis giving a
possible antecedent of the pronoun. We evaluated
the premise column of the dataset.

3.2.6 RTE

The datasets come from a series of annual compe-
titions on textual entailment (Wang et al., 2019).
Data from several sources were merged and con-
verted to two-class classification: entailment and
not_entailment. We evaluated the premise column
of the dataset.

3.2.7 Swedish CB

This is part of the OverLim dataset by the Na-
tional Library of Sweden. It contains some of the
GLUE and SuperGLUE tasks automatically trans-
lated to Swedish, Danish, and Norwegian, using
the OpusMT models for MarianMT?. We evaluated
its training set.

3.2.8 SWEDN

This is a text summarization corpus based on
1,963,576 news articles from the Swedish news-
paper Dagens Nyheter (DN) during the years 2000

>huggingface.co/datasets/KBLab/overlim

to 2020.% There are five categories of articles in
the dataset: domestic news, economy, sports, cul-
ture, and others (Monsen and Jonsson, 2021). The
training set consists of the first three categories and
we evaluate the first 1,000 samples because of the
computation cost of evaluation.

3.3 Experiments

The experiments were conducted on two shared
Nvidia DGX-1 clusters running Ubuntu 18.04 and
20.04 with 8 x 32GB V100 and 8 x 40GB A100
GPUs, respectively. Average results are reported
after running each experiment twice. To evaluate
the benchmark datasets, we utilize bias-detection
models (Alkhaled et al., 2023) based on RoOBERTa
(Liu et al., 2019), Electra (Clark et al., 2020), and
DeBERTa (He et al., 2021). We train a small mT5
model with batch size of 16, due to memory con-
straints, on the MAB-Swedish. Wandb (Biewald,
2020), an experiment tracking tool, is run for 5
counts with bayesian optimization to suggest the
best hyper-parameter combination for the learning
rate (le-3 - 2e-5) and epochs (6 - 10) before final
training of the model. We use the pretrained model
from the HuggingFace hub (Wolf et al., 2020). Av-
erage training time was 15 hours. Average evalua-
tion time ranges from about 30 minutes to over 24
hours.”

4 Results and Discussion

From Table 5 we observe that all the datasets have
bias, though little, given that they are smaller than a
bipol score of 1. The dataset with the least amount
of bias is Boolq, which is confirmed by all the
three models. This is despite the dataset having
the highest number of unique samples. CB has the
largest amount of bias and this is also confirmed
by the three models. This is also the case for the
Swedish CB, when compared with SWEDN.

The average macro F1 score on the validation set
of MAB-Swedish is 0.7623 with standard deviation
(s.d.) of 0.0075. The resulting error rate is 0.2893.
This is relatively reasonable though a bit higher
than the error rate for the English ROBERTa, Elec-
tra, and DeBERTa, which are 0.198, 0.196, and 0.2,
respectively (Alkhaled et al., 2023).

8spraakbanken.gu.se/resurser/swedn

"particularly when cpulimit is used, in fairness to other
users



bipol level | (s.d.)

RoBERTa samples corpus sentence  bipol (b)
Boolq 7,929 0.0066 0.8027 0.0053 (0)
CB 250 0.08 0.8483 0.0679 (0)
WSC 279 0.0466 0.8718 0.0406 (0)
AXg 178 0.0112 1 0.0112 (0)
RTE 2,379 0.0294 0.8518 0.0251 (0)
Electra
Boolq 7,929 0.0073 0.8089 0.0059 (0)
CB 250 0.0316 0.881 0.074 (0)
WSC 279 0.0609 0.9559 0.0582 (0)
AXg 178 0.0112 1 0.0112 (0)
RTE 2,379 0.0269 0.8593 0.0231 (0)
DeBERTa
Boolq 7,929 0.0103 0.7212 0.0075 (0)
CB 250 0.084 0.9048 0.076 (0)
WSC 279 0.0609 1 0.0609 (0)
AXg 178 0.0112 1 0.0112 (0)
RTE 2,379 0.0366 0.8655 0.0316 (0)
mT5 on Swedish data
CB 201 0.0796 0.7188 0.0572 (0)
SWEDN 1,000 0.053 0.9433 0.05 (0)
Table 5: Results of average bipol scores. All the

datasets have bias, though little.

4.1 Error Analysis

Figure 1 presents the confusion matrix for the mT5
on the MAB-Swedish. The tn, fp, fn, tp are 61,689,
7,960, 12,781, and 19,557, respectively, which are
relevant for Eq. 1b. We observe that the model
is better at predicting unbiased samples. This is
expected since the training data contains more ex-
amples of unbiased samples. Table 6 presents some
qualitative examples of apparently correct and in-
correct predictions in two of the datasets. The
first correct example in the English CB appears
to have a clear stereotype that men are naturally
right and it is the role of women to follow their
lead. The second correct example, in both the En-
glish and Swedish data, may have been perceived
as biased by the two different models because of
the offensive term fool or the overgeneralization
that folk will always take advantage of weakness or
both. Overgeneralization is a characteristic of bias
(Rudinger et al., 2018a; Nadeem et al., 2021).

Explaining bias type

The type of overall bias (for the gender axis) in
many of the datasets is explained by the dictionary
of lists produced by bipol (see Appendix .1) and
represented in ’top-5 frequent terms” bar graphs
of Figures 2 to 13. As expected, we observed that
AXg is limited to only gender, unlike Boolq, which
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Figure 1: Confusion matrix for mTS5.

also reflects religious bias, as explained in their
bipol dictionaries of lists. We observe from Figures
2, 3, and 4 that Boolq is male-biased. Figures 5, 6,
and 7 show that CB is also male-biased. This is the
case also for RTE, as revealed by Figures 8, 9, and
10. On the other hand, we observe that the case of
WSC is not clear-cut because Figure 11 shows only
a marginal lead for female bias, Figure 12 shows
the difference among the top-5 is zero and Figure
13 shows a slight overall male bias.
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Figure 2: Top-5 gender frequent terms in Boolq by
RoBERTa.
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Figure 3: Top-5 gender frequent terms in Boolq by
DeBERTa.



examples

Correct predictions from the English CB, based on DeBERTa

nicky approached her with the assumption that men are naturally right and
it is the role of women to follow their lead. constance whose confidence
was growing daily was not prepared to give in to nickys wishes merely
because of his sex. if she felt he was right then she agreed with him.

she rubbed them away with an angry fist. she was a fool to let anyone get
round her. how long before she learned that folk 11 always take advantage
of weakness

Incorrect prediction

he d gone. philip had to get them back. his dad would kill him if he found
that he d taken them.

Correct predictions from the Swedish CB, based on mT5

det &r en del av deras religion en religion som jag inte hanar eftersom den
innehaller manga element som matchar var egen trots att den saknar var
sanning. vid en av deras stora hogtider har de ritualen att driva ut djévlarna
fran sina kroppar. forst kommer trummisarna jag kan séga att inga kvinnor
tillats delta i denna ritual och damerna hir kanske haller med mig om att
de dr lyckligt lottade i detta utelimnande.

(it is part of their religion a religion that I do not mock because it contains
many elements that match our own even though it lacks our truth. at one
of their great festivals they have the ritual of casting the devils out of
their bodies. first come the drummers i can say no women are allowed to
participate in this ritual and the ladies here may agree with me that they
are lucky in this omission.)

hon gnuggade bort dem med en arg knytndve. hon var en idiot som lit vem
som helst komma runt henne. hur 1ang tid tar det innan hon far veta att folk
alltid kommer att utnyttja svaghet

(she rubbed them away with an angry fist. she was a fool to let anyone
get round her. how long before she learned that folk will always take
advantage of weakness)

Incorrect prediction

han var borta. philip var tvungen att fa tillbaka dem. hans pappa skulle
ddda honom om han fann att han hade tagit dem.

(he had gone. philip had to get them back. his dad would kill him if he
found that he had taken them.)

[ label [ csvid
biased 85
biased 73
biased 107
biased 2
biased 59
biased 86

Table 6: Qualitative examples of apparently correct and incorrect predictions in some of the datasets. The English
translations appear in italics for the Swedish examples.

Figure 4: Top-5 gender frequent terms in Boolq by
Electra.
S Conclusion

We show that all benchmark datasets we evalu-
ated, including the Swedish datasets, contain bias
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to different degrees. This is likely the first time
these datasets are evaluated in such a way that esti-
mates the amount of bias and the type. We believe
these evaluations will motivate research on how
to more effectively mitigate bias along multiple
axes in datasets. This work may encourage dis-
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Figure 6: Top-5 gender frequent terms in CB by De-
BERTa.
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Figure 7: Top-5 gender frequent terms in CB by Electra.

Frequency
s

2
— —

.
.

15
10 7
5 5

1 2 1
: mB . .
he| her him | she boy | girl

Term

fellow| woman male| female

® Male mFemale

Figure 8: Top-5 gender frequent terms in RTE by
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Figure 9: Top-5 gender frequent terms in RTE by De-
BERTa.
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Figure 11: Top-5 gender frequent terms in WSC by
RoBERTa.

cussions on whether the biased samples from the
benchmark datasets should be disregarded entirely
or if they should be utilized in a different manner
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Figure 12: Top-5 gender frequent terms in WSC by
DeBERTa.
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Figure 13: Top-5 gender frequent terms in WSC by
Electra.

than previously done. Our public release of the new
MAB-Swedish dataset, lexica and model will also
facilitate future work in multilingual bias detection.
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.1 Experiment

Dictionary of lists for RoBERTa on Boolq
{’gender’: [ she *: 23, her ’: 17, woman : 2,
>lady ’: 1, female ’: 6, ” girl : 1, skirt ’: 0,
madam ’: 0, > gentlewoman ’: 0, > madame ’: 0, ’
dame ’: 0, ” gal ’: 0, maiden ’: 0, ” maid ’: 0,”’
damsel ’: 0, senora ’: 0, lass ’: 0, beauty *: 0,’
ingenue ’: 0, belle ’: 0, ” doll ’: 0, ’ sefiora ’: 0,
> senorita ’: 0, lassie ’: 0, * ingénue ’: 0, ’ miss
’: 0, mademoiselle ’: 0, ’ sefiorita ’: 0, * babe ’:
0, ’ girlfriend ’: 0, ’ lover *: 0, * mistress ’: 0, ’
ladylove ’: O, ’ inamorata *: 0, ’ gill >: 0, * old ’:
2, beloved ’: 0, ’ dear ’: O, > sweetheart ’: O, ’
sweet ’: 0, flame ’: 2, ’ love ’: 5, valentine ’: 0,
favorite *: 1, moll ’: 0, darling *: 0, ’ honey ’: 0,
> significant *: 0, * wife ’: 3, wifey ’: 0, missus :



0, > helpmate ’: 0, * helpmeet ’: 0, spouse ’: 0, ’
bride ’: 1, ’ partner ’: 0, ’ missis *: 0, > widow ’: 0,
> housewife ’: 0, mrs ’: 0, matron ’: 0, ’ soul ’:
3, mate ’: 1, ’ housekeeper ’: 0, * dowager ’: 0, ’
companion ’: 0, > homemaker ’: 0, ’ consort ’: 0,
> better half ’: 0, * hausfrau ’: 0, * stay-at-home ’:
0, he ’: 80, him ’: 49, boy ’: 3,  man ’: 1,’
male ’: 10, ’ guy ’: 1, ’ masculine ’: 0, ’ virile ’:
0, manly ’: 0, > man-sized ’: 0, > hypermasculine
’: 0, m