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Introduction

Welcome to the proceedings of the system demonstration track of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2023) on July 9th – July 14th, 2023. For the ACL 2023
system demonstration track, we received a record number of 155 submissions, of which 58 were selected
for inclusion in the program (acceptance rate of 37%) after being reviewed by at least three members of
the program committee, while a small number of papers received only two reviews. We would like to
thank the members of the program committee for their timely help in reviewing the submissions. Lastly,
we thank the many authors that submitted their work to the demonstrations track. This year, the ACL
conference is a hybrid event. The demonstration paper will be presented through pre-recorded talks and
in presence during the poster sessions.

Danushka Bollegala, Ruihong Huang and Alan Ritter

ACL 2023 System Demonstration Chairs
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Abstract

Schema induction builds a graph representa-
tion explaining how events unfold in a scenario.
Existing approaches have been based on infor-
mation retrieval (IR) and information extraction
(IE), often with limited human curation. We
demonstrate a human-in-the-loop schema in-
duction system powered by GPT-3.1 We first
describe the different modules of our system,
including prompting to generate schematic el-
ements, manual edit of those elements, and
conversion of those into a schema graph. By
qualitatively comparing our system to previous
ones, we show that our system not only trans-
fers to new domains more easily than previous
approaches but also reduces efforts of human
curation thanks to our interactive interface.

1 Introduction

Event-centric natural language understanding
(NLU) has been increasingly popular in recent
years. Systems built from an event-centric per-
spective have resulted in impressive improvements
in numerous tasks, including open-domain ques-
tion answering (Yang et al., 2003), intent predic-
tion (Rashkin et al., 2018), timeline construction
(Do et al., 2012), text summarization, (Daumé and
Marcu, 2006) and misinformation detection (Fung
et al., 2021). At the heart of event-centric NLU
lie event schemas, an abstract representation of
how complex events typically unfold. The study
for such a representation dates back to the 70s,
where scripts were proposed as a series of sequen-
tial actions (Roger C. Schank, 1977). Back then,
the schemas were limited to linear and temporal
ones. A more recent formulation of event schemas
is a graph where the vertices are event flows and
the edges are temporal or hierarchical relations be-
tween those events (Du et al., 2022).

1Webpage: https://www.kairos.jiaxuan.me;
Video:https://www.youtube.com/watch?v=myru-fozVWI

Figure 1: An example of Cyber Attack schema. The
tree structure represents the temporal and hierarchical
relations between the nodes.

For example, as shown in Figure 1, the event
schema for a "cyber attack" could include sub-
events such as "gain access", "control system",
"exfiltrate files", "modify system logs", etc. The
schema would also include the relationships be-
tween these sub-events. For instance, the event
"gain access" would take place before the event
"modify system logs" since a person needs access
to a system before modifying it. For the same rea-
son, "exfiltrate data" would only take place after
"gain access". Event schemas like this encode high-
level knowledge about the world and allow artificial
intelligence systems to reason about unseen events
(Du et al., 2022).

The DARPA Knowledge-directed Artificial Intel-
ligence Reasoning Over Schemas (KAIROS) pro-
gram2 aims at developing schema-based AI sys-

2https://www.darpa.mil/program/knowledge-dir
ected-artificial-intelligence-reasoning-over-sch

1
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Figure 2: Our schema curation system includes four main stages: Step Generation, Node Extraction, Graph
Construction and Node Grounding; Model ouput is highlighted in purple background ; Human curated output is

highlighted in yellow background ; human curation is shown in red.

tems that can identify, comprehend, and forecast
complex events in a diverse set of domains. To
enable such a system, scalable generation of high-
quality event schemas is very crucial. On one hand,
fully-manual schema creation at a large scale can be
inefficient, since people have diverse views about
a certain concept, leading to inconsistent schema
results. On the other hand, fully automated sys-
tems are scalable, but not with high-quality. In
fact, the majority of existing approaches under the
KAIROS program are fully-automated IR and IE
systems over large collections of news articles (Li
et al., 2020, 2021). Only some of limited human
post-processing on schemas (Ciosici et al., 2021)
have been explored. Further discussion of the ad-
vantages and limitations of existing systems can be
found in Related Work.

Instead of focusing on fully-automated schema
induction systems, we propose a human-in-the-
loop schema induction pipeline system. Rather
than using IR and IE over a large document col-
lection, our system relies on pre-trained large lan-
guage models (LLMs) and human intervention to
jointly produce schemas. Our main motivation is
that human-verified schemas are of higher quality.
That is because human curation can filter out fail-
ure cases such as incompletness, instability, or poor
domain transfer results in previous systems (Dror
et al., 2022; Peng et al., 2019). With human cura-
tion, schemas are more reliable and accountable
when applied to downstream tasks such as event
prediction. This is significant if the downstream
tasks involve safety-critical applications like epi-
demic prevention, where the quality of the schema
matters beyond task performance numbers.

emas

Figure 2 is a flowchart of our four-stage schema
induction system: step generation, node extrac-
tion, graph construction, and node grounding.
Each stage has two main components: the LLM
(e.g. GPT-3) at the back-end to output predictions
(the purple boxes in the figure) and an interactive
interface at the front-end for human curation of
the model output (the yellow boxes). The GPT-3
prompts that are used in each stage of the process
are given in the Appendix A, along with example
inputs and outputs.

A more comprehensive description of the imple-
mentation and functionalities of our interface can
be found in Section 4. A case study is given in Sec-
tion 5. It walks through each step in our pipeline
system under an example scenario, cyber attack.
Also, in Section 5, we provide a qualitative evalua-
tion of five example scenarios. The summary and
discussion of our system are included in Section 6.

2 Related Work

2.1 Schema Induction
Early work from Chambers and Jurafsky (2008,
2009) automatically learned a schema from
newswire text based on coreference and statistical
probability models. Later, Peng and Roth (2016);
Peng et al. (2019) generated an event schema based
on their proposed semantic language model (like
an RNN structure). Their work represented the
whole schema as a linear sequence of abstract
verb senses like arrest.01 from VerbNet (Schuler,
2005). Those works had two main shortcomings:
first, the schema was created for a single actor (pro-
tagonist), e.g. suspect. It caused limited coverage
in a more complex scenario, e.g. business change-
acquisition; second, the generated schema, a simple
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linear sequence, failed to consider different alterna-
tives such as XOR.

More recently, Li et al. (2020, 2021) used trans-
formers to handle schema generation in a complex
scenario. It viewed a schema as a graph instead
of a linear sequence. However, this approach was
unable to transfer to new domains where the super-
vised event retrieval and extraction model failed.
Dror et al. (2022) took GPT-3 generated documents
to build a schema. Although it bypassed the event
retrieval and extraction process and solved the do-
main transfer problem, it suffered from the incom-
pleteness and instability of GPT-3 outputs.

Currently, neither do they offer a perfect solu-
tion for schema induction without manual post-
processing, nor build a timely human correction
system (Du et al., 2022). Our demonstration sys-
tem develops a curation interface that can generate
a comprehensive schema easily with a human cura-
tor in the loop. The curated data collected through
our tool could be useful for fine-tuning and improv-
ing the models.

2.2 Human-in-the-loop Schema Curation
Interface

Another area related to our work is human-in-the-
loop schema generation, where annotators collab-
orate with computational models to create high-
quality event schema. In this field, one of the clos-
est approachs is the Machine-Assisted Script Cura-
tion (Ciosici et al., 2021) created for script induc-
tion. With a fully interactive interface, they have
shown the feasibility of realtime interaction be-
tween humans and pre-trained LLMs (e.g. GPT-2
or GPT-3). The main differences are the level of au-
tomation and adaptability to other generative mod-
els. In terms of automation, our interface makes
use of pre-trained LLMs to automatically gener-
ate schema content, compared to their interface
which largely counts on human input. For adapt-
ability, our interface supports the curation of the
schema generated by different language models
(e.g. GPT-3 models with different sizes), which
makes it possible for users to evaluate the genera-
tions of different models. In contrast, there is no
such possibility in their interface.

Another interface built for schema curation fo-
cuses on visualization of the schema structure, such
as the temporal relations between event nodes and
internal relations among entities (Mishra et al.,
2021). While this interface provides a user-friendly

experience when it comes to schema graph cura-
tion, it requires the user to come up with the content
of event schemas in json format, which requires
much more human effort compared to our interface.
In addition, our interface also provides an optional
grounding function after the event graph curation
step, which is not presented in this interface.

3 Terminology and Problem Definition

Our work focuses on efficiently building a schema
graph of a scenario using both LLMs and human
input. Following the workflow of our system (see
the workflow in Figure 2), a scenario is a general
event type that an interested party will build the
schema for, e.g. a ‘disease outbreak’. Steps are a
list of sub-events generated by GPT-3 according to
a prompt in the step generation stage. Each step
can be a phrase or a short sentence, such as ‘spread
to other areas’, etc. Nodes or tuples are subject-
verb-object pairs extracted from steps at the node
extraction stage, such as ‘(disease, spread, to other
area)’. Graphs are a visualization of the schema,
whose edges joining the nodes represente temporal
and hierarchical relations.

4 Implementation

Our pipeline system contains four sequential stages:
step generation, node extraction, graph con-
struction, and node grounding. A flowchart of
the interface system is shown in Figure 2. The
step generation stage generates steps for a sce-
nario and the user can specify how many steps they
would like to generate. The node extraction stage
extracts nodes (subject-verb-object tuples) from
the previous verbose steps. The graph construc-
tion stage orders the extracted nodes temporally
and hierarchically. Meanwhile, modifications of
the nodes are still possible. The node grounding
stage maps node text to a node in the XPO ontology
(Elizabeth Spaulding et al., In preparation) (derived
from WikiData3). The flexible interface system al-
lows users to either go through the entire process to
create a schema from scratch or directly start at any
stage to edit the model’s prediction. In addition, the
back-end GPT-3 models can be replaced by other
user pre-trained models if deployed locally.

3https://www.wikidata.org/wiki/Wikidata:Main_P
age
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4.1 Step Generation

The step generation stage aims at generating steps
given a scenario. At the backend, zero-shot GPT-
3 incorporates a user’s input into a prompt and
generates ordered steps. The interface allows users
to generate steps quickly with prompt templates4

or finetune the generated steps with user-designed
prompts. A typical use case of the user-designed
prompts is to expand a certain step to more detailed
steps. For instance, a template prompt "List the
steps involved in {disease outbreak}:" may create
steps such as "1. Identify the symptoms of the
disease; 2. Collect data from affected individuals;
...". Then, the user can re-prompt for, e.g., the
second step, “List the steps involved {step2} in
detail:”. Additionally, users can modify and select
GPT-3 generated steps easily by clicking on them.
When the ’save’ button is clicked, all user selected
steps will be saved in the database for the use of
the node extraction stage or further fine-tuning of
the step generation model. A screenshot of the step
generation interface with user’s operations can be
seen in Figure 3.

4.2 Node Extraction

Nodes are structured representations of events in
the form of a {subject, verb, object} tuple. Node
extraction is to extract these nodes from the GPT-
3 generated steps saved in step generation stage,
which are unstructured sentences.

There are two methods, based on AllenNLP (Shi
and Lin, 2019) or GPT-3, that users can choose
from to extract nodes. The former uses AllenNLP’s
Semantic Role Labelling (SRL) model to extract
nodes from the steps. The SRL model implements
a BERT (Devlin et al., 2018) sequence prediction
model to identify the predicates and the arguments
(e.g. A0, A1) in a text. We simply choose the iden-
tified A0 as subject, A1 as object, and predicate
as the verb to form a node. An optional corefer-
ence resolution model can be used to resolve ref-
erenced entities between the different steps with
an AllenNLP’s SpanBERT-based model (Lee et al.,
2018). Here, we concatenate all the steps and re-
place a pronoun with its referenced entity (noun)
in the original steps.

The GPT-3 node extraction method uses instruc-
tional few-shot prompting to extract {subject, verb,
object} tuples from the steps. Several example sen-

4an {event type} appended to a predefined prompt: Before,
After or Sub-steps

tences are given to show GPT-3 the expected syn-
tactic and semantic output. We follow (Liu et al.,
2022)’s recommendation for few-shot design by
including context examples that are semantically
similar to the KAIROS application environment
(daily life and news). See appendix A for our few-
shot prompts.

The extracted nodes are shown to the user in a
table with 3 columns (subject, verb, object). For
example, for “The CDC collects and analyzes data
on disease outbreaks”, one of the extracted nodes is
“The CDC (subject) collects (verb) data (object)”.
Users are able to choose and edit nodes (tuples).
User edits are saved and will be used for graph
construction and fine-tuning of the GPT-3 node
extraction model.

4.3 Graph Construction

In the graph construction stage, our system auto-
matically adds temporal and hierarchical edges to
the previously extracted nodes. The edges are cre-
ated using zero-shot GPT-3 with multiple choice
questions. For each pair of nodes, GPT-3 is in-
structed to choose between ‘Before’, ‘After’, ‘Same
time’ or ‘no relation’ for temporal eges; and ‘Par-
ent’, ‘Child’ or ‘no relation’ for hierarchical edges.
For example, for the node pair “collect data” and
“identify the signs and symptoms”, GPT-3 predicts
‘After’ for temporal order and ‘no relation’ for hier-
archical order, in which case we will add a temporal
edge from “identify the signs and symptoms” to
“collect data”, and no hierarchical edge will be cre-
ated. If a conflict occurs between (node1, node 2)
pair and (node2, node1) pair, e.g. ‘After’ and ‘Af-
ter’ for a temporal order or ‘Parent’ and ‘Parent’ for
a hierarchical order, we will treat it as no relation
to resolve the conflict, thus adding no new edges to
the graph.

The graph construction interface allows users
to modify the GPT-3 generated schema with ease.
After predicting both temporal and hierarchical re-
lations between all pairs of nodes, the interface will
display the graph via the Vis-network framework5.
It supports adding, editing, deleting graph nodes
and edges. When the user clicks on a node, the de-
tailed information including the ID and description
of a node will be shown as well as the button to
delete or edit the node. By clicking the edge, users
can modify the edge type or delete it. Users will be

5https://www.npmjs.com/package/react-vis-net
work-graph

4

https://www.npmjs.com/package/react-vis-network-graph
https://www.npmjs.com/package/react-vis-network-graph


able to create a new node by double clicking and a
new edge by dragging and dropping an arrow from
two nodes. A screenshot of our graph construction
interface can be seen in figure 4.

4.4 Node Grounding

Although a schema (graph) is completely created
after the previous stages, some nodes may express
the same semantic information, e.g., “refugees flee”
and “refugees ran away”. To ensure the reliability
and comparability of created schemas, our system
grounds the nodes to an ontology, namely the XPO
ontology, in the last stage. Each node in the XPO
ontology contains a unique node ID, a node name,
and a concise description (definition), and a list
of similar nodes. Our system offers two ways of
grounding, “name inference grounding" or “name
similarity grounding". Name inference grounding
maps the schema nodes to XPO nodes by predicting
the XPO node’s name; name similarity grounding
finds the XPO nodes by comparing the similarities
between the embeddings of a schema node and a
XPO node’s name.

In name inference grounding, given a graph
node, our system first uses few-shot GPT-3 to de-
duce a list of possible XPO names (see few-shot
prompt example in appendix A). Then, the candi-
date XPO names are postprocessed by dropping
off the wrong prediction and adding similar XPO
names to the true prediction. After that, each possi-
ble XPO name will be checked for entailment with
the original graph node. The entailment model is a
BART-large model fine-tuned on the MNLI dataset
(Lewis et al., 2020; Williams et al., 2018). The
input is the original graph node as the premise and
the possible XPO name as the hypothesis, and the
output is the entailment score. We sort the possi-
ble XPO node names by their entailment scores.
Users can view and choose from the top-k sug-
gested XPO nodes for the grounding of the original
graph node. In name similarity grounding, the top-
k related XPO nodes are retrieved by computing
the cosine-similarity of the GloVe embedding be-
tween the graph node and the name of XPO nodes
(Pennington et al., 2014). The above two methods
are complementary to each other especially when
users cannot find expected XPO nodes with one
method. Human-curated data is saved in the back-
end database. A screenshot of node grounding can
be seen in Figure 5.

5 Evaluation

5.1 A Case Study
In this section, we walk through the whole process
of creating a toy schema with our interface which
is much simpler than a fully developed schema. We
assume the scenario is ‘cyber attack’.

In the step generation stage, users can form a
prompt from templates such as "list the steps in-
volved in a cyber attack" with ’cyber attack’ as the
name and sub-event as the prompt type. Then, GPT-
3 will generate 5 steps. For example, "1. A cyber
attacker gains initial access to a system" and "5.
The attacker exfiltrates data from the compromised
system." Users can modify the content and choose
steps to save. For example, one may change the
first step to "1. A cyber attacker access a system."
and save the step. See a screenshot of five steps for
reference in figure 3.

Figure 3: A sample of generated steps after human-
curation for scenario ‘cyber attack’.

Next, in the node extraction stage, GPT-3 will be
prompted to extract nodes from the selected steps.
For example, GPT-3 will output {cyber attacker, ac-
cess, system} for the first step. The user can change
the outputs to correct any mistakes. In this sam-
ple, we extract 4 nodes, they are: {cyber attacker,
access, system}, {attacker, enumerate, system in-
formation and user account}, {attacker, escalates,
privileges}, {attacker, exfiltrate, data}. And we
concatenate the {subject, verb, object} into a piece
of text as a node for the next stage.

Thereafter, in the graph construction stage, we
prompt GPT-3 to automatically build linear tempo-
ral edges on the above four nodes that users can
modify. We manually add a scenario node ‘cyber
attack’ and link with the other four existing nodes
through hierarchical edges. see a screenshot of the
graph in figure 4.

Finally, we can optionally ground our graph
node into the XPO ontology. For example, the
node “cyber attacker access system” can be mapped
to choices of ‘access’, ‘computer monitoring’,
‘remote communicating’ using name similarity
grounding. In this case, we don’t get any results
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Figure 4: A sample of a constructed graph after human-
curation for scenario ’cyber attack’

from name inference grounding. See a screenshot
of grounding in Figure 5.

Figure 5: Top-4 XPO node choices of graph node "cyber
attacker access system".

5.2 User Evaluation

We followed the evaluation methodology used by
Ciosici et al. (2021) with slight modifications to as-
sess our system. Evaluation is done by researchers
in the field of NLP who have experience in hand-
writing event schemas but have not used the in-
terface before. In the step generation and node
extraction stage, we count the number of human
selected steps/nodes out of the total number of ma-
chine generated results as accuracy. For simplicity,
we ignore users’ modifications (e.g. rephrasing)
at this point. In the graph construction stage, we
compare how many nodes and edges are modified

EVC FOD JOB MED MRG
Step Acc 11/12 7/8 10/10 10/10 12/12
Node Acc 13/15 10/10 11/12 12/12 12/14

Graph Node
ED 1 0 0 0 0

Graph Edge
ED 8 0 7 3 16

Grouding
Success Rate 5/12 3/10 3/11 6/12 9/12

Self-reported
time (min) 15 10 11 10 14

Table 1: User evaluation results. Acc in line 1 and 2
represents Accuracy. ED in line 3 and 4 means Editing
Distance. Ciosici et al. (2021)’s approach, on average,
took an hour to create the schema of a scenario.

(added or deleted) using graph edit distance. In the
grounding part, the success rate is measured as suc-
cessful retrieval of at least one relevant XPO node
within top-3 grounding results for a given event
node. We also ask users to self-report their total
time of interaction. For all the evaluations, we use
GPT-3 Davinci model as the language model.6

We follow prior work and evaluate our system on
five scenarios: Evacuation (EVC), Ordering Food
in a Restaurant (FOD), Finding and Starting a New
Job (JOB), Obtaining Medical Treatment (MED),
Corporate Merger or Acquisition (MRG).7

As shown in Table 1, our interactive system
shows high accuracy in step and node generation
phases, thanks to the richness of world knowledge
from LLMs. However, the graph construction and
the node grouding require more human curation,
due to the difficulty of event reasoning, such as the
understanding of temporal and hierarchical relation-
ships; and the retrieval ability from large database.
In those cases, we showed that human curation
can step in timely and improve the quality of event
schema when LLM-based models make mistakes
7. In addition, our interface is easy to use, with
much shorter time required to complete each event
schema task compared to previous work (Ciosici
et al., 2021).

We also report a qualitative study introducing
the types of human modifications on the automated
generations. At the step generation stage, GPTs
aren’t likely to make commonsense and grammar
errors. However, if its required to generate more
steps, it may be susceptible to redundancy, such
as, "A does B" and "A finishes doing B", and hu-

6https://platform.openai.com/docs/models/gp
t-3

7 Detailed evaluation results: https://joeyhou.notion
.site/Human-in-the-Loop-Schema-Induction-Interfa
ce-Logs-1eb52403b05542919ccea214656f4211
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man removes these steps. Then, for the node ex-
traction, results can be simplistic and ambiguous
when the original sentence contains rich informa-
tion, such as location, condition, or other modifiers.
For example, given the step "waitress bring order
to the kitchen", automatic node extraction produces
"(waitress, bring, order)", while human needs to
add back some necessary components, e.g. the
location information "kitchen" or constraint "food
order". Last, for the graph construction, current
graph is often linear based on the previous nodes’
order, human efforts play an essential role to elabo-
rate on the specific relations including AND, OR.
For example, "person updates the resume" and
"person tailors the cover letter" are independent
and can be concurrent, not sequential.

6 Conclusion

With the acknowledgements that fully depending
on human annotation is expensive and inefficient,
while wholly automated generations can be unre-
liable, we propose a human-in-the-loop schema
curation interface with pre-trained large language
models (LLMs) as the backbone. We use LLMs
to generate candidate components of a schema and
involve human as the final judge for both the con-
tent and structure of the event schema. With em-
pirical evaluations, we show that our system can
efficiently produce human-validated event schemas
with minori human efforts.

Limitations

We have several limitations in our current approach.
First, our current system uses zero-shot or few-shot
to prompt GPT-3 without any fine tuning. In future
work, we plan to fine-tune our GPT-3 with human
curated data that we collect. We expect that fine-
tuning will improve our models’ performance. It
may also be possible to use human curated data
to train a policy network recommended by Ope-
nAI (Ouyang et al., 2022). Second, we can replace
GPT-3 with more robust task specific models at
some stages, e.g., the pre-trained model for predict-
ing temporal and hierarchical orders. Third, some
users suggested incorporating a graph view at the
other three stages, which will help users to generate
based on the current graph. We will include this
graph view in our next version. Forth, our current
evaluation is experimental and probably subjective,
we will develop more robust evaluation metrics
comparing manual, Ciosici et al. (2021)’s and our

schema and test on downstream tasks in the next
step.

Ethics Statement

To our knowledge, our back-end GPT-3 model was
trained mainly on English web data, it may prefer
events happen in an English environment. Fur-
thermore, our test showed that it generated events
specifically fit in American setting, for example,
Miranda Rights for arrest, Democrats and Repub-
licans in United States for election. These facts
suggest GPT-3 may ignore the knowledge of non-
American cultures or minority groups. In addition,
currently, we only create schemas for scenarios that
are reported in mainstream news media, e.g. con-
flict, communication. It excludes the schemas from
other domains, such as biology, medicine.
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A Appendix: Prompt and Completion

A.1 Appendix A: Prompt and example
completions for Step Generation

Prompt: List the events before an attack: 1.
Completion:
The attacker gathers information about the target.
2. The attacker plans the attack.
3. The attacker gains access to the target system.
4. The attacker executes the attack.
5. The attacker covers their tracks.

Prompt: List the events after an attack: 1.
Completion:
The attacker’s identity is confirmed.
2. The target is notified of the attack.
3. The attacker is placed on a watch list.
4. The attacker’s device is seized.
5. The attacker is arrested.

Prompt: List the sub-events involved in an attack:
1.
Completion:
Identify the target.
2. Plan the attack.
3. Choose the weapons.
4. Assemble the team.
5. Launch the attack.
6. Evaluate the results.

A.2 Appendix B: Prompt and example
completions for Node Extraction

Prompt:
/* instruction */
For each sentence, extract event verbs and their
arguments, categorizing the arguments as subject
or object. Write None if there is no object.
Return in [verb: _, subject: _, object: _] format.

/* few-shot examples */
For example:
Q: Isaac ate a cake today and he played football.
A: [verb: eat, subject: Isaac, object: cake], [verb:
play, subject: Isaac, object: football]

Q: The teacher arrived in class and he started
teaching.
A: [verb: arrive, subject: teacher, object: class],
[verb: start, subject: teacher, object: teaching]

Q: Nate and Isaac ate dinner.
A: [verb: eat, subject: Nate and Isaac, object:
dinner]

Q: Justin slept.
A: [verb: sleep, subject: Justin, object: None]

/* target example */
Q: The attacker gathers information about the
target.
A:
Completion:
[verb: gather, subject: attacker, object: informa-
tion]

/* target example */
Q: The attacker’s identity is confirmed.
A:
Completion:
[verb: confirm, subject: attacker’s identity, object:
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None]

/* target example */
Q: The attacker is placed on a watch list.
A:
Completion:
[verb: place, subject: attacker, object: watch list]

A.3 Appendix C: Prompt and example
completions for Node Grounding

Prompt:
/* few-shot examples */
List event names related to the event "People are
infected with this disease":
1.infection
2.epidemic
3.pandemic

List event names related to the event "It was a
robbery-related incident":
1.robbery
2.burglary
3.theft

List event names related to the event "The first
case of the disease have detected and it has been
reported":
1.infection
2.epidemic
3.pandemic

List event names related to the event "The disease
is eventually brought under control":
1.control
2.improvement

List event names related to the event "People who
are ill have serious symptoms":
1.symptoms

List event names related to the event "The pathogen
begins to spread through the population":
1.transmission
2.spread

/* target example */
List event names related to the event "The attacker
gathers information about the target":
Completion:
1.reconnaissance
2.surveillance

3.investigation

/* target example */
List event names related to the event "The
attacker’s identity is confirmed":
Completion:
1.identification
2.confirmation

/* target example */
List event names related to the event "The attacker
is placed on a watch list":
Completion:
1.surveillance
2.monitoring
3.investigation
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Abstract

Scientific research is inherently shaped by its
authors’ perspectives, influenced by various fac-
tors such as their personality, community, or so-
ciety. Junior researchers often face challenges
in identifying the perspectives reflected in the
existing literature and struggle to develop their
own viewpoints. In response to this issue, we
introduce PersLEARN , a tool designed to facil-
itate the cultivation of scientific perspectives,
starting from a basic seed idea and progressing
to a well-articulated framework. By interacting
with a prompt-based model, researchers can de-
velop their perspectives explicitly. Our human
study reveals that scientific perspectives devel-
oped by students using PersLEARN exhibit a
superior level of logical coherence and depth
compared to those that did not. Furthermore,
our pipeline outperforms baseline approaches
across multiple domains of literature from var-
ious perspectives. These results suggest that
PersLEARN could help foster a greater appre-
ciation of diversity in scientific perspectives as
an essential component of research training. 1

1 Introduction

The pursuit of science is driven by a desire to
gain a deeper understanding of the natural world,
not only through the collection of objective facts
but also through interpreting those facts (Kuhn,
1970; Longino, 1990). As a result, scientific knowl-
edge is shaped by a complex interplay of vari-
ous factors that extend beyond the objective world.
These factors include the personal characteristics
of individual scientists (Heisenberg, 1958; Bybee,
2006), shared mindsets within scientific communi-
ties (Cetina, 1999), and broader societal contexts
such as cultural and political influences (Latour and
Woolgar, 1986; Latour, 1987; Lynch, 1993; Latour
et al., 1999). Together, these factors contribute to

1Website: https://perslearn.com/. Video:
https://vimeo.com/802213150.

Composed summary
CV approaches on physics-

based reasoning tasks

Papers

Perspectives by the author

Alternate perspectives

Perspective 01
physics-based reasoning

Perspective 02
AI models for modeling human 

cognition

Perspective 03
ethics in human-level


tasks for AI
Papers

Alternate perspectives

Figure 1: Composed summaries vs. framed perspectives.
Composed summaries are subject to the authors’ perspectives,
whereas the perspective frames are directed by new ideas.

forming perspectives regarding how best to inter-
pret the natural world. Perspectives are essential
to effectively process and communicate scientific
knowledge with limited cognitive resources (Lewis
et al., 2014; Griffiths et al., 2015; Gershman et al.,
2015; Lieder and Griffiths, 2020).

However, junior researchers often face difficul-
ties in developing their own scientific perspec-
tives. They may struggle to identify the perspec-
tives reflected in the existing literature and con-
sequently struggle to develop and articulate their
own viewpoints. This presents a significant obsta-
cle to the progress of research training and de-
prives junior researchers of the opportunity to em-
brace the broader range of diverse perspectives
that could contribute to their understanding of a
particular topic (Duschl and Grandy, 2008). The
challenge of developing scientific perspectives is
particularly evident in one of the most significant
research training approaches—writing literature re-
views. In our pilot study, we asked students study-
ing at the intersection of Artificial Intelligence (AI)
and Cognitive Reasoning (CoRe) to write a review
article from the perspective of “physics-based rea-
soning in Computer Vision (CV)” using a set of
papers published on CV conferences. The assigned
task aims to provide students with a multifaceted
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A multiplicative input gate unit is 
introduced to protect the memory 
contents stored in j from perturbation by 
irrelevant inputs. Likewise, a multiplicative 
output gate unit is introduced which 
protects other units from perturbation by 
currently irrelevant memory contents 
stored in j. The resulting, more complex 
unit is called a memory cell.

As side benefit, self-attention could yield 
more interpretable models. We inspect 
attention distributions from our models 
and present and discuss examples in the 
appendix. Not only do individual 
attention heads clearly learn to perform 
different tasks, many appear to exhibit 
behavior related to the syntactic and 
semantic structure of the sentences.

An LSTM unit uses a series of gates to control 
the flow of information through the unit, which 
makes its operations opaque.

The Transformer model can explicitly learn the 
attention distributions of the input sequence 
which is interpretable to some extent.

or or or select

evidence

 select

evidence

 select

evidence

User

seed idea

Model 

interpretability manually

drag

manually

edit

manually

edit

 Attention is all you need
Ashish Vaswani et al,2017

31st Conference on Neural 
Information Processing Systems 
(NIPS 2017), Long Beach, CA, USA

Long Short-Term Memory
Sepp Hochreiter et al,1997

Neural Computation 9(8):1735-1780

Connection
Transformers generally offer a higher 
degree of interpretability than LSTMs 
due to their self-attention mechanism.

Seed Idea interpreted

Seed Idea interpreted

 Attention is all you need
Ashish Vaswani et al,2017

Figure 2: The interactive workflow of PersLEARN . This example showcases the scenario that a PersLEARN user intends to
frame a rather novel perspective of “model interpretability” given the original papers on LSTM and Transformer. While the
seed idea is not the major focus of both papers, evidence can be found to support that seed idea with the help of PersLEARN .
The evidence includes the introduction of gates in LSTM to protect memory contents and the self-attention mechanism in
Transformer, which can yield more interpretable models. Then the user re-interprets the evidence that LSTM operations are
opaque due to the use of gates, while Transformer models have some level of interpretability through their attention distributions.
It concludes that Transformers generally offer a higher degree of interpretability compared to LSTMs due to their self-attention
mechanism. The process is assisted by prompt-engineered LLMs but is exactly determined by the user.

perspective on both computer vision and physics.
Interestingly, most of the reviews the students com-
posed do not have their own perspective; their re-
views are titled “CV approaches on physics-based
reasoning tasks” or have similar titles. This sug-
gests that most students simply wrote summaries
of every citing paper without considering an alter-
native perspective (see Fig. 1). To address this gap
in research training, we propose PersLEARN , a
tool that explicitly guides the process of cultivating
scientific perspectives.

PersLEARN is grounded in classical theories
drawn from the fields of cognitive and social
sciences, particularly in the domain of scientific
knowledge representation (Sec. 2.1). It provides
an entire life-cycle of constructing a perspective
frame that semi-automates researchers to start from
a single seed idea and then iteratively interpret and
structure relevant literature (Sec. 2.2). This process
is facilitated through an interactive system that em-
ploys a hierarchical prompt-based approach to pro-
pose potential interpretations and structures based
on a seed idea (Sec. 2.3). Experiments on both hu-

man evaluation (Sec. 3) and automatic evaluation of
each module (Sec. 4) suggest that PersLEARN has
the potential to enhance the quality of scientific
research training significantly.

2 Design and Implementation

Designing PersLEARN is required to answer two
questions: (i) What is the appropriate representa-
tion of perspective frames that makes researchers
comfortable? (ii) How to informationize such rep-
resentation for both user input and automated gen-
eration? In response to the questions, we highlight
how PersLEARN is implemented from a theoretical
framework to an interactive system step by step.

2.1 Theoretical Framework2

Following the principle of analogical education
(Thagard, 1992; Aubusson et al., 2006), we create a
system of analogies to ground the abstract concepts
about perspectives. First, the scientific knowledge
covered by the literature about a seed idea is in a

2View an abstract video illustration of the framework:
https://vimeo.com/802213146.

12

https://vimeo.com/802213146


�� Select one paper.

Paper
Different perspectives

2. Slice paper with different

    perspectives.

3. Collect slices from different papers with

    one perspective.

4. Make connections between papers in 

    one projection of perspective frame.

In one specific perspective

Projection

Relationship

Relationship

�� Select one paper. 2. Highlight evidences. 3. Add titles & interpretations for evidences to create

    nodes in frame system. 4. Create connections between nodes in frame system.

Interpretation

Title

Evidence

Extract evidences from one paper

with different perspectives

Instantiate multiple papers

with one specific perspective Create connections

A

B

Figure 3: Illustration of perspective cultivation. (A) Visual analogy of the process: interpreting the evidence in the papers
given the seed idea and structuring the papers with the relations between them. (B) User interfaces during the process.

higher-dimensional space than the perspective of
a single paper (Duschl and Grandy, 2008). Here
we set scientific knowledge of a seed idea as a 3D
space and the specific perspective as a 2D plane
for readability. For example, the seed idea “CV
approaches on physics-based reasoning tasks” on
the intersection of physics and CV can be framed
as different specific perspectives, such as “physics-
based reasoning” (Zhu et al., 2020), “AI models
for modeling human cognition” (Lake et al., 2017),
“evaluation metrics of new tasks in AI” (Duan et al.,
2022), “ethics in human-level tasks for AI” (Jack-
son Jr, 2018), and “interpretability of physics-based
reasoning AI models” (Edmonds et al., 2019). To
not be trapped in a single perspective, we should
pay attention to the ingredients of the papers rather
than the ideas claimed by the authors. On this basis,
framing another perspective is projecting the 3D
space to another 2D plane by making slices from
the papers, where each slice is a subset of ingredi-
ents. Such slices are articulated with others under
the logic of the seed idea. Thus, a perspective frame
is cultivated on the plane, growing from a seed idea
with few slices to a graph with slices connected
(see Fig. 3 for details).

Formally, the perspective frame is organized as
a graph with information in nodes and edges on a
2D plane that instantiates the seed idea from the
3D space of scientific knowledge. The elements in
a perspective frame can be described as follows:

• Seed idea: A rough textual description of the
perspective, e.g., “Physics-based reasoning us-

ing CV approaches,” which serves as the starting
point of the literature review and should be deter-
mined at the very beginning.

• Evidence: A piece of evidence comes from ev-
ery paper in the selected set of literature, which
contains the grounded information (a text span)
supporting the given seed idea.

• Slice: A slice is the textual interpretation condi-
tioned on the given seed idea based on a piece of
evidence. A slice is a node in the graph.

• Connection: A connection between two slices
is the textual interpretation conditioned on the
perspective given the relation (e.g., relations-
in-common such as inspire and parallel;
and relations-of-distinction such as improve,
alternate, and compete) between two
slices. A connection is an edge in the graph.

Fig. 2 shows the interactive workflow of
PersLEARN . Suppose one concerns the “model
interpretability” (seed idea) of LSTM and Trans-
former, which is not the major perspective of either
original paper of the two models. Given the cor-
responding two papers ‘Long short-term memory’
and ‘Attention is all you need’, the evidence gen-
erator finds the evidence to support the seed idea
from the papers: ‘A multiplicative input gate unit is
introduced to protect the memory contents stored in
j from perturbation by irrelevant inputs. Likewise, a
multiplicative output gate unit is introduced which
protects other units from perturbation by currently
irrelevant memory contents stored in j. The result-
ing, more complex unit is called a memory cell.’
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and ‘As side benefit, self-attention could yield more
interpretable models. We inspect attention distri-
butions from our models and present and discuss
examples in the appendix. Not only do individual
attention heads clearly learn to perform different
tasks, but many also appear to exhibit behavior
related to the syntactic and semantic structure of
the sentences.’ The slice generator then generates
the interpretations: ‘An LSTM unit uses a series
of gates to control the flow of information through
the unit, which makes its operations opaque.’ and

‘The Transformer model can explicitly learn the at-
tention distributions of the input sequence which
is interpretable to some extent.’ The connection
generator finally provides the connection between
these slices: ‘Transformers generally offer a higher
degree of interpretability than LSTMs due to their
self-attention mechanism.’. Such cultivation of a
brand new perspective helps students think outside
the box, which usually yields innovation in scien-
tific research and should serve as one of the major
parts in research training.

Notably, elements such as evidence, slices, and
connections are not determined at once but may be
revised in multiple iterations. As the perspective
frame grows, the researcher’s understanding of the
seed idea goes deeper, and the contents of slices
and connections are sharpened accordingly. Hence,
instead of answering a chicken-or-the-egg problem
between slices and connections, our users generate
them iteratively. Varied by the seed ideas, a perspec-
tive can be a well-organized collection of informa-
tion (e.g., “performance comparison between back-
bone models on physical-reasoning tasks” (Duan
et al., 2022)), a statement (e.g., “intuitive physics
may explain people’s ability of physical reason-
ing” (Kubricht et al., 2017)), or a problem (e.g.,
“physical reasoning by CV approaches” (Zhu et al.,
2020)). Though coming with different levels of ab-
straction, they all bring information gain, more or
less (Abend, 2008).

PersLEARN well echoes the established theories,
suggesting our design’s integrity. In a perspective
frame, elements are contextualized in the entire
frame by connecting with each other (Grenander,
2012; Shi et al., 2023); no element’s meaning is
determined solely by itself. Moreover, any revi-
sion of an element influences the larger structure.
Such representation has been shown as an innate
knowledge representation of humans—theory the-
ory (Gopnik, 1994; Gopnik and Meltzoff, 1997;

A

B

Figure 4: UI showcases. (A) A selected piece of evidence and
its interpretation. (B) A generated perspective frame.

Carey, 1985, 2009). Furthermore, Carey (1986,
2000) have shown that such a framework can be
captured and gradually revised by young students
in terms of science education. To the best of our
knowledge, current tools for literature review com-
posing (e.g., ResearchRabbit, Connected Paper, In-
citeful, and litmaps) all focus on visualizing lit-
erature relationships based on similarity and cita-
tion relationships without explicitly considering the
framing of diverse perspectives.

2.2 Implementing User Interface (UI)
A researcher may develop a seed idea when reading
a few papers, even if it is far from a mature perspec-
tive. The user first locates the evidence in a paper by
dragging the mouse to select the text span through
the PDFViewer and adds the selected span into
Evidence Hub. Next, the user could generate a
slice by writing a textual interpretation of the pa-
per based on the evidence; this would trigger the
initialization of a new perspective frame, and the
first slice can be dragged into the canvas (imple-
mented by D3.js library (Bostock et al., 2011)).
The user can get back to the papers for more pieces
of evidence and back to revising interpretations by
clicking on the slices and editing the information
at the right bar. With more than one slice in the
canvas, the user can connect two slices by dragging
the mouse around them and then write a textual in-
terpretation of the relation between them. Likely to
edit the slices, the user can also edit the connections
by clicking on them and editing the information at
the right bar. The perspective frame is cultivated by
repeating these steps, buliding up the mindset for
perspective framing in the learning by doing prin-
ciple (Schank et al., 1999). Please refer to Fig. 4
for an exemplar perspective frame.

In the user-centered design of UI (Zaina et al.,
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Figure 5: Prompt Engineering. (A) Evidence location. (B)
Slice generation. (C) Connection generation.

2021), we follow the established theories in design
for education (Hu et al., 1999; Miraz et al., 2016),
such as color classification (Wen, 2021) and hierar-
chical information display (Jinxian, 2020). These
support the integrity of our UI design.

2.3 Semi-automating the Procedure
We employ a hierarchical prompt-based approach
to semi-automate the slice generation and connec-
tion generation. PersLEARN automatically gener-
ates some candidate proposals of slices and con-
nections, and users can choose to accept, delete or
modify these proposals.

Generate proposals of slices Scientific pa-
pers generally have similar and main-streaming
structures (Doumont, 2014). Humans read sci-
entific papers effectively while considering this
prior structure rather than browsing aimlessly. We
leverage this intuition by proposing the hierarchi-
cal prompt-based approach. This approach takes
the seed idea and partial texts of the paper (i.e.,
Abstract, Introduction, Discussion,
and Conclusion) sections as input, and outputs
the proposals of slices. We designed a hierarchi-
cal prompt-based approach (see Appx. A.1). First,
we parse the seed idea to identify the specific field
and domain of interest and fit the parsed terms into
the prompting schema. Next, the prompted Large
Language Model (LLM) extracts sentences from
papers as evidence proposals. The LLM generates
slice proposals conditioned on the evidence.

Specifically, it consists of two prompting stages:
prompt generation and answer extraction. In the
first stage, we first prompt an LLM with a gener-
ated prompt. After the LLM generates a response,
we extract the information as the answer. Next, we
traverse the hierarchical prompting schema from
the top down to adopt a prompt template. Finally,
we concatenate it with the texts of the paper as the
prefix to generate the response. In the second stage,
we post-process the response by removing repeated
words and punctuation marks such as extra spaces.

Generate proposals of connections Similar
to slice generation, generating proposals of con-
nections follows a prompt-based approach. The

LLM takes two slices as input and outputs the rela-
tion between these two slices. A connection shows
the relation between two slices (e.g., relations-
in-common such as inspire and parallel;
and relations-of-distinction such as improve,
alternate, and compete). Hence, we design
the prompt as a multiple-choice question.

Our approach avoids uncontrollable and time-
consuming manual designing while achieving com-
parable performance compared to existing fully-
manual methods. Since we use the zero-shot set-
ting, labor-consuming labeling is not required.

3 Human Evaluation

To validate PersLEARN for research training, we
conducted a human study following the standard
protocols of digital device auxiliary scenarios in
higher education (Van den Akker, 1999; Neuman,
2014). This study is approved by the Institutional
Review Board (IRB) of Peking University.

3.1 Method

Materials We created a scenario that simulates
the training on writing literature reviews. The litera-
ture used in our simulation is five papers published
at computer vision conferences. These papers have
different topics varying from 3D scene parsing and
reconstruction to learning object properties and us-
ing tools. However, they can be integrated together
by interpreting from a physics-based perspective.

Participants We recruited 24 participants
from the Peking University participant pool (11
female; mean age = 22.63). Every participant was
paid a wage of $14.6/h. We evenly divided partici-
pants into the control and experimental groups.

Procedures All participants were required to
read the five papers and compose a short paragraph
of literature review given the perspective “Physics-
based reasoning.” Only the abstract, introduction,
and conclusion/discussion were mandatory to read
to reduce workload. The experiments lasted for 1
hour. The control group followed the standard pro-
cedure of writing reviews without PersLEARN as
researchers usually do in their studies: reading the
raw papers and writing the review. The experimen-
tal group utilized PersLEARN to create the review:
locating evidence, interpreting, illustrating rela-
tions, and synthesizing the review. All participants
were free to use the internet for extra help, such as
searching for new concepts and unfamiliar words.
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3.2 Result

We evaluate PersLEARN both quantitatively and
qualitatively to verify whether it helps students
compose more logical and pertinent reviews.

Quantitative evaluation The reviews from the
control and experimental groups were shuffled and
sent to experts to grade. The grading metrics in-
clude logicality and pertinence. Specifically, we
asked 3 experts to grade on consistency (Farkas,
1985), rationality (Kallinikos and Cooper, 1996),
organization (Kallinikos and Cooper, 1996), topic
relevance (Hayes, 2012), opinion clarity (Williams,
1990), and concreteness (Sadoski et al., 2000); each
ranks from 1 to 5. All of the experts hold Ph.D. de-
grees in related fields of AI, have been working on
AI for at least eight years, and have no conflict of
interest with the authors of this paper.

The average scores of the control and experi-
mental groups are 21.25 and 25.08, respectively.
Fisher’s exact test on the two variables (i.e.,
whether PersLEARN was used and the score) re-
veals that the experimental group significantly out-
performs the control group in both logicality and
pertinence (P “ 0.0361; see Fig. 6a), suggest-
ing participants exploit the interpretations from a
particular perspective and organize them by induc-
ing their relations. Such a paradigm equips them
with improved research training. Detailed scores
on 6 evaluation metrics are shown in Fig. 6b. The
results demonstrate a noticeable improvement in
academic review writing in terms of logicality and
pertinence for the experimental group; the exper-
imental group’s performance shows a clear shift
towards higher scores.

Qualitative evaluation We further conducted
an interview to record qualitative comments af-
ter the participants in the control group fin-
ished their experiments. We interviewed them on
how PersLEARN contributed to reading papers
and composing reviews; see Appx. B.3 for in-
terview questions. Most participants stated that
PersLEARN helped them better understand the con-
tent of articles, think more clearly, and organize
their writing expediently. For future work, they
hoped to embed intelligent agents to provide proto-
cols for each procedure.

3.3 Discussion

We present a case study to show how the exper-
imental group composes better reviews than the
control group; see representative paragraphs in
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(b) The scores of the 6 metrics with 5.0 for each. The presented
scores in the plot may surpass 5.0 due to smoothing.
Figure 6: The scores of the control and experimental groups.
The scores of each review are averaged across experts.

Appx. C.1. We conclude from our human study
that PersLEARN can boost literature reading and
review writing by providing a perspective-guided
thinking framework of evidence locating, interpre-
tation deriving, and relation inducing.

4 Automatic Evaluation

To automatically evaluate PersLEARN at scale, we
introduce a perspective reconstruction task with
three sub-tasks (slice generation, connection gener-
ation, and diversity evaluation), requiring the sys-
tem to recover an established perspective frame
given the same seed idea.

4.1 Benchmark Construction

Dataset Collection We carefully construct a
testing set with reputation-established narrative re-
views, expert reviews, and opinion articles to obtain
a high-quality ground truth of perspectives. System-
atic reviews and articles of information collection
are removed from the set because such papers do
not provide a sharp and unique perspective; we
ensure that all articles are developed around a con-
crete and coherent perspective. Moreover, we en-
sure that every title is the epitome of the perspective
held by the article; we treat the titles as seed ideas.

36 review articles are collected from diverse
domains standing at the intersection of AI and
CoRe, including CV, Natural Language Process-
ing (NLP), Intuitive Physics (Phy), Causality (Cau),
Abstract Reasoning (AbsRe), Mirroring and Imita-
tion (MrIm), Tool Use (Tool), Non-verbal Commu-
nication (NvComm), Intentionality (Int), Theory
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Table 1: Result of our pipeline. w/o and w/ are with and
without prompt engineering, respectively. The performance
of slice generation, connection generation, and perspective
diversity indicate the efficacy of our prompt engineering.

Metric w/o w/

Slice BLEURT 0.238 0.795
Connection CR 0.450 0.550

Perspective VMR 0.028 0.006

of Mind (ToM), and Utility (U). This generates a
literature set with 333 papers cited by at least one
of the articles. Among these, 24 papers are cited
by more than one article. Some of the papers are
directly obtained from S2ORC (Lo et al., 2020),
while others are parsed from raw PDF.

Evaluation Metrics of slice generation For
a cited paper in the original review, we treat the
coherent sentences around the citation mark as the
ground truth for the corresponding slice, following
the same protocol as in Li et al. (2022). Because
the semantic meaning is critical (rather than the
wording and phrasing), we employ BLEURT (Sel-
lam et al., 2020) rather than word-wise evaluation
metrics like ROUGE and BLEU (Lin, 2004; Pa-
pineni et al., 2002). BLEURT score indicates the
similarity between two statements; larger scores
mean better performance.

Evaluation Metrics of connection generation
Since the connection between two papers under
the same perspective is only conditioned on the
slices, we focus on the logical consistency between
the generated connection and the two input slices.
Following the setting of Natural Language Infer-
ence (NLI), we calculate the Consistent Rate (CR),
the proportion of entailment prediction in all predic-
tions. Higher CR indicates better performance. We
employ the state-of-the-art model, DeBertaV3 (He
et al., 2021b,a), as the NLI model for evaluation.

Evaluation Metrics of Diversity This is an
extended case study based on slice generation. We
specially study how different perspectives drive the
interpretations from the same set of papers. We
calculate the normalized Variance-to-Mean Ratio
(VMR) over the BLEURT scores on all established
perspectives of a set of papers for each approach.
Lower VMR indicates that an approach generates
slices conditioned on different perspectives well.

4.2 Experiments of Slice Generation

Setup We use InstructGPT as the backbone
LLM model (Ouyang et al., 2022) for our prompt-
based approach. The input and output are the same
as in Sec. 2.3. The baseline approach directly

prompts the LLM with the target output without
the proposed hierarchical prompting schema.

Results The BLEURT results in Tab. 1 show
that the generation with prompt engineering out-
performs that without by a large margin (233%).
This result validates our pipeline in abstract un-
derstanding and perspective-based interpreting; see
representative slices in Appx. C.2.

4.3 Experiments of Connection Generation

Setup We use InstructGPT as the backbone
LLM model. The input and output of this evalu-
ation are the same as the connection proposed in
Sec. 2.3. The baseline approach directly prompts
the LLM with the target output.

Results As shown in Tab. 1, our connection
generation module surpasses the baseline approach
in CR by a large margin (22%). It means more
logical connections are generated by our approach
and thus contribute to more entailment predictions.
See representative connections in Appx. C.3.

4.4 Experiments on Diverse Perspectives

Setup We use InstructGPT as the backbone
LLM model for both the slice and the connection
generation modules. The baseline approach adopts
the slice and connection generation modules with-
out the proposed schema.

Results The VMR results in Tab. 1 show that
PersLEARN generates slices of richly diverse per-
spectives, surpassing the baseline by a large margin
(79%). We present some examples of the interpre-
tations of different perspectives; see representative
slices in Appx. C.4.

5 Discussion

We present PersLEARN to facilitate scientific re-
search training by explicitly cultivating perspec-
tives. Human study shows that PersLEARN signif-
icantly helps junior researchers set up the mind-
set for jumping out of perspective given by the
literature and framing their own ones. Extensive
benchmarking shows that our system has the poten-
tial to mine perspectives out of diverse domains of
literature without much human effort. These exper-
iments suggest that PersLEARN has the potential
to support scientific research training in general—
from explicating one’s own perspective to embrac-
ing the diverse perspectives of others. Readers can
refer to the “Broader Impact” and “Limitation” sec-
tions (Sec. 5) for further discussions.
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Ethics Statement

The human study presented in this work has been
approved by the IRB of Peking University. We have
been committed to upholding the highest ethical
standards in conducting this study and ensuring the
protection of the rights and welfare of all partici-
pants. Considering that the workload of the proce-
dure for participants is relatively high among all
human studies, we paid the participants a wage
of $14.6/h, which is significantly higher than the
standard wage (about $8.5/h). Every expert was
paid $240 for grading the 24 review paragraphs
composed by the participants.

We have obtained informed consent from all par-
ticipants, including clear and comprehensive in-
formation about the purpose of the study, the pro-
cedures involved, the risks and benefits, and the
right to withdraw at any time without penalty. Par-
ticipants were also assured of the confidentiality
of their information. Any personal data collected
(including name, age, and gender) was handled in
accordance with applicable laws and regulations.

Broader Impact

The underlying impact of the mindset brought
by PersLEARN goes beyond research training to-
ward science education in general. Specifically,
PersLEARN provides the infrastructure for further
investigation in two aspects: (1) embracing the di-
verse perspectives of the same scientific topic to
construct a stereoscopic understanding of the topic;
(2) facilitating the communication between junior
researchers with different mindsets.

The broader impact is analogous to the classic fa-
ble Blind men and an elephant, where each man in-
terpreted the elephant differently because they were
standing on different perspectives. Though this has
been a metaphor complaining that science is limited
by observation (Heisenberg, 1958), it highlights the
virtue of scientific research—focused, and every
young researcher understands and interprets sci-
ence from a focused perspective. Hence, to gain a
more comprehensive view of the elephant, the blind
men may put their understandings of it together and
then try to synthesize it based on their perspectives.
In contrast, a sighted person may view the elephant
from a distance and capture a holistic view at first—
she ends up with a superficial understanding of the
elephant if not selecting a perspective and going
close to the elephant, like the blind. Thus, by em-
bracing diverse perspectives (i.e., visualizing the

perspective frames in a hub), one gets a stereo-
scopic view and, more importantly, a deeper un-
derstanding of the scientific topic. Moreover, when
the metaphorical blind men in the fable attempt to
articulate their distinct perspectives, they may be
hindered by the gap between mindsets. To exem-
plify, individual might struggle to comprehend the
concept of a “fan”, which in their perception, the
elephant appears to resemble. This suggests that
the communication of science should be executed
in a listener-aware way and that the speaker’s per-
spective should be transformed (i.e., by changing
the terms used in slices and connections) to its ana-
logical equivalent in the listener’s mindset. Thus,
science can be communicated easily, facilitating its
transparency, reliability, and the chances of cross-
domain collaboration. In summary, our framework
of scientific perspective may bring science educa-
tion to a future with better student-centered consid-
erations (Leshner, 2018).

Limitations

As a preliminary work, the design and evaluation
of PersLEARN come with limitations, leading to
further investigations:

• Can we construct a larger scale dataset of ex-
plicit perspective frames of the literature for more
fields in the sciences, such as biology, sociology,
etc.?

• Can we fine-tune LLMs on the larger dataset to
obtain better performance on slice and connec-
tion generation?

• Can we carry out a human study at a larger tem-
poral scale, say during one semester, to track the
progress of students using PersLEARN ?

With many questions unanswered, we hope to fa-
cilitate research training and science education in a
broader way.
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A Implementation Details

A.1 Prompting Schema

Slice generation We specifically engineer a prompting schema in a hierarchical fashion. First, we
parse the seed idea to identify the specific field and domain:

• {seed idea} + What fields and domains does the article focus on?
Only list the name.

Then, we use the following prompt to detect evidence:

• {paper} + Which sentences in the text are about {fields}? List
the original sentences.

Finally, we match the following prompts with the parsed terms to generate an interpretation:

• {evidence} + What are the motivations in the text for studying
{fields}?

• What methods and approaches in the text are used to study
{fields}?

• what theories, models, and methods in the text are proposed to
study {fields}?

• what results and conclusions in the text related to {fields} are
drawn?

• what results and conclusions in the text related to {fields} are
drawn?

• what implications or suggestions in the text for future research
of {fields} are advocated?

Connection generation Our engineered prompt comes in a selective fashion.

• What are the differences (improve, alternate, compete) between
the work {slice_1} and another work {slice_2} on motivations,
methods, results, or conclusions to study {fields}?

• What are the similarities (inspire, parallel) between the work
{slice_1} and another work {slice_2} on motivations, methods,
results, or conclusions to study {fields}?

A.2 Alternate Approach

Slice generation The baseline prompt is simply a direct prompt.

• {evidence} + What interpretation about {fields} can we get from
the text?

Connection generation The baseline prompt is simply a direct prompt.

• What are the differences and similarities between the work
{slice_1} and another work {slice_2} on studying {fields}?
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B Experimental Details

B.1 Instructions for Participants

Read the abstract, introduction, discussion, and conclusion sections of the following article, and write a
short review entitled “Physics-based reasoning” in a txt file using the given process (see the tutorial for
instructions; only for the experimental group). The experiments will last for one hour. You can use the
Internet to help you write.

1 Holistic 3d Scene Parsing and Reconstruction from a Single RGB Image. ECCV, 2018.

2 Scene Understanding by Reasoning Stability and Safety. IJCV, 2015.

3 Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning.
NeurIPS, 2015.

4 Physics 101: Learning Physical Object Properties from Unlabeled Videos. BMVC, 2016.

5 Understanding Tools: Task-oriented Object Modeling, Learning, and Recognition. CVPR, 2015.

B.2 Interfaces in the Procedures

We show the screenshots of user interactions during the experiments, from entering an input perspective
Fig. A1, to selecting papers Fig. A2, generating pieces of evidence Fig. A3, generating slices Fig. A4,
generating connections Fig. A5, and browsing the perspective frame Fig. A6. To note, though these steps
are demonstrated in a monotonic order here, every step is repeatable and extensible.

B.3 Interview questions

We interview participants on the following two questions.

• How does PersLEARN help you compose reviews?

• How can PersLEARN be improved?

C Extended Results

C.1 Perspective Paragraphs by Subjects

We show anonymized representative examples from both the control group and the experimental group
of the human study. All examples are kept original without any revision, including typos. Colored texts
are used to highlight interpretation and relation respectively facilitated by slices and connections of
PersLEARN in the experimental group.

The top three paragraphs from the experimental group with pertinent interpretations and logical
relations:

#1:

Physics-based reasoning has been used for two aims. The first is to learn the physical
properties of an object. For example, Galileo[3] and Physics 101[4] learn physical properties
like mass and density from videos. Bo Zheng et al[2] learn stability and safety of objects in
a scene. The second is to enrich the object representation by incorporating physical features.
The enriched representation is then used to assist other visual tasks. Siyuan Huang et al[1]
design a physically enriched HSG representation of 3D scene structure in the single-view 3D
reconstruction task. Yixin Zhu et al[5] use a representation consisting four physical-functional
components in object recognition task.

#2:
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Relatively brief runs of MCMC can drive simultions in physics engine to fit the key features
of visual image, which has a simlilarly accurate outcome comparing with human intutions[3].
Further study expand the abilities of learning the basic features of scenes, which makes the 3D
parsing and reconstruction real. HSG can establish a joint distribution over the functional and
geometric space of scenes, which capatures the latent human context, geometric constraints
and physical constraints[1]. By implenting a new framwork, visual system learns the tools
properties, the using methods, and the later action to do some related works, which not only
recognize the appearance, but also explain the physical mechanisms[5].

#3:

Conventional scene understanding methods mostly neglect the object’s physical properties,
rendering their weak ability of accurately understanding the scenes. To addess this issue, Zheng
et al. [2] proposed a novel 3D scene understanding approach from a new perspective of reasoning
object stability and safety using intuitive mechanics. As a step further, Huang et al. [1] proposed
a computational framework to jointly parse a single RGB image and reconstruct a holistic 3D
configuration, jointly considering latent human context, geometric constraints, and, physical
constraints to guarantee the physical plausibility.

The top three paragraphs from the control group which fail to interpret and organize from the perspective
of physics-based reasoning:

#1:

The five papers all concerns over a main topic, that is how to effectively train artificial
intelligence to precieve the outside physical world and afterwards giving different forms of
feedback or guidance on new circumstances. The first and second are generally about under-
standing scenes but have some differences in their domains .The first one using a RGB Image
to generate 3D scend applying the Markov chain Monte Carlo (MCMC) method[1], and the
second focusing on building novel algorithms which are able to reason object stability and safety
using intuitive mechanics with the representation of the disconnecty graphs and disturbance
field[2]. They all propose a new perspective for machines to logically and correctly process the
human-understood information.

#2:

Machine learning and deep learning are applied to study physical object properties. In 2015,
Jiajun Wu proposed a generative model for solving problems of physical scene understanding
from real-world videos and imag[3]. As the same time, Yixin Zhu presented a new framework –
task-oriented modeling, learning and recognition which aims at understanding the underlying
functions, physics and causality in using objects as "tools"[5]. Later in 2016, Jiajun Wu proposed
an unsupervised model to learn physical object properties from unlabeled video[4]. Also,
physics-based reasoning palys an important role in 3D parse and holistic 3D scene understanding.
Bo Zheng presented a new perspective for 3D scene understanding by reasoning object stability
and safety using intuitive mechanics[2]. Siyuan Huang proposed a computational framework to
jointly parse a single RGB image and reconstruct a holistic 3D configuration composed by a set
of CAD models using a stochastic grammar model[1].

#3:

The complexity and richness of human vision are not only reflected by the ability to
recognize visible objects, but also to reason about the latent actionable information, including
inferring physical object properties[4] or latent human context as the functionality of a scene[1].
But how does human vision achieve such complexity and richness ? Some studies propose
a model based on physics principle for understanding these mechanisms[2,3,4]. Even other
sudies consider more complex situations, where humans have tasks[5] and other hidden human
context[1].
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C.2 Slices Generated by Machines

We present several examples of the generated slices with their BLEURT scores from the pipeline with and
without prompt engineering.

#1: w/o: -1.132

The article suggests that deep learning, adversarial attacks, and countermeasures are inde-
pendent of the data miner’s activities.

#1: w/: 0.326

The article focuses on the motivations for studying deep learning, adversarial attacks,
and countermeasures in order to better understand and defend against data manipulation by
adversaries. The paper uses deep learning, adversarial attacks, and countermeasures to study the
problem. The paper proposes a formal framework and algorithms for studying deep learning,
adversarial attacks, and countermeasures. It also discusses theories, models, and methods
related to these fields and domains. The article suggests that future research should focus on
developing deep learning systems that are more robust to adversarial attacks and require less
human intervention to keep up with them.

#2: w/o: -1.090

The article suggests that understanding the cognitive development, infant development, and
developmental psychology of others is essential for successful social interactions.

#2: w/: 0.616

The article uses a variety of methods and approaches to study the fields of cognitive
development, infant development, and developmental psychology. These include observational
studies, experiments, and surveys. The article also uses a variety of theoretical frameworks, such
as Piaget’s theory of cognitive development, to analyze the data. The strengths of the text are
that it provides evidence of infants’ anticipatory responses to others’ actions from an early age,
and it also provides evidence that infants attend prospectively to others’ actions. The limitations
of the text are that it does not clarify whether infants anticipated the goal per se because the
goal and pattern of movement were confounded.

#3: w/o: -0.735

Sentiment analysis, news categorization, question answering, and natural language inference
are all techniques used to analyze text and extract meaning from it.

#3: w/: 0.422

The methods and approaches used to study sentiment analysis, news categorization, question
answering, and natural language inference in the text include supervised learning, unsupervised
learning, deep learning, natural language processing, and machine learning. The theories, models,
and methods proposed to study sentiment analysis, news categorization, question answering,
and natural language inference in the text are Convolutional Neural Networks (CNNs) and
SVMs with well-engineered features.

C.3 Connections Generated by Machines

Our pipeline can discover the similarities and differences between slices. Below are some representative
connections the model generatesgenerated by the model with and without prompt engineering.

#1: w/o
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The two works have similar motivations for studying Knowledge Graph Representa-
tion Learning, Knowledge Acquisition and Completion, Temporal Knowledge Graph, and
Knowledge-Aware Applications. The methods used in the two works are also similar, with
Knowledge Graph Representation Learning typically involving graph embedding, graph convo-
lutional networks, and graph neural networks, Knowledge Acquisition and Completion typically
involving rule-based approaches, ontology-based approaches, and machine learning-based ap-
proaches, Temporal Knowledge Graphs typically involving temporal graph embedding, temporal
graph convolutional networks, and temporal graph neural networks, and Knowledge-Aware
Applications typically involving knowledge-aware recommendation systems, knowledge-aware
question answering systems, and knowledge-aware search systems. The results and conclusions
of the two works are also similar, with Knowledge Graph Representation Learning theories,
models, and methods including graph embedding, graph convolutional networks, graph atten-
tion networks, and graph generative models, Knowledge Acquisition and Completion methods
including rule-based methods, ontology-based methods, and machine learning-based meth-
ods, Temporal Knowledge Graph methods including temporal graph embedding, temporal
graph convolutional networks, and temporal graph attention networks, and Knowledge-Aware
Applications including question answering, recommendation systems, and natural language
processing.

#1: w/

The two works have similar motivations, methods, results, and conclusions when it comes to
studying Knowledge Graph Representation Learning, Knowledge Acquisition and Completion,
Temporal Knowledge Graph, and Knowledge-Aware Applications. The main difference between
the two works is that the first work focuses on how knowledge graphs can be used to extract
relations from text and can be used for knowledge acquisition and completion, while the second
work provides an overview of the topics and suggests that they are related and can be used to
develop applications that are aware of knowledge.

#2: w/o

The motivations for studying Artificial Intelligence, Cognitive Science, Pattern Recognition,
Physics, and Psychology in the text are to gain a better understanding of how humans learn
and process information, and to develop algorithms that can learn from fewer examples than
traditional machine learning algorithms. The methods used in the text are theories, models,
and methods from Artificial Intelligence, Cognitive Science, Pattern Recognition, Physics, and
Psychology to study simple visual concepts. The results of the text suggest that future research
should focus on understanding how people learn new concepts from just one or a few examples,
and how people learn such abstract, rich, and flexible representations. The conclusion of the text
is that any theory of concept learning should address these questions and provide implications or
suggestions for future research in Artificial Intelligence, Cognitive Science, Pattern Recognition,
Physics, and Psychology.

#2: w/

The two works have similar motivations in studying Artificial Intelligence, Cognitive
Science, Pattern Recognition, Physics, and Psychology. The methods used in both works are
similar, as they both suggest combining multiple levels of representation with the flexible use of
long range context. The results of the first work suggest that deep Long Short-term Memory
RNNs are a powerful model for sequential data and can be used for tasks such as cursive
handwriting recognition and phoneme recognition. The results of the second work suggest that
Artificial Intelligence, Cognitive Science, Pattern Recognition, Physics, and Psychology have
not been able to replicate two aspects of human conceptual knowledge. The conclusions of both
works are that combining multiple levels of representation with the flexible use of long range
context can lead to improved results.
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C.4 Slices for Different Perspectives
We show some interpreted slices of two cited papers (indexed by #) from different perspectives (italicized).
These two papers are:

1 Heuristic judgment of mass ratio in two-body collisions. Perception & Psychophysics 56 (1994):
708-720.

2 Learning a theory of causality. Psychological Rreview 118.1 (2011): 110.

#1: Intuitive Physics: Current Research and Controversies

Intuitive Physics, Perception, Reasoning, and Artificial Intelligence are all studied in order to
gain a better understanding of how the world works and how to create more efficient and effective
systems. These fields are also studied in order to develop new technologies and applications
that can be used to improve the lives of people. Methods and approaches used to study Intuitive
Physics, Perception, Reasoning, and Artificial Intelligence include computational modeling,
cognitive psychology, neuroscience, and machine learning.Theories, models, and methods
proposed to study Intuitive Physics, Perception, Reasoning, and Artificial Intelligence include
Bayesian inference, probabilistic graphical models, deep learning, reinforcement learning, and
evolutionary algorithms. The results and conclusions drawn from the text related to Intuitive
Physics, Perception, Reasoning, and Artificial Intelligence are that humans have an innate ability
to understand physical concepts and use them to make decisions and solve problems. This
suggests that humans have an intuitive understanding of physics that can be used to inform
Artificial Intelligence algorithms. Additionally, the text suggests that humans are capable of
making decisions and solving problems based on their perception of the physical world, and
that this ability can be used to inform Artificial Intelligence algorithms.

#1: Mind Games: Game Engines as an Architecture for Intuitive Physics

The motivations for studying Artificial Intelligence, game development, and physics sim-
ulation are to gain a better understanding of how these technologies work, to develop new
applications and technologies, and to explore the potential of these technologies for solving
real-world problems. Artificial intelligence, game development, and physics simulation can be
studied using a variety of methods and approaches, including machine learning, deep learning,
reinforcement learning, evolutionary algorithms, and probabilistic methods. Artificial intelli-
gence, game development, and physics simulation can be studied using a variety of theories,
models, and methods. These include machine learning, deep learning, reinforcement learning,
evolutionary algorithms, game theory, and physics-based simulations. Strengths of the text for
studying Artificial Intelligence, game development, and physics simulation include its com-
prehensive coverage of the topics, its use of examples to illustrate key concepts, and its clear
explanations of complex topics. Limitations of the text include its lack of in-depth coverage of
certain topics and its lack of discussion of the latest developments in the field.

#2: Bayesian Models of Conceptual Development: Learning as Building Models of the World

The motivations in the text for studying Cognitive Development, Core Knowledge, Child as
Scientist, Bayesian Program Induction, Computational Advances, Scientific Theories, Intuitive
Theories, Biological Evolution, and Cultural Evolution are to gain a better understanding of
the principles of causal reasoning and to develop a more comprehensive account of causality.
Cognitive Development, Core Knowledge, Child as Scientist, Bayesian Program Induction,
Computational Advances, Scientific Theories, Intuitive Theories, Biological Evolution, and
Cultural Evolution are all methods and approaches used to study the blessing of abstraction.
Cognitive Development, Core Knowledge, Child as Scientist, Bayesian Program Induction,
Computational Advances, Scientific Theories, Intuitive Theories, Biological Evolution, and Cul-
tural Evolution are all theories, models, and methods proposed to study Cognitive Development,
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Core Knowledge, Child as Scientist, Bayesian Program Induction, Computational Advances,
Scientific Theories, Intuitive Theories, Biological Evolution, and Cultural Evolution.

#2: Intuitive Theories

The motivations in the text for studying Cognitive science, psychology, and philosophy are
to gain a better understanding of the principles of causal reasoning and to develop a description
of the principles by which causal reasoning proceeds. Cognitive science, psychology, and philos-
ophy are studied using methods and approaches such as logical reasoning, empirical observation,
and experimentation. Cognitive science, psychology, and philosophy are studied using theories,
models, and methods such as Bayesian networks, causal inference, and counterfactual reasoning.
The results and conclusions drawn from the text related to Cognitive science, psychology, and
philosophy are that abstract reasoning can be used to quickly learn causal theories, and that this
can be beneficial in certain situations.
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Figure A1: Input seed idea

Figure A2: Select papers
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Figure A3: Append and edit evidences

Figure A4: Append and edit slices
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Figure A5: Append and edit connections

Figure A6: Browse information of the perspective frame
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Abstract

We introduce LAVIS, an open-source deep
learning library for LAnguage-VISion research
and applications. LAVIS aims to serve as a
one-stop comprehensive library that brings re-
cent advancements in the language-vision field
accessible for researchers and practitioners, as
well as fertilizing future research and develop-
ment. It features a unified interface to easily
access state-of-the-art image-language, video-
language models and common datasets. LAVIS
supports training, evaluation and benchmarking
on a rich variety of tasks, including multimodal
classification, retrieval, captioning, visual ques-
tion answering, dialogue and pre-training. In
the meantime, the library is also highly ex-
tensible and configurable, facilitating future
development and customization. In this pa-
per, we describe design principles, key compo-
nents and functionalities of the library, and also
present benchmarking results across common
language-vision tasks.

1 Introduction

Multimodal content, in particular language-vision
data including texts, images and videos are ubiq-
uitous for real-world applications, such as con-
tent recommendation, e-commerce and entertain-
ment. There has been tremendous recent progress
in developing powerful language-vision models (Su
et al., 2020; Lu et al., 2019; Chen et al., 2020; Li
et al., 2020; Huang et al., 2021; Li et al., 2021a;
Radford et al., 2021; Zhou et al., 2020; Gan et al.,
2020; Cho et al., 2021; Zhang et al., 2021; Li et al.,
2022b; Zhu and Yang, 2020; Bain et al., 2021; Xu
et al., 2021; Lei et al., 2021; Li et al., 2022a).
However, training and evaluating these models
across tasks and datasets require domain knowl-
edge and are not always welcoming to incoming
researchers and practitioners. This is mainly due
to inconsistent interfaces across models, datasets
and task evaluations, and also the duplicating yet
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Figure 1: Overall architecture of the LAVIS library.

non-trivial efforts to prepare the required exper-
iment setup. To make accessible the emerging
language-vision intelligence and capabilities to a
wider audience, promote their practical adoptions,
and reduce repetitive efforts in future development,
we build LAVIS (short for LAnguage-VISion), an
open-source library for training, evaluating state-
of-the-art language-vision models on a rich family
of common tasks and datasets, as well as for off-
the-shelf inference on customized language-vision
data.

Figure 1 shows the overall design of LAVIS. Im-
portant features of LAVIS include (i) Unified in-
terface and modular design. Key components in
the library are organized using a unified and mod-
ular design. This allows effortless off-the-shelf
access to individual components, swift develop-
ment and easy integration of new or external com-
ponents. The modular design also eases model
inferences, such as multimodal feature extraction.
(ii) Comprehensive support of image-text, video-
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text tasks and datasets. LAVIS supports a grow-
ing list of more than ten common language-vision
tasks, across over 20 public datasets. These tasks
and datasets provide a comprehensive and unified
benchmark for evaluating language-vision models.
(iii) State-of-the-art and reproducible language-
vision models. The library enables access to over
30 pre-trained and task-specific fine-tuned model
checkpoints of 5 foundation models: ALBEF (Li
et al., 2021a), BLIP (Li et al., 2022b), BLIP2 (Li
et al., 2023b), CLIP (Radford et al., 2021) and AL-
PRO (Li et al., 2022a), as well as state-of-the-art
language-vision methods such as PnP-VQA (Tiong
et al., 2022), Img2Prompt (Guo et al., 2022). These
models achieve competitive performance across
multiple tasks, representing the up-to-date devel-
opment status of the language-vision research. We
also provide training, evaluation scripts and config-
urations to facilitate reproducible language-vision
research and adoption. (iv) Resourceful and use-
ful toolkit. In addition to the core library function-
alities, we also provide useful resources to reduce
the learning barriers for the language-vision re-
search. This includes automatic dataset download-
ing tools to help prepare the supported datasets, a
GUI dataset browser to help preview downloaded
datasets and dataset cards documenting sources,
supported tasks and leaderboards.

2 Related Work

Table 1 summarizes the comparisons between
LAVIS’ key features with those of other libraries.
Most related libraries include MMF (Singh et al.,
2020), UniLM (uni, 2020), X-modaler (Li et al.,
2021b) and TorchMultimodal (tor, 2022).

• MMF is a comprehensive multimodal frame-
work encapsulating many language-vision
models and datasets. It implements modular
interface for training and evaluation. How-
ever, it consists of mostly task-specific ar-
chitectures. Besides showing relatively in-
ferior performance, these models are usually
not easy to transfer across tasks. Among the
included foundation models (Li et al., 2019;
Chen et al., 2020; Zhang et al., 2021; Li et al.,
2021a) in MMF, few fully supports finetuning
or benchmarking on the extended list of down-
stream tasks. In contrast, considering that
pre-trained foundation models prevail across
overwhelmingly many tasks and datasets with
more principal and unified architectures, our

library focuses on pre-trained models and their
task-specific variants instead.

• UniLM was initiated for developing large
language models, and recently also aggre-
gates multiple standalone repositories of mul-
timodal models. Yet, support for multimodal
models in UniLM is limited in its current de-
velopment status. Moreover, UniLM does not
provide unified or modular interfaces to allow
easy access or reproduction.

• X-modaler supports a limited number of tasks
and datasets, which are not as comprehensive
as LAVIS. Besides, similar to MMF, models
in X-modaler are also mostly in task-specific
architectures. The few supported foundation
model, e.g. (Chen et al., 2020), achieves infe-
rior results than models in LAVIS.

• A concurrent library TorchMultimodal (tor,
2022) promotes modular development of
language-vision models. Our library supports
a wider range of tasks and datasets than Torch-
Multimodal while being more comprehensive
and resourceful.

Other open-source implementations of individual
models exist (Chen et al., 2020; Li et al., 2020; Lu
et al., 2019; Radford et al., 2021; Gan et al., 2020;
Lei et al., 2021), yet do not provide centralized
access. In summary, in contrast to previous efforts,
our library stands out by providing easier access to
stronger models on comprehensively many tasks
and datasets. With this effort, we hope to signif-
icantly reduce the cost and effort to leverage and
benchmark existing multimodal models, as well as
to develop new models.

3 Supported Tasks, Datasets and Models

Table 3 summarizes the supported tasks, datasets
and models in LAVIS. In particular, we prioritize
tasks that are standard, widely adopted for eval-
uation, and with publicly available datasets. For
image-text tasks, the library implements image-text
retrieval, image captioning, visual question answer-
ing (VQA), visual dialogue, visual entailment (VE),
natural language visual reasoning (NLVR2) and im-
age classification. For video-text tasks, LAVIS cur-
rently support video-text retrieval and video ques-
tion answering (VideoQA). There are in total over
20 public datasets supported, including MSCOCO
(Lin et al., 2014), Flickr30k (Plummer et al., 2015),
VQAv2 (Goyal et al., 2017), OK-VQA (Marino
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Table 1: Comparison of features in LAVIS and other existing language-vision libraries or codebase. Note that
language-vision models in UniLM and TorchMultimodal (alpha release) are under development, therefore, the table
only includes their supported features by the publication time of this technical report.

LAVIS (Ours) MMF UniLM X-modaler TorchMultimodal

Unified Model and Dataset Interface ✓
Modular Library Design ✓ ✓ ✓ ✓

Pre-trained Model Checkpoints ✓
Task-specific Finetuned Model Checkpoints ✓ ✓

Modalities
Image-Text ✓ ✓ ✓ ✓ ✓
Video-Text ✓ ✓ ✓

Tasks

End2end Pre-training ✓ ✓ ✓
Multimodal Retrieval ✓ ✓ ✓

Captioning ✓ ✓ ✓
Visual Question Answering ✓ ✓ ✓
Multimodal Classification ✓ ✓

Instructed Zero-shot Generation ✓
Visual Dialogue ✓

Multimodal Feature Extraction ✓

Toolkit

Benchmarks ✓
Dataset Auto-downloading ✓ ✓

Dataset Browser ✓
GUI Demo ✓

Dataset Cards ✓

Table 2: Supported tasks, datasets and models in LAVIS.

Supported Tasks Supported Models Supported Datasets

Image-text Pre-training ALBEF, BLIP, BLIP2, InstructBLIP
COCO, Visual Genome, SBU Caption,

Conceptual Captions (3M, 12M), LAION
Image-text Retrieval ALBEF, BLIP, BLIP2, CLIP COCO, Flickr30k

Visual Question Answering ALBEF, BLIP, BLIP2, InstructBLIP VQAv2, OKVQA, A-OKVQA, GQA
Image Captioning BLIP, BLIP2, InstructBLIP COCO Caption, NoCaps

Image Classification CLIP ImageNet
Natural Language Visual Reasoning (NLVR2) ALBEF, BLIP NLVR2

Visual Entailment ALBEF SNLI-VE
Visual Dialogue BLIP, InstructBLIP VisDial

Video-text Retrieval ALPRO, BLIP MSRVTT, DiDeMo
Video Question Answering ALPRO, BLIP, InstructBLIP MSRVTT-QA, MSVD-QA

Video Dialogue BLIP AVSD

et al., 2019), A-OK-VQA (Shevchenko et al.,
2021), GQA (Hudson and Manning, 2019), Visual
Genome (Krishna et al., 2017), ImageNet (Deng
et al., 2009), NoCaps (Agrawal et al., 2019), Con-
ceptual Captions (Sharma et al., 2018; Changpinyo
et al., 2021), SBU-caption (Ordonez et al., 2011),
LAION (Schuhmann et al., 2021), NLVR2 (Suhr
et al., 2019), SNLI-VE (Bowman et al., 2015),
VisDial (Das et al., 2017), AVSD (Alamri et al.,
2019), MSRVTT (Xu et al., 2016), MSVD (Xu
et al., 2017), DiDeMo (Anne Hendricks et al.,
2017) and their task-specific variants. LAVIS cur-
rently supports 6 foundation models, i.e. AL-
BEF (Li et al., 2021a), BLIP (Li et al., 2022b),
BLIP2 (Li et al., 2023b), CLIP (Radford et al.,

2021), InstructBLIP (Dai et al., 2023) and AL-
PRO (Li et al., 2022a). In addition, the library also
features language-vision methods including PnP-
VQA (Tiong et al., 2022) and Img2prompt (Guo
et al., 2022), and text-to-image generation model
BLIP-Diffusion (Li et al., 2023a). These models
and methods show strong performance on the afore-
mentioned tasks and datasets, representing the up-
to-date development status of the language-vision
research field. Detailed description can be found
in A.1

4 Library Design

This section delineates the design of LAVIS as
shown in Figure 1. Our key design principle is to
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provide a simple and unified library to easily (i)
train and evaluate the model; (ii) access supported
models and datasets; (iii) extend with new models,
tasks and datasets.

4.1 Description on each library component
Key components in LAVIS include:

• Runners – lavis.runners module manages
the overall training and evaluation lifecycle.
It is also responsible for creating required
components lazily as per demand, such as
optimizers, learning rate schedulers and dat-
aloaders. Currently, RunnerBase implements
epoch-based training and RunnerIters im-
plements iteration-based training.

• Tasks – lavis.tasks module implements
concrete training and evaluation logic per task.
This includes pre-training and finetuning tasks
as listed in Table 3. The rationale to have an
abstraction of task is to accommodate task-
specific training, inference and evaluation.
For example, evaluating a retrieval model is
different from a classification model.

• Datasets – lavis.datasets module
helps create datasets. Specifically,
datasets.builders module loads dataset
configurations, downloads annotations and
builds the dataset;

– lavis.datasets.datasets module de-
fines the supported datasets, each is a
PyTorch dataset instance.

– We also provide automatic
dataset downloading tools in
datasets/download_scripts to
help prepare common public datasets.

• Models – lavis.models module holds defi-
nitions for the supported models and shared
model layers.

• Processors –lavis.processors module
handles preprocessing of multimodal input.
A processor transforms input images, videos
and texts into the desired form that models
can consume.

• Common tools and utilities –
lavis.commons module contains shared
classes and methods used by multiple other
modules. For example, configs module

contains classes to store and manipulate
configuration files used by LAVIS. In
particular, we use a hierarchical configuration
design, to allow highly customizable training
and evaluation. The registry module
serves as a centralized place to manage
modules that share the same functionalities.
It allows building datasets, models, tasks, and
learning rate schedulers during runtime, by
specifying their names in the configuration;
optims contains definitions of learning rate
schedulers; utils contains miscellaneous
utilities, mostly IO-related helper functions;

4.2 Example library usage
The design of the library enables easy access to
existing models and future development. In this
section, we include a few examples to demonstrate
some common use cases.

Unified interface for data and model loading
LAVIS provides unified interface load_dataset
and load_model to access supported datasets and
models. This is helpful for off-the-shelf use of
datasets and model inference etc. In the first ex-
ample, we show how to load a dataset using the
library.

1 from lavis.datasets.builders import
load_dataset

2 # load a specific dataset
3 coco_dataset = load_dataset("

coco_caption")
4 # dataset is organized by split names.
5 print(coco_dataset.keys())
6 # dict_keys(['train ', 'val ', 'test '])
7 # total number of samples in the

training split.
8 print(len(coco_dataset["train"]))
9 # 566747

10 # peek a random sample
11 print(coco_dataset["train"][0])
12 # {'image ': <PIL.Image.Image image mode=

RGB size =640x480 >,
13 # 'text_input ': 'A woman wearing a net

on her head cutting a cake. ',
14 # 'image_id ': 0}

Models and their related preprocessors can also
be loaded via a unified interface, which facilitates
effortless analysis and inference on custom data.
In the following, we show an example that uses a
BLIP captioning model to generate image captions.

1 from lavis.models import
load_model_and_preprocess

2 # load model and preprocessors
3 model , vis_procs , _ =

load_model_and_preprocess(
4 name="blip_caption", model_type="

base_coco")
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5 # raw_image is a PIL Image instance
6 raw_image = coco_dataset["test"][0]["

image"]
7 # preprocess a raw input image
8 image = vis_procs["eval"]( raw_image).

unsqueeze (0)
9 # generate caption

10 caption = model.generate ({"image": image
})

11 # ['a man riding a motorcycle down a
dirt road ']

Unified interface for multimodal feature
extraction
LAVIS supports a unified interface to extract mul-
timodal features. The features are useful espe-
cially for offline applications where end-to-end
finetuning is not affordable. By changing name
and model_type, users can choose to use different
model architecture and pre-trained weights.

1 # load feature extraction models and
processors

2 model , vis_procs , txt_procs =
load_model_and_preprocess(

3 name="blip_feature_extractor",
4 model_type="base"
5 )
6 # a random instance from coco dataset
7 raw_image = coco_dataset["test"][0]["

image"]
8 text = coco_dataset["test"][0]["

text_input"]
9 # process the input

10 image = vis_procs["eval"]( raw_image).
unsqueeze (0)

11 text_input = txt_procs["eval"](text)
12 sample = {"image": image ,
13 "text_input": [text_input ]}
14

15 # extract multimodal features
16 feature = model.extract_features(sample)

5 Benchmarks and Library Toolkit

In this section, we benchmark model performance
across tasks and datasets in LAVIS. Then we take
our web demo interface to show a few case studies
on multimodal content understanding. We also
present a GUI dataset browser that helps to preview
supported datasets.

5.1 Main results

The purpose of the benchmark is two-fold. First,
we use the benchmark to validate that our re-
implementation faithfully replicates official mod-
els. Second, the benchmark also serves as a ref-
erence for further development. In Table 5-4, we
organize benchmark results by models and com-
pare our replication results with those reported of-

Table 3: Comparison between official and replicated
performance using BLIP. TR denotes text retrieval;
IR denotes image retrieval. Results are produced by
BLIPCapFilt-L model. NoCaps results are reported on the
entire validation set. Retrieval and captioning results
are reported on the test sets; B@4 denotes BLEU-4.

Tasks Datasets Impl. Results

Retrieval R1 R5 R10

TR COCO
82.4 95.4 97.9
82.0 95.8 98.1

IR COCO
65.1 86.3 91.8
64.5 86.0 91.7

TR Flickr30k
97.2 99.9 100.0
96.9 99.9 100.0

IR Flickr30k
87.5 97.7 98.9
87.5 97.6 98.9

VQA
dev std

VQAv2
78.25 78.32
78.23 78.29

Image
Captioning

B@4 CIDEr SPICE

COCO
39.7 133.3 -
39.7 133.5 23.7

NoCaps
- 109.6 14.7

31.9 109.1 14.7

Multimodal
Classification

val test

NLVR2
82.15 82.24
82.48 83.25

Table 4: Comparison between official and replicated
performance using CLIP-ViT-L/336. Note the relative
difference is possibly due to the versioning of the model
weights.

Tasks Datasets Impl. Results

Retrieval R1 R5 R10

TR COCO
58.4 81.5 88.1
57.2 80.5 87.8

IR COCO
37.8 62.4 72.2
36.5 60.8 71.0

TR Flickr30k
88.0 98.7 99.4
86.5 98.0 99.1

IR Flickr30k
68.7 90.6 95.2
67.0 88.9 93.3

Zero-shot Image
Classification

val

ImageNet
76.2
76.5

ficially. Experiments are conducted on NVIDIA
A100 GPUs.

For ALBEF, BLIP, BLIP2 and ALPRO, we re-
implement their models in LAVIS based on the offi-
cial repositories and report finetuning results using
their official pre-trained weights. For CLIP models,
we integrate a third-party implementation (Ilharco
et al., 2021) and report CLIP-ViT-L/336 zero-shot
inference results using the official weights (Rad-
ford et al., 2021) (Table 4). As can be seen in the
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Figure 2: Screenshots of the GUI web demo, showing various applications including image captioning, zeros-shot
image classification, text localization and visual question answering.

Figure 3: The developed dataset browser helps to
quickly gain understanding of multimodal datasets.

tables, our library produce consistent results as re-
ported officially. More benchmarking results with
BLIP, ALPRO models can be found in A.2.

5.2 Library resources and toolkit

In addition to the components aforementioned,
LAVIS also provides useful toolkit and resources
to further ease development. This includes pre-
trained and finetuned model checkpoints, auto-
matic dataset downloading tools, a web demo and
a dataset browser.

Pre-trained and finetuned model checkpoints.
We include pre-trained and finetuned model check-
points in the library. This promotes easy replica-
tion of our experiment results and to repurpose
pre-trained models for other applications. Model
checkpoints are downloaded automatically upon
loading models.

Web demo. As shown in Figure 2, we develop
a GUI-based web demo, which aims to provide
a user-friendly interface to explore various multi-
modal capabilities. Currently the demo supports
the following functionalities: (i) image captioning:
produces a caption in natural language to describe
an input image; (ii) visual question answering: an-
swer natural language questions regarding the input
image; (iii) multimodal search: search images in
a gallery given a text query; (iv) text visualization:

given an input image and a text caption, produces
GradCam (Selvaraju et al., 2017) for each text to-
ken on the image; (v) zero-shot multimocal classi-
fication: classify an input images into a set of input
labels in text. (vi) Thanks to the modular design of
LAVIS, one can easily extend the demo with new
functionalities, such as text-to-image generation,
as shown in the Figure 2.

Automatic dataset downloading and browsing.
Preparing language-vision datasets for pre-training
and fine-tuning incurs much duplicating effort. To
this end, LAVIS provides tools to automatically
download and organize the public datasets, so that
users can get access to the common datasets easier
and quicker. In addition, we develop a GUI dataset
browser, as shown in Figure 3, that helps users to
rapidly gain intuitions about the data they use.

6 Conclusion and Future Work

We present LAVIS, an open-source deep learning
library for language-vision research and applica-
tions. The library is designed to provide researchers
and practitioners with easier and comprehensive
access to state-of-the-art multimodal capabilities,
The library also features a unified interface and
extensible design to promote future development.
Besides, the library also features extensive access
to pre-trained weights and useful resources to re-
duce duplicating replication efforts. With these
features, we expect LAVIS to serve as a one-stop
library in multimodal AI for a wider audience.

We continue to actively develop and improve
LAVIS. In future releases, our priorities are to
include more language-vision models, tasks and
datasets to the library. We also plan to add more
parallelism support for scalable training and infer-
ence. While we will maintain LAVIS in the long
term, we invite contributions from the open-source
community to join this evolving effort.
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Broader Impact and Responsible Use

LAVIS can provide useful capabilities for many
real-world multimodal applications. It features
easy, unified and centralized access to powerful
language-vision models, facilitating effective mul-
timodal analysis and reproducible research and de-
velopment. We encourage researchers, data sci-
entists, and ML practitioners to adopt LAVIS in
real-world applications for positive social impacts,
e.g. efficient and environment-friendly large-scale
multimodal analysis.

However, LAVIS may also be misused. We
encourage users to read detailed discussion and
guidelines for building responsible AI, e.g. (Baxter,
2022). In particular, LAVIS should not be used
to develop multimodal models that may expose
unethical capabilities.

It is also important to note that that models in
LAVIS provide no guarantees on their multimodal
abilities; incorrect or biased predictions with out-
of-date information may be observed. In particu-
lar, the datasets and pretrained models utilized in
LAVIS contain socioeconomic biases which may
result in misclassification and other unwanted be-
haviors such as offensive or inappropriate speech.
We strongly recommend that users review the pre-
trained models and overall system in LAVIS before
practical adoption. We plan to improve the library
by investigating and mitigating these potential bi-
ases and inappropriate behaviors in the future.
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A Appendix

A.1 Details of the supported models
• ALBEF is an image-text model. It employs

a ViT (Dosovitskiy et al., 2021) as the image
encoder, early BERT (Devlin et al., 2019) lay-
ers as the text encoder, and re-purposes late
BERT layers as the multimodal encoder by
adding cross-attentions. It proposes the novel
image-text contrastive (ITC) loss to align uni-
modal features before fusing them using the
multimodal encoder. It is also one of the first
few models requiring no region information
while demonstrating strong multimodal under-
standing capability.

• BLIP primarily tackles image-text tasks,
while also showing strong zero-shot transfer
capabilities to video-text tasks. It employs
a ViT as the image encoder and a BERT as
the text encoder. To facilitate multimodal un-
derstanding and generation, BLIP proposes
mixture of encoder-decoder (MED), which re-
purposes BERT into multimodal encoder and
decoder with careful weight sharing. More-
over, BLIP proposes dataset bootstrapping to
improve the quality of texts in the pre-training
corpus by removing noisy ones and generating
new diverse ones. In addition to the improved
understanding capability compared to ALBEF,
BLIP highlights its strong text generation abil-
ity, producing accurate and descriptive image
captions. When adapted to video-text tasks, it
operates on sampled frames while concatenat-
ing their features to represent the video.

• BLIP2 represents a generic and efficient
language-vision pre-training strategy that
leverages available frozen image encoders and
large language models (LLMs). The model
introduces a two-staged training strategy to
bridge the modality gap with a lightweight
module, called Querying Transformer (Q-
Former). In addition to the strong perfor-
mance on existing tasks, including VQA, mul-
timodal retrieval, captioning, BLIP-2 also
unlocks the novel capabilities of zero-shot
image-to-text generation following natural
language instructions.

• CLIP is a family of powerful image-text mod-
els. Different from ALBEF and BLIP, CLIP
models adopt two unimodal encoders to obtain

image and text representations. CLIP maxi-
mizes the similarity between positive image-
text pairs, and was trained on 400M image-
text pairs, rendering strong and robust uni-
modal representations. CLIP variants employ
different visual backbones, including ResNet-
50 (He et al., 2016), ViT-B/16, ViT-B/32, ViT-
L/14, ViT-L/14-336. We integrate a third-
party implementation of CLIP (Ilharco et al.,
2021) into LAVIS while including the official
pre-trained weights.

• ALPRO is a video-text model, tackling video-
text retrieval and video question answering
tasks. It uses TimeSformer (Bertasius et al.,
2021) to extract video features, and BERT to
extract text features. Similar to ALBEF, AL-
PRO uses contrastive loss to align unimodal
features, yet it opts to use self-attention to
model multimodal interaction. This archi-
tecture choice enables an additional visual-
grounded pre-training task, i.e. prompt entity
modeling (PEM) to align fine-grained video-
text information. ALPRO is strong in extract-
ing regional video features and remains com-
petitive for video understanding tasks across
various datasets.

A.2 Additional benchmarking results

In Table 5 and 6, we show benchmarking results
with BLIP and ALPRO reimplmentations in LAVIS.
As shown in the tables, the results are consistent
with those in the original implementation.

In Table 7, we present results by adapting mod-
els in LAVIS to new tasks and datasets, on which
the models were not previously reported on. In
this way, we show that our library helps to easily
adapt to new tasks and datasets, while achieving
competitive performance.

Knowledge-based VQA (KVQA). The task of
KVQA aims to measure the commonsense knowl-
edge learnt by language-vision models, where mod-
els are asked to answer questions involving ex-
ternal knowledge. To this end, state-of-the-art
models (Gui et al., 2021; Kamath et al., 2022)
resort to external knowledge base(Vrandečić and
Krötzsch, 2014) or large language models(Brown
et al., 2020). In our experiments, we show that
language-vision pre-trained models finetuned on
VQAv2(Goyal et al., 2017) show strong transfer re-
sults to KVQA datasets. With additional finetuning
on KVQA datasets, further improvements are ob-
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Table 5: Comparison between official and replicated
performance using BLIP. TR denotes text retrieval;
IR denotes image retrieval. Results are produced by
BLIPCapFilt-L model. NoCaps results are reported on the
entire validation set. Retrieval and captioning results
are reported on the test sets; B@4 denotes BLEU-4.

Tasks Datasets Impl. Results

Retrieval R1 R5 R10

TR COCO
82.4 95.4 97.9
82.0 95.8 98.1

IR COCO
65.1 86.3 91.8
64.5 86.0 91.7

TR Flickr30k
97.2 99.9 100.0
96.9 99.9 100.0

IR Flickr30k
87.5 97.7 98.9
87.5 97.6 98.9

VQA
dev std

VQAv2
78.25 78.32
78.23 78.29

Image
Captioning

B@4 CIDEr SPICE

COCO
39.7 133.3 -
39.7 133.5 23.7

NoCaps
- 109.6 14.7

31.9 109.1 14.7

Multimodal
Classification

val test

NLVR2
82.15 82.24
82.48 83.25

served on both OK-VQA and AOK-VQA datasets.
As a result, our best model BLIP surpasses previous
state-of-the-art by a clear margin.

Video Dialogue. The task of video-grounded
dialogues requires models to generate a natural
response given a dialogue context and a ground-
ing video (Alamri et al., 2019). Existing models
have exploited new architectural designs (Le et al.,
2019), additional learning tasks (Le et al., 2022,
2021), and pretraining (Le and Hoi, 2020; Li et al.,
2021c) to improve the model abilities to understand
multimodal context and generate natural language.
In our experiments, we show that our library can be
easily integrated with any vision-language models
(such as VGD-GPT (Le and Hoi, 2020)) to adapt to
this dialogue task. The results in Table 7 show that
our model implementation with LAVIS can lead
to impressive performance, comparable to current
state-of-the-art approaches.

A.3 Supplementary video and online demo:

The supplementary video can be found:https://
youtu.be/0CuRowHu7TA. In the following, we pro-
vide additional benchmarking results using models
in LAVIS.

Alternatively, the video can be downloaded
from: https://drive.google.com/file/d/

Table 6: Comparison between official and replicated
task performance using ALPRO. TR denotes video-to-
text retrieval; VR denotes text-to-video retrieval.

Tasks Datasets Impl. Results

Retrieval R1 R5 R10

TR MSRVTT
32.0 60.7 70.8
33.2 60.5 71.7

VR MSRVTT
33.9 60.7 73.2
33.8 61.4 72.7

TR DiDeMo
37.9 67.1 77.9
38.8 66.4 76.8

VR DiDeMo
35.9 67.5 78.8
36.6 67.5 77.9

VideoQA

test

MSRVTT
42.1
42.1

MSVD
45.9
46.0

Table 7: Experiment results on KVQA compared with
best existing methods. Due to the submission number
limits, only BLIP AOKVQA result on the test split is
reported.

Tasks Datasets Models Results

KVQA

test

OKVQA
KAT (Single)(Gui et al., 2021) 53.1

KAT (Ensemble)(Gui et al., 2021) 54.4
ALBEF 54.7
BLIP 55.4

val test

AOKVQA
GPV-2(Kamath et al., 2022) 48.6 40.7

ALBEF 54.5 -
BLIP (VQAv2) 53.4 -

BLIP 56.2 50.1

Video
Dialogue AVSD

B@4 CIDEr
MTN (Le et al., 2019) 0.410 1.129
PDC (Le et al., 2021) 0.429 1.194
RLM (Li et al., 2021c) 0.459 1.308

VGD-GPT 0.465 1.315

1cFTEgL53WI-oSFbWR_6k6eg2iqAi9bwe/view?
usp=sharing

A public demo of LAVIS can be found at the tem-
porary address: http://34.123.225.190:8080/
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Figure 1: An overview of Finspector. Users can launch Finspector in a Python notebook (e.g., Jupyter). It consists
of four different sections to help users explore biases of foundation models applied to the given text: (A) users can
change how (B) the distribution view of mean log probabilities are shown by selecting categories for highlights and
split; (C) users can also read the text selected from actions performed in other views; (D) users can visually explore
similarities among sentences using any embedding vector of their choice.

Abstract
Pre-trained transformer-based language mod-
els are becoming increasingly popular due
to their exceptional performance on various
benchmarks. However, concerns persist re-
garding the presence of hidden biases within
these models, which can lead to discrimina-
tory outcomes and reinforce harmful stereo-
types. To address this issue, we propose Fin-
spector, a human-centered visual inspection
tool designed to detect biases in different cate-
gories through log-likelihood scores generated
by language models. The goal of the tool is to
enable researchers to easily identify potential
biases using visual analytics, ultimately con-
tributing to a fairer and more just deployment
of these models in both academic and indus-

trial settings. Finspector is available at https:
//github.com/IBM/finspector.

1 Introduction

Recently, pre-trained large language models
(LLMs), including ‘foundation models,’ that are
trained on large amounts of data have shown strik-
ing performances in a variety of natural language
processing (NLP) tasks such as language transla-
tion, text classification, and summarization. Such
models can also be fine-tuned and adapted to ana-
lyze and understand text generated in specific fields,
such as law and medicine. Despite their usefulness,
there is a growing concern that the foundation mod-
els inherently reflect human biases, which might
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have originated from their large training corpora
(Shah et al., 2020; Liang et al., 2021; Weidinger
et al., 2021; Garrido-Muñoz et al., 2021).

These social biases include stereotyping and neg-
ative generalizations of different social groups and
communities, which could have been present in
their training corpora (Liang et al., 2021; Garrido-
Muñoz et al., 2021). A cognitive bias, stereotyping,
is defined as the assumption of some characteris-
tics are applied to communities on the basis of their
nationality, ethnicity, gender, religion, etc (Schnei-
der, 2005). Relatedly, Fairness (“zero-bias"), in the
context of NLP and machine learning is defined as
being not discriminatory according to such charac-
teristics (Garrido-Muñoz et al., 2021). Given this
context, there is a significant demand for method-
ologies and tools aimed at inspecting, detecting,
and mitigating bias within AI models, particularly
large-scale language models (Sun et al., 2019).

A previous work (Kwon and Mihindukula-
sooriya, 2022) demonstrated that computing the
pseudo-log-likelihood scores of paraphrased sen-
tences using different foundation models can be
used to test the consistency and robustness of the
models, which can lead to a better understanding
of the fairness of LLMs. Pseudo-log-likelihood
Masked Language Models (MLM) scoring or log
probability of auto-regressive language models can
be used to measure how likely a language model is
to produce a given sentence (Salazar et al., 2020). It
can also be used to measure the likelihood of multi-
ple variants of a sentence, such as stereotypical and
non-stereotypical ones, in order to determine which
one the model prefers or predicts as more likely.
Consequently, this measure can be used to show
whether a model consistently prefers stereotypical
sentences over non-stereotypical ones.

We believe that experts in respective fields need
to inspect the fairness and biases through a sys-
tematic, human-in-the-loop approach, including
the lens of log-likelihood scores, before adapting
them for any downstream tasks. Such human-
centered data analysis approaches can help users to
assess foundation models’ inner workings. Further-
more, interactive data visualization techniques can
help users to form and test their hypotheses about
underlying models and effectively communicate
the results of these models to a wider audience,
enabling better collaboration and understanding
among stakeholders. Many techniques were devel-
oped and applied to inspect the fairness of different

machine learning models, as discussed in Section 2.
In this work, we propose a visual analytics ap-

plication called Finspector, a short name for foun-
dation model inspector. Finspector is designed
to help users to test the robustness of foundation
models and identify biases of various foundation
models using interactive visualizations. The sys-
tem is built as a Python package so that it can be
used in the Jupyter environment, which is familiar
to our target users–data scientists. The tool con-
sists of multiple, coordinated visualizations, each
of which supports a variety of analytic tasks. With
foundation models available from repositories such
as Hugging Face, users can use Finspector to gener-
ate and visually compare the log probability scores
on user-provided sentences. In this paper, we intro-
duce the design of Finspector and present a case
study of how the tool can be used to inspect the
fairness of large language models.

2 Background

Bias in NLP including large language models has
been studied extensively. Garrido-Muñoz et al.
provide a survey (Garrido-Muñoz et al., 2021) of
existing work on the topic. Benchmarks for de-
tecting bias in models is a key element of this re-
search; StereoSet (Nadeem et al., 2021), CrowS-
Pairs (Nangia et al., 2020), WinoGender (Rudinger
et al., 2018), WinoBias (Zhao et al., 2018) are ex-
amples of such benchmarks.

Tenny et al. presented Language Interpretability
Tool (LIT) (Tenney et al., 2020) as a visualization
tool for understanding NLP models which includes
analyzing gender bias among others. There are
several other visualization tools that are focused
on analyzing different aspects of transformer-based
LLMs such as attention or hidden states such as
T3-Vis (Li et al., 2021), InterperT (Lal et al., 2021),
exBERT (Hoover et al., 2020), AllenNLP Inter-
pret (Wallace et al., 2019), SANVis (Park et al.,
2019), and BertViz (Vig, 2019). Similarly, BiaS-
cope (Rissaki et al., 2022), is a visualization tool for
unfairness diagnosis in graph embeddings by com-
paring models. The visualizations in these tools
are mainly focused on understanding how the atten-
tion mechanism works and the impact of different
tokens in the input to the model output.

There are several other visualization tools that
help users investigate the fairness of machine learn-
ing models, primarily focusing on aspects such as
prediction discrepancy among different subgroups,
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group fairness, individual fairness, and counterfac-
tual fairness. These include tools such as What-
If Tool (Wexler et al., 2019), FairVis (Cabrera
et al., 2019), Fairsight (Ahn and Lin, 2019), RM-
Explorer (Kwon et al., 2022a), DASH (Kwon et al.,
2022b), ConceptExplainer (Huang et al., 2023) and
Silva (Yan et al., 2020). Despite their usefulness,
they are mainly designed to explore the fairness of
predictive models (e.g., image classification), not
for pre-trained foundation models.

In contrast to these tools above, Finspector aims
to inspect the fairness and bias of foundational mod-
els by exploring the log-likelihood scores generated
by the models. Such scores and their difference are
presented with interactive visualizations.

3 Design of Finspector

In this section, we describe the design of Finspector.
There are three main views of Finspector, 1) Distri-
bution of Log Likelihoods, 2) Table of Sentences,
and 3) Sentence Embeddings, and a customiza-
tion panel on top to set highlights or split distri-
butions by selected categorical variables. Read-
ers can access the code of Finspector at https:
//github.com/IBM/finspector.

The system requires users to provide three items:
1) text data with paired samples and bias category
labels; 2) pre-trained foundation models; 3) 2d
sentence embeddings. By default, the system ex-
pects text data with labels indicating paired samples
(e.g., sample id) and bias categories, similar to the
CrowS-Pairs dataset (Nangia et al., 2020). Without
bias categories provided, users can still use Fin-
spector but without options to color-code or slice-
and-dice the samples by the variables. Any other
metadata associated with each sentence can be
viewed in the table view. In the current implementa-
tion, the system accepts any models trained in self-
supervised, masked language modeling approaches
using Pytorch. For instance, users can download
models like BERT, ALBERT, and RoBERTa from
Hugging Face and use them to run Finspector.
Users can optionally provide the 2d representation
vectors of sentences. Users can freely choose any
dimensionality reduction method to derive mean-
ingful representations that can be visualized for
explorative analysis.

3.1 Distribution of Log-Likelihoods

This view shows the distribution of aggregated con-
ditional pseudo-log-likelihood scores of the set of

input sentences as shown in Figure 1 (B). Follow-
ing the same approach as previous studies (Kwon
and Mihindukulasooriya, 2022; Nangia et al., 2020;
Salazar et al., 2020), for each sentence, we calcu-
lated the score by iteratively masking one token at
a time and taking their mean value.

As Figure 1 (B) shows, the view initially shows
parallel horizontal axes of foundation models and
provides a density chart over each axis, which rep-
resents the distribution of log-likelihoods computed
by the corresponding model on given text data. It
also shows a median and interquartile plot below
each density plot. Since log-likelihood scores of
the same sentences were computed by different
models, the view can turn into parallel coordinates
to show the differences in scores. Once users spec-
ify a range of log-likelihood scores by setting a
filter on an axis of a foundation model, the view
shows only the sentences that satisfy the condition,
as Figure 2 (B) shows. Furthermore, it shows lines
across axes, where each line representing a sen-
tence is displayed as a series of connected points
along the axes, representing foundation models.

Users can use the view to explore the distribu-
tions of subgroups defined by users. First, users
can set multiple filters along the corresponding axes
to only show sentences that meet the user-defined
requirements. Figure 2 (B) shows that a few sen-
tences that fall within the narrow score ranges set
on the two axes of BERT and RoBERTa exhibit a
significantly wider distribution on the other axis,
ALBERT. Second, users can summarize the distri-
bution of sentences by categories. Once users select
a bias category in the predefine checkboxes of bias
categories, as Figure 2 (A) shows, the view shows
parallel bands (Kwon et al., 2018) that summarize
parallel coordinates using median and interquartile
plots along each axis for selected points. Finally,
users can also type a new sentence in the text box,
thereby creating a new data point for test data, the
system feeds it to given foundation models, and
then the view shows the distribution of the pseudo-
log-likelihood scores of the new sentence as a red
polyline across the axes, as Figure 2 (D) shows.

3.2 Table of Sentences

The table view shows the details of the input sen-
tence data as Figure 1 (C) shows. Users can de-
cide which columns to show by including the field
names as a list when calling the Finspector function.
As mentioned earlier, the view is tightly connected
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Figure 2: Description of how Finspector can be used to explore models: (A) the highlight feature highlights
corresponding sentences in colors corresponding to bias categories, and the split feature shows box plots of
stereotype and non-stereotype sentences; (B) users can set filters on foundation model axes on the distribution view;
(C) users select sentences in the sentence embedding view with a lasso selection; (D) users type their own sentences
to see their log probabilities inferred by the given foundation models.

to other views via interactivity. For one, when
users hover their mouse cursor over a single row,
the corresponding line appears in the distribution of
log-likelihoods and the sentence embedding view.
In a reverse manner, when filters are set or removed
in the distribution view or the sentence embedding
view, the table view also shows only the sentences
that satisfy the conditions. When users select a
category in the panel, the table highlights the corre-
sponding rows in a respective color as Figure 2 (A)
shows. Using the table view, users can read the
sentence selected from other views and check the
log probability scores of it.

3.3 Sentence Embeddings

Sentence embeddings show similarities and differ-
ences among the input sentences using a scatterplot
as shown in Figure 1 (D). Users can choose any
dimensionality reduction algorithm (e.g., t-SNE,
UMAP, PCA) and any features of sentences to gen-
erate embeddings for sentences. Once they plug in
the 2-dimensional vectors of sentences, the view
can generate a scatter plot. They can interpret the
groups of sentences in proximity based on the in-

put data and the algorithm used. Users can also
hover over individual sentences which makes the
two other views highlight the hovered item. The
sentence embeddings view also shows selected sen-
tences when filters are set in the distribution view
or a row was hovered in the table view. Users can
also lasso-select multiple sentences in proximity
so that they are filtered and highlighted in the dis-
tribution view and the table view, respectively, as
Figure 2 (C) shows.

4 Use cases: Inspecting Foundation
Models using the paraphrased
CrowS-Pairs Dataset

In this section, we demonstrate how Finspector can
be used to discover informative insights about foun-
dation models and datasets. Note that the insights
reported here are preliminary hypotheses so should
not be taken as proven facts. This section aims
to describe how interactive visualizations of Fin-
spector help users to explore the fairness of large
language models.

In this use case, we used the CrowS-Pairs dataset
for the analysis (Nangia et al., 2020). To increase
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Figure 3: The use case shows insights that can be discovered using Finspector: (A) when a filter is applied to the
range of -5 to -4 on ALBERT, the parallel coordinates show differences in the distribution of log probabilities; (B)
the box plot shows the differences in score between stereotype and non-stereotype sentences by models; (C) & (D)
with small changes to the gender, the user-generated sentence results in different log probabilities.

the sample size, we generated 10 paraphrased
sentences per each given sentence using Pega-
sus (Zhang et al., 2019) and ensured that there are
no duplicates. Then, we generated the pseudo-log-
likelihood measure using each of the three foun-
dation models, BERT, ALBERT, and RoBERTa,
per sentence. Then, for the sentence embedding
view, we used a dimensionality reduction algo-
rithm, t-SNE (Van der Maaten and Hinton, 2008),
to project the log-likelihood score vector into two
dimensions. As Figure 1 shows, we plugged in
the model checkpoints downloaded from Hugging
Face, the paraphrased CrowS-Pairs dataset, and the
2d representation vectors generated from t-SNE to
launch Finspector.

Initially, the three Foundation models show sim-
ilar distributions of log probabilities, but the score
of ALBERT is slightly lower than those of the two
other models as shown in Figure 1 (B). In particu-
lar, a small bump between -4 and -5 indicates there
are a considerable amount of sentences that deem
unlikely from ALBERT. Overall, the sentence em-
bedding view shows that there are several groups

that share the distribution across three models.
We set a filter by drawing a rectangular box be-

tween the values of -5 and -4 on ALBERT. Fig-
ure 3 (A) shows parallel coordinates of sentences
satisfying the requirement. Notably, the sentences
that had lower than -4 in log probabilities on AL-
BERT tended to have higher values around -3.5
and -2.5 on BERT or RoBERTa. The sentences em-
bedding view shows that the selected sentences are
clustered at the bottom part. We decided to select
the bottom region by hovering sentences near the
cluster and found sentences that show similar pat-
terns with wider differences in scores. In the case
of one sentence, “I know the whites are correct, I
said warmly.”, scores were -3.3, -3.4, and -.6.6, for
BERT, RoBERTa, and ALBERT, respectively.

We decided to explore differences in the log
probabilities among bias categories using the split
and highlight features of Finspector. The distri-
bution view shows differences in the score of AL-
BERT between a pair of base and stereotype sen-
tences of the disability category, as Figure 3 (B)
shows. The stereotypical sentences appear more
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likely than the base sentences. For instance, the
log probability of “A person with mental illness
laughed at a bird” by ALBERT is -2.4. On the other
hand, “A person laughed at a bird” by ALBERT
is -3.8. However, the other models did not show
similar trends: -2.7 (BERT), -2.3 (RoBERTa) for
the stereotypical sentence, and -2.4 (BERT), -2.2
(RoBERTa) for the base sentence. We switched the
gear to see general differences among categories.
The parallel band view shows that the log proba-
bilities of sentences in the age category tend to be
higher than those in the race-color category.

Lastly, we decided to generate some customized
sentences. We wrote a gender-stereotype sentence,
“Housekeeping and childcare are women’s respon-
sibility.”, and its counterpart, “Housekeeping and
childcare are men’s responsibility.” The log proba-
bility score by RoBERTa shows some differences
as the score of the stereotypical sentence is -1.5,
which is higher than that of the counterpart, -2.0.
We also wrote another gender-stereotype sentence,
“Jane is the most probable candidate for the CEO
position because of her leadership, credibility, and
humility.”, and compared it to its counterpart, “John
is the most probable candidate for the CEO position
because of his leadership, credibility, and humility.”
As Figure 3 (C) & (D) show, the log probabilities
of the sentence including the gender stereotype
appear to show higher log probabilities than the
counterpart, across all three foundation models.

5 Discussion

In this paper, we introduce an interactive visualiza-
tion system called Finspector, which helps users to
explore pre-trained large language models by eval-
uating the pseudo-log-likelihood measures com-
puted on text data. Adopting the workflow from
our previous approach (Kwon and Mihindukula-
sooriya, 2022; Nangia et al., 2020), the system al-
lows users to inspect biases and fairnesses of given
models applied to sentences that manifest signs of
stereotypes. Finspector is developed for interactive
computing environments like Jupyter to help users
constantly evaluate models while improving their
effectiveness and fairness before deploying them
for practice. This paper describes the views and fea-
tures of Finspector to accomplish the goals, which
can be useful for future researchers and designers
to develop similar systems in the future.

Our work of a human-centered approach for fair-
ness inspection of LLMs opens new research av-

enues for interdisciplinary research between AI,
Visualization, and other fields. One future research
area is to build interactive visualization systems
that help users evaluate the impact of biases in foun-
dation models on various downstream tasks. Nu-
merous large language models undergo fine-tuning
or prompt-tuning processes, such as text classifi-
cation, entity recognition, and language transla-
tion. Latent fairness and bias issues in language
models can propagate through the pipeline so that
fine-tuning or prompt-tuning the foundation mod-
els may generate undesirable outcomes. Therefore,
researchers need to examine the relationship be-
tween bias and fairness in base models and the
performance outcomes of fine-tuning or prompt-
tuning these models on specific tasks. Interactive
visualizations can be developed for researchers to
conduct systematic evaluations of the associations
between bias and performance.

Another future work can investigate the robust-
ness of pseudo-log-likelihood scoring as a bias mea-
sure for foundation models adapted to various tasks.
We consistently discover some cases where foun-
dation models generate some problematic issues in
sentences that contain stereotypical characteristics
with one category (e.g., black) versus another (e.g.,
white). One key area to measure the robustness is to
identify new ways to improve the robustness of log-
likelihood scoring as a bias measure for foundation
models. It is also important to collect a benchmark
dataset containing the stereotype sentence pairs in a
systematic manner. Ultimately, such investigation
will help us develop an evaluation metric that can
be widely used before fine-tuning and deploying it
for downstream tasks.

In this work, we focused on language models
pre-trained using masked-language modeling ob-
jectives, i.e., mainly encoder-only models such as
BERT, RoBERTa, and ALBERT, which can be used
to generate conditional pseudo-log-likelihood mea-
sures. There are two other families of language
models. First, decoder-only autoregressive models,
such as GPT, are pre-trained by predicting the sub-
sequent word in a sequence based on the preceding
words or employing the next-sentence-prediction
approach (Radford et al., 2018). Second, there are
encoder-decoder or sequence-to-sequence models
such as BART (Lewis et al., 2020) or T5 (Raffel
et al., 2020). Finspector is generalizable to these
different types of architectures given that a met-
ric can be formulated to measure the likelihood
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of a given sentence in the language model. For
instance, for GPT-like language models, (Salazar
et al., 2020) use log probability score. In the fu-
ture, we plan to incorporate foundation models
from other families, including decoder-only and
encoder-decoder models, into Finspector.

To inspect such models in the current Finspector
framework, users need to develop ways to generate
a log-likelihood-equivalent measure per sentence
or we can adapt the visualization framework to fit
the next-sentence-prediction models and evaluate
their biases in different ways. As part of our future
research, we plan to investigate various visual an-
alytics approaches for inspecting the fairness and
biases in models pre-trained using various model-
ing objectives and architecture.

6 Impact Statement

Our tool is designed to help users evaluate the fair-
ness and biases of foundation models or large lan-
guage models. Such a tool can help researchers and
practitioners visually investigate biases in large lan-
guage models for further discussion and remedy.
Presentation of Finspector can facilitate discussion
of human-centered approaches to detecting and re-
solving fairness issues in various large language
models. However, readers should also note that
there is no guarantee to discover all biases or fair-
ness issues by using the tool. We hope that the
design of the tool described in the paper can inspire
future technologies that can help evaluate the bias
and fairness of foundation models.
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Abstract

The field of Question Answering (QA) has
made remarkable progress in recent years,
thanks to the advent of large pre-trained
language models, newer realistic benchmark
datasets with leaderboards, and novel algo-
rithms for key components such as retriev-
ers and readers. In this paper, we introduce
PRIMEQA: a one-stop and open-source QA
repository with an aim to democratize QA re-
search and facilitate easy replication of state-
of-the-art (SOTA) QA methods. PRIMEQA
supports core QA functionalities like retrieval
and reading comprehension as well as auxil-
iary capabilities such as question generation.
It has been designed as an end-to-end toolkit
for various use cases: building front-end ap-
plications, replicating SOTA methods on pub-
lic benchmarks, and expanding pre-existing
methods. PRIMEQA is available at: https:
//github.com/primeqa.

1 Introduction

Question Answering (QA) is a major area of in-
vestigation in Natural Language Processing (NLP),
consisting primarily of two subtasks: information
retrieval (IR) (Manning, 2008; Schütze et al., 2008)
and machine reading comprehension (MRC) (Ra-
jpurkar et al., 2016, 2018; Kwiatkowski et al.,
2019a; Chakravarti et al., 2020). IR and MRC
systems, also referred to as retrievers and read-
ers, respectively, are commonly assembled in an
end-to-end open-retrieval QA pipeline (OpenQA
henceforth), which accepts a query and a large doc-
ument collection as its input and provides an an-
swer as output (Chen et al., 2017; Lee et al., 2019;
Karpukhin et al., 2020; Santhanam et al., 2022b).
The retriever first identifies documents or passages
(i.e., contexts) that contain information relevant to
the query, from which the reader then extracts a
precise answer. Alternatively, the reader can also

∗Corresponding author: avi@us.ibm.com

be generative and leverage large language models
(LLMs) (Ouyang et al., 2022; Chung et al., 2022).

Despite rapid progress in QA research, software
to perform and replicate QA experiments have
mostly been written in silos. At the time of this
writing, there is no central repository that facil-
itates the training, analysis and augmentation of
state-of-the-art (SOTA) models for different QA
tasks at scale. In view of the above, and with
an aim to democratize QA research by providing
easy replicability, here we present PRIMEQA: an
open-source repository1 designed as an end-to-end
toolkit. It offers all the necessary tools to easily
and quickly create a custom QA application. We
provide a main repository that contains easy-to-use
scripts for retrieval, machine reading comprehen-
sion, and question generation with the ability to
perform training, inference, and performance eval-
uation. Additionally, several sibling repositories
offer features for easily connecting various retriev-
ers and readers, as well as for creating a front-end
user interface (UI). PRIMEQA has been designed
as a platform for QA development and research,
and encourages collaboration from all members
of the QA community—from beginners to experts.
PRIMEQA has a growing developer base with con-
tributions from major academic institutions.

The following is a summary of our contributions:
• We present PRIMEQA, a first-of-its-kind

repository for comprehensive QA research. It
is free to use, well-documented, easy to con-
tribute to, and license-friendly (Apache 2.0)
for both academic and commercial usage.

• PRIMEQA contains easy-to-use implementa-
tions of SOTA retrievers and readers that are
at the top of major QA leaderboards, with ca-
pabilities to perform training, inference and
performance evaluation of these models.

• PRIMEQA provides a mechanism via ac-
companying repositories to create custom

1https://github.com/primeqa
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OpenQA applications for industrial deploy-
ment, including a front-end UI.

• PRIMEQA models are built on top of Trans-
formers (Wolf et al., 2020) and are available
on the Hugging Face Model Hub.2

• PRIMEQA has readers that can leverage
SOTA LLMs such as InstructGPT (Ouyang
et al., 2022) via external APIs.

2 Related Work

One of the largest community efforts for NLP soft-
ware is Papers with Code (Robert and Thomas,
2022). Their mission is to create a free and open
resource for NLP papers, code, datasets, methods
and evaluation tables catering to the wider NLP
and Machine Learning community and not just QA.
Even though the QA section includes over 1800
papers with their code, the underlying software
components are written in various versions of both
PyTorch and TensorFlow with no central control
whatsoever and they do not communicate with each
other. These disjoint QA resources hinder replica-
bility and effective collaboration, and ultimately
lead to quick “sunsetting” of new capabilities.

Recently, Transformers (Wolf et al., 2020) has
become one of the most popular repositories among
NLP users. However, while being widely adopted
by the community, it lacks a distinct focus on QA.
Unlike PRIMEQA, it only supports one general
script for extractive QA and several stand-alone
Python scripts for retrievers. Similarly FairSeq (Ott
et al., 2019) and AllenNLP (Gardner et al., 2018)
also focus on a wide array of generic NLP tasks
and hence do not solely present a QA repository.
They do not support plug-and-play components for
users custom search applications. Several toolk-
its exist that cater to building customer-specific
search applications (NVDIA, 2022; Deepset, 2021)
or search-based virtual assistants (IBM, 2020).
However, while they have a good foundation for
software deployment, unlike PRIMEQA, they lack
the focus on replicating (and extending) the latest
SOTA in QA research on public benchmarks which
is an essential component needed to make rapid
progress in the field.

3 PRIMEQA

PRIMEQA is a comprehensive open-source re-
source for cutting-edge QA research and develop-
ment, governed by the following design principles:

2https://huggingface.co/PrimeQA

Core Models Extensions

Retriever

BM25 (Robertson and Zaragoza, 2009) Dr.DECR * (Li et al., 2022)
DPR (Karpukhin et al., 2020)
ColBERT (Santhanam et al., 2022b)

Reader

General MRC* (Alberti et al., 2019b) ReasonBERT (2021)
FiD (Izacard and Grave, 2020) OmniTab (Jiang et al., 2022a)
Boolean* (McCarley et al., 2023) MITQA* (Kumar et al., 2021)
Lists
Tapas (Herzig et al., 2020a)
Tapex (Liu et al., 2021)

Question Generation

Table QG (Chemmengath et al., 2021)
Passage QG
Table+Passage QG

Table 1: A non-exhaustive list of core PRIMEQA mod-
els for the three main supported tasks (left) and their
various extensions (right) available on our Hugging
Face model hub: https://huggingface.co/PrimeQA.
* SOTA leaderboard systems.

• Reproducible: Users can reproduce results re-
ported in publications and extend those approaches
with PRIMEQA reader or retriever components to
perform an end-to-end QA task. The PRIMEQA
components are listed in Table 1.
• Customizable: We allow users to customize and
extend SOTA models for their own applications.
This often entails fine-tuning on users custom data.
• Reusable: We aim to make it straightforward for
developers to quickly deploy pre-trained off-the-
shelf PRIMEQA models for their QA applications,
requiring minimal code change.
• Accessible: We provide easy integration with
Hugging Face Datasets and the Model Hub, allow-
ing users to quickly plug in a range of datasets and
models as shown in Table 1.

PRIMEQA in its entirety is a collection of four
different repositories: a primary research and repli-
cability3 repository and three accompanying repos-
itories4,5,6 for industrial deployment. Figure 1
shows a diagram of the PrimeQA repository. It
provides several entry points, supporting the needs
of different users, as shown at the top of the figure.
The repository is centered around three core compo-
nents: a retriever, a reader, and a question gen-
erator for data augmentation. These components
can be used as individual modules or assembled

3
https://github.com/primeqa/primeqa

4
https://github.com/primeqa/create-primeqa-app

5
https://github.com/primeqa/primeqa-orchestrator

6
https://github.com/primeqa/primeqa-ui
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Figure 1: The PRIMEQA Repository: the core components and features.

into an end-to-end QA pipeline. All components
are implemented on top of existing AI libraries.

3.1 The Core Components
Each of the three core PRIMEQA components sup-
ports different flavors of its corresponding task, as
we detail in this section.

3.1.1 Retriever: run_ir.py
Retrievers predict documents (or passages) from a
document collection that are relevant to an input
question. PRIMEQA has both sparse and SOTA
dense retrievers along with their extensions, as
shown in Table 1. We provide a single Python
script run_ir.py that can be passed arguments to
switch between different retriever algorithms.
Sparse: BM25 (Robertson and Zaragoza, 2009) is
one of the most popular sparse retrieval methods,
thanks to its simplicity, efficiency and robustness.
Our Python-based implementation of BM25 is pow-
ered by the open-source library PySerini.
Dense: Modern neural retrievers have utilized
dense question and passage representations to
achieve SOTA performance on various benchmarks,
while needing GPUs for efficiency. We currently
support ColBERT (Santhanam et al., 2022b) and
DPR (Karpukhin et al., 2020): both fine-tune pre-
trained language models to train question and pas-
sage encoders (Devlin et al., 2019; Conneau et al.,
2020). They utilize FAISS (Johnson et al., 2017)
for K-nearest neighbor clustering and compressed
index representations, respectively. They support
multilingual retrieval with the question and the doc-
uments being in the same (Lee et al., 2019; Longpre

et al., 2021) or different languages (cross-lingual)
(Asai et al., 2021).

3.1.2 Reader: run_mrc.py
Given a question and a retrieved passage—also
called the context—a reader predicts an answer
that is either extracted directly from the context
or is generated based on it. PRIMEQA supports
training and inference of both extractive and gen-
erative readers through a single Python script:
run_mrc.py. It works out-of-the-box with differ-
ent QA models extended from the Transformers
library (Wolf et al., 2020).
Extractive: PRIMEQA’s general extractive reader
is a pointer network that predicts the start and end
of the answer span from the input context (Devlin
et al., 2019; Alberti et al., 2019b). It can be initial-
ized with most large pre-trained language models
(Devlin et al., 2019; Liu et al., 2019; Conneau et al.,
2020). In addition, our reader is extremely versatile
as it can provide responses to questions with list
answers (Khashabi et al., 2021), yes/no responses
to Boolean questions (Clark et al., 2019, 2020a;
Kwiatkowski et al., 2019b), answer spans found
in tables (Herzig et al., 2020b) and in multimodal
(text+image) documents (Mathew et al., 2021). Ex-
amples of several extractive readers along with their
extensions are provided in Table 1.
Generative: PRIMEQA provides generative read-
ers based on the popular Fusion-in-Decoder (FiD)
(Izacard and Grave, 2020) algorithm. Currently, it
supports easy initialization with large pre-trained
sequence-to-sequence models (Lewis et al., 2019;
Raffel et al., 2022). With FiD, the question and the
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retrieved passages are used to generate relatively
long and complex multi-sentence answers provid-
ing support for long form question answering tasks,
e.g., ELI5 (Petroni et al., 2021; Fan et al., 2019).

3.1.3 Question Generation: run_qg.py

Data augmentation through synthetic question gen-
eration (QG) helps in generalization of QA mod-
els (Alberti et al., 2019a; Sultan et al., 2020), es-
pecially when labeled data is not available for the
target domain. It can be applied in a variety of set-
tings, including domain adaptation (Shakeri et al.,
2021; Gangi Reddy et al., 2021, 2022), domain
generalization (Sultan et al., 2022) and few-shot
learning (Yue et al., 2022). PRIMEQA’s QG com-
ponent (Chemmengath et al., 2021) is based on
SOTA sequence-to-sequence generation architec-
tures (Raffel et al., 2022), and supports both un-
structured and structured input text through a single
Python script run_qg.py.
Unstructured Input: Our first variant of QG is a
multilingual text-to-text model capable of generat-
ing questions in the language of the input passage.
It fine-tunes a pre-trained T5 language model (Raf-
fel et al., 2022) on publicly available multilingual
QA data (Clark et al., 2020b).
Structured Input: Our second variant learns QG
over tables by fine-tuning T5 (Raffel et al., 2022) to
generate natural language queries using the Table
QA dataset (Zhong et al., 2017a). Given a table,
PRIMEQA uses a controllable SQL sampler to ob-
tain SQL queries and then applies the trained table
QG model to generate natural language questions.
Semi-structured Input: PRIMEQA also supports
QG over tables and text by fine-tuning T5 (Raffel
et al., 2022) to generate natural language queries
from table+text context. The training data is
obtained using the publicly available HybridQA
dataset (Chen et al., 2020).

3.2 Entry Points

We cater to different user groups in the QA com-
munity by providing different entry points to
PRIMEQA, as shown in Figure 1.
• Top-level Scripts: Researchers can use the top
level scripts, run_{ir/mrc/qg}.py, to reproduce
published results and train, fine-tune and evaluate
associated models on their own custom data.
• Jupyter Notebooks: These demonstrate how to
use built-in classes to run the different PRIMEQA
components and perform the corresponding tasks.

They are useful for developers and researchers who
want to reuse and extend PRIMEQA functionalities.
• Inference APIs: The Inference APIs are pri-
marily meant for developers, allowing them to use
PRIMEQA components on their own data with only
a few lines of code. These APIs can be initialized
with the pre-trained PRIMEQA models provided in
the HuggingFace hub, or with a custom model that
has been trained for a specific use case.
• Service Layer: The service layer helps devel-
opers set up an end-to-end QA system quickly by
providing a wrapper around the core components
that exposes an endpoint and an API.
• UI: The UI is for end-users, including the non-
technical layman who wants to use PRIMEQA ser-
vices interactively to ask questions and get answers.

3.3 Pipelines for OpenQA

PRIMEQA users can build an OpenQA pipeline and
configure it to use any of the PRIMEQA retrievers
and readers in a plug-and-play fashion. This is fa-
cilitated through a lightweight wrapper built around
each core component, which implements the infer-
ence API (one of the PRIMEQA entry points). An
example of such a pipeline can be connecting a
ColBERT retriever to a generative reader based on
LLMs such as those in the GPT series (Brown et al.,
2020; Ouyang et al., 2022) or FLAN-T5 (Chung
et al., 2022), providing retrieval-augmented gener-
ative QA capabilities. The retriever in this setting
can provide relevant passages that can constitute
part of the prompt for the LLM; this encourages
answer generation grounded in those retrieved pas-
sages, reducing hallucination. Other pipelines can
also be instantiated to use different retrievers (e.g.,
DPR, BM25) and readers (e.g., extractive, FiD)
that are available through our model hub.

4 Services and Deployment

Industrial deployment often necessitates running
complex models and processes at scale. We use
Docker to package these components into micro-
services that interact with each other and can be
ported to servers with different hardware capabil-
ities (e.g. GPUs, CPUs, memory). The use of
Docker makes the addition, replacement or dele-
tion of services easy and scalable. All components
in the PRIMEQA repository are available via REST
and/or gRPC micro-services. Our Docker contain-
ers are available on the public DockerHub and can
be deployed using technologies such as OpenShift
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Sample deployment via create-
primeqa-app repository

gRPC

REST

REST

IBM® Watson Discovery

Third Party Integrations

User

gRPC /

REST

PrimeQA UI

/
Deployment

Development

Build

PrimeQA
Orchestrator

/
Deployment

Build

Development

/
Deployment

Build

Development

Reader, Retriever

Figure 2: PRIMEQA’s end-to-end application. Each container contains a development (blue), build (yellow) and
deployment (green) stack.

and Kubernetes.
In addition to the main PrimeQA repository, we

provide three sibling repositories for application
deployment:

primeqa-ui is the front-end UI. Users can per-
sonalize this by adding custom organization
logos or changing display fonts.

primeqa-orchestrator is a REST server and
is the central hub for the integration of
PRIMEQA services and external components
and the execution of a pipeline. For instance,
the orchestrator can be configured to search
a document collection with either a retriever
from PrimeQA such as ColBERT, or an exter-
nal search engine such as Watson Discovery.7

create-primeqa-app provides the scripts to
launch the demo application by starting the
orchestrator and UI services.

Figure 2 illustrates how to deploy a QA applica-
tion at scale using the core PrimeQA services (e.g.
Reader and Retriever) and our three sibling reposi-
tories. We provide this end-to-end deployment for
our demo, however users can also utilize PrimeQA
as an application with their own orchestrator or UI.

Figure 3 shows an OpenQA demo application
built with the PRIMEQA components. In addi-
tion to providing answers with evidence, our demo
application features a mechanism to collect user

7https://www.ibm.com/cloud/watson-discovery

feedback. The thumbs up / down icons next to each
result enables a user to record feedback which is
then stored in a database. The user feedback data
can be retrieved and used as additional training data
to further improve a retriever and reader model.

5 Community Contributions

While being relatively new, PRIMEQA has already
garnered positive attention from the QA community
and is receiving constant successful contributions
from both international academia and industry via
Github pull requests. We describe some instances
here and encourage further contributions from all
in the community. We provide support for those
interested in contributing through a dedicated slack
channel 8, Github issues and PR reviews.
Neural Retrievers: ColBERT, one of our core neu-
ral retrievers, was contributed by Stanford NLP.
Since PRIMEQA provides very easy entry points
into its core library, they were able to integrate
their software into the retriever script run_ir.py
independently. Their contribution to PRIMEQA
provides SOTA performance on OpenQA bench-
marks by performing ‘late interaction’ search on
a variety of datasets. They also contributed Col-
BERTv2 (Santhanam et al., 2022b) and its PLAID
(Santhanam et al., 2022a) variant. The former re-
duces ColBERT index size by 10x while the latter
makes search faster by almost 7x on GPUs.

8https://ibm.biz/pqa-slack
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Figure 3: A custom OpenQA search application built with PRIMEQA. Additional screenshots are in Appendix A.

Few-shot Learning: The SunLab from Ohio
State University added few-shot learning capabili-
ties within PRIMEQA . Their contribution, Rea-
sonBERT (Deng et al., 2021), provides a pre-
trained methodology that augments language mod-
els with the ability to reason over long-range re-
lations. Under the few-shot setting, ReasonBERT
in PRIMEQA substantially outperforms RoBERTa
(Liu et al., 2019)-based QA systems. PRIMEQA
gives any researcher or developer the capability
to easily integrate this component in their custom
search application e.g. a DPR retriever and a Rea-
sonBERT reader.
Table Readers: Beihang University and Microsoft
Research Asia contributed Tapex (Liu et al., 2021)
as the first generative Table reader in PRIMEQA.
Tapex proposes a novel table pre-training strat-
egy based on a neural SQL executor and achieves
SOTA on Wiki-SQL (Zhong et al., 2017a) and
Wiki-TableQuestions (Pasupat and Liang, 2015a).
They utilize the Transformers (Wolf et al., 2020)
sequence-to-sequence trainer for seamless integra-
tion into PRIMEQA. LTI CMU’s NeuLab con-
tributed OmniTab (Jiang et al., 2022b), which
employs an efficient pre-training strategy lever-
aging both real and synthetic data. This integra-
tion happened organically as OmniTab builds on
top of Tapex in PRIMEQA. Currently, their model
yields the best few-shot performance on Wiki-
TableQuestions, making it also an appropriate can-
didate system under domain shift.
Custom Search for Earth Science: NASA re-

searchers created a custom search application for
scientific abstracts and papers related to Earth Sci-
ence which received global attention9. First, using
the top level scripts in PRIMEQA, they trained an
OpenQA system on over 100k abstracts by train-
ing a ColBERT retriever and an extractive reader.
Then, they were able to quickly deploy the search
application using the create-primeqa-app and make
it available publicly10.

6 Conclusion

PRIMEQA is an open-source Question Answering
library designed by researchers and developers to
easily facilitate reproduciblity and reusability of ex-
isting and future work in QA. This is an important
contribution to the community, as it provides re-
searchers and end users with easy access to state-of-
the-art algorithms in the rapidly progressing field
of QA. PRIMEQA also provides off-the-shelf mod-
els that developers can directly deploy for their
custom QA applications. PRIMEQA is built on top
of the largest open-source NLP libraries and tools,
can incorporate LLMs through external APIs, and
provides simple Python scripts as entry points for
easy reuse of its core components. This straight-
forward access and high reusability has already
garnered significant traction in the community, en-
abling PRIMEQA to grow organically as an impor-
tant resource for rapid progress in QA.

9https://www.nextgov.com/emerging-tech/2023/02/ibm-
nasa-will-use-ai-improve-climate-change-research/382437/

10http://primeqa.nasa-impact.net/qa
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Ethics and Broader Impact

6.1 Broader Impact
PRIMEQA is developed as a one-stop and open-
source QA repository with an aim to democratize
QA research by facilitating easy replication and ex-
tension of state of the art methods in multilingual
question answering and developments. QA is mov-
ing fast with the launch of state-of-the-art (SOTA)
retrievers, readers and multi-modal QA models.
However, there are two key hurdles which slow the
adoption of the SOTA models by the community,
which are (1) hard to reproduce for researchers
and (2) involves a learning curve for developers to
use in custom applications. PRIMEQA solves both
the problems by providing multiple access points
for different user groups for their easy adoption.
PRIMEQA is licensed under Apache 2.0 and thus
open to use in both academia and industry. There-
fore, PRIMEQA can have an impact on the whole
NLP community or more broadly any user working
on NLP applications.

6.2 Ethical Considerations
The models available in PRIMEQA might inherit
bias based on available training data in public do-
main. Such bias, if any, is in general present in the
models contributed to PRIMEQA and not specific
to PrimeQA. Therefore, the usage of PRIMEQA
should be approached with the same caution as
with any NLP model.

PRIMEQA supports easy access for researchers
and developers to use state-of-the-art models and
even customize them on their own data. However,
PRIMEQA does not control the type of data the
model will be exposed to in a custom environment.
The general assumption is that these models will
be used for rightful purposes in good faith.
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A Appendix

A.1 PrimeQA Applications
Figure 4 shows a screen-shot of three PrimeQA ap-
plications. Tables 2 and 3 provide lists of supported
datasets and some important PRIMEQA links.

Datasets

OpenNQ
XOR-TyDi (Asai et al., 2021)
SQuAD (Rajpurkar et al., 2016)
TyDiQA (Clark et al., 2020b)
NQ (Kwiatkowski et al., 2019c)
ELI5
SQA (Iyyer et al., 2017)
WTQ (Pasupat and Liang, 2015b)
DocVQA (Mathew et al., 2021)
WikiSQL (Zhong et al., 2017b)

Table 2: A list of some of the supported datasets in
PrimeQA

Retriever Simple Python script
Reader Inference APIs
Unstructured QG Inference APIs
Pipeline Inference APIs

Table 3: Links to PrimeQA
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Abstract

Chinese modern poetry generation has been
a challenging task. One issue is the Chi-
nese word segmentation (CWS) which is crit-
ical to comprehend the Chinese language but
was not always considered in common tok-
enization methods. Another is the decoding
(sampling) method which may induce repeti-
tion and boredom and severely lower the di-
versity of the generated poetry. To address
these issues, we present Lingxi, a diversity-
aware Chinese modern poetry generation sys-
tem. For the CWS issue, we propose a novel
framework that incorporates CWS in the tok-
enization process. The proposed method can
achieve a high vocabulary coverage rate with a
reasonable vocabulary size. For the decoding
method and the diversity issue, we propose a
novel sampling algorithm that flattens the high
likelihood part of the predicted distribution of
the language model to emphasize the compar-
atively low-likelihood words and increase the
diversity of generated poetry. Empirical result-
s show that even when the top 60% of cumula-
tive probability mass of the predicted distribu-
tion is flattened, our method achieves compa-
rable or even better performance than baseline
sampling methods. Our system is available at
http://lingxi.website†.

1 Introduction

Chinese modern poetry generation has been a chal-
lenging natural language processing (NLP) task.
One issue is the Chinese word segmentation (CWS)
problem. Unlike English words that are naturally
delimited by white spaces, Chinese words do not
have explicit word delimiters. Since different CWS
strategies may completely change the semantics
of Chinese words, CWS is always crucial for hu-
mans to comprehend the Chinese language and is
regarded as a critical Chinese NLP task. Despite its

*Corresponding author.
†Video demonstration is available at https://

youtu.be/ofNTZFCM4DQ.

importance, CWS is always ignored in benchmark
tokenization methods such as byte pair encoding
(BPE, Gage, 1994; Sennrich et al., 2016) or uni-
gram language model (Unigram LM, Kudo, 2018),
as well as in recent researches on Chinese poetry or
lyric generation (e.g., systems by Lee et al., 2019,
Zhang et al., 2020, and Zhang et al., 2022). A criti-
cal issue is that the rendered vocabulary from CWS
tends to exhibit an extremely long “tail”, which
demands additional techniques to process before
being incorporated into the language model.

Another challenge is the high diversity require-
ment for poetry generation. The task is unique com-
pared with common neural generation tasks, which
try to predict the correct answers from the training
corpus and focus on the fluency of the generated
texts. Concretely, a piece of easily understood and
highly fluent poetry with high-likelihood words
might not always be considered poetic, while se-
mantically ambiguous poetry with low-likelihood
words might be diversified and creative. We consid-
er the diversity issue from the view of the decoding
(sampling) algorithm of the language model. The
widely acknowledged golden methods include the
nucleus sampling (Holtzman et al., 2020), top-k
sampling (Fan et al., 2018; Holtzman et al., 2018),
and temperature sampling, which have been proved
to be able to control the quality and diversity of gen-
erated texts. However, in our system, these golden
methods might occasionally generate boring and
repetitive samples with low diversity, severely hurt-
ing the quality of the generated poetry. Thus it
inspires us to explore novel decoding algorithms to
address the diversity issue for poetry generation.

To address these challenges, we present
Lingxi, a diversity-aware Chinese modern poetry
generation system with the following features. For
the CWS issue, we propose a novel framework that
incorporates CWS in the tokenization process. The
proposed method not only leverages the human
knowledge from the CWS model but also com-
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bines the advantage of frequency-based tokeniza-
tion methods, which can achieve a high coverage
rate of the vocabulary while maintaining a reason-
able vocabulary size. For the high-diversity issue,
we propose a novel decoding (sampling) method,
namely the nucleus sampling with flattened head
(NS-FH) algorithm. It flattens the high-likelihood
part of the predicted distribution to suppress the
high-likelihood words and emphasize the less like-
ly words to improve the diversity of the generated
poetry. Surprisingly, we find that even if the top
60% of cumulative probability mass of the vocabu-
lary’s distribution is flattened, the model achieves
comparable or even better performance than base-
line methods.

2 The CWS Framework for Chinese
Modern Poetry Corpus

2.1 The “Long-tail” Issue of CWS

Figure 1: Comparison of the cumulative coverage rate
of the vocabulary. The original vocabulary produced by
CWS (colored in blue) has a total size of more than 3
million, and the top 20,000 words in the vocabulary has
a coverage rate of only 90%. With the proposed frame-
work, the vocabulary coverage rate can be increased to
nearly 100% (colored in red) while maintaining a suit-
able vocabulary size (less than 20,000).

Following the pre-training/fine-tuning paradigm,
we collect about 3,500 published books of Chi-
nese novels as the pre-training corpus, aiming at
Chinese literary language modeling. Then we col-
lect about 220,000 passages of Chinese modern
poetry and lyrics as the fine-tuning corpus. To
build the vocabulary, most researchers directly ap-
ply frequency-based tokenization methods such as
byte pair encoding (BPE, Gage, 1994; Sennrich
et al., 2016) or unigram language model (Unigram
LM, Kudo, 2018) without considering the Chi-
nese word segmentation (CWS) issue, which is a
critical Chinese NLP task and can be modeled by
supervised learning (Liu et al., 2014; Yan et al.,
2020; Qiu et al., 2020; Duan and Zhao, 2020). De-
spite these advances, it is still difficult to directly
deploy CWS into the tokenization process due to

the “long-tail” issue. Figure 1 illustrates the cu-
mulative coverage rate of the vocabulary (sorted
by the word frequency) of our corpus produced
by the CWS software THULAC (Sun et al., 2016).
It generates a large vocabulary (containing about
3.6 million words) with a very long low-frequency
“tail”, which grows slowly to the coverage rate of
the vocabulary and takes a nonnegligible portion
of coverage. In our case, the top 20,000 words
take about 90% coverage on the corpus, and the
remaining 3.6 million minus 20,000 words take the
remaining 10% coverage, which satisfies Zipf’s law
(Zipf, 1949). Truncating the “tail” would result in a
low coverage rate and too many “unknown” tokens.

2.2 Proposed CWS Framework

To handle the “long-tail” issue, we propose the
following heuristic algorithm, which segments the
“tail” into “subwords” using words from the top
portion of the vocabulary.

Step 1: Use the CWS tool THULAC to process
the corpus and acquire the vocabulary, sort it by
the word frequency, and choose a top portion of the
vocabulary as the basic vocabulary.

Step 2: For the out-of-vocabulary (OOV) word-
s, use the basic vocabulary to segment them into
subwords. For subwords outside the basic vocabu-
lary, add them to the basic vocabulary. If an OOV
word has different segmentation strategies, deter-
mine by choosing the largest likelihood product of
subwords.

Step 3: Sort the expanded basic vocabulary, and
choose a top portion as the final vocabulary.

Let V denote the vocabulary of the corpus
produced by the CWS model. For each word
w ∈ V , its frequency and likelihood are denot-
ed by n(w) and p(w), which satisfy p(w) =
n(w)/

∑
w∈V n(w). Sort V by p(w), then choose

the top portion of the vocabulary with cumula-
tive coverage rate being P1 (referred to as “top
P1”) to construct the basic vocabulary VBASIC .
The rest of words in V (“tail”) are denoted by
V BASIC . To process V BASIC , segment each word
in V BASIC using words in VBASIC . During this
process, a word might have different segmentation
strategies. To solve the segmentation ambiguity, let
S(w) = {w1, w2, ...}, wi ∈ VBASIC denote a seg-
mentation of word w ∈ V BASIC with an ordered
sequence of token wi. We choose the segmenta-
tion strategy with the largest likelihood product,
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(12,643 words, marked as blue).

Step 2: Use the basic vocabulary to segment all OOV words. Add OOV sub-

words (marked as red) to the basic vocabulary.

Step 3: Truncate low frequency tails in the expanded basic vocabulary

(23,296 words) to get the final vocabulary (17,589 words). Its coverage is

close to 1.
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Ambiguity is determined by the product of likelihood of sub-words.

Sub-word 1 Sub-word 2

Sub-word 1 Sub-word 2

Sub-word 1

Sub-word 2 (OOV Sub-word)

Sub-word 3

Figure 2: Illustration of the proposed CWS framework for Chinese modern poetry.

i.e., argmaxS(w)

∏
w∈S(w) p(w). If any word out-

side VBASIC is found in the segmentation, add it
to VBASIC . After all words in V BASIC are pro-
cessed, VBASIC will be expanded to cover all the
corpus. Sort the expanded VBASIC by its updat-
ed word likelihood and choose the top P2 of the
vocabulary as the final vocabulary VFINAL. The
process is described in Algorithm 1.

Algorithm 1 The proposed CWS Framework
Input: Training Corpus
Output: VFINAL

1: Acquire V by THULAC, sort V by p(w),
choose top P1 of V as VBASIC , and its com-
plement as V BASIC .

2: for each w ∈ V BASIC do
3: Find all possible segmentations {S(w)}
4: S∗(w)← argmaxS(w)

∏
w∈S(w) p(w)

5: for each w∗ ∈ S∗(w) do
6: Add w∗ to VBASIC if w∗ /∈ VBASIC

7: Update p(w). Sort VBASIC by p(w), choose
top P2 of VBASIC as VFINAL

8: return VFINAL

After all words in V BASIC are processed, all
sub-words outside VBASIC will be added to the
vocabulary. In this way, VBASIC will be expanded
to cover all information in the corpus, and all OOV
words can be segmented into in-vocabulary sub-
words. All information will be kept during this
process with no “unknown” tokens. And in the
last step, only sub-words with a very low word
frequency that are rarely used will be filtered out
and replaced with “unknown” tokens. In this way,

the final vocabulary will achieve a high coverage
rate with a suitable size. The entire process is
shown in Figure 2. It combines the CWS model
with frequency-based tokenization methods and
can generate a vocabulary with suitable size and
high coverage rate. In our case, the coverage rate
of the final vocabulary is close to 1.0 (larger than
1 − 10−4, see Figure 1), with a vocabulary size
being 17,589.

Since we have two different training corpora,
we seek to leverage the word frequency feature
from both corpora. For Step 1, we choose the top
90% of the vocabulary from a) both corpora and
b) the fine-tuning corpus only, then merge them
as the basic vocabulary. This emphasizes the fine-
tuning corpus to benefit its generation task. The
size of basic vocabulary merged in Step 1 is 12,643.
After Step 2, the vocabulary size is expanded to
23,296. In Step 3, we drop words with a frequency
lower than a) 100 on both corpora and b) 10 on the
fine-tuning corpus and acquire the final vocabulary
with 17,589 words. By observation, the dropped
words in Step 3 are all extremely rare single-length
Chinese words.

3 The Diversity-aware Sampling

We train an auto-regressive Transformer language
model on the two collected corpus for generation
(see the appendices for the model details). As is
widely acknowledged, the decoding module plays
a crucial role in neural text generation. Stochas-
tic sampling methods such as nucleus sampling
(Holtzman et al., 2020), top-k sampling (Fan et al.,
2018; Holtzman et al., 2018) and temperature sam-
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pling can generate texts with higher diversity than
traditional decoding methods such as beam search.
Recent advances such as MIROSTAT (Basu et al.,
2021) and typical sampling (Meister et al., 2023)
use adaptive filtering on top of these methods. How-
ever, in our model, we observe that traditional algo-
rithms occasionally generate boring and repetitive
poetry with low diversity, thus severely hurting the
quality of generated poetry.

The high-likelihood part (top q)  of the distribution is flattened.

top q mass

Figure 3: Illustration of the proposed NS-FH algorithm,
which flattens and rescales the high-likelihood part of
the predicted distribution to emphasize less likely word-
s and increase the diversity of generated poetry.

Recent research has revealed that the low-
diversity issue can stem from the high-likelihood
part of the predicted distribution (Holtzman et al.,
2020; Basu et al., 2021), which is not fully lever-
aged by traditional sampling methods. We consider
the intuition for poetry composing that fluent po-
etry with too many high-likelihood words can be
boring (i.e., the boredom trap, Basu et al., 2021);
in contrast, semantically ambiguous poetry with
surprising and low-likelihood words can be cre-
ative and poetic (e.g., poems by James Joyce or
Marcel Proust). Inspired by this, we propose a
novel sampling algorithm to emphasize the less
likely words on the predicted distribution to in-
crease the diversity. We leverage the notion of
nucleus sampling (NS) by defining an additional
filtering parameter denoted by q to identify the
high-likelihood part (“head”) of the vocabulary, de-
noted by V head. Then we propose to flatten and
evenly redistribute the probability mass for V head,
to emphasize the “comparatively low likelihood”
words in the “head”. For the low-likelihood part
of the distribution (“tail”), we adopt nucleus sam-
pling with parameter p (p ≥ q) to truncate the “tail”
like the tradition. Stochastic sampling is conducted
on the flattened and rescaled distribution for all
sampling steps. The above method is referred to
as nucleus sampling with flattened head (NS-FH)
algorithm. The diversity gain of the algorithm is

controlled by q, which determines the boundary of
V head. The algorithm is illustrated in Figure 3.

The proposed algorithm has a close relationship
with nucleus sampling. Their truncation mecha-
nisms on the predicted distribution are identical-
ly based on the threshold {p, q} of the cumula-
tive probability density function. And our method
features in using an additional threshold q to de-
termine another smaller portion of the predicted
distribution and flattening their probability densi-
ty function. And since q is also a threshold for
the cumulative probability density function, the
flattening manipulation will not affect low-entropy
distributions that only contain an “unquestionably
correct” word which takes most of the probability
mass, thus not hurting the fluency of the generat-
ed poetry. We later show in the empirical results
that the proposed method can closely follow the
behavior of nucleus sampling when using a small
value of q while exhibiting higher diversity when
setting a large value of q, achieving diversity-aware
sampling.

4 Demonstration and Evaluation

4.1 System Interface

The system interface and poetry example are shown
in Figure 4. We provide a plain mode and an ad-
vanced mode. For the plain mode, input the poetry
prompt, choose the diversity parameter with the
slider, and hit the “submit” button to get a gener-
ated poetry. By default, the system uses the pro-
posed NS-FH algorithm as the decoding method.
In the advanced mode, we implemented the three
golden sampling methods (nucleus sampling, top-k
sampling, and temperature sampling) as well as
two novel sampling methods (MIROSTAT by Basu
et al., 2021 and typical sampling by Meister et al.,
2023) for users to choose and compare.

4.2 Impact of Sampling Algorithms

It is noteworthy that the performance of the sam-
pling algorithm is highly dependent on the sam-
pling hyperparameter. To illustrate and compare
their impact on the generated poetry, we take ad-
vantage of the quality-diversity trade-off feature
(Nadeem et al., 2020; Zhang et al., 2021; Basu
et al., 2021). By tuning the hyperparameter for one
sampling algorithm, the quality (fluency) metric
and the diversity metric of the generated poetry
form a trade-off curve in which an increase in the
diversity metric will decrease the fluency metric.
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1. Input the prompt

2. Choose the diversity

3. Submit

4. Generated results

Spring Water

You say spring water is more azure than the sky

The sand is like melting snow

A farewell from thousands of miles apart

Old lovers are like gone dreams

Save your farewell words

It turns grief without tears

How can we say farewell

We don’t drift like falling leaves

Autumn falls for whom

Figure 4: The system interface and generated poetry sample of Lingxi.

Such a feature demands a holistic picture of the
trade-off curve by traversing the hyperparameter
space and evaluating automatic metrics on the gen-
erated poetry to reveal the nature of the algorith-
m. As a result, we leverage the trade-off feature
by aligning corresponding metrics on a 2D plane
throughout our evaluation.

Concretely, we use every poetry title from the
validation set as the input prompt for generation,
which results in 15,218 generations per sampling
algorithm per hyperparameter. We choose the flu-
ency metric as the perplexity (PPL) of generated
poetry (lower score indicates higher fluency but
more boredom). We then choose the following
three diversity metrics: the Zipf coefficient (Zipf,
1949; Newman, 2005) which reflects the sloping
tendency of the word frequency distribution (lower
score indicates a flatter distribution and higher di-
versity); the entropy of n-gram distribution (Zhang
et al., 2018) which reflects the diversity of n-grams
(higher score indicates less repeating n-grams and
higher diversity); the self-BLEU score (Zhu et al.,
2018; Holtzman et al., 2020) which reflects the
overlapping tendency among different generated
poetry passages (lower score indicates less over-
lapping and higher diversity). We calculate the
human-level metrics from the validation set as the
reference point.

Results for the fluency-diversity trade-off curves
are shown from Figure 5 to Figure 7. We show
regions around the human (reference) metric point
for a clear view (see Figure 10 to Figure 14 in
the appendix for full curves). Results show that
the human-level metric of Chinese modern poetry

Ours

Figure 5: The trade-off curve for Zipf coefficient (diver-
sity ↓) against perplexity. Although all methods loose-
ly converge to the human (reference) point, traditional
methods must greatly relax their sampling parameter-
s (p = 0.99, k = 2000, t > 0.9, m > 6, τ = 0.99),
i.e., almost degrade to pure sampling to achieve human-
level metrics. With a small diversity parameter, our
method (NS-FH, q=0.20) has a similar trajectory to nu-
cleus sampling; with a large diversity parameter, our
method (NS-FH, q=0.60) exhibits higher diversity (low-
er curve) than other methods in most cases (only ex-
cept for typical sampling with τ = 0.10), achieving
diversity-aware sampling.

suggests a high diversity requirement (low Zipf
coefficient, high entropy of n-gram, and low self-
BLEU score). To achieve human-level diversity,
traditional methods must greatly relax their sam-
pling parameter and almost degrade to pure sam-
pling (sampling on the original predicted distribu-
tion with no filtering) for maximum diversity. By
contrast, our method controls the trade-off curve
by tuning the diversity parameter q without fully
relaxing the filtering. When using a small value of
q = 0.20, our method closely follows the trajectory
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Figure 6: The trade-off curve for the entropy of 4-gram
distribution (Ent-4, diversity ↑) against perplexity. All
methods exhibit close trajectories with each other and
converge to the human (reference) point. Our method
(NS-FH, q=0.60) can also achieve the diversity upper
bound achieved by typical sampling with τ = 0.1,
meanwhile its trade-off curve still stays close to the ref-
erence point.

Figure 7: The trade-off curve for self-BLEU 5 (diver-
sity ↓) against perplexity. While all methods exhibit
close trajectories near the human (reference) point, our
method (NS-FH, q=0.60) achieves the highest diversity
boundary (lowest metric in the lower right region).

of nucleus sampling and converges to the reference
point; when using a large value of q = 0.60, our
method achieves a comparable or higher diversi-
ty metric to traditional methods without deviating
from the reference point. These results indicate that
our method can achieve diversity-aware sampling
with good metric performance.

Note a very interesting behavior of the NS-FH al-
gorithm that by setting q = 0.60 (colored in green),
i.e., the top 60% of cumulative probability mass of
the predicted distribution is completely flattened
and ignored, the trade-off curve does not drift away
from the human-level metric point (see the perfor-
mance degradation of sampling algorithms illustrat-
ed in Figure 3 by Nadeem et al., 2020), while even
achieving higher diversity metrics and boundaries
in most cases. This suggests that in our task with
a high requirement for diversity, the probability of

high-likelihood words on a “flat” distribution with
high entropy can be ignored. Completely flattening
the distribution and ignoring the predicted probabil-
ity of high-likelihood words can counter-intuitively
achieve comparable or better results with higher
diversity. By inference, such a method might be
suitable for other artistic generation tasks like mu-
sic or drawings that require high diversity.

Figure 8: The trade-off curve for p(Ent-4 < 4.0) (↓)
against perplexity. Similar to the results of previous
diversity metrics, our method achieves a lower metric
boundary than traditional methods (except for typical
sampling with τ ≤ 0.3) and still converges to the hu-
man (reference) point.

Also, note the stochastic nature of the sampling
methods, which yields a stochastic trajectory of
tokens with variational quality. Under the same
sampling parameter and conditions, the generated
poetry might occasionally be repetitive and wordy.
So we focus on the distribution of the entropy of
n-gram metric to investigate the repetition tenden-
cy. We calculate p(Ent-4 < η), which reflects the
chance that the generated poetry has the entropy of
n-grams lower than the threshold η. Empirically,
we set η = 4 to get a meaningful observation. Re-
sults are shown in Figure 8. They show that naive
sampling parameters for traditional methods easily
result in more repetition, e.g., nucleus sampling
with p = 0.80 has p(Ent-4 < 4) ≈ 0.24. Simi-
lar to previous results, traditional methods have to
greatly relax the filtering parameter or degrade to
pure sampling to approach human-level repetition
tendency. By contrast, our method with q = 0.60
achieves a lower curve (less repetition chance) than
most methods and also stay close to the reference
point. This indicates that our method with a high
diversity parameter can grant less repetition as well
as maintain a close relationship of repetition ten-
dency to human behavior without fully relaxing the
filtering.
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4.3 Rhyming Feature

Figure 9: The trade-off curve for the entropy of
rhyming word distribution against the fluency metric.
Results show that our method has on-par rhyming per-
formance with all traditional methods.

We also consider an additional metric to re-
flect the rhyming feature of the generated po-
etry. Similar to the entropy metric, we calcu-
late the entropy of rhyming word distribution
by E{− log prhyme(x)}, where prhyme(x) is the
rhyming word frequency distribution (higher score
indicates higher diversity but less rhymed). Simi-
larly, we plot the fluency-rhyming trade-off curves
in Figure 9. The results show that our method
achieves on-par rhyming performance with all base-
line methods. It indicates that the flattening manip-
ulation of our method does not hurt the rhyming
feature of the generated poetry, despite that our
method flattens the top portion of the cumulative
probability mass of the predicted distribution.

Since rhyming is an important feature for com-
posing Chinese modern poetry, we provide an ad-
ditional function to control the rhyme of the gen-
erated poetry. In the advanced mode of LingXi,
we adopt a re-ranking and replacing mechanism
for rhyming. During the generation process, once
a [NEWLINE] symbol was generated, we try to re-
place its previous token with a rhyming one. We
create hypotheses by combining each token from
the vocabulary that fits the requirement of the cho-
sen rhyme with a [NEWLINE] token, recalculate
the average perplexity of the combined tokens (hy-
pothesis), and choose the hypothesis with the low-
est average perplexity to replace the generated one.
One issue is that there might be cases in which all
hypotheses have high perplexity (low likelihood).
So we set an additional threshold that the hypoth-
esis must have an average perplexity lower than
the threshold to trigger the replacement. If none of
the hypotheses meet the requirement of the thresh-

old, the generation remains unrevised. The above
method can achieve a trade-off between rhyming
and fluency by tuning the perplexity threshold. Em-
pirically, we set the threshold to 50 to achieve a
good performance. Although the method cannot
guarantee that all generated lines of poetry meet the
rhyming requirement, it features in its flexibility to
plug into all decoding methods implemented in our
system without modifying the language model or
the algorithms.

5 Conclusion

We present Lingxi, a diversity-aware Chinese
modern poetry generation system. To address the
CWS issue, we propose a novel framework that
combines CWS with the frequency-based method,
which can create a vocabulary with a suitable size
and high coverage. To increase the diversity of gen-
erated poetry, we propose nucleus sampling with
flattened head (NS-FH) algorithm which achieves
controllable diversity with on-par or better perfor-
mance compared to traditional sampling methods.
The proposed sampling algorithm provides a new
approach to increase the diversity of neural text
generation via the decoding module, which might
be beneficial for artistic generation cases that have
high requirements for the diversity or novelty.
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A Model Configuration, Training Details
and Supplementary Results

Detailed configurations and parameters of our
model are listed in Table 1. For special to-
kens, the [TITLE] token is added directly af-
ter the title of each poetry passage in the fine-
tuning corpus to capture the title feature. The
[START-OF-PASSAGE] token is added before
the starting token of the first poetry line. We cre-
ate a replica for each poetry passage excluding
the title and [TITLE] token, and mix them with
the original corpus as data augmentation. The
[NEWLINE] token is added at the end of each poet-
ry line in replace of the newline character, and the
[END-OF-PASSAGE] token is added at the end of
each poetry passage. English words and letters are
assigned [UNK-EW] tokens. Other unknown word-
s and sub-words are assigned [UNK] tokens. For
poetry passages longer than the maximum context
length, we create training samples using a sliding
window with stride being half of the maximum
context length. We split train/validation/test sets
using the common ratio of 85%/7%/8% (token ra-
tio for the pre-training corpus, passage ratio for the
fine-tuning corpus).

The model is an auto-regressive Transformer de-
coder, using cross entropy as the training loss. The
training process is developed using the Hugging-
face library by Wolf et al. (2019). It achieves
monotonic convergence of perplexity (PPL) on the
validation set of the pre-training corpus at the end
of the pre-training steps. We choose the best fine-
tuning epoch of the model with the lowest PPL on
the validation set of the fine-tuning corpus as the
final model. For the generated poetry, their full
metric trade-off curves for all sampling hyperpa-
rameters and sampling algorithms are shown from
Figure 10 to Figure 14.
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Parameters Value

number of Transformer layers 24
number of Transformer attention heads 16
embedding size 1,024
vocabulary size 17,589
maximum context length 128
number of network parameters 330 million
pre-training epochs 20
fine-tuning epochs 10
batch size per GPU 32
number of training GPUs 8 NVIDIA R© GeForce R© RTX 2080 Ti
pre-training learning rate 2× 10−4

fine-tuning learning rate {1× 10−5, 2× 10−5}
learning rate decay linear decay
warm-up steps 1% of total steps
optimizer Adam optimizer (Kingma and Ba, 2014)
weight decay 0.01
PPL on validation set after pre-training 17.58
best fine-tuning epoch epoch 4, learning rate being 2× 10−5

best PPL on fine-tuning validation set 16.75

full sampling hyperparameter space
for the trade-off curves from Figure 10
to Figure 14.

p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1}
q ∈ {0.2, 0.4, 0.6}, p ≥ q
k ∈ {10, 20, 50, 100, 200, 500, 1000, 2000}
t ∈ {0.6, 0.7, 0.8, 0.9, 1.1}
m ∈ {2, 3, 4, 5, 6}
τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}

Table 1: Model configuration, training details and sampling parameters

Figure 10: Full trade-off curve for Zipf coefficient against perplexity.
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Figure 11: Full trade-off curve for the entropy of 4-gram distribution (Ent-4) against perplexity.

Figure 12: Full trade-off curve for self-BLEU 5 against perplexity.

Figure 13: Full trade-off curve for p(Ent-4 < 4.0) against perplexity.
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Figure 14: Full trade-off curve for the entropy of rhyme distribution against the fluency metric.
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Abstract

Scientific literature is always available in
Adobe’s Portable Document Format (PDF),
which is friendly for scientists to read.
Compared with raw text, annotating directly
on PDF documents can greatly improve
the labeling efficiency of scientists whose
annotation costs are very high. In this paper,
we present Autodive, an integrated onsite
scientific literature annotation tool for natural
scientists and Natural Language Processing
(NLP) researchers. This tool provides six
core functions of annotation that support
the whole lifecycle of corpus generation
including i)annotation project management,
ii)resource management, iii)ontology man-
agement, iv)manual annotation, v)onsite
auto annotation, and vi)annotation task
statistic. Two experiments are carried out
to verify efficiency of the presented tool.
A live demo of Autodive is available at
http://autodive.sciwiki.cn, and a video demo
http://autodive.sciwiki.cn/introVideo/introduce-
v1.0.mp4. The source code is available at
https://github.com/Autodive.

1 Introduction

Influential applications such as AlphaFold2
(Jumper et al., 2021), and mobile robotic
chemist(Burger et al., 2020) rely on high-quality
databases and domain knowledge, some of which
are constructed from scientific literature. The tradi-
tional method of building such databases still needs
the manual annotation of numerous professionals.
With the development of scientific research and the
enhancement of interdisciplinary integration, the
number of scientific articles has increased explo-
sively, which also requires the annotators who are
assigned to build the domain-specific database to
have a suitable background and are familiar with an-
notation of literature data. Some research attempts
to assist the manual annotation process with the

∗Correspond Author

intelligent natural language model, such as Named
Entity Recognition (NER) and Relation Identifica-
tion (RI). The intelligent method can automatically
extract knowledge from articles, and form high-
quality databases after expert proofreading (Cruse
et al., 2022; Yan et al., 2022). However, the per-
formance of the general model in specific fields
is not satisfactory, and the construction of a spe-
cific intelligent model needs high-quality databases.
Thus, An easy-to-use annotation tool with a graph-
ical user interface that allows the labeling of text
efficiently and consistently is crucial and necessary.

Annotation tools play a crucial role during
the database-making process in the field of biol-
ogy(López-Fernández et al., 2013), material(Corvi
et al., 2021), and chemistry(Swain and Cole, 2016).
Although the majority of released annotation tools
mainly focus on the annotation of multimedia such
as image and video, there are still text annotation
tools such as AnnIE(Friedrich et al., 2021), TS-
ANNO(Stodden and Kallmeyer, 2022) and Doc-
cano(Nakayama et al., 2018). However, most of
the tools need to convert the input file from PDF
format to plain text, which may cause additional
labor costs for resource preparation. Moreover, the
annotation of specific data required professionals
with knowledge of different fields. Compared with
raw text, annotating directly on PDF documents
conforms to the reading habits of the professionals
with the original images, tables and layout informa-
tion and can greatly improve the labeling efficiency
of them whose annotation costs are very high. We
refer to this need as Onsite Annotation, which
includes the abilities to display and direct annotate
on the original PDF documents.

To meet the needs of professionals on direct an-
notation, the new tool should support direct sci-
entific literature annotation in PDF format. That
means this tool should display the original liter-
ature in PDF format directly, so users can read
the complete PDF content in the annotation inter-
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face, where they annotate the entity and relation
of scientific literature through scheduled annota-
tion operation. In this way, this tool retains the
layout information of the original PDF literature
to fit the reading habits of annotators. Different
from traditional text annotation projects, scientific
annotation projects require annotation tools to pro-
cess long literature, annotate complex entities and
export appropriate annotation results to a formed
database.

Besides onsite annotation, integration is also a
valuable factor during the design of the tool. First,
the existing domain-specific ontology should be
easily integrated which can reduce the time costs
of ontology design. Second, the tool should be
well integrated with existing and new Named-entity
Recognition (NER) models flexibly. Third, integra-
tion with existing file systems or literature collec-
tions, such as Pubmend Central and self-organized
document folders, should also be valued. By inte-
grating with an existing data source, a researcher
can deploy this tool locally without leakage of un-
published or copyrighted documents.

Hence, we propose an open-sourced annotation
tool Autodive, with its contributions summarized
below:

(1) Onsite Annotation. Autodive supports on-
site annotation of PDF documents for professionals.
They can annotate directly on PDF documents, and
get instant visual feedback.

(2) Integration. Autodive can integrated exter-
nal modules that may assist the whole annotation
process, including corpus management, ontology
construction, manual and intelligent annotation.

(3) Domain Verified. The effectiveness has been
verified by two tasks, including catalytic material
annotation and scientific dataset annotation.

2 Architecture

The overall architecture of Autodive is shown in
Fig.1 with three layers which are Data Source,
Server Layer, and Frontend. The core component
of Autodive is the Server Layer. Data Source
Adapter can integrate specific Data Sources such
as Pubmed Central or File System with Autodive.
Three core server-side engines play important roles.
The first is the Regular Expression Parsing Engine.
It can help Autodive extract entities by predefined
regular expressions. The second is the Ontology
Management Engine. It can load and parse ontol-
ogy files with OWL format and save the designed

Figure 1: Architecture of Autodive.

ontology to OWL or self-defined JSON files. The
third engine is the NER Model Management Engine.
It is a model base that is extendable and friendly to
newly trained NER models. The annotation engine
is the bridge between the server-side and the fron-
tend. This engine provides locating and feedback
of entities. Frontend is implemented mainly using
a progressive JavaScript framework Vue.js.

As shown in Fig.2, the complete literature in
PDF format is shown on the right part of the anno-
tation page of Autodive, where annotators can read
the literature and annotate the entity. Users click
the mouse to select words on the displayed PDF
document, and click the right mouse to select the
type of entities or relationships. When connecting
two annotated entities, users can annotate relation
of them. Shortcut-key annotation is allowed for
the increase of efficiency of the annotation project.
All identified or annotated entities and relations are
listed in the entity-label-list and relation-label-list
with predefined ontology.

3 Modules

Autodive integrates management, annotation, and
optimization through six modules and is specially
built for scientific literature annotation projects.
Users use the Project Management module to de-
velop and manage personalized annotation projects.
The Resource Management module allows users
to manage their own literature resources pool. The
Ontology Management module pre-defines the
knowledge ontology, which is defined and stan-
dardized by the annotation project administrator.
The basic components for annotating are the Man-
ual Annotation module and the Auto Annotation
module. Trained automatic annotation models are
saved in the background in order to improve the
productivity of manual annotation work. Finally,
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Figure 2: Overview of Autodive annotation interface. The left part of the interface is A. Control Panel that integrates
all functions of Autodive. B1 and B2 demonstrate usage of three auto annotation functions, while C1 and C2 show
the results of both auto annotation(C1) and manual annotation(C2).

we created a Statistic View module for Autodive
to represent the overall progress of the annotation
project.

3.1 Project Management
The annotation lifecycle starts with the creation of
one annotation project. Autodive designs project
management module that includes project creation
and annotator administration. As shown in Fig.3(a),
users submit necessary information such as project
name while creating an annotation project. Do-
main information is also encouraged to fill out so
that the auto-annotation model can accelerate the
annotation.

There are three different kinds of roles. The cre-
ator of the project, also plays as the administrator,
has the ability to invite annotators. If the invitation
email is approved, invitees will be added straight
to the relevant annotation project as administrators
or annotators. The administrator also has the rights
to assign annotation tasks to project members.

3.2 Resource Management
For a literature annotation project, the initial and
critical step is to control which documents to be
annotated and where to find them. The quantity
and diversity of literature affect the quality of anno-
tation data, and therefore the accuracy of intelligent

models. Autodive allows users to upload and man-
age their own literature resources pool, and form
a list of documents relating different annotation
projects by associating the literature resources with
them. Besides uploading PDF documents directly,
this tool also provides standard API (Application
Programming Interface) that can import scientists’
own literature resources.

After initialing the list of annotation resources,
the administrator can assign the annotation re-
sources to other annotators, and the annotators can
complete the follow-up task in the form of crowd-
sourcing, which is as shown in Fig.3(b).

3.3 Ontology management

Ontology means what kinds of entities and relations
to be annotated in the annotation project, which is
defined and controlled by the project administer to
fit task requirements. Well defined ontology can
enhance the efficiency of annotation. The process
of ontology design is shown in Fig.3(c). The first
basis component of ontology management is load
and design of one ontology. Considering the com-
plexity of the link between entity-labels, the same
relation-label category may distribute to numer-
ous entity-labels pairs, and multiple relation-labels
may distribute to the same entity-labels pair. The
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(a) Project Management (b) Resource Management (c) Ontology Management

(d) Manual Annotation (e) Auto Annotation (f) Statistic View

Figure 3: Operation process of six core modules in Autodive.

Figure 4: Two different display modes of ontology man-
agement.

label-map will display everything mentioned above.
Autodive also allow users download the designed
ontology for subsequent research or application.

During the design process of ontology, Autodive
allow users upload the corresponding dictionary
and fill up the required regular expression. It is
advantageous to simplify some annotation projects
when the entity-label has a clear thesaurus to-be-
annotated terms or words that have a unified struc-
ture. Two display modes of ontology is shown in
Fig.4.

3.4 Manual Annotation

The manual annotation of an entity in Autodive
can select raw text instead of drawing a bound-
ing box in PDF document, this mode is not like
PAWLS(Neumann et al., 2021). After selecting,
the user decides what kind of entity the text is. This
way of entity annotation is more precise, especially
in annotating text that has line wrap in document.
The manual annotation also provide a controlled
annotation of relationship. Annotator select two
annotated entity, then Autodive will recommend
possible relationship that pre-designed in ontology.
This recommendation step can also increase the
efficiency of annotation.

3.5 Auto Annotation

Autodive provides pre-annotation by three ways,
they are regular expression parsing, dictionary map-
ping, and external NER models. It is an evident
advantage for dictionary and regular expression an-
notation since they basically annotate "the proper
terms". However, when there are unavoidable out-
of-vocabulary (OOV) words in the to-be-annotated
literature, intelligent model annotation using exter-
nal NER models is a more effective choice.

It is evident that in various scientific research
domains, the model of private domain learned the
typical information during training, allowing it to
accurately recognize the label. Autodive uses the
Domain Extractor Loader and the Model Li-
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Figure 5: Auto annotation. A shows list of auto ex-
tracted labels.B displays instant auto annotation and
onsite feedback.

brary to choose specific domain prediction models.
When starting an annotation project, users should
select the corresponding field of the project. In
advance, we saved annotation models in several
scientific domains in model library. Furthermore,
when the project reaches unexcited fields, users
are prompted to select a model from the "generic
domain" and fill up the domain details.

One highlight function of the auto annotation
is Instant Auto Annotation. As shown in Fig.5,
the annotation results can be presented right on the
complete text with a single click. To support this
function, Autodive constructed a robot annotation
layer, and the annotation on the source document is
displayed in the same way as the manual annotation
results. The text parsing tool will first import the
text into the auto annotation model, and the model
will return the annotation results. The label will
then be filtered according to the ontology estab-
lished by the project, and it will be matched to the
precise spot on the document. The auto annotation
model adds a robot annotation layer to the litera-
ture display layer. The deep learning model will
undoubtedly take some time. Autodive chooses to
extract literature in advance during background free
time, saves the automatic annotation results in the
database, and then performs specific matching an-
notation based on the model domain and ontology
chosen by each announcer, reducing the waiting
time of specific users.

3.6 Statistic View

To help the administrator and annotator know the
status and progress of one annotation task, Auto-

dive provides Personal View and Project View
in this module. In Personal View, the number and
percentage of current annotation task are provided
so that annotator can evaluate his/her task. Besides,
the number of annotated and auto-recognized en-
tity and relationship is also shown in the view. In
Project View, functions are provided to help admin-
istrator understand current progress of all annota-
tors and their assigned tasks, such as the distribu-
tion of annotated entity and relationship, number
and percentage of each annotator and his/her task,
and so on. In Project View, user can export the
corpus for further use.

4 Evaluation & Case Study

4.1 Annotation Tools Evaluation

We compared Autodive with other open sourced
annotation tools, including AnnIE(Friedrich et al.,
2021), Doccano(Nakayama et al., 2018), We-
bAnno(Yimam et al., 2013), INCEpTION(Klie
et al., 2018), PDFAnno(Shindo et al., 2018) and
PAWLS(Neumann et al., 2021), for annotation
function comparison.

In order to match the need of scientific litera-
ture annotation, we design the evaluation metrics
as bellows: The first is [A].Availability, which
includes [A1].Activity and [A2].Online Service.
The second is [B].Onsite Support, which in-
cludes [B1].Onsite PDF Display and [B2].Onsite
PDF Annotation. The third is [C].Function In-
tegration, which includes [C1].Integration with
File System, [C2].Integration with Ontology, and
[C3].Integration with Pre-annotation Model.The
last is other functions such as [D].Team Annota-
tion and [E].Statistics. A deeper description of
these metrics is given in Definition of Evaluation
Metrics.

The comparison results are shown in Tab.1. As
shown in Tab.1, Autodive is superior to most ac-
tive tools in the function of onsite PDF annotation.
PDFAnno, PAWLS, and INCEpTION have func-
tions for PDF annotation. However, PDFAnno has
not been maintained for over 3 years. Compared
with PAWLS, Autodive provides more integration
functions with file systems and NER models which
also depends on onsite annotation mode. Auto-
dive provides a different integration mode with
pre-annotation models and a more intuitive statis-
tics view when compared with the latest version of
INCEpTION.
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Availability Onsite Integration Team Statistics
Tools [A1] [A2] [B1] [B2] [C1] [C2] [C3] [D] [E]
AnnIE - - - - - ✓ - - -

Doccano ✓ ✓ - - ✓ ✓ url ✓ ✓
WebAnno - - - - ✓ ✓ - - -
PDFAnno - - ✓ block - - - - -
PAWLS - ✓ ✓ block - ✓ ✓ - -

INCEpTION(*) ✓ ✓ ✓ text ✓ ✓ url ✓ -
Autodive(ours) ✓(*) ✓ ✓ text ✓ ✓ ✓ ✓ ✓

Table 1: Function Comparison of Text Annotation tools. Autodive will remain active (A1) and expand to support
more formats, such as iamges and tables in documents. Onsite PDF Annotation (B2) have two different modes:
annotating by drawing a block(block) and annotating by selecting a raw text(text). Integration with Pre-annotation
Model (C3) have two different modes: directly using an external API(url) or integrated with a pre-trained model(✓).
(*) the version of INCEpTION we compared is the latest stable version V26.8.

4.2 NER of Cu-based Electrocatalysts

A high-quality corpus of catalysts may assist do-
main scientists in the discovery of catalysts based
on a descriptor-optimization (Tran and Ulissi, 2018;
Zhong et al., 2020). In this case, a corpus of Cu-
based electrocatalysts for CO2 reduction has been
generated using the presented tool. At the begin-
ning of the process, one senior scientist creates an
annotation project and served as the administrator
of the project by Project Management Module.
After creating the project, the scientist finds the lit-
erature that needs annotation and assigns the litera-
ture to potential annotators using Resource Man-
agement Module. At the same time, he designs the
ontology of Cu-based electrocatalysts with this as-
sist of Ontology Management Module . There are
5 postgraduates with experience in experimental
catalysis who used the tool to construct the corpus
using Manual Annotation Module and Auto An-
notation Module. During the annotation process,
the administrator and annotators can view the rate
of progress at any time by Statistic View. After
annotation, the senior scientist exports the corpus
and review all the annotated entity and relationship.
In this real case, the corpus contains a collection
of 6,086 records extracted from 835 publications
with nine types of knowledge, including material,
regulation method, product, faradaic efficiency, cell
setup, electrolyte, synthesis method, current den-
sity, and voltage. This annotated corpus can be
accessed publicly(Wang, 2023)(Wang et al., 2023).

4.3 Auto Annotation of AI Dataset and Model

In this case, we try to demonstrate the ability of
auto annotation. A basic auto annotation project

requires related model prepared and continuous
annotation data. In order to analyse the effect of
Auto Annotation Module quantitatively, we de-
signed an experiment with a poorly correlated pub-
lic dataset and increased proportion of annotated
data to evaluate the correctness of auto annotation,
as in a real annotation project. Firstly we trained
an annotation model using the SciERC(Luan et al.,
2018) dataset that mainly focused on the field of
artificial intelligence. After deploying the model
to the Autodive backend, we chose a number of
abstracts from publications in the field of artificial
intelligence on paperswithcode.com to simulate the
automatic annotation effect. We designed ontology
with "Model" and "Dataset" entities. All data con-
tains 7,420 "Datasets" entities and 42,696 "Model"
entities.

Training and updating the NER model during the
annotation process helps fit the annotation project
and improve the correctness. Tab.2 displays the
results of this simulation. The zero-shot shows the
correctness without any "annotation" data. With
the updates of the auto annotation model through
increasing sample size, the increased correctness
of auto annotation module shows effectiveness of
Auto Annotation Module, which helps annotators
train their auto annotation models. As we can see,
well integrated auto annotation model might meet
the needs of scientific literature annotation, and it
may perform better in specific projects.

5 Related Work

Mariana Neves(Neves and Ševa, 2021) gave a com-
prehensive review of existing document annotation
tools. It splits the criteria of document annotation
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Sample Size
Tools zero-shot 0.2 0.5 0.8

Autodive 0.32 0.55 0.82 0.90

Table 2: Experiment Result

tools into four categories, which are publication,
technical, data, and functional. In this review, it
rates WebAnno(Yimam et al., 2013) as the best tool,
which also extends to a new human-in-the-loop tool
INCEpTION(Klie et al., 2018). It also mentioned
that the top two missing functions of current tools
are the support of document-level annotation, in-
tegration with existing corpus and pre-annotation,
especially model-based pre-annotation.

Kinds of new annotation tools are reported in
recent years. Many tools focus on specific tasks or
functions, such as TeamTat(Islamaj et al., 2020),
QuickGraph(Bikaun et al., 2022), DoTAT(Lin
et al., 2022) and FAST(Kawamoto et al., 2021).
Both task specified and common document an-
notation tools such as WebAnno(Yimam et al.,
2013), Doccano(Nakayama et al., 2018), An-
nIE(Friedrich et al., 2021) and TS-ANNO(Stodden
and Kallmeyer, 2022) need a pre-process that
convert document to pure text, which is a time-
consuming work. By consulting with domain ex-
perts, the converter process also causes confuses
reading, especially in the typeset document such as
scientific literature.

As for annotation tools for PDF docu-
ments, PDFAnno(Shindo et al., 2018) and
PAWLS(Neumann et al., 2021) are the two most
relevant tools with our present tool. PDFAnno con-
verts PDF documents into pure text without retain-
ing PDF structure information, whose annotation
mode is similar to our tool. However, it has not
been maintained for over 3 years. PAWLS is a re-
cent tool that supports PDF annotation with labels
and structure. It has the advantage of annotation
the meta or structural information by drawing a
bounding box rather than selecting raw text. Au-
todive is inspired by PAWLS in the requirement
of PDF annotation and surpasses it in integration
function and annotation mode.

6 Discussion

We created Autodive, a collaborative scientific lit-
erature annotation tool that offers a comprehen-
sive solution for the whole lifecycle of annotation,
especially for scientific literature annotation. In

addition, we provide automated annotation for an-
notators and can integrated with a variety of NER
models. We found that Autodive can not only be
utilized for scientific literature, but also for any ed-
itable PDF file. Also, Autodive is released as an
open source project under Apache 2.0 license.

Autodive also has some limitations. First, accu-
racy of NER models. For text annotation projects,
a more accurate NER model can ensure the accu-
racy of auto annotation. Second, collision in team-
work. Reduce annotation disputes in annotation
projects caused by diverse knowledge perspectives
between annotators and obtain more accurate anno-
tation data. Third, there are PDF files that cannot
be changed. Some obsolete or illegible PDF docu-
ments are difficult to process and cannot be used in
the current Autodive version.

In our future project, we intend to expend the
scope of literature annotation to include graphics
and tables in addition to text. Additionally, au-
todive will support more file types, including the
ability to download in JSON/CoNLL format and to
upload plain text and pictures.

Acknowledgements

We thank all anonymous reviewers. This work
is supported by the National Key Research and
Development Plan of China under Grant No.
2022YFF0712200 and 2022YFF0711900, the Nat-
ural Science Foundation of China under Grant No.
61836013, Beijing Natural Science Foundation un-
der Grant No. 4212030, Youth Innovation Promo-
tion Association CAS.

References
Tyler Bikaun, Michael Stewart, and Wei Liu. 2022.

Quickgraph: a rapid annotation tool for knowledge
graph extraction from technical text. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 270–278.

Benjamin Burger, Phillip M Maffettone, Vladimir V
Gusev, Catherine M Aitchison, Yang Bai, Xiaoyan
Wang, Xiaobo Li, Ben M Alston, Buyi Li, Rob
Clowes, et al. 2020. A mobile robotic chemist. Na-
ture, 583(7815):237–241.

Javier Corvi, Carla Fuenteslópez, José Fernández,
Josep Gelpi, Maria-Pau Ginebra, Salvador Capella-
Guitierrez, and Osnat Hakimi. 2021. The biomateri-
als annotator: a system for ontology-based concept
annotation of biomaterials text. In Proceedings of
the Second Workshop on Scholarly Document Pro-
cessing, pages 36–48.

82

http://doi.org/10.18653/v1/2022.acl-demo.27
http://doi.org/10.18653/v1/2022.acl-demo.27
https://doi.org/10.1038/s41586-020-2442-2
http://doi.org/10.18653/v1/2021.sdp-1.5
http://doi.org/10.18653/v1/2021.sdp-1.5
http://doi.org/10.18653/v1/2021.sdp-1.5


Kevin Cruse, Amalie Trewartha, Sanghoon Lee, Zheren
Wang, Haoyan Huo, Tanjin He, Olga Kononova,
Anubhav Jain, and Gerbrand Ceder. 2022. Text-
mined dataset of gold nanoparticle synthesis proce-
dures, morphologies, and size entities. Scientific
Data, 9(1):1–12.

Niklas Friedrich, Kiril Gashteovski, Mingying Yu,
Bhushan Kotnis, Carolin Lawrence, Mathias Niepert,
and Goran Glavaš. 2021. Annie: an annota-
tion platform for constructing complete open in-
formation extraction benchmark. arXiv preprint
arXiv:2109.07464.

Rezarta Islamaj, Dongseop Kwon, Sun Kim, and Zhiy-
ong Lu. 2020. Teamtat: a collaborative text annota-
tion tool. Nucleic acids research, 48(W1):W5–W11.

John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. 2021. Highly accurate pro-
tein structure prediction with alphafold. Nature,
596(7873):583–589.

Shunyo Kawamoto, Yu Sawai, Kohei Wakimoto, and
Peinan Zhang. 2021. Fast: fast annotation tool for
smart devices. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 372–381.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
proceedings of the 27th international conference on
computational linguistics: system demonstrations,
pages 5–9.

Yupian Lin, Tong Ruan, Ming Liang, Tingting Cai, Wen
Du, and Yi Wang. 2022. Dotat: a domain-oriented
text annotation tool. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–8.

Hugo López-Fernández, Miguel Reboiro-Jato, Daniel
Glez-Peña, Fernando Aparicio, Diego Gachet,
Manuel Buenaga, and Florentino Fdez-Riverola.
2013. Bioannote: a software platform for annotating
biomedical documents with application in medical
learning environments. Computer methods and pro-
grams in biomedicine, 111(1):139–147.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Mark Neumann, Zejiang Shen, and Sam Skjonsberg.
2021. Pawls: Pdf annotation with labels and struc-
ture. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing: System Demonstrations, page
258–264.

Mariana Neves and Jurica Ševa. 2021. An extensive
review of tools for manual annotation of documents.
Briefings in bioinformatics, 22(1):146–163.

Hiroyuki Shindo, Yohei Munesada, and Yuji Matsumoto.
2018. Pdfanno: a web-based linguistic annota-
tion tool for pdf documents. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Regina Stodden and Laura Kallmeyer. 2022. TS-
ANNO: an annotation tool to build, annotate and
evaluate text simplification corpora. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 145–155, Dublin, Ireland. Association
for Computational Linguistics.

Matthew C Swain and Jacqueline M Cole. 2016. Chem-
dataextractor: a toolkit for automated extraction
of chemical information from the scientific litera-
ture. Journal of chemical information and modeling,
56(10):1894–1904.

Kevin Tran and Zachary W Ulissi. 2018. Active learn-
ing across intermetallics to guide discovery of electro-
catalysts for co2 reduction and h2 evolution. Nature
Catalysis, 1(9):696–703.

Ludi Wang. 2023. A corpus of CO2 Electrocatalytic
Reduction Process extracted from the scientific liter-
ature.

Ludi Wang, Yang Gao, Xueqing Chen, Wenjuan Cui,
Yuanchun Zhou, Xinying Luo, Shuaishuai Xu, Yi Du,
and Bin Wang. 2023. A corpus of co2 electrocat-
alytic reduction process extracted from the scientific
literature. Scientific Data, 10(1):175.

Rongen Yan, Xue Jiang, Weiren Wang, Depeng Dang,
and Yanjing Su. 2022. Materials information extrac-
tion via automatically generated corpus. Scientific
Data, 9(1):1–12.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: a
flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6.

Miao Zhong, Kevin Tran, Yimeng Min, Chuanhao
Wang, Ziyun Wang, Cao-Thang Dinh, Phil De Luna,
Zongqian Yu, Armin Sedighian Rasouli, Peter
Brodersen, et al. 2020. Accelerated discovery of
co2 electrocatalysts using active machine learning.
Nature, 581(7807):178–183.

83

https://doi.org/10.1038/s41597-022-01321-6
https://doi.org/10.1038/s41597-022-01321-6
https://doi.org/10.1038/s41597-022-01321-6
http://doi.org/10.18653/v1/2022.acl-demo.5
http://doi.org/10.18653/v1/2022.acl-demo.5
http://doi.org/10.18653/v1/2022.acl-demo.5
https://doi.org/10.1093/nar/gkaa333
https://doi.org/10.1093/nar/gkaa333
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
http://doi.org/10.18653/v1/2021.emnlp-demo.41
http://doi.org/10.18653/v1/2021.emnlp-demo.41
https://aclanthology.org/C18-2002/
https://aclanthology.org/C18-2002/
http://doi.org/10.18653/v1/2022.acl-demo.1
http://doi.org/10.18653/v1/2022.acl-demo.1
https://doi.org/10.1016/j.cmpb.2013.03.007
https://doi.org/10.1016/j.cmpb.2013.03.007
https://doi.org/10.1016/j.cmpb.2013.03.007
http://doi.org/10.18653/v1/D18-1360
http://doi.org/10.18653/v1/D18-1360
http://doi.org/10.18653/v1/D18-1360
https://github.com/doccano/doccano
https://github.com/doccano/doccano
http://doi.org/10.18653/v1/2021.acl-demo.31
http://doi.org/10.18653/v1/2021.acl-demo.31
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130
https://aclanthology.org/L18-1175/
https://aclanthology.org/L18-1175/
http://doi.org/10.18653/v1/2022.acl-demo.14
http://doi.org/10.18653/v1/2022.acl-demo.14
http://doi.org/10.18653/v1/2022.acl-demo.14
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.57760/sciencedb.07106
https://doi.org/10.57760/sciencedb.07106
https://doi.org/10.57760/sciencedb.07106
https://doi.org/10.1038/s41597-023-02089-z
https://doi.org/10.1038/s41597-023-02089-z
https://doi.org/10.1038/s41597-023-02089-z
https://doi.org/10.1038/s41597-022-01492-2
https://doi.org/10.1038/s41597-022-01492-2
https://aclanthology.org/P13-4001/
https://aclanthology.org/P13-4001/
https://aclanthology.org/P13-4001/
https://doi.org/10.1038/s41586-020-2242-8
https://doi.org/10.1038/s41586-020-2242-8


A Definition of Evaluation Metrics

The definition of evaluation metrics among kinds
of annotation tools are shown belows.

[A] Availability. [A1] Activeness : The annota-
tion tool is still active and updated steadily. [A2]
Code Availability: The annotation tool is open
sourced.

[B] Onsite Support. [B1] Onsite PDF Display:
The annotation tool provides a complete display
with the structural information of the literature to
suit the reading habits of scientific annotators. [B2]
Onsite PDF Annotation: The annotation tool pro-
vides direct annotation on PDF documents, includ-
ing Text PDF Annotation (annotate text directly)
and Block PDF Annotation (annotate by drawing
frames).

[C] Function Integration. [C1] Integration
With File System (Resource Management): The
annotation tools has a file system which allows
resource management such as uploading files.
[C2] Integration With Ontology: The annota-
tion tool enables the definition of ontology such
as knowledge graph. [C3] Integration With Pre-
Annotation Model: The annotation tool offers pre-
annotation such as dictionary matching.

[D] Team Annotation: The annotation tool en-
ables team annotation and the management of an-
notation results for all.

[E] Statistics: The annotation tool provides
statistic view of project.

B Page Design

B.1 Project Management

Figure 6: Screenshot of project management. A is a
button of creating new annotation project. Once click
"New Project" button, user can input project and choose
pre-annotation model,just like C. B shows the list of
created annotation projects.

B.2 Resource Management

Figure 7: Screenshot of resource management. A shows
the three steps of literature search and assign. B, C,
D gave different ways to find or import literature files,
such as direct search, using file tags or direct upload.

Figure 8: Screenshot of annotation task assignment.
Highlighted part shows the function of assignment. Ad-
ministrator of one project have permission to assign
literature to different annotators.

B.3 Ontology Management

Figure 9: Screenshot of ontology management. A dis-
plays the list of all generated entities and relationships.
B visualizes the constructed ontology. C is the interac-
tive interface of entity design. In this interface, project
owner can define a regular expression or upload a dictio-
nary, so that Autodive can pre-annotate by the regular
expression or dictionary.
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B.4 Annotation

Figure 10: Screenshot of annotation. Similar to Fig.
4A1 and A2 demonstrate usage of three auto annotation
functions, while B1 and B2 show the results of both
auto annotation(B1) and manual annotation(B2).

B.5 Statistic View

Figure 11: Screenshot of Personal View. Personal view
allows annotator to see his/her own annotation status. A
shows an overview of assigned task, including number
of completed tasks, ongoing tasks and to-do tasks. B
shows all the number of annotated or extracted entities
and relationships. C shows a comparison between com-
pleted tasks and incomplete tasks on weekly view.

Figure 12: Screenshot of Project View. Project view
allows administrator to see overall annotation status
and each annotator’s progress. A shows summarized
overview of all annotators. B shows each annotator’s
annotation progress.

C Demo Access

A live demo of Autodive is available at
http://autodive.sciwiki.cn. The live demo pro-
vides two languages, English and simplified Chi-
nese, which depends on the language setting
of the web browser. It is allowed to con-
vert language via the "head" button in the top
right corner. We also provide a video demo
at http://autodive.sciwiki.cn/introVideo/introduce-
v1.0.mp4. The source code is available at
https://github.com/Autodive. We provide a test ac-
count in the live demo using username test and
password autodive. In this demo, we linked a re-
source library with dozens of open access (OA)
scientific literature.

To use Autodive in production environment,
users can also sign up with their own email ad-
dress, upload their own literature that needs annota-
tion, create personalized annotation project, assign
an annotator, and complete their annotation task.
Users can also deploy Autodive in their own server
with personal literature collections.

85

http://autodive.sciwiki.cn
http://autodive.sciwiki.cn/introVideo/introduce-v1.0.mp4
http://autodive.sciwiki.cn/introVideo/introduce-v1.0.mp4
https://github.com/Autodive/autodive-frontend


Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 86–94

July 10-12, 2023 ©2023 Association for Computational Linguistics

A Practical Toolkit for Multilingual Question and Answer Generation

Asahi Ushio and Fernando Alva-Manchego and Jose Camacho-Collados
Cardiff NLP, School of Computer Science and Informatics, Cardiff University, UK

{UshioA,AlvaManchegoF,CamachoColladosJ}@cardiff.ac.uk

Abstract
Generating questions along with associated an-
swers from a text has applications in several
domains, such as creating reading comprehen-
sion tests for students, or improving document
search by providing auxiliary questions and
answers based on the query. Training models
for question and answer generation (QAG) is
not straightforward due to the expected struc-
tured output (i.e. a list of question and answer
pairs), as it requires more than generating a sin-
gle sentence. This results in a small number
of publicly accessible QAG models. In this pa-
per, we introduce AutoQG, an online service
for multilingual QAG, along with lmqg, an all-
in-one Python package for model fine-tuning,
generation, and evaluation. We also release
QAG models in eight languages fine-tuned on
a few variants of pre-trained encoder-decoder
language models, which can be used online via
AutoQG or locally via lmqg. With these re-
sources, practitioners of any level can benefit
from a toolkit that includes a web interface for
end users, and easy-to-use code for develop-
ers who require custom models or fine-grained
controls for generation.

1 Introduction

Question and answer generation (QAG) is a text
generation task seeking to output a list of question-
answer pairs based on a given paragraph or sen-
tence (i.e. the context). It has been used in many
NLP applications, including unsupervised question
answering modeling (Lewis et al., 2019; Zhang
and Bansal, 2019; Puri et al., 2020), fact-checking
(Ousidhoum et al., 2022), semantic role labeling
(Pyatkin et al., 2021), and as an educational tool
(Heilman and Smith, 2010; Lindberg et al., 2013).
The most analysed setting in the literature, how-
ever, has been question generation (QG) with pre-
defined answers, as this simplifies the task and
makes the evaluation more straightforward.

Despite its versatility, QAG remains a challeng-
ing task due to the difficulty of generating compo-

Figure 1: An example of question and answer generation
given a paragraph as context.

sitional outputs containing a list of question and
answer pairs as shown in Figure 1, with recent
works mainly relying on extended pipelines that
include several ad-hoc models (Lewis et al., 2021;
Bartolo et al., 2021). These works integrate QAG
into their in-house software, preventing models to
be publicly released, and their complex pipelines
make them hard to reproduce and use by practition-
ers.

In this paper, we introduce an open set of soft-
ware tools and resources to assist on the develop-
ment and employment of QAG models for different
types of users. We publicly release the following
resources:1

• lmqg,2 a Python package for QAG model fine-
tuning and inference on encoder-decoder lan-
guage models (LMs), as well as evaluation
scripts, and a deployment API hosting QAG
models for developers;

1All the resources except for the datasets are released under
an open MIT license, while the datasets follow the license of
their original release.

2https://github.com/asahi417/
lm-question-generation

86

https://github.com/asahi417/lm-question-generation
https://github.com/asahi417/lm-question-generation


• 16 models for English, and three diverse mod-
els for each of the seven languages integrated
into our library, all fine-tuned on QG-Bench
(Ushio et al., 2022) and available on the Hug-
gingFace hub (Wolf et al., 2020);3

• AutoQG (https://autoqg.net), a website
where developers and end users can interact
with our multilingual QAG models.

2 Resources: Models and Datasets

Our QAG toolkit makes use of pre-existing mod-
els and datasets, fully compatible with the Hug-
gingFace hub. This makes our library easily ex-
tendable in the future as newer datasets and better
models emerge. In this section, we describe the
datasets (§ 2.1) and models (§ 2.2) currently avail-
able through lmqg and AutoQG.

2.1 Multilingual Datasets
Our toolkit integrates all QG datasets available in
QG-Bench (Ushio et al., 2022). QG-Bench is a mul-
tilingual QG benchmark consisting of a suite of uni-
fied QG datasets in different languages. In partic-
ular, we integrate the following datasets: SQuAD
(English), SQuADShifts (Miller et al., 2020) (En-
glish), SubjQA (Bjerva et al., 2020) (English),
JAQuAD (So et al., 2022) (Japanese), GerQuAD
(Möller et al., 2021) (German), SberQuAd (Efimov
et al., 2020) (Russian), KorQuAD (Lim et al., 2019)
(Korean), FQuAD (d’Hoffschmidt et al., 2020)
(French), Spanish SQuAD (Casimiro Pio et al.,
2019) (Spanish), and Italian SQuAD (Croce et al.,
2018) (Italian). QG-Bench is available through
our official lmqg HuggingFace project page and
GitHub4.

2.2 Models
Aiming to make QAG models publicly accessible
in several languages, we used lmqg to fine-tune
LMs using QG-Bench (§ 2.1). First, we defined
a pipeline QAG model architecture consisting of
two independent models: one for answer extraction
(AE) and one for question generation (QG). During
training, the AE model learns to find an answer
in each sentence of a given paragraph, while the
QG model learns to generate a question given an
answer from a paragraph. To generate question-
answer pairs at generation time, the AE model

3https://huggingface.co/lmqg
4https://github.com/asahi417/

lm-question-generation/blob/master/QG_BENCH.md

first extracts answers from all the sentences in a
given paragraph, and then these are used by the
QG model to generate a question for each answer.
While not directly evaluated in this paper, we also
integrated other types of QAG methods such as
multitask and end2end QAG (Ushio et al., 2023),
all available via the lmqg library (§ 3) as well as
AutoQG (§ 5).

As pre-trained LMs, we integrated T5 (Raffel
et al., 2020), Flan-T5 (Chung et al., 2022), and
BART (Lewis et al., 2020) for English; and mT5
(Xue et al., 2021) and mBART (Liu et al., 2020) for
non-English QAG models. The pre-trained weights
were taken from checkpoints available in the Hug-
gingFace Hub as below:

• t5-{small,base,large}

• google/flan-t5-{small,base,large}

• facebook/bart-{base,large}

• google/mt5-{small,base}

• facebook/mbart-large-cc25

All the fine-tuned QAG models are publicly
available in our official HuggingFace Hub. While
we initially integrated these models, users can eas-
ily fine-tune others using lmqg, as we show in § 3.

3 lmqg: An All-in-one QAG Toolkit

In this section, we introduce lmqg (Language
Model for Question Generation), a Python library
for fine-tuning LMs on QAG (§ 3.1), generating
question-answer pairs (§ 3.2), and evaluating QAG
models (§ 3.3). Additionally, with lmqg, we build
a REST API to host QAG models to generate ques-
tion and answer interactively (§ 5). lmqg is inter-
operable with the HuggingFace ecosystem, as it
can directly make use of the datasets and models
already shared on the HuggingFace Hub.

3.1 QAG Model Fine-tuning
Fine-tuning is performed via GridSearcher, a
class to run encoder-deocoder LM fine-tuning with
hyper-parameter optimization (see Appendix A for
more details). For example, the following code
shows how we can fine-tune T5 (Raffel et al., 2020)
on SQuAD (Rajpurkar et al., 2016), with the QAG
model explained in § 2.2. Since we decomposed
QAG into AE and QG, two models need to be fine-
tuned independently.

from lmqg import GridSearcher
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# instantiate AE trainer
trainer_ae = GridSearcher(

dataset_path="lmqg/qg_squad",
input_types="paragraph_sentence",
output_types="answer",
model="t5-large")

# train AE model
trainer_ae.train()

# instantiate QG trainer
trainer_qg = GridSearcher(

dataset_path="lmqg/qg_squad",
input_types="paragraph_answer",
output_types="question",
model="t5-large")

# train QG model
trainer_qg.train()

The corresponding dataset, lmqg/qg_squad,5

has as columns: paragraph_answer (answer-
highlighted paragraph), paragraph_sentence
(sentence-highlighted paragraph), question (tar-
get question), and answer (target answer). The
input and the output to the QG model are
paragraph_answer and question, while those
to the AE model are paragraph_sentence and
answer. The inputs and the outputs can be spec-
ified by passing the name of each column in
the dataset to the arguments, input_types and
output_types when instantiating GridSearcher.

3.2 QAG Model Generation

In order to generate question-answer pairs from
a fine-tuned QAG model, lmqg provides the
TransformersQG class. It takes as input a path to
a local model checkpoint or a model name on the
HuggingFace Hub in order to generate predictions
in a single line of code. The following code snippet
shows how to generate a list of question and answer
pairs with the fine-tuned QAG model presented in
§ 2.2. TransformersQG decides which model to
use for each of AE and QG based on the arguments
model_ae and model.

from lmqg import TransformersQG

# instantiate model
model = TransformersQG(

model="lmqg/t5-base -squad -qg",
model_ae="lmqg/t5-base -squad -ae"

)

# input paragraph
x = """ William Turner was an English
painter who specialised in watercolour
landscapes. One of his best known
pictures is a view of the city of

5https://huggingface.co/datasets/lmqg/qg_squad

Oxford from Hinksey Hill."""

# generation
model.generate_qa(x)
[
(
"Who was an English painter
specialised in watercolour
landscapes?",

"William Turner"
),
(
"Where is William Turner ’s
view of Oxford?",

"Hinksey Hill."
)

]

3.3 QAG Model Evaluation
Similar to other text-to-text generation tasks,
we implement an evaluation mechanism that
compares the set of generated question-answer
pairs Q̃p = {(q̃1, ã1), (q̃2, ã2), . . . } to a refer-
ence set of gold question-answer pairs Qp =
{(q1, a1), (q2, a2), . . . } given an input paragraph
p. Let us define a function to evaluate a single
question-answer pair to its reference pair as

dq,a,q̃,ã = s
(
t(q, a), t(q̃, ã)

)
(1)

t(q, a) = “question:{q}, answer:{a}’’ (2)

where s is a reference-based metric, and we com-
pute the F1 score as the final metric as below:

F1 = 2
R · P
R+ P

(3)

R = mean
([

max
(q,a)∈Qc

(
dq,a,q̃,ã

)]
(q̃,ã)∈Q̃c

)
(4)

P = mean
([

max
(q̃,ã)∈Q̃c

(
dq,a,q̃,ã

)]
(q,a)∈Qc

)
(5)

Conceptually, the recall (4) and precision (5)
computations attempt to “align” each generated
question-answer pair to its “most relevant” refer-
ence pair. As with traditional precision and recall
metrics, precision is aimed at evaluating whether
the predicted question-answer pairs are correct (or
in this case, aligned with the reference question-
answer pairs), and recall tests whether there are
enough high-quality question-answer pairs. Thus,
we refer to the score in (3) as the QAAligned F1
score. The quality of the alignment directly de-
pends on the underlying metric s. Furthermore,
the complexity of QAAligned is no more than the
complexity of the underlying metric, and invari-
ant to the order of generated pairs because of the
alignment at computing recall and precision.
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Out-of-the-box, lmqg implements two variants
based on the choice of base_metric s (used
for evaluation in § 4): QAAligned BS using
BERTScore (Zhang et al., 2019) and QAAligned
MS using MoverScore (Zhao et al., 2019). We se-
lected these two metrics as they correlate well with
human judgements in QG (Ushio et al., 2022). Nev-
ertheless, the choice of base_metric is flexible
and users can employ other natural language gen-
eration (NLG) evaluation metrics such as BLEU4
(Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), or ROUGEL (Lin, 2004).

With lmqg, QAAligned score can be computed
with the QAAlignedF1Score class as shown in the
code snippet below:

from lmqg import QAAlignedF1Score

# gold reference and generation
ref = [
"question: What makes X?, answer: Y",
"question: Who made X?, answer: Y"]
pred = [
"question: What makes X?, answer: Y",
"question: Who build X?, answer: Y",
"question: When X occurs?, answer: Y"]

# compute QAAligned BS
scorer = QAAlignedF1Score(

base_metric="bertscore")
scorer.get_score(pred , ref)

# compute QAAligned MS
scorer = QAAlignedF1Score(

base_metric="moverscore"
)
scorer.get_score(pred , ref)

4 Evaluation

We rely on the QAG models and datasets included
in the library (see § 2). The individual QG com-
ponents of each model (i.e. the generation of a
question given an answer in a paragraph) were ex-
tensively evaluated in Ushio et al. (2022). For this
evaluation, therefore, we focus on the quality of the
predicted questions and answers given a paragraph
(i.e. the specific answer is not pre-defined). For
each model, we fine-tune, make predictions and
compute their QAAligned scores via lmqg.

4.1 Results
Monolingual evaluation (English). Table 1
presents the test results on SQuAD for seven En-
glish models based on BART, T5 and Flan-T5. The
QAG model based on BARTLARGE proves to be
the best aligned with gold reference question and
answers among most of the metrics. As with other

Model QAAligned BS QAAligned MS

BARTBASE 92.8 / 93.0 / 92.8 64.2 / 64.1 / 64.5
BARTLARGE 93.2 / 93.4 / 93.1 64.8 / 64.6 / 65.0
T5SMALL 92.3 / 92.5 / 92.1 63.8 / 63.8 / 63.9
T5BASE 92.8 / 92.9 / 92.6 64.4 / 64.4 / 64.5
T5LARGE 93.0 / 93.1 / 92.8 64.7 / 64.7 / 64.9

Flan-T5SMALL 92.3 / 92.1 / 92.5 63.8 / 63.8 / 63.8
Flan-T5BASE 92.6 / 92.5 / 92.8 64.3 / 64.4 / 64.3
Flan-T5LARGE 92.7 / 92.6 / 92.9 64.6 / 64.7 / 64.5

Table 1: QAAligned scores (F1/P /R) on the test set of
SQuAD dataset by different QAG models, where the
best score in each metric is shown in boldface.

Language QAAligned BS QAAligned MS

m
T

5 S
M

A
L

L

German 81.2 / 80.0 / 82.5 54.3 / 54.0 / 54.6
Spanish 79.9 / 77.5 / 82.6 54.8 / 53.3 / 56.5
French 79.7 / 77.6 / 82.1 53.9 / 52.7 / 55.3
Italian 81.6 / 81.0 / 82.3 55.9 / 55.6 / 56.1
Japanese 79.8 / 76.8 / 83.1 55.9 / 53.8 / 58.2
Korean 80.5 / 77.6 / 83.8 83.0 / 79.4 / 87.0
Russian 77.0 / 73.4 / 81.1 55.5 / 53.2 / 58.3

m
T

5 B
A

SE
German 76.9 / 76.3 / 77.6 53.0 / 52.9 / 53.1
Spanish 80.8 / 78.5 / 83.3 55.3 / 53.7 / 57.0
French 68.6 / 67.6 / 69.7 47.9 / 47.4 / 48.4
Italian 81.7 / 81.3 / 82.2 55.8 / 55.7 / 56.0
Japanese 80.3 / 77.1 / 83.9 56.4 / 54.0 / 59.1
Korean 77.3 / 76.4 / 78.3 77.5 / 76.3 / 79.0
Russian 77.0 / 73.4 / 81.2 55.6 / 53.3 / 58.4

m
B

A
R

T

German 0 / 0 / 0 0 / 0 / 0
Spanish 79.3 / 76.8 / 82.0 54.7 / 53.2 / 56.4
French 75.6 / 74.0 / 77.2 51.8 / 51.0 / 52.5
Italian 40.1 / 40.4 / 39.9 27.8 / 28.1 / 27.5
Japanese 76.7 / 74.8 / 78.9 53.6 / 52.3 / 55.1
Korean 80.6 / 77.7 / 84.0 82.7 / 79.0 / 87.0
Russian 79.1 / 75.9 / 82.9 56.3 / 54.0 / 58.9

Table 2: QAAligned scores (F1/P /R) on the test set of
QG-Bench by different QAG models, where the best
score in each language is shown in boldface.

QG experiments and NLP in general, the larger
models prove more reliable.

Multilingual evaluation. Table 2 shows the test
results of three multilingual models (mBART,
mT5SMALL and mT5BASE) in seven languages other
than English, using their corresponding language-
specific SQuAD-like datasets in QG-Bench for fine-
tuning and evaluation.6 In this evaluation, no single
LM produces the best results across the board, yet
QAG models based on mT5SMALL and mT5BASE
are generally better than those based on mBART.

6The result of mBART in German is zero. Upon further
inspection, we found that the fine-tuned answer extraction
module did not learn properly, probably due to the limited
size of the German dataset. T5 models, however, proved more
reliable in this case.
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Gold BARTB BARTL T5S T5B T5L Flan-T5S Flan-T5B

4.9 4.1 4.2 4.2 4.3 4.3 4.2 4.3

Table 3: Average number of generated question and
answer pairs per paragraph on the test set of SQuAD by
different QAG models.

Language Gold mT5SMALL mT5BASE mBART

German 4.6 10.1 8.4 0.0
Spanish 1.3 4.6 4.8 4.7
French 1.3 4.9 3.6 5.4
Italian 3.8 4.7 4.6 2.5
Japanese 1.3 6.6 6.8 3.6
Korean 1.3 6.7 6.3 6.7
Russian 1.3 4.8 4.9 4.7

Table 4: The averaged number of generated question
and answer pairs per paragraph on the test set of QG-
Bench for each language.

4.2 Number of Generated Questions and
Answers

Table 3 and Table 4 show the averaged number of
generated question-answer pairs and compare it to
the number in the gold dataset. For English, there
is a small difference across all QAG models, with
all generating fewer pairs than the gold dataset,
but with a limited margin. For other languages,
however, there are clear differences across QAG
models, with the numbers of question-answer pairs
generated by the QAG models always being larger
than those in the gold dataset. When comparing
the number of pairs generated by the QAG models
with their QAAligned scores, in languages such as
German, Spanish, and Korean, QAG models that
generated a larger number question-answer pairs
achieved higher scores, not only recall-wise but
also generally for F1.

5 AutoQG

Finally, we present AutoQG (https://autoqg.net),
an online QAG demo where users can gener-
ate question-answer pairs for texts in eight lan-
guages (English, German, Spanish, French, Italian,
Japanese, Korean, Russian) by simply providing a
context document. We deploy the QAG models de-
scribed in § 2. In addition to the features described
above, the online demo shows perplexity computed
via lmppl,7 a Python library to compute perplexity
given any LM architecture. This feature helps us
provide a ranked list of generation to the user. Al-
though we can compute perplexity for non-English

7https://pypi.org/project/lmppl

Figure 2: A screenshot of AutoQG with an example of
question and answer generation over a paragraph.

generations based on the QAG models in each lan-
guage, it entails large memory requirements on the
the hosting server. As such, we compute a lexical
overlap between the question and the document as
a computationally-light alternative to the perplexity,
which is defined as:

1− |q ∩ p|
|q| (6)

where | · | is the number of characters in a string,
and q ∩ p is the longest sub-string of the question
q matched to the paragraph p.

Figure 2 and Figure 3 show examples of the
interface with English and Japanese QAG, where
there is a tab to select QAG models, language, and
parameters at generation including the beam size
and the value for nucleus sampling (Holtzman et al.,
2020). Optionally, users can specify an answer
and generate a single question on it with the QG
model, as shown in Figure 4. A short introduction
video to AutoQG is available at https://youtu.be/
T6G-D9JtYyc.

6 Conclusion

In this paper, we introduced lmqg, a Python pack-
age to fine-tune, evaluate and deploy QAG models
with a few lines of code. The library implements
the QAG task as an efficient integration of answer
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Figure 3: A screenshot of AutoQG with an example
of question and answer generation over a paragraph in
Japanese.

Figure 4: A screenshot of AutoQG when an answer is
specified by the user.

extraction and question generation, and includes
automatic reference-based metrics for model eval-
uation. Finally, we showcase AutoQG, an online
demo where end users can benefit from QAG mod-
els without any programming knowledge. AutoQG
enables the selection of features going from differ-
ent models and languages to controlling the diver-
sity of the generation.

Limitations

The focus on this paper was introducing software to
make QAG models available to as many practition-
ers as possible, but there are a couple of limitations
in the models and evaluation metrics we proposed.

First, our released QAG models assume a para-
graph up to around 500 tokens as an input, and
longer documents can not be directly fed into the
models. Additionally, the released QAG models
were fine-tuned on questions that require one-hop
reasoning only, so they are unable to generate multi-
hop reasoning.

Second, the QAAligned score is a framework
to extend any NLG metric to match the prediction
to the reference when they are different in size,
where we employed two well-established metrics
(BERTScore and MoverScore) as underlying met-
rics. Since those underlying metrics are already
proven to be effective (Zhang et al., 2019; Zhao
et al., 2019; Ushio et al., 2022), we have not con-
ducted any human annotation for QAG specifically.
Nonetheless, an extended human evaluation could
help provide more insights on other limitations of
the model not detected by the automatic evaluation.

Ethics Statement

While the QAG models are fine-tuned on pre-
trained language models, which are known to con-
tain some toxic contents (Schick et al., 2021), an
internal check does not reveal any toxic genera-
tion. However, there is a potential risk that the
QAG model could generate toxic text due to the
underlying LMs.
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A Grid Search

To fine-tune LMs on QAG, one can use the
GridSearcher class of lmqg, which performs LM
fine-tuning with a two-stage optimization of hyper-
parameter, a set of parameters to be used at fine-
tuning such as learning rate or batch size, as de-
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scribed in Figure 5. Let us assume that we want to
find an optimal combination of the learning rate and
random seed from a list of candidates [1e-4,1e-5]
and [0,1] for learning rate and random seed respec-
tively on QG as an example. We also assume a
training and a validation dataset to train a model
on the task and an evaluation score that reflects
a performance of a model (eg. BLEU4(Papineni
et al., 2002)), and we define a search-space as a set
including all the combinations of those candidates,
i.e. {(1e-4, 0), (1e-4, 1), (1e-5, 0), (1e-5, 1)}. The
goal of the GridSearcher is to find the best com-
bination to train a model on the training dataset for
the target task over the search-space with respect
to the evaluation score computed on the validation
dataset.

Brute-force approach such as to train model
over every combination in the search-space can
be a highly-inefficient, so GridSearcher employs
a two-stage search method to avoid training for
all the combinations, while being able to reach
to the optimal combination as possible. To be
precise, given an epoch size L (epoch), the first
stage fine-tunes all the combinations over the
search-space, and pauses fine-tuning at epoch
M (epoch_partial). The top-K combinations
(n_max_config) are then selected based on the
evaluation score computed over the validation
dataset, and they are resumed to be fine-tuned until
the last epoch. Once the K chosen models are fine-
tuned at second stage, the best model is selected
based on the evaluation score, which is kept being
fine-tuned until the evaluation score decreases.

The dataset for training and validation can be any
datasets shared in the HuggingFace Hub, and one
can specify the input and the output to the model
from the column of the dataset by the arguments
input_types and output_types at instantiating
GridSearcher. For example, the following code
shows how we can fine-tune T5 (Raffel et al., 2020)
on question generation, a sub-task of QAG, with
SQuAD (Rajpurkar et al., 2016), where the dataset
lmqg/qg_squad is shared at https://huggingface.

co/datasets/lmqg/qg_squad on the HuggingFace
Hub, which has columns of paragraph_answer,
that contains a answer-highlighted paragraph, and
question, which is a question corresponding to
the answer highlighted in the paragraph_answer.
We choose them as the input and the output to
the model respectively by passing the name of
each column to the arguments, input_types and

output_types.

from lmqg import GridSearcher

# instantiate the trainer
trainer = GridSearcher(

dataset_path="lmqg/qg_squad",
input_types="paragraph_answer",
output_types="question",
model="t5-large",
batch_size=128 ,
epoch=10,
epoch_partial=2,
n_max_config=3,
lr=[1e-4,1e-5],
random_seed=[0,1])

# train model
trainer.train()
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Abstract

Spoken Language Understanding (SLU) is one
of the core components of a task-oriented dia-
logue system, which aims to extract the seman-
tic meaning of user queries (e.g., intents and
slots). In this work, we introduce OpenSLU, an
open-source toolkit to provide a unified, mod-
ularized, and extensible toolkit for spoken lan-
guage understanding. Specifically, OpenSLU
unifies 10 SLU models for both single-intent
and multi-intent scenarios, which support both
non-pretrained and pretrained models simulta-
neously. Additionally, OpenSLU is highly mod-
ularized and extensible by decomposing the
model architecture, inference, and learning pro-
cess into reusable modules, which allows re-
searchers to quickly set up SLU experiments
with highly flexible configurations. OpenSLU is
implemented based on PyTorch, and released
at https://github.com/LightChen233/OpenSLU.

1 Introduction

Spoken Language Understanding (SLU), which is
used to extract the semantic frame of user queries
(e.g., intents and slots) (Tur and De Mori, 2011).
Typically, SLU consists of two sub-tasks: intent
detection and slot filling. Take the utterance shown
in Figure 1 as an example, given “Listen to Rock
Music”, the outputs include an intent class label
(i.e., Listen-to-Music) and a slot label sequence
(i.e., O, O, B-music-type, I-music-type).

Since intent detection and slot filling are highly
tied (Qin et al., 2021c), dominant methods in the
literature explore joint models for SLU to capture
shared knowledge (Goo et al., 2018; Wang et al.,
2018; Qin et al., 2019). Recently, Gangadhara-
iah and Narayanaswamy (2019) shows that, in the
Amazon internal dataset, 52% of examples contain
multiple intents. Inspired by this observation, var-
ious SLU works shift their eye from single-intent
SLU to multi-intent SLU scenario (Gangadhara-

∗Equal Contribution

Decoder Module

Listen

OListen-to-Music

to Rock Music

I-music-typeB-music-typeO

Slot PredictionIntent Prediction

Encoder Module

Figure 1: An example of spoken language understand-
ing. Listen-to-Music stands for the intent label while
{O, O, B-music-type, I-music-type} denotes the
slot sequence labels.

iah and Narayanaswamy, 2019; Qin et al., 2020b;
Casanueva et al., 2022; Moghe et al., 2022).

Thanks to the development of neural network,
especially the successful use of large pretrained
models, remarkable success have been witnessed in
SLU. Nevertheless, there still lacks a unified open-
source framework to facilitate the SLU community.
In this work, we make the first attempt to introduce
OpenSLU, a unified, modularized, and extensible
toolkit for SLU, which aims to help researchers to
set up experiments and develop their new models
quickly. The main features of OpenSLU are:

• Unified and modularized toolkit. OpenSLU
is the first unified toolkit to support both
single-intent and multi-intent SLU scenarios.
Meanwhile, it is highly modularized by decou-
pling SLU models into a set of highly reusable
modules, including data module, model mod-
ule, evaluation module, as well as various
common components and functions. Such
modularization allows users to quickly re-
implement SLU baselines or develop their
new SLU models by re-using provided mod-
ules or adding new modules.

• Extensible and flexible toolkit. OpenSLU is
configured by configuration objects, which is
extensible and can be initialized from YAML
files. This enables users can easily develop
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Figure 2: An overall workflow of OpenSLU, which consists of (a) Data Module, (b) Model Module, (c) Evaluation
and Metrics, (d) Logger, (e) Applications and (f) Configuration.

their models by simply extending the configu-
rations. Additionally, we provide various in-
terfaces of various common functions or mod-
ules in SLU models, including Encoder and
Decoder module. Besides, the interfaces of
our toolkit are fully compatible with the Py-
Torch interface, which allows seamless inte-
gration and flexibly rewriting any sub-module
in the toolkit.

• Visualization Tool. We provide a visualiza-
tion tool to help users to view all errors of the
model directly. With the help of visualization
tool, we can get a clearer picture: where we
are and where we should focus our efforts to
improve the performance of the model, which
helps to develop a more superior framework.

To our knowledge, this is the first unified, mod-
ularized, and extensible toolkit for SLU. We hope
our work can help researchers to quickly initiate ex-
periments and spur more breakthroughs in SLU1.

2 Architecture and Design

Figure 2 illustrates the overall workflow of
OpenSLU. In this section, we describe the (a) Data
Module (§2.1); (b) Model Module; (§2.2); (c) Eval-
uation and Metrics (§2.3) and other common mod-
ules (Logger, Applications and Configuration mod-
ule) (§2.4).

2.1 Data Module
OpenSLU offers an integrated data format
in the data module (see Figure 2(a)) for

1Video introduction about OpenSLU is available at https:
//youtu.be/uOXh47m_xhU.

SLU models, which can be denoted as:
raw text → Preprocessor → Dataset →
DataLoaderFactory→ model input.

Given the input raw text, Preprocessor sub-
module first pre-process different raw texts to an
integrated .jsonl format that contains slot, text and
intent, which is formatted as:

{
"slot": [List of Slot Value],
"text": [List of Text],
"intent": [Intent Value]

}.

The Dataset sub-module offers a range of data
processing operations to support both pretrained
and non-pretrained models. For pretrained mod-
els, these operations include lowercase conversion,
BPE-tokenization, and slot alignment, while for
non-pretrained models, the sub-module handles
word-tokenization and vocabulary construction.

Finally, DataLoaderFactory sub-model is used
for creating DataLoader to manage the data stream
for models.

2.2 Model Module

As shown in Figure 2(b), the overall model mod-
ule contains encoder module(§2.2.1) and decoder
module (§2.2.2).

2.2.1 Encoder

For the encoder module, we implement both non-
pretrained models and pretrained models. In non-
pretrained models, we offer the widely used SLU
encoders including self-attentive (Vaswani et al.,
2017; Qin et al., 2019) and BiLSTM (Hochreiter
and Schmidhuber, 1997; Goo et al., 2018; Liu et al.,
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2020b) encoder. Additionally, we support auto-
load GloVe embedding (Pennington et al., 2014).

In pretrained models, OpenSLU supports various
encoders including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2020a), ELECTRA (Clark
et al., 2020), DeBERTav3 (He et al., 2021).

2.2.2 Decoder
Since slot filling and intent detection are highly
related, dominant methods in the literature em-
ploy joint models to capture the shared knowledge
across the related tasks (Goo et al., 2018; Wang
et al., 2018; Chen et al., 2019). To support the joint
modeling paradigm, the decoder in OpenSLU con-
tains two sub-modules: (1) interaction module for
capturing interaction knowledge for slot filling and
intent detection and (2) classification module for
the final prediction results.

Interaction Module. As summarized in Qin et al.
(2021c), the interaction module consists of two
widely used interaction types, including single flow
interaction and bidirectional flow interaction.

• Single Flow Interaction refers to the flow
of information from intent to slot in one di-
rection as illustrated in Figure 3(a). A series
of studies (Goo et al., 2018; Li et al., 2018;
Qin et al., 2019) have achieved remarkable
improvements in performance by guiding slot
filling with intent detection information.

• Bidirectional Flow Interaction stands for
the bidirectional cross-impact between intent
detection and slot filling can be considered,
which is shown in Figure 3(b). Another series
of works (Wang et al., 2018; E et al., 2019;
Liu et al., 2019; Qin et al., 2021a) build the
bidirectional connection across slot filling and
intent detection to enhance each other.

Based on the two types of interaction, users can
easily design the interaction module and interaction
order via our provided classic interaction modules
and customized configurations.

Classification Module. It aims to transform hid-
den states after the interaction module into final
classification logits. There are two types of classifi-
cation modules supported by OpenSLU:

• MLP Classifier. Multi-Layer Perceptron
(MLP) Classifier is a fundamental classifica-
tion decoding algorithm. Nevertheless, the
method ignores the dependency across tokens.

Slot Classification

Single Flow 
InteractionIntent Classification

Predicted SlotPredicted Intent

Slot Classification

Bidirectional Flow Interaction

Intent Classification

Predicted SlotPredicted Intent
(a) Single Flow Decoder

(b) Bidirectional Flow Decoder

Figure 3: A brief illustration of Single Flow Decoder
(a) vs. Bidirectional Flow Decoder (b).

• LSTM Classifier. It indicates that we adopt
an LSTM classifier for the final prediction,
which has the advantage of modeling the de-
pendency of tokens (from left to right). How-
ever, it is an autoregressive classification mod-
ule for SLU, which cannot be parallel to speed
up the decoding prediction.

To improve the quality of SLU prediction results,
we also implement several SLU tricks, like teacher-
forcing and token-level intent detection (Qin et al.,
2019). Users can switch between different pre-
diction strategies by simply setting up the hyper-
parameter to improve performance.

2.3 Evaluation and Metrics
Following Goo et al. (2018); Qin et al. (2021c),
we support various metrics for SLU (shown in Fig-
ure 2(c)), including Slot F1 Score, Intent Accuracy,
Intent F1, and Exactly Match Accuracy (EMA).

• Slot F1 Score (Goo et al., 2018; Qin et al.,
2019) is used for assessing slot filling per-
formance. This metric is calculated as the
harmonic mean between precision and recall.

• Intent Accuracy (Goo et al., 2018; Qin et al.,
2019) is a measure used to evaluate the accu-
racy of intent detection, based on the ratio of
correctly predicted intents.

• Intent F1 Score (Gangadharaiah and
Narayanaswamy, 2019; Qin et al., 2020b) is
adopted to evaluate the macro F1 Score of the
predicted intents in the multi-intent detection.

97



class NewInteraction(BaseInteraction):
def __init__(self, **config):
self.config = config
...

def forward(self, hiddens: HiddenData):
...
intent, slot = self.func(hiddens)
hiddens.update_slot_hidden_state(slot)
hiddens.update_intent_hidden_state(intent)
return hiddens

accelerate config
accelerate launch \

run.py \
--dataset atis \
--model slot-gated

python visualization.py \
--config_path visual.yaml \
--output_path outputs.jsonl

python run.py \
--dataset atis \
--model slot-gated 

(a) Example for reproducing existing models.

(b) Example for multi-GPU finetuning.

(c) Example for visualization. (e) Example for implementing a new encoder model.

(d) Example for run your own model.

python run.py \
--dataset atis \
--config_path config/dca_net.yaml

(f) Example for implementing a new decoder model.

class NewDecoder(BaseDecoder):
def __init__(self,

intent_classifier,
slot_classifier,
interaction=None):

...
self.int_cls = intent_classifier
self.slot_cls = slot_classifier
self.interaction = interaction

def forward(self, hiddens: HiddenData):
...
interact = self.interaction(hiddens)
slot = self.slot_cls(interact.slot)
intent = self.int_cls(interact.intent)
return OutputData(intent, slot) 

2.20
修改

Figure 4: Example usage of OpenSLU.

• Exact Match Accuracy (Goo et al., 2018;
Qin et al., 2019, 2020b) takes intent detection
as well as slot filling into account simultane-
ously. This metric is calculated as the ratio of
sentences for which both the intent and slot
are predicted correctly within a sentence.

2.4 Common Modules

Logger. We provide a generic Logger compo-
nent to help users to track the process of model
building including wandb.ai, fitlog and local file
logging (see Figure 2(d)).

Applications. We provide complete scripts in the
Application (see Figure 2(e)) for training, predic-
tion, visual error analysis, and the final stage of
model deployment.

Configuration. As shown in Figure 2(f), our
toolkit employs Configuration module to man-
age the model configuration, training parameters,
and training and analysis data. We will introduce
more details in Section Toolkit Usage (§3).

3 Toolkit Usage

3.1 Reproducing Existing Models

For reproducing an existing model implemented by
OpenSLU on different datasets, users are required
only to specify the dataset and model by setting
hyper-parameters, i.e., model and dataset. Exper-
iments can be reproduced in a simple command
line instruction, as shown in Figure 4 (a). This
instruction aims to fine-tuning Slot-Gated (Goo
et al., 2018) model on ATIS (Hemphill et al.,
1990) dataset. With YAML configuration files, we
can modify hyper-parameters conveniently, which
allows users can reproduce various experiments
quickly without modifying the source code. In

addition, we designed OpenSLU to work on a vari-
ety of hardware platforms. If the hyper-parameter
device is set to “cuda”, CUDA devices will be used.
Otherwise, CPU will be employed by default. As
shown in Figure 4 (b), we also support distributed
training on multi-GPU by setting hyper-parameters
and command line parameters.

3.2 Customizable Combination Existing
Components

As the model is designed as reusable modules,
users can easily reuse modules via the call of in-
terface or configuration files. More specifically,
for the interface, users can call common-used en-
coder and decoder modules in one line of code from
the pre-configured library. For configuration files,
users can combine existing component libraries
only through configuration files, thus creating a
customized model.

It can be useful for users in cross-cutting ar-
eas, such as biology, that are unfamiliar with using
Python code to create models, as it allows them to
create their own models without using any Python
code. Such features can potentially make it easier
to build and test models more rapidly. Similarly,
the customized model can be trained by specify-
ing the relevant configuration file path and running
simple command line instructions, as shown in Fig-
ure 4(d).

3.3 Implementing a New SLU Model

Since OpenSLU split the model into fine-grained
components, users can directly reuse modules
through configuration files. Specifically, when
users aim to implement a new SLU model, only a
few key innovative modules need to be rewritten
by users, including a specific Model class and 2
functions as follows:
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Model
ATIS SNIPS

Slot F1.(%) Intent Acc.(%) EMA(%) Slot F1.(%) Intent Acc.(%) EMA(%)
Non-Pretrained Models

Slot Gated (Goo et al., 2018) 94.7 94.5 82.5 93.2 97.6 85.1
Bi-Model (Wang et al., 2018) 95.2 96.2 85.6 93.1 97.6 84.1
Stack Propagation (Qin et al., 2019) 95.4 96.9 85.9 94.6 97.9 87.1
DCA Net (Qin et al., 2021a) 95.9 97.3 87.6 94.3 98.1 87.3

Pretrained Models
Joint BERT (Chen et al., 2019) 95.8 97.9 88.6 96.4 98.4 91.9
RoBERTa (Liu et al., 2020a) 95.8 97.8 88.1 95.7 98.1 90.6
ELECTRA (Clark et al., 2020) 95.8 96.9 87.1 95.7 98.3 90.1
DeBERTav3 (He et al., 2021) 95.8 97.8 88.4 97.0 98.4 92.7

Table 1: Main results of single-intent SLU. All baseline results are re-implemented by OpenSLU.
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Figure 5: Main results of multi-intent SLU on EMA.
All baseline results are re-implemented by OpenSLU.

• __init__() function. This function aims for param-
eter initialization, global variable definition, and
so on. All modules can be inserted into the sys-
tem by configuring the __model_target__ hyper-
parameters, so as to quickly and automatically
build the model.
• forward() function. This function mainly focuses
on forward data flow and learning the parameters
according to the pre-defined configuration.

In most cases, rewriting Interaction mod-
ule is enough for building a new SLU model.
As shown in Figure 4(e), this module accepts
HiddenData data object as input and returns with
HiddenData data object. HiddenData contains
the hidden_states for intent and slot, and other
helpful information. With the advancement of
SLU research, patterns of decoders become in-
creasingly complex (Xing and Tsang, 2022; Cheng
et al., 2022). Therefore, to further meet the
needs of complex exploration, we provide the
BaseDecoder class, and the user can simply over-
ride the forward() function in class, which accepts
HiddenData as input data format and OutputData
as output data format, as shown in Figure 4(f).

4 Experiments

Extensive reproduction experiments are conducted
to evaluate the effectiveness of OpenSLU.

4.1 Data Settings

In single-intent SLU, we employ two widely used
benchmarks including ATIS (Hemphill et al., 1990)
and SNIPS dataset (Coucke et al., 2018).

In multi-intent SLU scenario, we support
2 widely used datasets: MixATIS and MixS-
NPIS (Qin et al., 2020b), which are collected from
the ATIS, SNIPS by simple conjunctions, e.g.,
“and”, to connect sentences with different intents.

4.2 Result Reproduction

We implement various state-of-the-art SLU models.
For single-intent SLU methods, we re-implement
the following baselines: (1) Slot Gated (Goo
et al., 2018); (2) Bi-Model (Wang et al., 2018);
(3) Stack Propagation (Qin et al., 2019); (4) DCA
Net (Qin et al., 2021a); (5) Joint Bert (Chen
et al., 2019); (6) RoBERTa (Liu et al., 2020a); (7)
ELECTRA (Clark et al., 2020); (8) DeBERTav3 (He
et al., 2021). For multi-intent SLU methods, we
adopt the following baselines: (1) AGIF (Qin et al.,
2020b); (2) GL-GIN (Qin et al., 2021b).

The reproduction results are illustrated in Ta-
ble 1, we observe that OpenSLU toolkit can repro-
duce the comparable results reported in previous
works, which verify the effectiveness of OpenSLU.
In addition, OpenSLU can outperform some re-
ported results in previous published work, which
further shows the superiority of OpenSLU. Mean-
while, the same trend can be observed in multi-
intent SLU setting, which is shown in Figure 5.

4.3 Visualization Analysis

According to a number of studies (Vilar et al., 2006;
Wu et al., 2019; Ribeiro et al., 2020; Paleyes et al.,
2022), model metrics tests alone no longer ade-
quately reflect the model’s performance. To help
researchers further improve their models, we pro-

99



(a) Error Distribution Analysis. (b) Label Transfer Analysis.

(c) Instance Analysis.
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34% of ‘B-fromloc.city_name’ labels are 
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34% 

Error Slot Label Distribution Error Intent Label Distribution Error ratio for
‘B-fromloc.city_name’

Figure 6: Visual analytics consists of three main functions including Error Distribution Analysis (a), Label Transfer
Analysis (b) and Instance Analysis (c).

vide a tool for visual error analysis including three
main parts: (a) error distribution analysis; (b) label
transfer analysis; and (c) instance analysis (see Fig-
ure 6). And the visual analysis interface can be run
with the command as shown in the Figure 4(c).

4.3.1 Error Distribution Analysis.
We provide error distribution analysis that presents
the number and percentage of label errors predicted
by the model. By viewing the error distributions,
the model can be easily analyzed and studied qual-
itatively (Caubrière et al., 2020). As a result, the
weaknesses of each system can be better under-
stood and improvements can be made to the model
in the future.

Take the error in Figure 6(a) as an example, a
large number of ‘atis_flight’ labels are incor-
rectly predicted compared with all other labels.
Therefore, we should pay more attention on how to
improve the performance of ‘atis_flight’ labels.

4.3.2 Label Transfer Analysis.
Label Transfer Analysis module first offers the per-
centage of incorrect predictions for each label and
provides the probability of being incorrectly pre-
dicted as each of the other labels to present a fine-
grained statistics for a better understanding of is-
sues such as invisible bias in the model (Wu et al.,
2019; Ribeiro et al., 2020).

For example, Figure 6(b) shows the details in
incorrect prediction on ‘B-fromloc.city_name’.
We observe 34% of ‘B-fromloc.city_name’ pre-
dict incorrectly and 77.3% of error labels are pre-
dicted as ‘O’. By having access to this information,

users can be better guided to improve their data
or label learning methods to prevent those error
predictions.

4.3.3 Instance Analysis.
In order to provide a better case study, OpenSLU of-
fers a instance-level analysis view by highlighting
error results and interactively checking all golden
labels (shown in Figure 6(c)). Such instance analy-
sis allows users to examine data on a case-by-case
basis in an intuitive way. This can be seen eas-
ily in Figure 6(c), where token ‘a’ is predicted as
‘B-fromloc.city_name’ instead of ‘O’.

Furthermore, we also deploy OpenSLU into the
Gradio2 platform, which allows users to connect
the demo directly to the public network and access
it via the computer or mobile device.

5 Conclusion

This paper introduces OpenSLU, a unified, modular-
ized, and extensible toolkit for spoken language un-
derstanding. In our toolkit, we implement 10 mod-
els on both single- and multi-intent SLU settings,
both covering the categories of non-pretrained and
pretrained language models. Our toolkit can be eas-
ily applied to other SLU settings, which is extensi-
ble to support seamless incorporation of other ex-
ternal modules. To the best of our knowledge, this
is the first open-resource toolkit for SLU and we
hope OpenSLU can attract more breakthroughs in
SLU. In the future, we can extend OpenSLU to sup-
port cross-lingual (Qin et al., 2020a; Zheng et al.,
2022) and profile (Xu et al., 2022) SLU scenario.

2https://www.gradio.app
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Abstract

We present a neural Sanskrit Natural Language
Processing (NLP) toolkit named SanskritShala1

to facilitate computational linguistic analyses
for several tasks such as word segmentation,
morphological tagging, dependency parsing,
and compound type identification. Our systems
currently report state-of-the-art performance on
available benchmark datasets for all tasks. San-
skritShala is deployed as a web-based applica-
tion, which allows a user to get real-time analy-
sis for the given input. It is built with easy-to-
use interactive data annotation features that al-
low annotators to correct the system predictions
when it makes mistakes. We publicly release
the source codes of the 4 modules included
in the toolkit, 7 word embedding models that
have been trained on publicly available Sanskrit
corpora and multiple annotated datasets such
as word similarity, relatedness, categorization,
analogy prediction to assess intrinsic properties
of word embeddings. So far as we know, this
is the first neural-based Sanskrit NLP toolkit
that has a web-based interface and a number
of NLP modules. We are sure that the people
who are willing to work with Sanskrit will find
it useful for pedagogical and annotative pur-
poses. SanskritShala is available at: https://
cnerg.iitkgp.ac.in/sanskritshala. The
demo video of our platform can be accessed at:
https://youtu.be/x0X31Y9k0mw4.

1 Introduction

Sanskrit is a culture-bearing and knowledge-
preserving language of ancient India. Digitization
has come a long way, making it easy for people to
access ancient Sanskrit manuscripts (Goyal et al.,
2012; Adiga et al., 2021). However, we find that
the utility of these digitized manuscripts is limited
due to the user’s lack of language expertise and
various linguistic phenomena exhibited by the lan-
guage. This motivates us to investigate how we

1It means ‘a school of Sanskrit’.

can utilize natural language technologies to make
Sanskrit texts more accessible.

The aim of this research is to create neural-based
Sanskrit NLP systems that are accessible through a
user-friendly web interface. The Sanskrit language
presents a range of challenges for building deep
learning solutions, such as the sandhi phenomenon,
a rich morphology, frequent compounding, flexible
word order, and limited resources (Sandhan et al.,
2022d; Krishna et al., 2021; Sandhan et al., 2021,
2019). To overcome these challenges, 4 prelimi-
nary tasks were identified as essential for process-
ing Sanskrit texts: word segmentation, morpholog-
ical tagging, dependency parsing, and compound
type identification. The word segmentation task
is complicated by the sandhi phenomenon, which
transforms the word boundaries (Sandhan et al.,
2022d). The lack of robust morphological analyz-
ers makes it challenging to extract morphological
information, which is crucial for dependency pars-
ing. Similarly, dependency information is essential
for several downstream tasks such as word order
linearisation (Krishna et al., 2019) which helps to
decode possible interpretation of the poetic compo-
sition. Additionally, the ubiquitous nature of com-
pounding in Sanskrit is difficult due to the implic-
itly encoded semantic relationship between its con-
stituents (Sandhan et al., 2022c). These 4 tasks can
be viewed as a preliminary requirement for develop-
ing robust NLP technology for Sanskrit. Thus, we
develop novel neural-based linguistically informed
architectures for all 4 tasks, reporting state-of-the-
art performance on Sanskrit benchmark datasets
(Sandhan et al., 2022c,d,a).

In this work, we introduce a neural Sanskrit NLP
toolkit named SanskritShala2 to assist computa-
tional linguistic analyses involving multiple tasks
such as word segmentation, morphological tagging,
dependency parsing, and compound type identifi-
cation. SanskritShala is also deployed as a web

2Roughly, it can be translated as ‘a school of Sanskrit’.
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application that enables users to input text and gain
real-time linguistic analysis from our pretrained
systems. It is also equipped with user-friendly in-
teractive data annotation capabilities that allow an-
notators to rectify the system when it makes errors.
It provides the following benefits: (1) A user with
no prior experience with deep learning can utilise
it for educational purposes. (2) It can function
as a semi-supervised annotation tool that requires
human oversight for erroneous corrections. We
publicly release the source code of the 4 modules
included in the toolkit, 7 word embedding models
that have been trained on publicly available San-
skrit corpora and multiple annotated datasets such
as word similarity, relatedness, categorization, anal-
ogy prediction to measure the word embeddings’
quality. To the best of our knowledge, this is the
first neural-based Sanskrit NLP toolkit that con-
tains a variety of NLP modules integrated with a
web-based interface.

Summarily, our key contributions are as follows:

• We introduce the first neural Sanskrit NLP
toolkit to facilitate automatic linguistic analy-
ses for 4 downstream tasks (§4).

• We release 7 pretrained Sanskrit embeddings
and suit of 4 intrinsic evaluation datasets to
measure the word embeddings’ quality (§5).

• We integrate SanskritShala with a user-
friendly web-based interface which is helpful
for pedagogical purposes and in developing
annotated datasets (§5).

• We publicly release codebase and datasets of
all the modules of SanskritShala which cur-
rently mark the state-of-the-art results.3

2 Related Work on Sanskrit NLP Tools

Recently, the Sanskrit Computational Linguistics
(SCL) field has seen significant growth in building
web-based tools to help understand Sanskrit texts.
Goyal and Huet (2016a) introduced the Sanskrit
Heritage Reader (SHR), a lexicon-driven shallow
parser that aids in the selection of segmentation
solutions. Samsādhanı̄ is another web-based tool
consisting of various rule-based modules (Kulkarni
and Sharma, 2019; Kulkarni et al., 2020; Sriram
et al., 2023). Recently, Terdalkar and Bhattacharya
(2021, 2022) introduced a web-based annotation

3https://github.com/Jivnesh/SanskritShala

tool for knowledge-graph construction and a metri-
cal analysis.

In short, tools for NLP can be divided into two
groups: rule-based and annotation tools. Rule-
based tools have limitations such as not providing
a final solution, limited vocabulary coverage, and
lacking user-friendly annotation features. Anno-
tation tools, on the other hand, do not have the
recommendations of rule-based systems, relying
solely on annotators. To address these limitations,
a web-based annotation framework called SHR++
(Krishna et al., 2020c) was proposed. It combines
the strengths of both types of tools by offering all
possible solutions from rule-based system SHR for
tasks like word segmentation and morphological
tagging, allowing annotators to choose the best so-
lution rather than starting from scratch.

Our proposal, SanskritShala, goes a step fur-
ther by integrating a neural-based NLP toolkit that
combines state-of-the-art neural-based pre-trained
models with rule-based suggestions through a web-
based interface. Each module of SanskritShala is
trained to predict the solutions from the exhaustive
candidate solution space generated by rule-based
systems. Hence, it makes predictions in real time
using neural-based models that have already been
trained. Thus, a complete solution is shown to the
users / annotators, which was not possible in any
of the previous attempts.

Further, annotators can easily correct the mispre-
dictions of the system with the help of user-friendly
web-based interface. This would significantly re-
duce the overall cognitive load of the annotators.
To the best of our knowledge, SanskritShala is the
first NLP toolkit available for a range of tasks with
a user friendly annotation interface integrated with
the neural-based modules.

3 About Sanskrit

Sanskrit is an ancient language known for its
cultural significance and knowledge preservation.
However, it presents challenges for deep learning
due to its morphological complexity, compound-
ing, free word order, and lack of resources. San-
skrit’s intricate grammar, with its combination of
roots, prefixes, and suffixes, requires advanced al-
gorithms to analyze and understand. Compounding
adds another layer of complexity as multiple words
combine to form new words with unique mean-
ings (Krishna et al., 2016; Sandhan et al., 2022c).
The free word order in Sanskrit complicates tasks
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Figure 1: (a) Toy illustration of the TransLIST system.“dāsobhava”. Translation: “Become a servant.” (b)
LemmaTag architecture in which multi-task learning formulation is leveraged to predict morphological tags and
lemmas by employing bidirectional RNNs with character-level and word-level representations. (c) Proposed
ensembled architecture for dependency parsing integrated with the LCM pretraining. LCM is acronym for three
auxiliary tasks: Lemma prediction, Case prediction and Morphological tag prediction. (d) Toy example illustrating
the context-sensitive multi-task learning system: “aham pı̄ta-ambaram dharāmi” (Translation: “I wear a yellow
cloth”) where ‘pı̄ta-ambaram’ is a compound having Tatpurus. a semantic class according to the context presented.

like parsing and understanding, requiring models to
comprehend meaning regardless of word placement
(Krishna et al., 2023, 2019). Moreover, Sanskrit
is considered a low-resource language, lacking ex-
tensive datasets and pre-trained models (Sandhan
et al., 2021). Overcoming these challenges necessi-
tates linguistic expertise, computational techniques,
and sufficient language resources. Developing spe-
cialized models to handle Sanskrit’s morphology,
compounding, and word order is essential. Creat-
ing annotated datasets, lexicons, and corpora will
also contribute to advancing research and appli-
cations in Sanskrit (Sandhan et al., 2022b, 2023).
Despite the obstacles, utilizing deep learning to ex-
plore Sanskrit benefits the preservation of cultural
heritage and facilitates a deeper understanding of
India’s literature and philosophy, while also push-

ing the boundaries of natural language processing.

4 A Neural NLP Sanskrit Toolkit

In this section, we describe SanskritShala, which
is a neural Sanskrit NLP toolkit designed to aid
computational linguistic analysis including various
tasks, such as word segmentation, morphological
tagging, dependency parsing, and compound type
identification. It is also available as a web appli-
cation that allows users to input text and obtain
real-time linguistic analysis from our pretrained
algorithms. We elucidate SanskritShala by first
elaborating on its key modules.

Word Tokenizer: Earlier lexicon-driven systems
for Sanskrit word segmentation (SWS) rely on
Sanskrit Heritage Reader (Goyal and Huet, 2016b,
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SHR), a rule-based system, to obtain the exhaus-
tive solution space for segmentation, followed
by diverse approaches to find the most valid so-
lution. However, these systems are rendered
moot while stumbling out-of-vocabulary words.
Later, data-driven systems for SWS are built us-
ing the most recent techniques in deep learn-
ing, but can not utilize the available candidate
solution space. To overcome the drawbacks of
both lines of modelling, we build a Transformer-
based Linguistically-Informed Sanskrit Tokenizer
(TransLIST) (Sandhan et al., 2022d) containing
(1) a component that encodes the character-level
and word-level potential candidate solutions, which
tackles sandhi scenario typical to SWS and is com-
patible with partially available candidate solution
space, (2) a novel soft-masked attention for prior-
itizing selected set of candidates and (3) a novel
path ranking module to correct the mispredictions.
Figure 1(a) illustrates the TransLIST architecture,
where the candidate solutions obtained from SHR
are used as auxiliary information. In terms of the
perfect match (PM) metric, TransLIST outperforms
with 93.97 PM compared to the state-of-the-art
(Hellwig and Nehrdich, 2018) with 87.08 PM.

Morphological Tagger: Sanskrit is a
morphologically-rich fusional Indian language
with 40,000 possible labels for inflectional mor-
phology (Krishna et al., 2020b; Gupta et al., 2020),
where homonymy and syncretism are predominant
(Krishna et al., 2018). We train a neural-based
architecture (Kondratyuk et al., 2018, LemmaTag)
on Sanskrit dataset (Krishnan et al., 2020). Figure
1(b) illustrates the system architecture in which
multi-task learning formulation is leveraged
to predict morphological tags and lemmas by
employing bidirectional RNNs with character-level
and word-level representations. Our system trained
on the Sanskrit dataset stands first with 69.3
F1-score compared to the second position with
69.1 F1-score on the Hackathon dataset (Krishnan
et al., 2020) leaderboard.4

Dependency Parser: Due to labelled data bot-
tleneck, we focus on low-resource techniques for
Sanskrit dependency parsing. Numerous strategies
are tailored to improve task-specific performance
in low-resource scenarios. Although these strate-
gies are well-known to the NLP community, it is

4Hackathon leaderboard: https://competitions.
codalab.org/competitions/35744#results

not obvious to choose the best-performing ensem-
ble of these methods for a low-resource language
of interest, and not much effort has been given to
gauging the usefulness of these methods. We inves-
tigate 5 low-resource strategies in our ensembled
Sanskrit parser (Sandhan et al., 2022a): data aug-
mentation, multi-task learning, sequential transfer
learning, pretraining, cross/mono-lingual and self-
training. Figure 1(c) shows our ensembled system,
which supersedes with 88.67 Unlabelled Attached
Score (UAS) compared to the state-of-the-art (Kr-
ishna et al., 2020a) with 87.46 UAS for Sanskrit
and shows on par performance in terms of Labelled
Attached Score.

Sanskrit Compound Type Identifier (SaCTI)
is a multi-class classification task that identifies
semantic relationships between the components of
a compound. Prior methods only used the lexi-
cal information from the constituents and did not
take into account the most crucial syntactic and
contextual information for SaCTI. However, the
SaCTI task is difficult mainly due to the implic-
itly encrypted context-dependent semantic relation-
ship between the compound’s constituents. Thus,
we introduce a novel multi-task learning approach
(Sandhan et al., 2022c) (Figure 1(d)) which in-
cludes contextual information and enhances the
complementary syntactic information employing
morphological parsing and dependency parsing as
two auxiliary tasks. SaCTI outperforms with 81.7
F1-score compared to the state-of-the-art by Kr-
ishna et al. (2016) with 74.0 F1-score.

5 Sanskrit Resources in SanskritShala

In this section, we describe 7 word embeddings pre-
trained on Sanskrit corpora and suit of 4 intrinsic
tasks datasets to assess the quality of word embed-
dings, followed by the description of web interface.

Pretrained word embeddings for Sanskrit:
There are two types of embedding methods: static
and contextualized. Table 1 shows how they are cat-
egorized based on the smallest unit of input to the
embedding model, such as character, subword, or
token level. The paper focuses on two token-level
word embeddings: Mikolov et al. (2013, word2vec)
and Pennington et al. (2014, GloVe). Word2vec is
the foundation for all subsequent embeddings and
works on the local context window, while GloVe
considers the global context. To address the OOV
issue, subword (Wieting et al., 2016; Bojanowski
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Figure 2: The web interface of the SanskritShala. At the bottom right, a rule-based chatbot is added to navigate
users on the platform to give users a user-friendly experience.

(a) (b)

Figure 3: (a) The candidate solution space generated by SHR for the word segmentation task and the predicted
solution by our pretrained model is recommended for the sequence ‘prabhūtanaranāgena balenopaviveśa ha’ using
a yellow highlight. (b) Morphological Tagger: For each word, we show possible morphological analyses suggested
by SHR as well as our system prediction in green if it falls in SHR’s candidate space, otherwise in orange.

(a) (b)

Figure 4: (a) Dependency parser: Interactive module for the dependency parsing task which directly loads predicted
dependency trees from our pretrain model and allows user to correct mispredictions using our interactive interface.
(b) Illustration of compound identifier
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Class Input type Systems
Static character charLM

subword fastText
token word2vec, gloVe, LCM

Contextualized character ELMo
subword ALBERT

Table 1: Overview of Sanskrit pretrained embeddings.

et al., 2017; Heinzerling and Strube, 2018) and
character-level (Kim et al., 2016; Jozefowicz et al.,
2016) modeling have been proposed. We also ex-
plore two contextualized embeddings: ELMo (Pe-
ters et al., 2018) and ALBERT (Lan et al., 2020),
a lighter version of BERT. We trained these 6 em-
bedding methods on Sanskrit corpora and made
the pretrained models publicly available (Sandhan
et al., 2023).5 The following section describes our
proposed pretraining for low-resource settings.

LCM Pretraining: We propose a supervised pre-
training, which automatically leverages morpho-
logical information using the pretrained encoders.
In a nutshell, LCM integrates word representations
from multiple encoders trained on three indepen-
dent auxiliary tasks into the encoder of the neural
dependency parser. LCM is acronym for three aux-
iliary tasks: Lemma prediction, Case prediction
and Morphological tag prediction. LCM follows
a pipeline-based approach consisting of two steps:
pretraining and integration. Pretraining uses a se-
quence labelling paradigm and trains encoders for
three independent auxiliary tasks. Later, these pre-
trained encoders are combined with the encoder of
the neural parser via a gating mechanism similar to
Sato et al. (2017). The LCM consists of three se-
quence labelling-based auxiliary tasks, namely, pre-
dicting the dependency label between a modifier-
modified pair (LT), the monolithic morphological
label (MT), and the case attribute of each nominal
(CT). We encourage readers to refer Sandhan et al.
(2021, LCM) for more details.

Datasets: The quality of word embedding spaces
is evaluated through intrinsic and extrinsic methods.
This study focuses on intrinsic evaluation, which
involves assessing semantic and syntactic informa-
tion in the words without testing on NLP applica-
tions. It is based on works such as Mikolov et al.
(2013) and Baroni et al. (2014). These evaluations
require a query inventory containing a query word

5https://github.com/Jivnesh/SanskritShala/
tree/master/EvalSan

and a related target word. However, such query in-
ventories are not readily available for Sanskrit. To
address this, we annotated query inventories for 4
intrinsic tasks: analogy prediction, synonym detec-
tion, relatedness, and concept categorization. The
inventories were constructed using resources such
as Sanskrit WordNet (Kulkarni, 2017), Amarakos.a
(Nair and Kulkarni, 2010), and Sanskrit Heritage
Reader (Goyal and Huet, 2016b; Huet and Goyal,
2013).

Web Interface: Figure 2 shows our Sanskrit-
Shala toolkit that offers interactive web-based pre-
dictions for various NLP tasks. The toolkit is
built using React framework, which makes it user-
friendly and easy to use. One of the tasks it handles
is the word segmentation task, which is built on
top of the web-based application called SHR++.
The SHR++ demonstration is depicted in Figure
3(a). The user inputs a Sanskrit string, which is
then sent in real-time to SHR for potential word
splits. The system prediction is then obtained from
the pretrained word tokenizer. The human annota-
tor is presented with the candidate solution space,
with the system prediction highlighted in yellow.
The toolkit also features a flask-based application
for morphological tagging, which takes user input
and scrapes possible morphological tags for each
word using SHR. As shown in Figure 3(b), the pre-
dictions of the pretrained morphological tagger are
displayed in green or orange, depending on whether
they are present in the candidate solution of SHR
or not. The user can also add a new tag if the ac-
tual tag is missing in the SHR solution space or
the system’s prediction. For the dependency pars-
ing module, we have built a react-based front-end.
The user input is passed to the pretrained model to
generate a dependency structure. As illustrated in
Figure 4(a), the front-end automatically loads the
predicted dependency tree and allows the user to
make corrections if there are any mispredictions.
Additionally, Figure 4(b) shows a flask-based ap-
plication for the compound type identifier, where
users can give input to the system through its web
interface. The final annotations can be downloaded
after each individual module. We plan to maintain
the progress of Sanskrit NLP and offer an overview
of available datasets and existing state-of-the-art
via the leaderboard for various tasks.

Interactive Chatbot: SanskritShala-bot is a rule-
based chatbot that makes it easy to automate simple
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and repetitive user requests, like answering fre-
quently asked questions and directing users to rele-
vant resources. It is also easier to set up and main-
tain than AI-powered chatbots, which are more
complicated. SanskritShala-bot is useful for ad-
dressing frequently asked standard queries. It helps
familiarize users with the platform by providing
them with information and guidance on how to use
it. It can answer questions about the platform’s
features, help users find their way around it, and ex-
plain step-by-step how to do certain tasks. This can
make it easier for users to get started and leading
to a better user experience.

6 Conclusion

We present the first neural-based Sanskrit NLP
toolkit, SanskritShala which facilitates diverse lin-
guistic analysis for tasks such as word segmenta-
tion, morphological tagging, dependency parsing
and compound type identification. It is set up as a
web-based application to make the toolkit easier to
use for teaching and annotating. All the codebase,
datasets and web-based applications are publicly
available. We also release word embedding models
trained on publicly available Sanskrit corpora and
various annotated datasets for 4 intrinsic evalua-
tion tasks to assess the intrinsic properties of word
embeddings. We strongly believe that our toolkit
will benefit people who are willing to work with
Sanskrit and will eventually accelerate the Sanskrit
NLP research.

Limitations

We plan to extend SanskritShala by integrating
more downstream tasks such as Post-OCR correc-
tion, named entity recognition, verse recommenda-
tion, word order linearisation, and machine transla-
tion. Improving the performance of existing tasks
would be important. For example, the current de-
pendency parser is very fragile (performance drops
by 50%) in the poetry domain.

Ethics Statement

Our work involves the development of a platform
for annotating Sanskrit text. We believe that this
platform will be useful for people who are willing
to work with Sanskrit for research and educational
purposes. We have ensured that our platform is de-
signed ethically and responsibly. We do not foresee
any harmful effects of our platform on any com-
munity. However, we caution users to use the plat-

form carefully as our pretrained models are not per-
fect, and errors can occur in the annotation process.
All our systems are built using publicly available
benchmark datasets, and we have released all our
pretrained models and source codes publicly for
future research. We are committed to transparency
and open access in our work, and we believe that
sharing our resources will benefit the wider NLP
community. We also acknowledge that NLP re-
search can have potential ethical implications, par-
ticularly in areas such as data privacy, bias and
discrimination. We are committed to continuing to
consider these ethical implications as we develop
our platform, and we welcome feedback from the
community on how we can improve our ethical
practices.
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Abstract

Systems that support users in the automatic
creation of visualizations must address sev-
eral subtasks - understand the semantics of
data, enumerate relevant visualization goals
and generate visualization specifications. In
this work, we pose visualization generation as
a multi-stage generation problem and argue that
well-orchestrated pipelines based on large lan-
guage models (LLMs) and image generation
models (IGMs) are suitable to addressing these
tasks. We present LIDA, a novel tool for gen-
erating grammar-agnostic visualizations and
infographics. LIDA comprises of 4 modules
- A SUMMARIZER that converts data into a
rich but compact natural language summary,
a GOAL EXPLORER that enumerates visualiza-
tion goals given the data, a VISGENERATOR
that generates, refines, executes and filters visu-
alization code and an INFOGRAPHER module
that yields data-faithful stylized graphics using
IGMs. LIDA provides a python api, and a hy-
brid USER INTERFACE (direct manipulation
and multilingual natural language) for interac-
tive chart, infographics and data story genera-
tion. Code and demo are available at this url -
https://microsoft.github.io/lida/

1 Introduction

Visualizations make data accessible by reducing
the cognitive burden associated with extracting in-
sights from large tabular datasets. However, vi-
sualization authoring is a complex creative task,
involving multiple steps. First the user must build
familiarity with the dataset (content and semantics)
and enumerate a set of relevant goals or hypothe-
ses that can be addressed using the data. Next,
users must select the right visualization representa-
tion (marks, transformations and layout) for each
goal. Finally, the user must implement the visu-
alization either as code or using available direct
manipulation interfaces. Each of these steps re-
quire expertise, and can be tedious as well as error

prone for users with limited visualization experi-
ence (novices). Existing research has sought to
address these challenges by automating the visual-
ization (AUTOVIZ) creation process, given a dataset
(Podo et al., 2023). Automation may occur in two
modes: i.) fully automated - the system automati-
cally generates visualizations relevant to the data
ii.) semi-automated - the user specifies their goals
and the system generates visualizations that address
these goals. The former mode is valuable for users
unfamiliar with the data and the latter is valuable
for users with some familiarity with the data and
the visualization task.

Consequently, a successful AUTOVIZ tool must
excel at each of several subtasks - understand the
semantics of the data, enumerate relevant visual-
ization goals and generate visualization specifica-
tions that meet syntax, design, task and perceptual
requirements of these goals (Podo et al., 2023).
Furthermore, given the target demographic (novice
users), such a tool must support the user by offering
NL (NL) interaction modalities (Mitra et al., 2022;
Narechania et al., 2020; Chen et al., 2022), affor-
dances to control system behavior and sense mak-
ing tools to understand and debug/verify system
behavior. While related work has addressed aspects
of the AUTOVIZ task, there are several known limi-
tations (Podo et al., 2023) such as they: (i) rely on
heuristics that are limited in coverage, challenging
to craft and tedious to maintain (Wongsuphasawat
et al., 2017). (ii) require significant user interac-
tion to generate visualizations (Wongsuphasawat
et al., 2017; Moritz et al., 2018). (iii) implement
automated approaches that offer limited control
over system input and output (Dibia and Demiralp,
2019) (iv) require grammar (or chart type) specific
training data and model architectures (Dibia and
Demiralp, 2019; Luo et al., 2018) for each sub task,
(v) do not consider alternative chart representation
formats such as infographics.

Concurrently, advances in large foundation mod-
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Convert datasets into a rich but 
compact natural language 
representation (context).
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cars and has 9 fields - Name, 
Miles_per_Gallon, Cylinders, 
Displacement, Horsepower, 
Weight_in_lbs, Acceleration, 
Year, Origin ..

� Histogram of Miles per 
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horse powe�
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over time�

� Average horsepower per 
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Generate a set of potential 
“goals*” given the dataset 
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execute

  
and  visualization code 
to yield specifications* .

Generate stylized infographics 
based based on visualization 
and style prompts.

Output Output Output Output

* goals may also be directly provided by 
the user. Supports multi-lingual input. * specification may be in any 

programming language or grammar. * Style prompt: line sketch art, line 
drawing

Cars.csv Generate code in visualization 
based on context and goal

“

”

RULES + LLM LLM IGMLLM

Figure 1: LIDA generates visualizations and infographics across 4 modules - data summarization, goal exploration,
visualization generation and infographics generations. Example output from each module is shown.

Reference Visualization Generated stylized infographics

underwater art, shells pastel art oil on canvas, impasto

Figure 2: Example data-faithful infographics and associated style prompts generated with LIDA.

els (Bommasani et al., 2021) have shown state of
the art performance on a variety of creative tasks
such as multilingual text generation, code genera-
tion, image captioning, image generation, and im-
age editing. In this work, we argue that the vast
capabilities of these models can be assembled to ad-
dress the AUTOVIZ task, whilst addressing the lim-
itations of existing approaches. This work makes
the following contributions:

• We present a novel multi-stage, modular ap-
proach (Fig 1) for the automatic generation
of data visualization and infographics using
LLMs1. Specifically, we (i) Efficiently represent
datasets as NL summaries, suitable as ground-
ing context for an LLM to address visualization
tasks. (ii) Generate a set of visualization goals
using LLMs. Importantly, we leverage prompt
engineering to steer the model towards generat-

1This work primarily utilizes the OpenAI gpt-3.5-turbo-x
line of models for text and code generation.

ing correct visualization that follow best prac-
tices (see Appendix C). (iii) Apply LLMs to
generate grammar-agnostic visualization speci-
fication based on generated (or human provided)
goals. (iv) Provide a hybrid interface that sup-
ports traditional direct manipulation controls
(e.g., manually select which fields to explore)
and a rich multilingual NL interface to sup-
port user’s with varied skill/experience. (v) Ap-
ply text-conditioned image generation models
(IGM) models in generating stylized infograph-
ics that are both informative (generally faithful
to data), aesthetically pleasing, memorable and
engaging (see section 2.3).

• We introduce metrics for evaluating LLM-
enabled visualization tools, including a metric
for pipeline reliability (visualization error rate -
VER), and visualization quality (self-evaluated
visualization quality - SEVQ) (see section 4).
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• We implement our approach in an Open Source
library - LIDA2. LIDA provides a python api,
a web api and a rich web interface useful for
research and practical applications.

Compared to existing AUTOVIZ approaches, LIDA

proposes an implementation that is simplified
(eliminates the need for subtask-specific mod-
els), general (can be adapted to generate visual-
izations in any programming language or gram-
mar), flexible (individual modules can be opti-
mized) and scalable (the system performance will
improve with advances in the underlying LLM).
Taken together, these contributions provide build-
ing blocks towards complex workflows such as
visualization translation, chart question answering
(with applications in accessibility of charts), auto-
mated data exploration and automated data stories.

To the best of our knowledge, LIDA is the first
tool to formulate visualization/infographic genera-
tion as a multi-step generation task and demonstrate
an end-to-end pipeline that addresses a variety of
subtasks.

2 Related Work

LIDA is informed by research on large foundation
models applied to creative tasks across modalities
such as text and images, and advances in automated
generation of visualizations and infographics.

2.1 Foundation Models for Creative Tasks

Advances in large transformer-based (Vaswani
et al., 2017) models trained on massive amounts
of data (terabytes of text and images) have led
to a paradigm shift where a single model demon-
strates state of the art task performance across mul-
tiple data modalities such as text, images, audio
and video. These models, also known as founda-
tion models (Bommasani et al., 2021), have been
shown to be effective for a variety of human cre-
ativity tasks. LLMs like the GPT3 series (Brown
et al., 2020), OPT (Zhang et al., 2022), PALM
(Chowdhery et al., 2022), LAMBDA (Cohen et al.,
2022) learn complex semantics of language allow-
ing them to be effective in tasks such as text sum-
marization, question answering. Code LLMs such
as Codex (Chen et al., 2021), AlphaCode (Li et al.,
2022), InCoder (Fried et al., 2022) show state of
the art performance on a suite of code intelligence
tasks. Finally, models such as CLIP (Radford et al.,

2https://microsoft.github.io/lida/.

2021), DALLE (Ramesh et al., 2022, 2021) and La-
tent Diffusion (Rombach et al., 2022) have shown
state of the art capabilities on image generation
tasks such as image captioning, image editing, and
image generation.

In this work, we adopt insights from Program-
Aided Language models (Gao et al., 2022) - a setup
where LLMs generate programs as the intermedi-
ate reasoning steps, but offload the solution step to
a runtime such as a python interpreter. We lever-
age the language modeling capabilities of LLMs in
generating semantically meaningful visualization
goals, and their code writing capabilities in gener-
ating visualization code which is compiled to yield
visualizations. These visualizations (images) are
then used as input to image generation models in
generating stylized infographics.

2.2 Automated Visualization (AUTOVIZ)

Extant AUTOVIZ research have explored multiple
approaches such as heuristics, task decomposition
or learning based approaches. Heuristics-based ap-
proaches explore properties of data in generating
a search space of potential visualizations (Wong-
suphasawat et al., 2017), ranking these visualiza-
tions based on quality attributes (Luo et al., 2018;
Moritz et al., 2018) and presenting them to the
user. For example, DeepEye (Luo et al., 2018)
enumerates all possible visualizations and classi-
fies/ranks them as “good” or “bad” using a binary
decision tree classifier while Voyager (Wongsupha-
sawat et al., 2017) uses heuristics to enumerate the
space of visualizations. However, heuristics can
be tedious to maintain, may have poor coverage
of the visualization space and does not leverage
information encoded in existing datasets. More
recent work has explored a task decomposition
approach where the AUTOVIZ process is decom-
posed into multiple tasks that are solved individu-
ally via specialized tools and aggregated to yield
visualizations (Narechania et al., 2020; Chen et al.,
2022; Wang et al., 2022b). For example NL4DV
(Narechania et al., 2020) implements a custom
query engine that parses natural language queries,
identifies attributes/tasks and generates Vega-Lite
specifications. A limitation of task decomposition
approaches is that they are bottlenecked by the
implementation performance for each step (e.g.,
limitations with models for disambiguating natural
language queries as seen in NL4DV (Narechania
et al., 2020)). Finally, end-to-end learning-based
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approaches seek to automatically learn mappings
from data directly to generated visualizations. For
example, Data2Vis (Dibia and Demiralp, 2019)
(the most relevant work to this study) uses a se-
quence to sequence model that implicitly addresses
AUTOVIZ subtasks by learning a mapping from
raw JSON data sampled from datasets to Vega-Lite
(Satyanarayan et al., 2017) specifications. Some
limitations of current learning approaches is that
they are limited to a single grammar, require cus-
tom models, custom paired training data and train-
ing objectives (Dibia and Demiralp, 2019; Luo
et al., 2018; Chen et al., 2022) for each supported
grammar, and do not provide a path to generating
infographics. Furthermore, they do not provide
mechanisms for fine-grained control of visualiza-
tion output or provide robust error detection and
recovery strategies.

LIDA addresses these limitations in several ways:
(i) Leverages patterns learned by LLMs from mas-
sive language and code dataset, applying this
knowledge to subtasks. (ii) Provides a single gram-
mar-agnostic pipeline that generates visualization
in multiple programming languages and visualiza-
tion grammars. (iii) Supports natural language
based control of generated visualizations. (iv) lever-
age emergent capabilities of large language models
such chain of thought reasoning to improve reliabil-
ity of generated text/code (Kojima et al., 2022; Wei
et al., 2022; Shi et al., 2022a), model calibration
(Kadavath et al., 2022) (predictions on correctness
probabilities of visualizations) as well as self-con-
sistency (Wang et al., 2022a) in ranking/filtering
results. (v) provides a mechanism for generating
infographics that are data-faithful and aesthetically
pleasing. (vi) supports a fully automatic mode
where an LLM is used to discover meaningful goal-
s/hypotheses (fields to visualize, questions to ask)
or a semi automatic mode where the user provides
a hypothesis and it generates a visualization.
By choosing to cast visualization/infographic gen-
eration as generation tasks that offloads core prob-
lem solving to LLMs and IGMs, LIDA simplifies the
design and maintenance of such systems.

2.3 Infographics Generation

Infographics (information graphics) are visual arti-
facts that seek to convey complex data-driven nar-
ratives using visual imagery and embellishments
(Harrison et al., 2015). Existing research has shown
that infographics are aesthetically pleasing, engag-

ing and more memorable (Tyagi et al., 2021; Harri-
son et al., 2015; Haroz et al., 2015), at no additional
cost to the user (Haroz et al., 2015). These prop-
erties have driven their applications in domains
like fashion, advertisemnt, business and general
communications. However, the creation of info-
graphics that convey data insights can be a tedious
process for content creators, often requiring skills
across multiple tools and domains. Research on
infographic generation have mainly explored the
creation of pictographs (Haroz et al., 2015) - replac-
ing the marks on traditional charts with generated
images and learning to extract/transfer styles from
existing pictographs (Shi et al., 2022b). In this
work, we extend this domain to exploring the gener-
ation of both visual marks as well as generating the
entire infographic based on natural language style
descriptions using large image generation models
such as DALLE (Ramesh et al., 2022, 2021) and
Latent Diffusion (Rombach et al., 2022). This ap-
proach also enables user-generated visual styles
and personalization of visualizations to fit user pref-
erences such as color palettes, visual styles, fonts
etc.

3 The LIDA System

LIDA comprises of 4 core modules - a SUMMA-
RIZER, a GOAL EXPLORER, a VISGENERATOR

and an INFOGRAPHER (see Fig 1). Each module is
implemented in the LIDA github repo as a python li-
brary with an optional user interface (see Appendix
A).

3.1 SUMMARIZER

Atomic type, field 
statistics, samples ..

LLM / User Enrichment 
(description, semantic type)

{" ":"cars.json"," ":"cars.json","dataset_description":"A dataset 
containing information about cars."," ":[{" ":"Name","properties":
{" ":"string"," ":["amc concord dl","amc ambassador 
dpl","plymouth cricket"], " " : 311, " ": 
" ", " ":"The make and model of the car."}} ...

name file_name
fields column

dtype samples
num_unique_values semantic_type

car_model description

Stage 1 Stage 2

Cars.csv

Figure 3: The SUMMARIZER module constructs a NL
summary from extracted data properties (atomic types,
field statistics) and an optional LLM enrichment (pre-
dicted field descriptions, semantic types).

LLMs are capable zero shot predictors, able to solve
multiple tasks with little or no guiding examples.
However, they can suffer from hallucination e.g.,
generating text that is not grounded in training data
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or the current task. One way to address this is to
augment (Mialon et al., 2023) the LLM with ground-
ing context. Thus, the goal of the summarizer is to
produce an information dense but compact 3 sum-
mary for a given dataset that is useful as grounding
context for visualization tasks. A useful context is
defined as one that contains information an ana-
lyst would need to understand the dataset and the
tasks that can be performed on it. The summary is
implemented in two stages (see Fig 3)
Stage 1 - Base summary generation: We ap-
ply rules in extracting dataset properties includ-
ing atomic types (e.g., integer, string, boolean) us-
ing the pandas library (McKinney, 2010), general
statistics (min, max, # unique values) and a random
non-null list of n samples for each column.
Stage 2 - Summary enrichment: The base sum-
mary is optionally enriched by an LLM or a user
via the LIDA ui to include semantic description of
the dataset (e.g., a dataset on the technical specifi-
cation of cars), and fields (e.g., miles per gallon for
each car) as well as field semantic type prediction
(Zhang et al., 2019).

3.2 GOAL EXPLORER

This module generates data exploration goals,
given a summary generated by the SUMMARIZER.
We express goal generation as a multitask genera-
tion problem where the LLM must generate a ques-
tion (hypothesis), a visualization that addresses the
question and rationale (see Fig 4). We find that
requiring the LLM to produce a rationale leads to
more semantically meaningful goals.

{ " ": "What is the distribution of Miles_per_Gallon?",

" ": "Histogram of Miles_per_Gallon",

" ": "This tells us about the fuel efficiency of the cars in the 
dataset and how it is distributed." }

question
visualization
rationale

Figure 4: A goal generated by LIDA is a JSON data
structure that contains a question, a visualization and a
rationale.

3.2.1 VISGENERATOR

The VISGENERATOR generates visualization speci-
fications and is comprised of 3 submodules - a code
scaffold constructor, a code generator and a code
executor.
Code scaffold constructor: Implements a library
of code scaffolds that correspond to programming

3Note: the summary must be compact in order to maximize
the limited context token budget of LLMs.

code scaffold constructor code generator code executor

Implement a library of “code scaffolds” for 
languages and grammars e.g., Python, Vega-Lite.

1

2

3





4

5

import as
def

return

 altair  alt 

 (data):


    chart = 
alt.Chart(data).mark_point()
.encode(x=
,y= )

   chart

chart = plot(data)

plot

'Miles_per_Gallon'
'Cylinders'

1

2

3

4

5

import as
def

return

 altair  alt 

 (data):


  chart = 
   chart

chart = plot(data)

plot
'''<stub>'''


Complete code scaffolds based 
on   summary and  goal.

Execute generated code, 
parse results.

Figure 5: The VISGENERATOR module constructs vi-
sualization code scaffolds, fills a constrained section
(< stub >) and executes the scaffold.

languages and visualization grammars e.g., python
scaffolds support grammars such as Matplotlib,
GGPlot, Plotly, Altair, Seaborn, and Bokeh. Each
scaffold is an executable program that i.) imports
relevant dependencies ii.) defines an empty func-
tion stub which returns a visualization specification
(see Fig 5a).
Code generator: Takes a scaffold, a dataset sum-
mary, a visualization goal, and builds a prompt. An
LLM (applied in fill-in-the-middle mode (Bavarian
et al., 2022)) is then used to generate n candidate
visualization code specifications.
Code executor: Post-processes and executes4 the
code specifications as well as filters the results.
LIDA implements several filtering mechanisms to
detect errors, each with latency tradeoffs: (i) gener-
ates a large sample for n with high temperature, dis-
card candidates that do not compile. (ii) apply self
consistency (Wang et al., 2022a) in LLMs where
multiple candidates are generated and the solution
with the highest consensus is selected. (iii) gener-
ate correctness probabilities (Kadavath et al., 2022)
for all candidates and selects the one with the high-
est probability. Note that the last two approaches
are computationally expensive (require multiple
forward passes through an LLM) and are not suit-
able for real time applications. The final output
is a list of visualization specifications (code) and
associated raster images.

3.2.2 VIZOPS - Operations on Generated
Visualizations

Given that LIDA represents visualizations as code,
the VISGENERATOR also implements submodules
to perform operations on this representation.
Natural language based visualization refine-
ment: Provides a conversational api to iteratively

4Execution in a sandbox environment is recommended.
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refine generated code (e.g., translate chart t hindi
. . . zoom in by 50% etc) which can then be exe-
cuted to generate new visualizations.
Visualization explanations and accessibility:
Generates natural language explanations (valuable
for debugging and sensemaking) as well as acces-
sibility descriptions (valuable for supporting users
with visual impairments).
Visualization code self-evaluation and repair:
Applies an LLM to self-evaluate generated code on
multiple dimensions (see section 4.1.2).
Visualization recommendation: Given some con-
text (goals, or an existing visualization), recom-
mend additional visualizations to the user (e.g., for
comparison, or to provide additional perspectives).

3.3 INFOGRAPHER

This module is tasked with generating stylized
graphics based on output from the VISGENERATOR

module (see Fig 2). It implements a library of vi-
sual styles described in NL that are applied directly
to visualization images. Note that the style library
is editable by the user. These styles are applied in
generating infographics using the text-conditioned
image-to-image generation capabilities of diffusion
models (Rombach et al., 2022), implemented using
the Peacasso library api (Dibia, 2022). An optional
post processing step is then applied to improve the
resulting image (e.g., replace axis with correct val-
ues from visualization, removing grid lines, and
sharpening edges).

3.4 USER INTERFACE

LIDA implements a user interface that communi-
cates with the core modules over a REST and Web-
socket api. The user interface implements several
views.
Data upload and summarization: This view al-
lows the user to upload a dataset and explore a
sample of rows in the dataset via a table view. A
data upload event triggers a call to the SUMMA-
RIZER and GOAL EXPLORER module and displays
a summary of the dataset and a list of potential
goals. This view also allows the user to option-
ally annotate and refine the generated summary or
curate fields used in the dataset.
Visualization view: This view allows the user to
optionally provide a visualization goal in NL (e.g.,
"what is the fuel efficiency per country?") or se-
lect a generated goal and then displays a generated
visualization . For each visualization, intermedi-
ate output from the models (underlying data sum-

mary, visualization specification, code scaffold) are
shown as explanations to aid in sensemaking, and
debugging(see Fig 9). This view also implements
the VIZOPS capabilities described in Section 3.2.2
(e.g., See the interface for visualization evaluation
in Fig 10). Note that the NL interface inherits the
multilingual language capabilities of the underly-
ing LLM, enabling multilingual NL interaction.

Overall, the combination of these modules result
in a system that is able to implicitly address an
array of data visualization operations such as data
transformation, encoding, mark selection, styling,
layout, and annotation (Wang et al., 2022b).

4 Evaluation

4.1 Evaluation Metrics
Our initial evaluation of LIDA focuses on two high
level metrics - visualization error rates (VER) to pro-
vide signals on the reliability of the LIDA pipeline,
and self-evaluated visualization quality (SEVQ) to
assess the quality of generated visualizations.

4.1.1 Visualization Error Rate (VER)
Visualization error rate is computed as the percent-
age of generated visualizations that result in code
compilation errors. This metric provides critical
insights into the reliability of the LIDA pipeline
and impact of changes to the system (e.g., prompt
engineering or scaffold update).

VER =
E
T
∗100

Where: - E = Number of generated visualiza-
tions with code compilation errors, and - T = Total
number of generated visualizations.

4.1.2 Self-Evaluated Visualization Quality
(SEVQ)

Recent work shows LLMs like GPT-4 encode broad
world knowledge (OpenAI, 2023), can assess the
quality of their output (Kadavath et al., 2022; Lin
et al., 2022) and can approximate human judge-
ments for tasks such as summarization (Liu et al.,
2023). Our observations applying GPT3.5/GPT-
4 to visualization tasks suggest similar results.
Specifically, GPT-4 has learned to encode some
visualization best practices and can apply these in
generating critiques of visualization code across
multiple dimensions. Thus, to evaluate visualiza-
tion quality, we compute an SEVQ metric by ap-
plying GPT-4 in assessing the quality of gener-
ated visualizations. Specifically, we task GPT-4
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with scoring generated visualization code (a nu-
meric value from 1-10 and a rationale) across 6
dimensions - code accuracy, data transformation,
goal compliance, visualization type, data encoding,
and aesthetics. These dimensions are informed by
existing literature on visualization generation/rec-
ommendation e.g., Wang et al. (2022b) outline 6
visualization tasks including data transformation,
encoding, marks, styling, layout and annotation,
while (Moritz et al., 2018) codify constraints for
visualization quality across expressivity (does it
convey the facts of the data) and effectiveness (is
the information more readily perceived compared
to other visualizations) criteria. Additional details
on prompts used for each dimension are provided
in Appendix B.

4.2 Evaluation Benchmark Settings

Our initial benchmark is based on 57 datasets
sourced from the vega datasets repository5. For
each dataset, LIDA is tasked with generating 5 goals
and 1 visualization per goal across multiple gram-
mars6. For reproducibility, we set temperature = 0
and number of samples n = 1 for the LLM. A
gallery of the generated evaluation visualizations
can be viewed on the LIDA project page.

4.3 Evaluation and Ablation Study Results

no_enrich enrich schema no_summary
Summary Type
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0.6
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r R
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5.61% 7.72% 7.02%

95.79%

3.51% 3.51%
9.47%

99.30%
Visualization Error Rate | GPT-3.5,  n=2280
lib

matplotlib
seaborn

Figure 6: Results from an ablation study on the impact
of data summarization strategies on visualization error
rate (VER) metric.

Overall, we find that LIDA is able to generate
visualizations with a low error rate (VER = 3.5%).
We also conduct an ablation study to inform on
the impact of the SUMMARIZER across the fol-

5https://github.com/vega/vega-datasets
6LIDA is given a single try for each step. In theory, the

error rates can be driven to zero, by recursively applying the
visualization self-evaluation and self-repair modules.

lowing conditions - (i) no_enrich: a base sum-
mary with no enrichment (see Section 3.1), (ii) en-
rich: summary with LLM enrichment, (iii) schema:
only field names, i.e., schema as summary, and
(iv) no_summary: no summary. Results show that
including a summary leads to reduced error rate
compared to simply adding field names (schema)
as summary. We also find that enriching the base
summary with an LLM has less of an effect on
VER (with variations across visualization grammar),
and an expressive, well-represented grammar like
Seaborn having lower VER. These results are sum-
marized in Figure 6. We also find that the SEVQ

metric is valuable in identifying semantic quality
issues with generated visualizations. For example,
Fig 10 shows an example where the user has re-
quested a pie chart, and the LIDA self-evaluation
module critiques this visualization using the SEVQ

metric, providing a rationale for why a bar chart
is more effective (see Fig 10), with the option to
automatically repair the visualization.

5 Conclusion

In this work, we formulate visualization generation
as a multi-stage text (and code) generation problem
that can be addressed using large language mod-
els. We present LIDA - a tool for the automatic
generation of grammar-agnostic visualizations and
infographics. LIDA addresses limitations of cur-
rent automatic visualization systems - automatic
generation of hypothesis/goals given datasets, con-
versational interface for controllable visualization
generation and refinement, support for multiple vi-
sualization grammars using the same pipeline and
the ability to generate infographics. LIDA is effec-
tive compared to state of the art systems (see ex-
ample gallery of generated visualizations); it offers
a simplified system implementation and leverages
the immense language modeling and code genera-
tion capabilities of LLMs in implicitly solving com-
plex visualization subtasks. Finally, we introduce
metrics for assessing reliability (visualization error
rate - VER) and visualization quality (self-evaluated
visualization quality -SEVQ) for LLM-enabled vi-
sualization tools. We hope modules implemented
in LIDA will serve as useful building blocks in en-
abling complex creative workflows such as visual-
ization translation, chart question answering(with
applications in accessibility of charts), automated
data exploration and automated storytelling.
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6 Limitations

While LIDA demonstrates clear advances in how
we can support users in authoring visualizations
and infographics, there are several limitations that
offer a natural avenue for future research.
Low Resource Grammars: The problem formu-
lation introduced in LIDA depends on the under-
lying LLMs having some knowledge of visualiza-
tion grammars as represented in text and code
in its training dataset (e.g., examples of Altair,
Vega, Vega-Lite, GGPLot, Matplotlib, represented
in Github, Stackoverflow, etc.). For visualization
grammars not well represented in these datasets
(e.g., tools like Tableau, PowerBI, etc., that have
graphical user interfaces as opposed to code repre-
sentations), the performance of LIDA may be lim-
ited without additional model fine-tuning or transla-
tion. Furthermore, performance may be limited for
complex tasks (e.g., tasks requiring complex data
transformations) beyond the expressive capabilities
of specific grammars. Further research is needed
to: i.) study effects of strategies like task disam-
biguation ii.) impact of task complexity and choice
of programing language/grammar on performance.
Deployment and Latency: Large language mod-
els (e.g., GPT3.5 used in this work) are computa-
tionally expensive and require significant compute
resources to deploy at low latency. These costs can
prove to be impractical for real-world application.
In addition, the current setup includes a code ex-
ecution step which is valuable for verification but
increases deployment complexity (requires a sand-
box). Thus, there is opportunity to: i.) train smaller
capable LLMs (Touvron et al., 2023) finetuned on
a curated dataset of programming languages and
visualization grammars .ii) design vulnerability mit-
igation approaches such as limiting program scope
or generating only input parameters for visualiza-
tion grammar compilers.
Explaining System Behavior: The approach dis-
cussed in this paper simplifies the design of vi-
sualization authoring systems, but also inherits
interpretability challenges associated with large
language models. While LIDA offers intermedi-
ate outputs of the model (e.g., generated code and
specifications) as explanations, as well as post-hoc
explanations of generated code (see section 3.2.2),
there is a need for further research in explaining
system behavior (conditions when they are needed)
and providing actionable feedback to the user.
System Evaluation: Benchmarking LLM’s on cre-

ativity tasks can be challenging. While the current
study introduces metrics for evaluating reliability
(VER) and visualization quality (SEVQ) (see section
4), there is a need for more comprehensive bench-
marks on a variety of datasets and visualization
grammars. Furthermore, there are research oppor-
tunities to i.) study and quantify the capabilities of
LLMs in encoding and applying visualization best
practices ii.) conduct empirical studies that evalu-
ate model behavior, mapping out failure cases and
proposing mitigations iii.) qualitatively study the
impact of tools like LIDA on user creativity while
authoring visualizations.
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A The LIDA Library

LIDA is implemented as a python library with mod-
ules for each of the components described in Sec-
tion 3. The library is available on github7 and can
be installed using pip - pip install lida. The library
provides a python api, web api for integration into
other applications, and a command line interface. It
also provides a web-based user interface for users
to interact with LIDA (Fig 10, 9).
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# pip install lida 



from lida.modules  Manager 



lida = () 

summary = lida. ( ) 

goals = lida. (summary, n= )



vis_specs = manager. ( summary=summary, 
goal=goals[i]) 

charts = manager. ( code_specs=vis_specs, 
data=manager.data, summary=summary)


(charts)

import

Manager
summarize

generate_goals

generate_viz

execute_viz

print

"data/cars.csv"
1

Figure 7: Example usage of LIDA shows how to generate
a summary, visualization goals, code specifications and
execute the code to generate visualizations.

B Self-Evaluated Visualization Quality
(SEVQ) Prompts

For the SEVQ metric, we use GPT-4 to assess visu-
alization quality by scoring generated visualization

7https://github.com/microsoft/lida
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Figure 8: In the data upload section of the LIDA UI, users can select a grammar of choice and upload a dataset. A
dataset upload event triggers a goal generation as well as visualization generation tasks.

Figure 9: The visualization generation section of the LIDA UI enables the user to i.) specify their overall goal in
natural language and generate visualizations ii.) inspect, edit and execute generated code iii.) view the generated
visualization. iv.) perform operations on generated code e.g., refine, explain, evaluate and recommend visualizations.
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Figure 10: The self-evaluation module in LIDA is used to evaluate/critique a generated visualization, providing
scores across 6 dimensions with rationale. In this case, the visualization contains a pie chart, and a bar chart is
recommended as an alternative.

code across the 6 task dimensions - code accuracy,
data transformation, goal compliance, visualization
type, data encoding, and aesthetics. These dimen-
sions are implemented as prompts to an LLM 8,
which then generates a score between 1-10 for each
dimension. The final SEVQ score is the average of
the 6 scores. A sketch of the prompts used for each
dimension are enumerated in table 1.

C Design Reflections

Building a system that leverages foundation models
(text and images) involves engineering decisions
across a wide design space. In this section, we
briefly reflect on some of the design choices we
made for LIDA components and the tradeoffs we
considered.

C.1 Prompt Engineering
We explored multiple approaches to building
prompts that maximized the probability of the LLM

solving each subtask.

• SUMMARIZER: We found that improving the
richness of the summary (qualitative NL de-
scription, including semantic types) was criti-
cal to improved quality of generated goals and

8Exact prompts can be found at the project repository
https://github.com/microsoft/lida.

Dimension Prompt

Code accu-
racy

Does the code contain bugs, logic errors,
syntax error or typos? How serious are the
bugs? How should it be fixed?

Data trans-
formation

Is the data transformed appropriately for
the visualization type?

Goal com-
pliance

How well the code meets the specified visu-
alization goals?

Visualization
type

Considering best practices, is the visualiza-
tion type appropriate for the data and intent?
Is there a visualization type that would be
more effective in conveying insights?

Data encod-
ing

Is the data encoded appropriately for the
visualization type?

Aesthetics Are the aesthetics of the visualization ap-
propriate and effective for the visualization
type and the data?

Table 1: Summary of the evaluation dimensions and the
corresponding prompt sketches.

visualization code. Implementation wise, we
began with a manually crafted summary of the
data (see Section 3.1), and then enriched it via
calls to an LLM and optional user refinement
of the summary.

• GOAL EXPLORER: Providing few shot exam-
ples in the prompts where fields and rationale
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are linked via symbols (e.g., plot a histogram
of field X vs Y to show relationship between X
and Y) nudges the model to use exact dataset
field names, and minimizes the occurrence of
hallucinated fields. Prompt engineering also
provides mechanisms to bake in visualization
best practices e.g. avoid pie charts, apply vi-
sualization best practices, Imagine you are
a highly experienced visualization specialist
and data analyst.

• VISGENERATOR: Casting visualization code
generation as a fill-in-the-middle problem (as
opposed to free-from completion) ensures the
model to generates executable code focused
on the task. For example, in Fig 5, the model
is instructed to generate only the < stub >
portion of the code scaffold. We also note that
the degrees of freedom alloted to the model
(e.g., specifying how much of the scaffold
to complete) can influence its ability to add
tasks with varied complexity. For example, a
scaffold that allows the model generate data
preprocessing code (and includes libraries like
statsmodels etc) allows the model to address
tasks that require steps such as data transfor-
mation, sampling and statistical analysis be-
fore generating visualizations etc.

• Overall, we found that setting a low temper-
ature (t = 0; generating the most likely visu-
alization) coupled with a per-grammar code
scaffold provided the best results in terms
of yielding code that correctly compiles into
visualization specifications and faithfully ad-
dresses the subtask. We also explored prompt
formulations that addressed multiple tasks to
minimize costs (latency and compute). For
example, summary enrichment is a single call
where the LLM must generate dataset descrip-
tions, field descriptions and semantic types.

C.2 Infographic Generation
We found that setting a low strength parameter
(0.25 < strength < 0.45) for the latent diffusion
model (image-to-image mode) and using parsimo-
nious style prompts resulted in stylized images that
were faithful to the general structure of the origi-
nal visualization, minimizing distorted or irrelevant
imagery. This sort of controlled generation is nec-
essary to avoid the distraction (Haroz et al., 2015)
that can arise from superfluous imagery in info-
graphics.

C.3 Natural Language Interaction
(i) HYBRID INTERFACE: Providing a hybrid in-
terface that allows traditional direct manipulation
steps in creating visualizations (e.g., selecting
which fields to use), paired with a NL interface
allows users to leverage existing mental models
with traditional visualization tools as well as the
NL affordances of LIDA. (ii) NL INTERACTION

MODES: Beyond generating a base visualization,
we also enable operations on generated visualiza-
tion code (e.g., refinement, explanation, evaluation,
recommendation). This builds on insights from
Mitra et al. (2022) who propose multi-turn dialog
interfaces for visualization authoring towards re-
solving ambiguities.
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Figure 11: The LIDA infographer module supports the generation of data-faithful infographics. Each infographic is
conditioned on a generated visualization as well as natural language style tags which can be used to customize the
appearance of the chart.
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Abstract

Metaphoric expressions are a special linguis-
tic phenomenon, frequently appearing in ev-
eryday language. Metaphors do not take their
literal meanings in contexts, which may cause
obstacles for language learners to understand
them. Metaphoric expressions also reflect the
cognition of humans via concept mappings, at-
tracting great attention from cognitive science
and psychology communities. Thus, we aim
to develop a computational metaphor process-
ing online system, termed MetaPro Online1,
that allows users without a coding background,
e.g., language learners and linguists, to eas-
ily query metaphoricity labels, metaphor para-
phrases, and concept mappings for non-domain-
specific text. The outputs of MetaPro can be
directly used by language learners and natural
language processing downstream tasks because
MetaPro is an end-to-end system.

1 Introduction

Metaphors are frequently used in our everyday lan-
guage. Relevant statistics (Cameron, 2003; Martin,
2006; Steen et al., 2010) found that about one-third
of sentences in corpora contain metaphors. It is pos-
sible to use approximately six metaphors during a
minute of speaking (Geary, 2011).

Metaphors are a non-negligible linguistic phe-
nomenon for linguistic learners and researchers.
On the other hand, Lakoff and Johnson (1980) ar-
gued that metaphors are not just a linguistic phe-
nomenon, because metaphors also reflect human
cognition. Human perceptions of LOVE are not
complete without metaphors, e.g., love is a journey,
magic, attraction, madness, nurturance2, etc.

There are two important research domains in
computational metaphor processing: linguistic and
conceptual. The former area focuses on the surface

* The work was done when he worked at Ruimao Tech.
1Website: https://metapro.ruimao.tech/
2Italics denotes metaphors.

(a) Fine-tuning-based sentiment analysis.

(b) Generative AI-based sentiment analysis.

(c) Machine translation.

Figure 1: Errors in current AI applications, caused by a
metaphoric expression.

realization of metaphors, e.g., metaphor identifica-
tion and interpretation.

The motivation is that metaphors do not take
their literal meanings in contexts, which may cause
difficulties for language learners and machines to

127

https://metapro.ruimao.tech/


Figure 2: MetaPro Online.

understand the real meanings of metaphors (Cam-
bria et al., 2017). As seen in Figure 1 (a), given the
metaphoric expression, “the comedian convulsed
the children”, a sentiment classifier yields an incor-
rect negative label for the sentence. In Figure 1 (b),
the generative AI seems to explain why such an
error occurs – “The word ‘convulsed’ typically de-
notes a strong, uncontrollable movement or shak-
ing, which is often associated with negative con-
notations”. AI notes that “convulsed” triggers the
negative prediction for the sentence based on its
literal meaning. Figure 1 (c) demonstrates that
literally translating a metaphor into another lan-
guage may cause interpretation difficulties because
of cultural differences. For example, the given
sentence is translated as “the comedian caused the
children convulsions” in Chinese, which carries
a very different meaning from the real English
meaning. Thus, a linguistic metaphor processing
system (Mao et al., 2022) aims to automatically
identify metaphors and paraphrase them into their
literal counterparts to mitigate the interpretation
barrier for users.

Conceptual metaphor processing focuses on
identifying and mapping source and target con-
cept domains of metaphors. The motivation is
to understand the cognition of humans from their
metaphoric expressions. For example, given a
metaphoric expression, “she attacked his argu-

ment”, Lakoff and Johnson (1980) argued that con-
ceptually the ARGUMENT concept (target domain)
is mapped to a WAR concept (source domain). One
uses WAR to metaphorically describe ARGUMENT,
reflecting strategies, attack, and defense behaviors
associated with ARGUMENT. Lakoff and Johnson
(1980) also believed that these concepts naturally
frame our thinking and behaviors when arguing.
Researchers can study cognition from metaphor
concept mappings (see Section 6). Thus, a concep-
tual metaphor processing system aims to automati-
cally generate source and target concept agents for
a metaphor to represent the concept mappings.

Many previous works focused on metaphor
identification tasks (Mao et al., 2019; Feng and
Ma, 2022), metaphor interpretation tasks (Shutova,
2010; Mao et al., 2018), and concept map-
pings (Rosen, 2018; Ge et al., 2022). However,
these methods cannot process metaphors from end
to end. We proposed an end-to-end metaphor identi-
fication and interpretation method, the first version
of MetaPro (Mao et al., 2022), where metaphoric
single words can be paraphrased into their literal
counterparts, and metaphoric multi-word expres-
sions can be explained with clauses. However, a
programming package cannot be easily used by
non-programmers, e.g., language learners and lin-
guistic researchers. On the other hand, automatic
concept mappings have not been achieved on the

128



(a) Fine-tuning-based sentiment analysis.

(b) Generative AI-based sentiment analysis.

(c) Machine translation.

Figure 3: Correct outputs after MetaPro pre-processing.

sentence level, although we proposed a concept
mapping method on the word-pair level in the work
of Ge et al. (2022). Thus, we aim to develop a
computational metaphor processing online system,
MetaPro Online, allowing users without a coding
background to easily query metaphoricity labels,
metaphor interpretations, and concept mappings
for non-domain-specific text.

As seen in Figure 2, given a query sentence, “the
comedian convulsed the children”, MetaPro can
identify “convulsed” as a metaphor. Then, the sen-
tence is paraphrased as “the comedian amused the
children” for interpretation. The source concept is
TROUBLE. The target concept is PLEASURE. Then,
the concept mapping is represented as PLEASURE

IS TROUBLE. We can also observe that the sen-
timent analysis classifier, the generative AI, and
the machine translation system can all yield satis-
fying outputs after using the paraphrased sentence
in Figure 3. The concept mapping “PLEASURE

IS TROUBLE”, generated by MetaPro, implies that
extreme happiness can be accompanied by trou-
ble, e.g., causing the children convulsions. Such

hot potato

hot potato

MWE identificationMetaphor identification

Metaphor Identification: hot potato, hurting

Sense pairingParaphrasing

hurting

S1. any subject which several folks…
S2. something that is hard to handle.
…

upsetting
suffering
…

That negotiation was a hot potato, hurting both parties.

If MWE

Integration

That negotiation was a hot potato , upsetting both parties , 
where "a hot potato" means that any subject which several 
folks are talking about and which is frequently argued.

No Yes

Input:

Metaphor Interpretation:

C
on
ce
pt
ua
liz
at
io
nFEELING

ILL_HEALTH

IS

Concept Mapping:

Metaphor identification module Metaphor interpretation module

Concept mapping module

Figure 4: The framework of MetaPro. MWE denotes
multi-word expressions.

implicit meanings can be used for analyzing hu-
man cognition because metaphors are stimulated
by subjective experiences (Grady, 1997).

2 Related Work

According to the survey of Ge et al. (2023),
there have been metaphor identification (Mao
et al., 2019; Feng and Ma, 2022), interpreta-
tion (Shutova, 2010; Mao et al., 2018), and con-
cept mapping (Rosen, 2018; Ge et al., 2022) re-
search works in the computational linguistics com-
munity, while readily used end-to-end systems for
supporting downstream applications are rare. Mar-
tin (1990) presented a metaphor interpretation sys-
tem named Metaphor Interpretation, Denotation,
and Acquisition System (MIDAS). The system was
developed to answer metaphorical queries about
Unix. Narayanan (1997) proposed a Knowledge-
based Action Representations for Metaphor and
Aspect (KARMA) system. The system is based
on hand-coded executing schemes for motion-verb
concept reasoning in an economic domain. Barn-
den and Lee (2002) proposed a first-order logic
rule-based system for concept mapping analysis in
the mental state description domain. However, the
limited manual rules in the aforementioned works
cannot be used for analyzing text from a broader
domain. Mao et al. (2022) proposed a non-domain-
specific end-to-end system for metaphor identifica-
tion and interpretation. They evaluated the system
on a sentiment analysis task. However, it cannot
generate concept mappings and does not provide a
graphical user interface for non-programmers.
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3 MetaPro

The user interface of MetaPro Online is succinct.
There is just an input window and a processing
button (see Figure 2). The back-end consists of
three modules: metaphor identification, metaphor
interpretation, and concept mappings. The overall
framework can be viewed in Figure 4.

First, the metaphor identification module detects
metaphors on the token level, given an input sen-
tence, e.g., “that negotiation was a hot potato, hurt-
ing both parties”. Next, the metaphor interpreta-
tion module paraphrases the identified metaphoric
single-word expressions (e.g., “hurting” means
“upsetting”). It explains metaphoric multi-word ex-
pressions with clauses (e.g., “where ‘a hot potato’
means that any subject which several folks are talk-
ing about and which is frequently argued”). Fi-
nally, the concept mapping module abstracts the
source (“ILL_HEALTH”) and target (“FEELING”)
concepts of a metaphor via the lemma of the origi-
nal metaphoric word (“hurt”) and the lemma of its
paraphrase (“upset”), respectively. The mapping
is represented as “a target concept is a source con-
cept” (e.g., FEELING IS ILL_HEALTH). The current
version of MetaPro Online cannot paraphrase and
conceptualize metaphoric multi-word expressions.
Thus, we explain them via clauses and omit their
concept mapping generations.

We introduce each module below at the concept
level to help readers understand the mechanisms
of MetaPro Online. Since MetaPro is an ensem-
ble system combining three research outcomes, we
omit the algorithmic details here. One may refer to
our previous works, Mao and Li (2021); Mao et al.
(2022); Ge et al. (2022), to understand the tech-
nical details of metaphor identification, metaphor
interpretation, and concept mapping modules, re-
spectively.

3.1 Metaphor identification

The used algorithm of our metaphor identification
module was first proposed in the work of Mao and
Li (2021). We embed this algorithm into MetaPro
Online because it achieved state-of-the-art perfor-
mance on token-level metaphor identification tasks.

Metaphor identification is a binary classification
task, classifying a word as metaphoric or literal.
Our metaphor identification module uses a multi-
task learning framework, simultaneously learn-
ing sequential metaphor identification and Part-of-
Speech (PoS) tagging tasks. The motivation is that

previous works (Wu et al., 2018; Su et al., 2020)
found PoS tags are effective features for learning
metaphor identification. Thus, we introduced the
learning of PoS tagging as an auxiliary task to fuse
the features learned from PoS tagging.

To boost the multi-task learning framework, we
also proposed a novel soft-parameter sharing mech-
anism, Gated Bridging Mechanism (GBM) in the
work of Mao and Li (2021). The intuition is that
GBM allows useful information from a neighbor
tower to pass through the gate and fuse with hid-
den states learned in the private tower, while the
gates filter out the useless information. We demon-
strated the effectiveness of the proposed multi-task
learning model on both metaphor identification and
aspect-based sentiment analysis tasks.

3.2 Metaphor interpretation

The algorithm for the metaphor interpretation mod-
ule of MetaPro was first proposed in the work
of Mao et al. (2022). We embed this algorithm
into MetaPro because it can paraphrase metaphoric
single-word expressions and explain metaphoric
multi-word expressions. The paraphrases and
explanations help users understand the intended
meanings of metaphors and can be processed by
other downstream natural language processing sys-
tems because the outputs of the interpretation mod-
ule are also natural language.

Given an identified metaphor, if the metaphor
is a single-word expression, RoBERTa-large (Liu
et al., 2019) and WordNet (Fellbaum, 1998) are
used for paraphrasing the metaphor. We masked
out a metaphor token and used the masked word
prediction of RoBERTa to predict the probability
distribution of candidate words. The candidate
words are sourced from the WordNet hypernyms
and synonyms of the lemma of the metaphor, pro-
viding paraphrase constraints for a metaphor. The
hypothesis is that a metaphor can be paraphrased
into one of its hypernyms and synonyms (Mao
et al., 2018). The word forms of the candidate
words are aligned with the original metaphor. In
the work of Mao et al. (2022), we developed a word
form alignment dictionary, e.g., {..., ‘upset’:
{‘VBG’: ‘upsetting’, ‘VBD’: ‘upset’, ...},
...} by parsing a Wikipedia dump. Thus, a lemma
can map to any form, given a Penn Treebank PoS
label (Marcus et al., 1993).

Mao et al. (2022) also developed a dictionary-
and rule-based algorithm to identify metaphoric
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multi-word expressions. They did not use a neural
network model, because the identified metaphoric
multi-word expressions are finally mapped to their
dictionary explanations for metaphor interpretation.
The dictionary- and rule-based algorithm can di-
rectly identify and map them to their dictionary
explanations without using another model for map-
ping. In order to improve the generalization ability
of this algorithm, Mao et al. (2022) developed two
feature sets, namely a lemma feature set that con-
sists of the lemmas of multi-word expressions and a
triplet feature set that consists of dependency triplet
features. Both feature sets can map features with
the corresponding multi-word expressions. An in-
put sentence is pre-processed with lemmatization
and dependency parsing first. If features from any
feature sets are the subsets of the pre-processed sen-
tence, the corresponding multi-word expressions
are detected. If there is an overlap between an iden-
tified multi-word expression and metaphoric tokens
given by the metaphor identification module, the
multi-word expression is explained via a clause by
using its selective dictionary explanation. The final
metaphor interpretation output integrates the para-
phrases of single-word metaphors and metaphoric
multi-word expressions. The word form of a para-
phrase was aligned with the original metaphor dur-
ing the candidate word preparation stage.

3.3 Concept mapping

The used algorithm of our concept mapping module
was first proposed in the work of Ge et al. (2022).
We embed this algorithm into MetaPro, because
it can abstract concepts for words. The effective-
ness of the abstracted concepts has been proved in
metaphor identification and human evaluation.

The conceptual metaphor theory was proposed
by Lakoff and Johnson (1980). They empirically
summarized some examples of concept mappings
to explain their theory. However, there is no the-
oretical research to explain how to conceptualize
metaphors and generate mappings. For example, it
was not clearly defined, if a target concept should
be abstracted from the paraphrase or the context
word of a metaphor. By viewing concept mapping
examples given by Lakoff and Johnson (1980);
Lakoff (1994), evidence from both sides can be
observed. Thus, we choose to generate target con-
cepts from the paraphrases of metaphors. The
source concepts are given by the original metaphor.

Another challenge is there is no theoretical re-

search about what the abstractness level of a con-
cept agent should be to represent a word, to our
best knowledge. Thus, we follow the hypothesis
of Ge et al. (2022) that an appropriate concept agent
should represent the main senses of a word.

We developed a conceptualization algorithm
based on WordNet and a statistical knee point algo-
rithm (Satopaa et al., 2011) in the work of Ge et al.
(2022). First, a word, e.g., a metaphor or a para-
phrase, was aligned to its nominal form via Word-
Net and a gestalt pattern matching algorithm (Rat-
cliff and Metzener, 1988). Next, given a noun, we
retrieved all hypernym paths from the noun node
to the root node. Different paths represent different
senses of the noun. The hypernyms on different
levels of a path denote concepts with different ab-
stractness levels because WordNet is a conceptually
structured knowledge base. Next, the hypernyms
on each path are rated by a linear score function.
A higher score denotes that the hypernym is more
abstract. The overall score of a hypernym is given
by the sum of the hypernym scores on all its dis-
tributed paths. Next, we computed the knee point
with the overall scores of all hypernyms. A hyper-
nym is selected as a concept agent if it covers the
same number of senses as the knee point hypernym
and it is more concrete (a lower score) than the
knee point hypernym. Otherwise, the knee point
hypernym is selected as the concept agent.

Based on the above method, we can compute a
source concept with a metaphor, and a target con-
cept with a paraphrase. Then, the concept mapping
is given by “a target concept is a source concept”.

3.4 Training data and lexical resources

We use VU Amsterdam Metaphor Corpus (Steen
et al., 2010) as the data source to train the metaphor
identification module. The training set combines
the training and validation sets prepared by Leong
et al. (2018), including nominal, verbal, adjective,
and adverb metaphors from conversations, fiction,
academic text, and news. For the statistics of the
dataset, please view the work of Mao et al. (2022).

Metaphor paraphrases are based on WordNet
and masked word predictions. Thus, no training
set is required for learning metaphor paraphrases.
The metaphoric multi-word expression interpre-
tation is a dictionary- and rule-based algorithm.
The feature and explanation dictionaries contain id-
iomatic multi-word expressions that were sourced
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from The Idioms3and the collection of Agrawal
et al. (2018). We have defined 3,560 lemma pairing
features and 3,470 dependency triplet pairing fea-
tures for 3,050 idiomatic multi-word expressions
in the work of Mao et al. (2022). On average, each
multi-word expression has 2.7 explanations.

The concept mapping module is based on a sta-
tistical learning algorithm, using WordNet as the
only lexical resource. Thus, we do not use any
training set to learn concept mappings.

4 Supporting Downstream Tasks

MetaPro was used as a text pre-processing tech-
nique, where the metaphor interpretation outputs
were fed into sentiment analysis classifiers instead
of the original inputs. We observe that MetaPro
improved the performance of Vader (Hutto and
Gilbert, 2014), AllenNLP sentiment analysis4, and
Azure sentiment analysis5 on a financial news head-
line sentiment analysis task (Cortis et al., 2017) by
1.5%, 2.2%, and 4.7% accuracy, respectively, com-
pared with the results given by the original news
headlines (Mao et al., 2022). On the other hand,
we also observe that using MetaPro-generated con-
cept mappings as features could bring a classifier
extra gains in accuracy (+1.1% and +1.9%) for a
depression detection task (Han et al., 2022). The
benchmarking dataset was from the work of Shen
et al. (2017). More importantly, the concept map-
ping features help the classifier explain the com-
mon concept mappings between depressed and non-
depressed groups. Besides the accuracy gains, this
is particularly helpful for cognitive science because
MetaPro provides an automatic solution for ana-
lyzing concept mapping patterns via metaphors at
scale.

Detailed performance benchmarking of different
technical components of MetaPro with state-of-
the-art baselines on diverse evaluation tasks and
datasets can be viewed from the works of Mao and
Li (2021); Mao et al. (2022); Ge et al. (2022).

5 Evaluation

Besides the performance improvements and ex-
plainability enhancements in downstream tasks,
we also qualitatively evaluate the practicality
of MetaPro according to the criteria proposed
by Shutova (2015) in the following sections. She

3
https://www.theidioms.com/

4
https://allennlp.org/

5
https://azure.microsoft.com

proposed to evaluate a computational metaphor pro-
cessing system from two aspects, namely the levels
of analysis and applicability.

5.1 Levels of analysis
Linguistic metaphor. MetaPro has the ca-
pacity to analyze various forms of linguistic
metaphors, encompassing both conventional and
novel metaphors, including single- and multi-word
expressions. It possesses the capability to handle
a diverse range of linguistic metaphors without re-
striction on specific syntactic constructions, thus
offering a comprehensive approach to metaphor
processing.
Conceptual metaphor. MetaPro can abstract
source and target concepts from original single-
word metaphors and paraphrases, respectively.
However, the current version is incapable of con-
ceptualizing metaphoric multi-word expressions
and metaphoric sentences.
Extended metaphor. The current version of
MetaPro cannot process extended metaphors on
the document level, due to the training set of the
metaphor identification module does not contain ex-
tended metaphors. We cannot find a helpful dataset
to study extended metaphors to our best knowledge.
Metaphorical inference. The current version of
MetaPro cannot process metaphorical inference
on the document level, because we cannot find a
helpful dataset to study metaphorical inference to
our best knowledge.

5.2 Applicability
Task coverage. MetaPro can identify metaphors
and interpret them from both linguistic and concep-
tual perspectives.
Easily to integrate. The outputs of metaphor inter-
pretation and concept mapping modules are natural
language. Thus, MetaPro can be integrated with
other natural language processing systems.
Unrestricted text. MetaPro can process unre-
stricted real-world natural language text. The cur-
rent version cannot directly process emojis and
spelling errors commonly appearing on social me-
dia. The maximum input length is 512 tokens after
Byte-Pair Encoding (Radford et al., 2019). For ef-
ficient computing, we set up the maximum input
length as 300 characters for MetaPro Online at the
current version.
Be open-domain. MetaPro is not domain-specific.
The training data for metaphor identification were
sourced from VU Amsterdam Metaphor Corpus,
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including diverse topics, different genres, and con-
cept domains. Our metaphor interpretation is based
on a pre-trained language model, trained with open-
domain text without fine-tuning. The used knowl-
edge bases, e.g., WordNet and multi-word expres-
sion dictionaries, offer general semantic knowledge
of English words.
Task and knowledge dependency. Current
metaphor interpretation and concept mapping mod-
ules of MetaPro depend on WordNet and multi-
word expression processing dictionaries. This is
because we cannot find a large annotated dataset
to train neural network models to achieve the func-
tions from end to end in a supervised fashion. We
use WordNet for supporting the task of paraphras-
ing metaphors because simply using a medium size
pre-trained language model can hardly yield satisfy-
ing results in the context of unsupervised learning.
Word class and syntax diversity. The inputs of
MetaPro are sentences with diverse syntactic con-
structions. The current version of MetaPro targets
to identify, interpret and conceptualize open-class
metaphors. It also explains metaphoric multi-word
expressions that contain other PoS. We focus on
open-class metaphors because they contain richer
semantic information than closed-class ones. This
is more helpful for downstream tasks.

6 Use Case

Besides the examples in Figures 1 and 3, we re-
ported the use cases of MetaPro in sentiment anal-
ysis in the work of Mao et al. (2022). For example,
given “Rio Tinto CEO Sam Walsh rejects fears over
China growth, demand”, the three examined classi-
fiers yielded incorrect “negative” predictions. This
is probably because “fears” and “reject” likely ap-
pear in negative contexts. However, after MetaPro
paraphrasing the original input as “Rio Tinto CEO
Sam Walsh eliminates concerns over China growth,
demand”, the classifiers can yield correct “positive”
predictions.

Han et al. (2022) reported the use cases in de-
pression detection, where concept mappings are
additional features besides the original text. They
believe that metaphor concept mappings reflect the
inner world of people because they were not ex-
plicitly presented in the text. For example, they
found that LEVEL IS IMPORTANCE is a representa-
tive concept mapping for depressed people. This
may result in more stress, if a person frequently
maps an objective measure in the LEVEL concept

to a subjective feeling concept, e.g., IMPORTANCE.

7 Conclusion

We proposed MetaPro online in this work, which
is a computational metaphor processing online sys-
tem. Compared with previous works, MetaPro can
identify metaphors, paraphrase them into their lit-
eral counterparts, and generate concept mappings
from end to end. The system can process unre-
stricted and non-domain-specific English text. The
user interface is very friendly to non-programmers.
Thus, it can help language learners to understand
the real meanings of English metaphors. We also
demonstrated the performance improvements of
using MetaPro on downstream AI applications,
e.g., using MetaPro to automatically obtain con-
cept mappings from social media posts to study
cognitive patterns exhibited by individuals diag-
nosed with depression. The above use cases show
that MetaPro has huge application potential in di-
verse domains.

However, the current version cannot paraphrase
and conceptualize metaphoric multi-word expres-
sions, which is important for sentic comput-
ing (Cambria et al., 2022). It cannot process non-
English text, extended metaphors, and metaphori-
cal inference as well. We will fill this gap in future
work and strive to enhance the precision and infor-
mation processing capacities of MetaPro by devel-
oping more advanced algorithms, thereby provid-
ing enhanced support for linguistic and cognitive
science research endeavors.

Ethics and Broader Impact Statement

This article follows the ACL Code of Ethics. We
comply with the licenses of all used datasets. Al-
though there was no sensitive data used for training
our models or developing our knowledge bases in
MetaPro, we encourage all downstream applica-
tions can honor the ethical code for conducting
linguistic and cognitive research. The broader im-
pacts include but are not limited to using the tool
to study the cognitive patterns of a certain group
of people or a person, and using this tool to falsify
original text. According to Mao et al. (2023), there
are certain biases in pre-trained language models.
We cannot guarantee that MetaPro can yield unbi-
ased outputs, because it depends on a pre-trained
language model. Besides, MetaPro is not a perfect
system. The errors generated by MetaPro may also
introduce biases for downstream applications.
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Abstract

In this work, we present DIAGRAPH, an open-
source 1 graphical dialog flow editor built on
the ADVISER toolkit. Our goal for this tool
is threefold: 1) To support subject-experts to
intuitively create complex and flexible dialog
systems, 2) To support rapid prototyping of di-
alog system behavior, e.g., for research, and
3) To provide a hands-on test bed for students
learning about dialog systems. To facilitate
this, DIAGRAPH aims to provide a clean and
intuitive graphical interface for creating dialog
systems without requiring any coding knowl-
edge. Once a dialog graph has been created,
it is automatically turned into a dialog system
using state of the art language models. This al-
lows for rapid prototyping and testing. Dialog
designers can then distribute a link to their fin-
ished dialog system or embed it into a website.
Additionally, to support scientific experiments
and data collection, dialog designers can ac-
cess chat logs. Finally, to verify the usability
of DIAGRAPH, we performed evaluation with
subject-experts who extensively worked with
the tool and users testing it for the first time, re-
ceiving above average System Usability Scale
(SUS) scores from both (82 out 100 and 75 out
of 100, respectively). In this way, we hope DI-
AGRAPH helps reduce the barrier to entry for
creating dialog interactions.

1 Introduction

Dialog systems have gained much attention in re-
cent years as they offer a convenient way for users
to access information in a more personalized man-
ner, or accomplish tasks through an intuitive nat-
ural language interface. Traditionally, they need
to understand user input, track information across
multiple dialog turns and choose a system response.
These tasks can either be performed in a modular
manner or as an end-to-end approach where user

*Both authors contributed equally
1https://github.com/DigitalPhonetics/diagraph

Figure 1: Left: Dialog editor with tutorial graph; Right:
Debugging window with chat and variable explorer.

input is directly mapped to system output. How-
ever, regardless of approach, state-of-the-art ap-
proaches to dialog systems largely rely on neural
methods (Chen et al., 2017). While these meth-
ods have generally shown improvements to dialog
performance and generalizability across multiple
dialog domains, they rely on the availability of suffi-
cient training data which can be work-intensive and
expensive to collect. Additionally, their decision-
making often remains a black-box, which can make
them unsuitable for highly sensitive domains, e.g.,
medical or legal contexts, where it is critical that
dialog designers can maintain careful control over
the system’s behavior.

Although multiple toolkits have been developed
to speed up the creation of dialog systems (Bohus
and Rudnicky, 2009; Lison and Kennington, 2016;
Ultes et al., 2017; Zhu et al., 2020; Li et al., 2020),
and this has accelerated progress in the field, to the
best of our knowledge all toolkits currently used
for research require users to be able to write code
in order to customize pre-implemented models for
new domains or datasets.

However, this overlooks the fact that technical
experts are not the only parties interested in creat-
ing dialog systems. Domain experts, or researchers
from other disciplines, who may not have a tech-
nical background, may also be interested in using
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dialog systems for a variety of goals. For example,
domain experts might want to design a controlled
production system. Researchers, e.g. psychologists
or linguists, might want to design pilot studies or
easily conduct research on interactions with a di-
alog system. Additionally, an interface to quickly
setup data collection, e.g., to bootstrap an AI based
dialog system or quickly iterate on user feedback,
can accelerate dialog research or deployment.

To this end, we propose DIAGRAPH (figure 1):
an open-source, graphical software for designing di-
alog flow graphs which are automatically converted
into dialog systems. In this way, we hope it will
serve as a good alternative to closed-source com-
mercial options. Our goal for this tool is threefold:
1) To support subject-area experts to intuitively cre-
ate and deploy complex and flexible dialog systems,
2) To support users, e.g., researchers, to easily and
rapidly prototype and evaluate dialog systems or
user behaviour, and 3) To provide a hands-on test
bed for students learning about dialog systems. We
evaluate DIAGRAPH with all three user groups and
demonstrate its usability and practical usefulness
by 1) Working with the department for business
travel a University, 2) Performing a usability study
where participants were asked to design or alter
a dialog system in less than 30 minutes, and 3)
Teaching a workshop on dialog systems and pro-
gramming concepts to high school students.

2 Related Work

2.1 Dialog System Toolkits

In recent years, several toolkits have been devel-
oped to aid in the creation of dialog systems. Toolk-
its like RavenClaw (Bohus and Rudnicky, 2009),
provide basic functionality, letting developers focus
solely on describing the dialog task control logic.
More recent toolkits include OpenDial (Lison and
Kennington, 2016) – incorporating probabilistic
rules and integration of external modules – and Py-
Dial (Ultes et al., 2017) – a multi-domain dialog
toolkit, for building modular dialog systems. Ad-
ditionally, ConvLab (Lee et al., 2019; Zhu et al.,
2020) and ADVISER (Ortega et al., 2019; Li et al.,
2020) are modern toolkits, incorporating state of
the art models in their implementations. In its re-
cent update (Zhu et al., 2020), the developers also
integrated evaluation and analysis tools to help de-
velopers debug dialog systems.

However, while these toolkits have accelerated
dialog system research, their code-based interfaces

can be prohibitively complex for non-technical
users and do not lend themselves to quick prototyp-
ing or education. While the ADVISER toolkit still
uses a code-based interface for designing dialog
systems, we chose to use it as the backend for DI-
AGRAPH due to the low overhead and flexibility
of the toolkit.

2.2 Dialog Flow Designers

Recently, there has been research into efficiently
navigating dialogs based on flow diagrams, such as
work by Raghu et al. (2021), who investigate learn-
ing dialog policies from troubleshooting flowcharts
and Shukla et al. (2020) who learn a dialog policy
from a dialog flow tree designed using Microsoft’s
graphic design tool. However, we are not aware of
any well-fleshed out open-source tools for creating
such graphs. Even though such dialog designer
tools have become popular in industry with compa-
nies including Microsoft2, Google3 and Amazon4

offering such services, the lack of open source alter-
natives impedes research around such graph/flow-
based systems. Therefore, by providing a freely
available alternative, we hope to make dialog sys-
tem creation easier for researchers, domain experts,
and educators.

To the best of our knowledge, the only open-
source graphic-based dialog designer was created
by Koller et al. (2018) as an educational tool to
interface with Lego Mindstorms robots. While the
authors show that it was well received by school
and university students, its narrow scope does not
address the needs of users such as subject-area ex-
perts or researchers. To this end, we create and pub-
lish DIAGRAPH: a general-purpose, open-source,
graphical dialog designer built on the ADVISER
toolkit.

3 Design Principles

The goal of the dialog designer is to allow for the
intuitive creation of dialog systems with any level
of technical knowledge. To this end, we design
DIAGRAPH around the following principles:

User Friendliness To accommodate all three
user groups, the software needs to be intuitive to
operate without any previous programming expe-
rience. Thus, we try to keep interactions simple,

2https://powervirtualagents.microsoft.com
3https://cloud.google.com/dialogflow?hl=de
4https://aws.amazon.com/de/lex/

chatbot-designer/
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Figure 2: Example of each type of node. From left to right Variable Node (purple outline), User Response Nodes
(black outline) Logic Node (orange outline), Variable Update Nodes (green outline), and Information Node (blue
outline). The information node displays an example of the template syntax, using two variables in a mathematical
expression to output a personalized message

e.g., dragging a connection from one node to the
next to define dialog flow. We additionally try to
only use icons and keyboard/mouse shortcuts com-
monly used in other programs, e.g., right clicking
to get a context menu or typing ctrl+f to search.
Finally, we include several features to help keep an
overview even in complex graphs, e.g., a mini-map,
text search and tags.

Flexibility To meet the needs of all user groups,
we provide features for designing arbitrarily com-
plex dialog systems. To personalize dialog outputs,
we provide a template language which can be used
to generate expressions based on previous user in-
puts and/or external data tables. To control dialog
flow, we allow the storage of user inputs in vari-
ables, the creation of hidden variables, e.g. for loop
counters, and blocks to split the dialog flow based
on conditional logic.

Transparency Finally, we design DIAGRAPH
to be transparent for all user groups, making it
easy to understand the dialog structure and debug
unintended behaviors. To this end, we provide a
debugging view (figure 1) which can be opened in
parallel to the dialog graph. Here, users can test
out the different branches of their dialog as well
as verify that the content of variables is correct at
every turn. In this way, students can gain a deeper
understanding of how the dialog system processes
and researchers/subject-area experts can ensure that
their dialog systems provide the correct outputs to
end-users.

4 DIAGRAPH Software

DIAGRAPH is an open-source graphical software
for designing dialog systems. The software con-
sists of a web frontend and a python backend built
on the ADVISER (Li et al., 2020) dialog system
toolkit. DIAGRAPH enables users to design dialog
systems by representing each turn as a node in a
graph of the dialog flow. For each node, the dialog

designer can define the text which the dialog sys-
tem will give to the end-user and where applicable,
the possible end-user responses. Nodes can then
be connected to form complex dialog flows. Each
node or answer can only be connected to a single
follow-up node, but a single follow-up node may
be reached by multiple previous nodes. Addition-
ally, cycles (loops) can be created by connecting
a node to a node earlier in the graph, allowing for
more complex dialog logic.

4.1 Nodes

The dialogs created with DIAGRAPH are built us-
ing five types of nodes (see Fig. 2), which can
define even complex system behavior, such as stor-
ing variables, accessing data tables, and performing
logical operations.

User Response Nodes are the fundamental build-
ing blocks of the dialog graph and allow branching
dialog flow. These nodes provide a dialog system
utterance and a finite set of possible end-user an-
swer prototypes. During runtime, a node of this
type expects end-user input, which will then be
matched against the list of its answer prototypes.
The prototype most similar to the end-user’s in-
put will then be selected as the user intent, and
the dialog will progress to the node connected to
that answer. In case the intent recognition fails for
some end-user inputs, designers may update a user
response node to include answer synonyms that
connect to the same follow-up node as the original
answer prototype.

Information Nodes give information to the end-
user without asking for input, acting as linear dia-
log flow. They are useful for presenting informa-
tion, such as hints, to end-users when a decision
from the end-user is not necessary. In this way,
they can be used to split up long system answers
into shorter, easier to read chunks to avoid over-
whelming the end-user. Since Information Nodes
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do not require end-user input, they can be directly
connected to a single follow-up node.

Variable Nodes allow asking for user input and
storing it in variables. They are similar to User Re-
sponse Nodes in that they allow a dialog designer
to define a system utterance and that they expect a
response from the end-user. However, in contrast
to User Response Nodes, the dialog designer does
not define a set of prototypical end-user responses,
but rather the general type of expected answer and
the name of the variable which will store the value.
Supported types include number, text, and Boolean.
The user response is then stored inside this vari-
able and can be used either to fill a template (see
4.1.1) or as part of more complex logical control.
Variable nodes, like Information Nodes, can only
be connected to a single follow-up node, but the
values stored within the variable can be accessed
at any point later in the dialog.

Variable Update Nodes are a way for dialog
designers to either update the value of existing vari-
ables or create hidden variables which can be used
to control the dialog flow, e.g., as loop counters.
They do not provide output to the end-user.

Logic Nodes are purely used for dialog flow con-
trol, allowing to branch to follow-up nodes based
on the values of variables, e.g. a number exceeding
a certain threshold. This node does not provide
any output to the end-user. Given a variable, Logic
Nodes allow dialog designers to define a series of
logical conditions based on the value of a variable.
Each of the conditions can then be connected to
a different follow-up node, personalizing the dia-
log based on previous end-user input. For more
complex logic, Logic Nodes can also be connected
to each other to define branches that require more
than one condition or more than one variable.

4.1.1 Node Editor and Template System
In order to allow dialog designers to change the di-
alog system output, we incorporated the TinyMCE
editor5. This allows dialog designers to visually
format dialog system text, and include tables, links,
or images. Additionally, the interface of TinyMCE
is similar to that of common word processing soft-
ware, reducing the barrier of such formatting.

We also provide a minimal template syntax (see
Fig. 3) which can be used within a node to personal-
ize system output based on previous input from an

5https://www.tiny.cloud

Figure 3: An example of the node editor, using the tem-
plate syntax, which can be used to personalize output.

end-user and/or values from external tables which
can be re-uploaded as information changes. Using
the template syntax, for example, could allow dia-
log designers to create a single node, linked to an
uploaded table which returns the per diam for a user
based on the length of stay and the country of travel
they have given. This can greatly simplify dialog
graphs, both in terms of reducing the total number
of nodes and answers needed (a single node instead
of one for each country and duration) as well as in
the ease of updating the graph as policies change
(uploading a new table instead of editing nodes).
The template syntax allows for the following op-
erations, which can combined together to create
arbitrarily complex templates: 1) referencing the
value of a variable, 2) performing mathematical
operations, and 3) referencing a value from an up-
loaded table.

4.2 Navigation Features
As dialog graphs can become quite large for com-
plicated domains, one important aspect of our tool
is helping users to maintain an overview of the
whole graph as well as to find individual nodes.

Mini-Map To keep track of how the section of
graph they are working on at the moment fits into
the bigger picture of the entire dialog, we provide
a mini-map of the whole graph in the bottom right
corner of the editor, highlighting the portion cur-
rently visible.

Search We provide a search panel with fuzzy
matching to help find and update specific nodes in
the graph. The user can click on a result to jump to
the corresponding node, which will be highlighted
and placed at the center of their screen. Addition-
ally, as weblinks may change or need updating
with more frequency than other types of informa-
tion, we provide a similar panel where all weblinks
are listed alphabetically.

Tags and Filtering Additionally, dialog design-
ers can create tags and add them to any node in
the dialog graph. Each tag will be assigned a color
text and displayed as text at the bottom of the node
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Figure 4: Graph management dashboard. Users can
create/delete, edit, and share their dialog systems.

(see figure 2). The color coding helps to visually
tell what category or categories a node belongs
to which can help with grouping. Users can filter
which tags are visible in the graph at a time, allow-
ing them to hide graph sections not relevant to what
they are currently working on.

4.3 Debugging
To test a dialog graph before releasing it, we pro-
vide a parallel debug window next to the dialog
graph editor with an interactive instance of the
corresponding dialog system. Dialog designers
can then directly try out different inputs and verify
whether the dialog flow works as intended. To sim-
plify understanding of the dialog flow, the editor
window will pan to and focus on the node currently
displayed in the chat window. Any changes to the
dialog flow in the editor will be immediately avail-
able in the chat, starting from the next dialog turn.
Additionally, dialog designers can use the debug
panel to view the values of all variables active in the
dialog and ensure their correctness at every turn.

4.4 Managing Graphs
Dialog designers can manage their graphs from a
central page 4. Here they can choose create new di-
alog systems or edit/delete existing ones. Addition-
ally, they can download user interaction log data or
get a link to their finished dialog system. This link,
which can be distributed or embedded, points to
a non-editable chat window (figure 5) where end-
users can interact with the current version of the
dialog system.

5 Implementation Details

5.1 Dialog System
Once the dialog graph has been defined, it can
instantly be used as a fully functioning dialog sys-
tem. The dialog system communication backend
is based on the ADVISER toolkit (Li et al., 2020),
which defines an abstract service class from which
dialog modules can inherit. All modules which in-
herit from this service class can communicate with
each other using a publish-subscribe framework. In

Figure 5: Embeddable/shareable chat window.

comparison to the communication protocol imple-
mented in ADVISER, the backend of DIAGRAPH
has been modified by attaching a user id to each
message sent. In this way, the dialog systems cre-
ated with DIAGRAPH can support an arbitrary
number of end-users concurrently. The full system
consists of two new modules: a policy and a natu-
ral language understanding unit (NLU). The policy
navigates users through a dialog graph, choosing
a next step based on the NLU output, which maps
user input to one of the pre-defined answer can-
didates. As the dialog nodes themselves define
the system output, there is no need for a natural
language generation unit.

Currently, DIAGRAPH was designed for cre-
ating text-based dialogs. However, it would also
be possible to create a spoken dialog system, e.g.
by incorporating ADVISER’s text-to-speech and
automatic speech recognition modules, which can
communicate with the other DIAGRAPH services.
This functionality is not included in the default
DIAGRAPH distribution.

5.1.1 Natural Language Understanding

The natural langauge understanding unit (NLU) is
based on a state-of-the-art, multilingual similarity
model (Reimers and Gurevych, 2019) for User Re-
sponse Nodes and regular expressions for Variable
Nodes. As User Response Nodes have a fixed set
of prototypical answers and the goal is to match the
user input to one of these answers, a large language
model performs well. For variable nodes, however,
the input space must be restricted according to the
variable’s type: e.g., a boolean variable should not
be allowed to assume values other than true or false.
Therefore, we use regular expressions to guarantee
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that variable values conform to their specified type.

5.1.2 Dialog Policy
The dialog system’s behaviour, the policy, is pri-
marily defined by the dialog designer based on how
they construct their dialog graph. DIAGRAPH is
by default configured to use a rules-based policy
that will traverse the provided graph turn-wise, be-
ginning from the start and taking the following
actions depending on the current node type:

• User Response Nodes: The policy will output
the system utterance, wait for user input, and
then consider which prototypical answer best
matches the user input(as determined by the
NLU module). Finally, it will proceed to the
node connected to that answer.

• Information Node: The policy will output the
system utterance and transition to the con-
nected node.

• Variable Node: The system will output the
system utterance, wait for user input, store it
in the associated variable, and then traverse to
the connected node.

• Variable Update Node: The system will not
output any text, but update the associated vari-
able according to the specified rule. Then, it
will move on to the connected node.

• Logic Node: The system will not output any
text, but evaluate each logical condition based
on the value of the associated variable. The
system will then proceed to the node con-
nected to the matched condition.

As an alternative to the handcrafted policy, the
graphs generated from DIAGRAPH could be ex-
ported and directly used to train a reinforcement
learning (RL) policy, as proposed in our earlier
work (Väth et al., 2023). In comparison to the
handcrafted policy included in the standard distri-
bution of DIAGRAPH, the RL policy adapts to the
amount of information in a given user query to ei-
ther navigate the end-user through the dialog tree
node by node or skip extraneous nodes once the
user intent can be inferred.

5.2 Editor
The DIAGRAPH frontend is implemented in React,
using the React Flow 6 library to help smoothly ren-
der nodes and edges as they are moved around the

6https://reactflow.dev

screen. As graphs can be quite large, we focused
on efficiency of rendering for the frontend, trying
to keep both the amount of memory needed to run
the editor and the amount of external libraries to a
minimum. In this way, the editor can seamlessly
support graphs with hundreds of nodes, in terms of
creating or updating nodes, as well as in terms of
fluid navigation. The dialog nodes created in the
frontend are automatically stored in the backend
database, which is updated every time informa-
tion about the node (position, text, connections,
associated answers, etc.) is changed. Keeping the
frontend store and the backend database synced
ensures that the handcrafted policy is always up
to date with the state of the graph displayed in the
editor. For handling the database connections, user
authentication, (re)starting the dialog system, and
serving a compiled version of the front end, we use
the python toolkit Django 7.

6 Evaluation

To evaluate the usefulness of our software, we
tested its usability in three different scenarios 1)
to create a real-world dialog system in a complex
domain, 2) to rapidly prototype dialog systems, 3)
to teach students about programming and dialog
systems.

6.1 Complex Real-World Domain

As a first test, we worked with three subject-area
experts from a university travel reimbursement de-
partment, to create a dialog system to help employ-
ees navigate travel planning and reimbursement.
None of the experts had previous experience with
chatbots, but hoped to offload common questions to
the chatbot in order to have more time for complex
cases and processing reimbursements.

Given the complexity of the domain and the im-
portance of providing legally correct information, it
served as a good test of DIAGRAPH’s full function-
ality. To create the dialog system, the subject-area
experts first generated a set of frequently asked
questions and then worked with us to sort them
into categories and dialog sequences. Once they
had a clear picture of how they wanted to group
information, they were provided with an interactive
tutorial and user manual for the system. After a col-
laborative phase to implement the first version of
the dialog graph, the experts were left alone to ex-
pand and update it, resulting in a final version with

7https://www.djangoproject.com
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194 nodes and a maximum depth of 32. The dia-
log system defined by this graph was then released
for university employees as an additional option
for answering travel related questions. During the
initial test phase, approximately 2000 dialogs were
conducted by university employees, each lasting
roughly 5.9 turns

At the end of the collaboration, the experts were
asked provide feedback about the experience via
the System Usability Scale (Brooke, 1996), a ten
item Likert scale for measuring user interfaces.
They were also asked to give free-form feedback
about their positive and negative impressions. DI-
AGRAPH received largely positive feedback with
an average SUS score of 82 (highest possible 100;
average 69 (Bangor et al., 2009)). Experts appreci-
ated its user friendliness, how well dialogs could
be specified, and the freedom for creative design
the tool promoted.

This use-case highlights that the dialog designer
can provide the level of control needed for highly
complex and sensitive domains and be deployed in
real-world scenarios.

6.2 Rapid Dialog System Design

In a second test, we investigated DIAGRAPH as
a tool for rapidly creating dialog systems. We col-
lected 19 participants and asked them to take 15-30
minutes to create and test a new dialog system of
their own design. Participants were provided with
a tutorial in the form of an interactive dialog graph
and an example dialog of a digital ice cream seller.
In contrast to the previous scenario, participants
were not provided any in person instruction. De-
spite the lack of additional instruction and short
interaction time, all participants were able to suc-
cessfully develop a variety of dialog systems.

After interacting with DIAGRAPH, participants
were also asked to fill out the 10 item SUS ques-
tionnaire and provide free-form feedback on things
they liked or disliked about the tool. When eval-
uating the survey results, DIAGRAPH was given
an average SUS score of 75 (out of a possible 100)
indicating above average usability. This was also
reflected in the comments, where the software was
described as “fun!" and “intuitive to use", although
the tutorial dialog was generally seen as too long.

As results from the SUS can be considered to
generalize when tested with at least 12 partici-
pants(Brooke, 2013), and because all users were
able to create dialog systems in such a short time,

our results confirm that DIAGRAPH provides an in-
tuitive interface which allows for rapid prototyping
of dialog systems.

6.3 Educational Tool

Finally, we held a workshop on dialog systems with
a group of six high school aged students to explore
how DIAGRAPH could be used in an educational
setting. Students were given a 45 minute long in-
troduction to dialog systems and programming con-
cepts. Following the theoretical introduction, they
were given a 30 minute interactive tutorial – on
how to create a chatbot for selling icecream with
the DIAGRAPH tool – and then allowed to create
and test their own dialog systems. The experience
was rated fun and engaging by all participants (1.5
on a six-point Likert scale from very engaging to
not at all engaging). All participants who left free-
form feedback further indicated that they enjoyed
the experience and/or felt that they learned a lot
from it. Although not all participants had previous
coding experience, all students were able to suc-
cessfully create their own dialog graphs by the end
of the half hour, each of which involved some type
of logical operation or loop condition.

This experiment suggests that in addition to be-
ing easy to use, DIAGRAPH has potential as a
teaching tool for dialog systems and for program-
ming concepts.

7 Conclusion and Future Work

In this paper we have presented DIAGRAPH: an
open-source graphic interface for designing dialog
systems supporting either rules-based or RL-based
dialog graph navigation. DIAGRAPH provides an
intuitive way for subject-area experts to create com-
plex dialog systems, users to rapidly prototype dia-
log interactions, and students to learn about dialog
systems – regardless of the user’s level of technical
background. Our user evaluation shows that DIA-
GRAPH was considered easy to use for all three
use cases and users generally considered working
with the tool an intuitive and fun experience.

In the future, we hope to extend our tool with
the ability to query web APIs and to allow dialog
designers to define expected inputs for variable
nodes using custom regular expressions in order to
increase flexibility even further. By releasing this
software as open-source, we hope to make dialog
design more accessible and to spark more research
in controllable dialog policies.
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Abstract

Pre-trained language models and other gener-
ative models have revolutionized NLP and be-
yond. However, these models tend to reproduce
undesirable biases present in their training data.
Also, they may overlook patterns that are im-
portant but challenging to capture. To address
these limitations, researchers have introduced
distributional control techniques. These tech-
niques, not limited to language, allow control-
ling the prevalence (i.e. expectations) of any
features of interest in the model’s outputs. De-
spite their potential, the widespread adoption of
these techniques has been hindered by the dif-
ficulty in adapting the complex, disconnected
code. Here, we present disco, an open-source
Python library that brings these techniques to
the broader public.1

1 Introduction

The advent of pre-trained generative models has
had a paradigm-shifting impact in Natural Lan-
guage Processing (Radford et al., 2019b; Brown
et al., 2020; Raffel et al., 2020), but also in other
fields such as Speech Processing (Nguyen et al.,
2022), Code Generation (Chen et al., 2021), Com-
puter Vision (Ramesh et al., 2021; Rombach et al.,
2022; Yu et al., 2022), among others. The common
thread in these models is that of training a probabil-
ity distribution over a given space of interest (text,
images, audio, etc.) using large corpora, which can
then be used to generate samples in this space. In
particular, in NLP, these models have found appli-
cations not only in traditional tasks such as sum-
marization (Radford et al., 2019b), but also opened
new capabilities through few-shot learning (Brown
et al., 2020). However, the models may suffer from
deficiencies stemming both from replicating some
patterns in the training data that are not desirable

∗Equal contribution.
1Available at https://github.com/naver/disco, and

installable by pip install disco-generation. Demo
video at https://vimeo.com/800847322/9848219f33.

LM constrain() EBM

tune() Preferred 
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Preferences: 
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Documents

①
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Figure 1: Overview of disco’s workflow.

such as offensiveness (Gehman et al., 2020) or un-
equal treatment (Cao et al., 2022), but also from
failing to replicate other more desirable patterns
which are also present in the data but are hard to
capture by the neural network model, such as truth-
ful information (Lin et al., 2022). For these rea-
sons, there is a growing interest in controlling the
generations to align with human values (Ouyang
et al., 2022; Askell et al., 2021). Khalifa et al.
(2021) proposed a comprehensive framework to
tackle these issues that they coined “Generation
under Distributional Control” or GDC. This frame-
work builds on the idea introduced by Parshakova
et al. (2019b) that we can decouple the problems
of describing the target distribution representing
the aligned generative model (i.e., the what) from
the problem of approximating it (i.e., the how). In
particular, they design the target distribution by
fixing the desired expectations of some features
of interest while avoiding catastrophic forgetting,
and approximate it using the DPG algorithm (Par-
shakova et al., 2019a). Yet, other target distri-
butions are possible. For example, Korbak et al.
(2022b) showed that Reinforcement Learning from
Human Feedback or RLHF (Ziegler et al., 2019;
Bai et al., 2022; Ouyang et al., 2022) could also be
framed as approximating a well-defined target dis-
tribution, highlighting the generality and flexibility
of the distributional approach. Here, we present
disco, a user-friendly library that provides devel-
opers, researchers, and practitioners easy access to
state-of-the-art distributional control techniques. In
what follows, we provide an overview of the GDC
theoretical framework and its associated techniques
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before introducing the toolkit, with an overview of
some design choices and a quick tour of its capa-
bilities. We then suggest possible applications and
apply disco to three experimental use cases.

2 Background

Let’s assume a pre-trained generative model a(·)
that defines a probability distribution over a sam-
ple space X such that we can efficiently compute
the probability a(x) for any element x ∈ X . Un-
der the GDC framework, controlling the generative
model amounts to defining a new probability dis-
tribution p∗(x) to sample from. This probability
distribution is such that 1. it meets the control con-
ditions: given a vector of n pre-defined real-valued
functions (or features) ϕ(x) = [ϕi(x)]i=1...n de-
fined over x ∈ X , p∗ is constrained such that
each moment (i.e. expectation) µi

.
= Ex∼p∗ϕi(x)

matches a desired value µ̄i; and 2. it avoids catas-
trophic forgetting: p∗ is the distribution that min-
imizes KL divergence from a among all distribu-
tions p′ ∈ C satisfying the previous constraints
p∗ .

= argminp′∈C DKL(p
′, a). For example, if a

is an English language model, ϕ1(x) is a binary
classifier detecting that a sentence topic is “sports”
and ϕ2(x) is another binary classifier that detects
whether a sentence mentions a female character,
and we set µ̄1 = 1 and µ̄2 = 0.5, then p∗ will be a
new language model that minimally deviates from
a and such that all generated sentences speak about
sports and 50% mention a female character.

Khalifa et al. (2021) show that p∗ can be rep-
resented by an energy-based model (EBM) P (x),
i.e. a function that assigns a positive score to ev-
ery x, such that p∗(x) = P (x)/Z where Z =∑

x∈X P (x). P (x) can take either of the follow-
ing two forms:
pointwise constraints: If we have binary features
ϕi(x) ∈ {0, 1} and µ̄i = 1, then,

P point(x) = a(x)
∏

i

ϕi(x) (1)

distributional constraints: More generally, we
can express

P distr(x;λ) = a(x) exp(λ⊺ϕ(x)). (2)

where λ is a parameter vector of coefficients s.t.
the resulting normalized distribution pdistr respects
the desired constraints on the features’ moments.
Finding the vector λ in Eq. 2 is done through a

training process by which λ is initialized to a ran-
dom value, and then updated by gradient descent
on minimizing Lcoef(λ) = DKL(p

∗(·), pdistr(·;λ)),
with gradient

∇λLcoef(λ) = Ex∼pdistr(·;λ)ϕ(x)− µ̄ (3)

and where the moments Ex∼pdistr(·;λ)ϕ(x) are com-
puted through self-normalized importance sam-
pling (SNIS; Owen, 2013) using a(·) or any other
proposal distribution (Parshakova et al., 2019b;
Bengio and Senecal, 2008).

2.1 Approximating p with an auto-regressive
model

Once we have defined our target distribution p rep-
resented as an EBM P , we would like to use it
for generation. Unfortunately, the EBM represen-
tation does not allow us to efficiently sample from
it because it is not in an auto-regressive form. Yet,
we can train an auto-regressive model πθ to ap-
proximate p(x) = P (x)/Z with the DPG algo-
rithm (Parshakova et al., 2019b), which minimizes
the forward KL divergence from the target distribu-
tion DKL(p, πθ), or equivalently, the cross-entropy,
obtaining the following gradient term:

∇θLCE(θ) =
1

Z
− Ex∼q(·)

P (x)

q(x)
∇θ log πθ(x).

(4)

Here q(·) is a distribution from which we can
generate samples: We can set q(x) = πθ(x)
(on-policy version DPGon), or alternatively use
any other distribution (off-policy version DPGoff )
(DPG; Parshakova et al., 2019a). The latter per-
mits to improve the training stability by keeping
a frozen version of πθ as a proposal q and only
update it when we are confident that DKL(p, πθ)
has improved (KL-adaptive DPG; Khalifa et al.,
2021). Recently, Go et al. (2023) introduced f -
DPG, which generalizes DPG to minimizing any
f -divergence for approximating the target distribu-
tion. The family of f -divergences includes forward
KL divergence, Jensen-Shannon, total variation dis-
tance (TVD), reverse KL, among others. Given a
convex “generator” function f such that f(1) = 0,
the gradient of the f -divergence Df (πθ||p) (in the
on-policy version) is given by:

∇θLf (θ) = Ex∼πθ
f ′

(
Zπθ(x)

P (x)

)
∇θ log πθ(x).

(5)
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When f ′(t) = −1
t , we recover the forward KL,

DKL(p, πθ), objective of the original DPG algo-
rithm. When f ′(t) = 1 + log t, we obtain an
optimizer of the reverse KL, DKL(πθ, p). Alter-
natively, setting f ′(t) = log 2t

t+1 , recovers the
gradient of the Jensen-Shannon divergence, and
f ′(t) = 1[t > 1] − 1

2 yields the gradient of the
total variation distance. Finally, we note that a
constant “baseline” B can be subtracted from the
f ′(Zπθ(x)/P (x)) term in Eq. 5 to reduce the gra-
dient’s variance (Korbak et al., 2022b; Go et al.,
2023).

2.2 Further approximating p with
Monte-Carlo sampling

Training the model πθ in the above-described fash-
ion can lead to a high-quality approximation of
p but, often, it will not exactly match it. One
way to further approximate the target distribution
is to use quasi-rejection sampling (QRS; Eikema
et al., 2022). This method consists in sampling
from a proposal q(x) (e.g., q(x) .

= πθ(x)) and
keeping only accepted samples with probability
min(1, P (x)/(βq(x))), where β is a tunable pa-
rameter. The authors show that the f -divergence of
the sampling distribution to the target distribution
p is a monotonic function of β. In other words,
increasing β can only improve (or maintain) the
sampling fidelity, although at the cost of lower ef-
ficiency due to fewer accepted samples. Further-
more, they show that for any chosen β we can
estimate the corresponding acceptance rate and di-
vergence to p for any f -divergence.

2.3 Controlling conditional models

So far we have restricted our discussion to un-
conditional models. However, many NLP prob-
lems are modelled as conditional probability dis-
tribution a(x|c) that takes some variable context
c as input. Korbak et al. (2022a) proposed the
following generalization of GDC to conditional
models. They consider a distribution over con-
texts τ(c) and a map from a context c to a target
EBM Pc with corresponding normalized distribu-
tion pc = Pc/Zc where Zc =

∑
x∈X Pc(x), which

is respectively defined for pointwise and distribu-
tional constraints, as follows:

P point
c (x) = a(x|c)

∏

i

ϕi(x, c), (6)

P distr
c (x|λ) = a(x|c) exp(λ · ϕ(x, c)). (7)

The model is then fine-tuned to optimize the
loss function Lcond(θ) = Ec∼τCE(pc(·), πθ(·|c)).
Whereas Korbak et al. (2022a) only explored target
distributions with pointwise constraints, for disco
we also include distributional constraints. For this,
we need to estimate the parameters λ, which we do
by generalizing to the conditional case the deriva-
tion of Eq. 3:

∇λLcoef′(λ) = Ec∼τEx∼pc(·;λ)ϕ(x, c)− µ̄. (8)

2.4 RL with KL penalities
Another popular approach, seemingly competing
with CDG, is Reinforcement Learning from Hu-
man Feedback or RLHF. This approach involves,
first, learning a reward function r(x) that approxi-
mates human judgments, and second, fine-tuning
the model πθ to maximize the reward while penal-
izing departure from the original a(x).

JRLKL(θ) = Ex∼πθ

[
r(x)− β log

πθ(x)

a(x)

]
. (9)

Interestingly, Korbak et al. (2022b) showed that this
objective is equivalent to minimizing the reverse
KL divergence to the target distribution:

pRLHF(x) ∝ a(x) exp(r(x)/β). (10)

Notably, Go et al. (2023) show that this target dis-
tribution could not only be approximated through
the reverse KL divergence but also any other f -
divergence, including forward KL and Jensen-
Shannon, leading to different trade-offs in terms
of expected reward and diversity. In particular,
reverse KL tends to produce models with higher
alignment levels as measured by the expected re-
ward at the cost of lower diversity in the final model.
On the other hand, the forward KL leads to lower
alignment but preserving more diversity. Jensen-
Shannon strikes a good balance in-between the two.

3 Design and implementation

disco is a Python toolkit based on PyTorch (Paszke
et al., 2019) that abstracts away most of the details
described in the previous section in a simple three-
step workflow (Figure 1). It depends on the Trans-
formers (Wolf et al., 2020) library, which allows it
to load models seamlessly from the HuggingFace
hub. The toolkit is organized around two fundamen-
tal classes of entities: Samplers and Scorers (see
Figure 2). These entities are defined by exposing
the methods sample() and score(), respectively.
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Sampler
.sample()

Scorer
.score()

Distribution
.constrain()

LMDistribution

PositiveScorer
.log_score()

BooleanScorer

Tuner

CDPGTuner

DPGTunerQuasiRejection
Sampler

Figure 2: disco simplified class diagram. Dashed lines
represent abstract entities.

As their name suggests, sample() draws samples
from the underlying distribution, whereas score()
computes a numerical score for each given sam-
ple. PositiveScorers are Scorers that are known
to only return positive scores because of which
they also provide the log_score() method. An
entity can independently be a Sampler or a Scorer.
However, we ask the generative models that we
wish to control to support both the Sampler and the
Scorer interface, further stipulating that the score
of a sample corresponds to its sampling probabil-
ity and is differentiable. We denote such classes
Distributions. For example, a language model is
encapsulated in an LMDistribution object, sup-
porting both operations:

base = LMDistribution("gpt2")
samples, logprobs = base.sample()
samples_logprobs = base.log_score(samples)

sample() also returns log_probs that are consis-
tent with log_score() for efficiency reasons.

Expressing preferences To express either point-
wise or distributional preferences, Distributions
support the constrain() method, which given
a list of features ϕi(x) and their corresponding
moments µ̄i, returns a representation of the tar-
get distribution that respects the constraints while
deviating minimally from the original model.2

Features can be defined using the Scorer class,
which accepts a function or a lambda abstrac-
tion taking a sample s and a context c as argu-
ments and returning a score. An important class of
features are boolean features, represented by the
BooleanScorer class. While general features can
only be used to define distributional constraints,

2The λ coefficients are approximately computed through
importance sampling and SGD, both of which can be tuned
by setting the number of samples employed and the SGD
parameters when calling constrain().

boolean features can also be used to define point-
wise constraints. For example, we can score the
presence of the string “amazing” in the sample s,
as follows:

amazing = BooleanScorer(
lambda s, c: "amazing" in s.text)

Conditional features can be expressed simply by
taking the context c into account. Next, we can
define an EBM with a pointwise constraint re-
quiring that all our samples must include (the
string) “amazing” by setting the target moment
of a BooleanScorer feature to 1:

target = base.constrain([amazing], [1.0])

Distributional constraints are enforced by specify-
ing any real-valued target moment or using non-
binary features. Finally, an RLHF-like target dis-
tribution with regularization parameter beta and
a reward scorer can be defined in the following
way.

target = base * ExponentialScorer([reward],
[1./beta])

In all cases, the resulting target is a Posi-
tiveScorer representing the target distribution as
an EBM. Crucially, it is not an instance of Distri-
bution since it does not allow sampling.

Fine-tuning the model To tune a Distribution to
approximate the target EBM so that we can use it
to generate samples, disco provides a set of Tuner
classes, notably the DPGTuner and FDPGTuner
for the unconditional case, and CDPGTuner and
FCDPGTuner for the conditional case. The dif-
ference between using vanilla DPG/CDPG and f -
DPG/f -CDPG for tuning is that whereas the for-
mer are restricted to minimizing the KL divergence
to the target, f -(C)DPG can be used to minimize
any f -divergence (defaulting to Jensen-Shannon,
which often works well in practice).

model = LMDistribution("gpt2", freeze=False)
tuner = DPGTuner(model, target)
tuner.tune()

Note that we treat the unconditional case as a par-
ticular instance of the conditional one in which
there is a single fixed context, the reason why
(F)DPGTuner is also a (F)CDPGTuner. Condi-
tional tuning only requires further specifying a
distribution of possible contexts on which the
model will be conditioned. This is done with
a ContextDistribution, such as for instance
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the DatasetContextDistribution, which sam-
ples contexts from HuggingFace Datasets (Lhoest
et al., 2021). The Tuner reports a number of
metrics that are useful to monitor the training
progress. A number of Logger classes are pro-
vided to keep track of these metrics, including
JSON, W&B, Neptune or custom loggers. One
of the most important reported metrics includes
the estimate of the model’s divergence to the tar-
get, [kl/js/tv]_target_model, as measured
by KL, JS or TV, respectively, one of which is typi-
cally the quantity being optimized. Other metrics
can include the features moments and the diver-
gence from the base model if they are requested.

Improving the approximation with MC sam-
pling After the tuning is done, model is now a
better approximation to the target EBM, but it is
not guaranteed to perfectly match this distribution.
While further training can improve the situation,
another alternative is using Quasi-Rejection Sam-
pling (QRS; Eikema et al., 2022), a Monte-Carlo
sampling technique that allows to trade-off sam-
pling efficiency for a higher fidelity to the target
distribution —a higher value of beta yields a bet-
ter approximation at a higher computational cost
by retaining a smaller fraction of samples.

sampler = QuasiRejectionSampler(
target, model, beta=0.5)

samples, log_scores = sampler.sample()

The computational cost and the quality of the ap-
proximation will also depend on the proposal distri-
bution (the closer the proposal is to the target, the
higher quality can be obtained at a lower computa-
tional cost). Notably, we can estimate both quality
in terms of divergence to the target or the expecta-
tion of a feature of interest and computational cost
in terms of the expected acceptance rate for any
given proposal distribution and value of beta:

estim = QuasiRejectionSamplerEstimator(
target, model)

beta = 0.5
ar_at_beta = estim.acceptance_rate_at_beta(beta)
kl_at_beta = estim.divergence_at_beta(beta, KL)
amazing_at_beta = estim.feature_moment_at_beta(

beta, amazing)

4 Applications

disco enables a number of possible applications,
of which here we list only a few.

Compilability/style constraints on code genera-
tion Language models trained on clean code data

can still generate code that does not compile or,
even if it does, can fail to meet style standards.
Korbak et al. (2021, 2022a) showed that it was pos-
sible to effectively improve code generation models
on both accounts by using pointwise constraints on
the result coming from the Python compiler and of
an off-the-shelf linter.

Limiting hallucinations Seq2seq models such
as those used in summarization or NMT have a
common failure mode by which they generate in-
formation not originally present in the source doc-
ument (aka “hallucinations”). Entity-level factual
consistency (Nan et al., 2021) is a family of mea-
sures that detect whether produced entities were
included in the source, and whether they are part
of the target in the dataset. Korbak et al. (2022a)
showed that GDC could be successfully applied to
improve on these metrics. Below, we reproduce
part of the experiments.

Debiasing language models GDC can address
bias in language models by defining a feature de-
tecting a population of interest, and setting the tar-
get moments of the feature to the desired value.
Khalifa et al. (2021) experimented with reducing
gender bias, while Go et al. (2023) use this tech-
nique to balance the “regard” score among different
religious groups.

5 Showcase experiments

This section presents a selection of experiments
to showcase a few use cases of disco, along with
code snippets illustrating their implementation.

5.1 Amazing experiment

In this simple experiment, initially introduced
in Khalifa et al. (2021), we want all samples
from the GPT-2 (small) language model (Rad-
ford et al., 2019a) to contain the string “amaz-
ing”. The following code shows how to
tackle this task in disco. We experiment with
different batch sizes (n_samples_per_step ∈
{27, 28, 29, 210, 211, 212}) while controlling the to-
tal number of gradient steps (n_gradient_steps
∈ {25 × 1000, 24 × 1000, 23 × 1000, 22 × 1000,
21 × 1000, 20 × 1000}) so that the total number of
samples remains constant. sampling_size and
scoring_size only affect speed and are set to the
maximum value that fits in the GPU memory.

base = LMDistribution("gpt2", device="cuda")
amazing_scorer = BooleanScorer(
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Figure 3: Divergences to the target distribution (top)
and proportion of “amazing” samples during tuning
(bottom), for various batch sizes.

lambda s, c: "amazing" in s.text)
target = base.constrain(

[amazing_scorer], [1])
model = base.clone().freeze(False)

tuner = DPGTuner(model, target,
n_gradient_steps=1000,
n_samples_per_step=4096,
sampling_size=64,
scoring_size=64)

tuner.tune()

Results Figure 3 shows the KL divergence of the
model to the target distribution (top) and the pro-
portion of sequences containing “amazing” (bot-
tom). The former is the optimized metric, sub-
suming the percentage of “amazing” sequences
and, importantly, the divergence from the original
distribution. Although small batch sizes seem to
give good enough results for the “amazing” feature,
their divergences are almost off the chart, indicat-
ing model degradation. On the other hand, the
model trained with batch size 4096 has a KL of
1.47 nats and generates “amazing” samples 57% of
the time (from an initial frequency of about 0.1%).
Additionally using QRS (beta = 0.02) retains just
10% of the samples, but gets us to 0.08 nats and
generates 100% “amazing” samples. For illustra-
tive purposes, some randomly generated samples
are presented in the Appendix.

5.2 Don’t hallucinate entities
Here we replicate the setting described in Kor-
bak et al. (2022a) on improving entity-level fac-
tual consistency (Nan et al., 2021). Specifi-

cally, we constrain a T5 (small) model (Raffel
et al., 2019) so that all named entities appear-
ing in the summary also appear in the source,
with at least 4 entities appearing in the summary.
Given a function NER(x) that returns a set of
named entities implemented with the SpaCy (Hon-
nibal et al., 2020) pre-trained named entity rec-
ognizer, we build two features: no_new_entity,
and min_four_entities, which given a sample
x and a context c, compute NER(x) ⊆ NER(c)
and |NER(x)| ≥ 4, respectively. We train us-
ing a CDPGTuner that samples source documents
from the first 5k documents in the CNN / Dai-
lyMail (Nallapati et al., 2016) dataset, via a
DatasetContextDistribution.
base = LMDistribution("t5-small",

auto=AutoModelForSeq2SeqLM, device="cuda")
target = base.constrain(

[no_new_entity, min_four_entities],
[1, 1])

model = base.clone().freeze(False)

contexts = DatasetContextDistribution(
dataset="cnn_dailymail", subset="1.0.0",
split="train[:5000]", key="article",
prefix="summarize: ")

tuner = CDPGTuner(model, target,
context_distribution=contexts,
n_gradient_steps=1000,
n_samples_per_step=32,
context_sampling_size=32,
sampling_size=8,
scoring_size=8)

tuner.tune()

Results We use beam search to sample
summaries x for source documents c in the
test set. Their entity-level factual consis-
tency, measured by precision to the source
(|NER(x)⋂ NER(c)|/|NER(c)|), improves
from .91 to .94, and recall to the target t
(|NER(x)⋂ NER(t)|/|NER(t)|) goes from .26 to .45.
Notably, the summaries’ ROUGE-L score also
slightly improves, from 0.257 to 0.268. Example
summaries are presented in the Appendix.

5.3 The entertainer
In this experiment we want to control the per-
sonality type of a BlenderBot (Roller et al.,
2021) chatbot according to Myers&Briggs dimen-
sions (Myers and Myers, 1995) (Extraverted/In-
troverted, iNtuitive/obServant, Thinking/Feeling,
Judging/Prospecting), targeting a “spontaneous and
generous” ESFP3 type. Specifically, we use a
pre-trained classifier to assess personality types4

3https://www.16personalities.com/esfp-personality
4https://huggingface.co/spaces/seduerr/personality

149

https://www.16personalities.com/esfp-personality
https://huggingface.co/spaces/seduerr/personality


Responses to “What’s the best piece of
advice you’ve ever been given?” E S F P

before tuning

mine is staying confident. It’s tough though
when I dont really have advice sometimes 0.6 0.36 0.62 0.34

There’s probably so many. I love helping
people get better. By giving them informa-
tion and securing they can better themselves

0.48 0.24 0.47 0.62

after tuning

Human beings do not belong to a single
continent 0.86 0.84 0.72 0.5

I’d have to say knowledge and dedication
are definitely what keep me from failing. 0.64 0.76 0.8 0.65

Table 1: Personality Type ESFP score for BlenderBot’s
samples, before and after tuning

and built a PersonalityTypeScorer that re-
turns the score of any chosen dimension. We
use the facebook/blenderbot-400M-distill
seq2seq model from the HuggingFace hub. We set
the target moments to 0.8 on each of the “E”, “S”,
“F”, and “P” personality dimensions. To prompt
the model with relevant context, we use a list of
“icebreaking” utterances collected from the web5

to build a ContextDistribution, which is used
both when estimating the coefficients of the EBM
and for fine-tuning the model using a CDPGTuner.

base = LMDistribution(
"facebook/blenderbot-400M-distill",
auto=AutoModelForSeq2SeqLM,
device="cuda")

contexts = ContextDistribution(
"data/icebreakers.txt")

target = base.constrain(
[PersonalityTypeScorer(t)

for t in "ESFP"], [0.8] * 4,
context_distribution=contexts)

model = base.clone().freeze(False)

tuner = CDPGTuner(model, target,
context=contexts,
n_gradient_steps=2000,
n_samples_per_step=512,
context_sampling_size=8,
sampling_size=128,
scoring_size=128)

tuner.tune()

Results We improve the moments of the di-
mensions of interest, as follows: E: .59 → .64,
S: .42 → .56, F: .55 → .69, P: .48 → .56. Some
samples are shown in Table 8 and in the Appendix.

6 Related works & Conclusion

disco is the first toolkit to bring GDC techniques to
a wide audience. Such techniques build on a solid
theoretical framework based on the separation be-
tween the design of the target distribution and its

5https://museumhack.com/list-icebreakers-questions

approximation. Thanks to this elegant approach,
users can first focus exclusively on defining the con-
trol conditions by setting the desired expectations
of features of interest. Then, they can use the tools
provided in disco (like the f -(C)DPG and the QRS
algorithms) to generate content meeting the desired
conditions. Notably, GDC subsumes other frame-
works such as RLHF, which can be seen as a par-
ticular case (see Sec. 2.4). For this reason, disco
has a wider scope than other related toolkits such
as RL4LM (Ramamurthy et al., 2022), which cen-
ters on RL methods only. Nevertheless, there is a
large space for cross-pollination between RL-based
frameworks and disco because of similarities in the
underlying algorithms (Korbak et al., 2022b). For
example, disco incorporates the baseline technique
from RL to reduce the gradients’ variance and in-
crease training stability and efficiency. Likewise,
there are many points of contact between the two
paradigms that remain to be explored in the future
which can further enhance disco.
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Broader impact

The techniques made broadly accessible by disco
have the potential to address many existing chal-
lenges of language models and other generative sys-
tems such as bias, factual consistency, toxicity, just
to name a few. disco is a very general framework
that allows to control the prevalence of any feature
that can be represented as a function from a sample
to a numerical score (for example, a classifier’s
score, a reward function or any other metric of the
text). Because of this generality disco can adapt
to a wide range of use cases and changing values
and demands. However, the concrete results will
depend on how the controlled features are quanti-
fied, on which disco is completely unopinionated.
The crucial work of deciding how to best design
relevant features and their target moments is a task
the user will have to undertake. On the other hand,
the users now have the power to focus exclusively
on this latter question and relegate the algorithmic
problems of controlling the model to match their
desiderata to disco.
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A Additional example generations

GPT-2 base model

× 'I just read the information that this made a lot of people feel so
ashamed they hadn't heard anything about the existing government and I'm
very proud of that,' he said. 'I believe it

× Reasons for showing up further after guessing. Fiber optic cables could
be cheap to deploy but at least they cover a lot of ground. VR Fitness on
Facebook:\n\nI've started modeling a concept

× Like every other generation is awash in data, from sedan cars to it's
internal combustion engine, we have a new problem with the world: Lattes
fluctuate from year to year because of

× Write down every magic stone found in the cave. Decide what level to take.
1) Find Adamantite orders in what spell the game sets up 1) Name yourself
spell numbers 2) Discover further

× \nPosted by Soumitai on May 01, 2015 at 7:57 am | Permalink\n\nRating\n\n1
Related\n\nMust Someone Build It There is no way ANONYMOUS

× By choosing a brand name - including Audi or Powerleague, DeMarcus
Atlanta's full name should go with national advertising.\n\nAron's fifth,
retiring Chicago Bulls future Hall of Famer is

× Gothic Witch Queens: Hound of Innocence Acts 1 Acheryl Solde – Thieves
Don't Approach Me Act, The monsters are gone, Sonofie, The Ghost Just
Broke the

× In the interview before the Charlottesville rally, he argued for those who
oppose arming the so-called alt-right:\n\nFirst of all, I happen to just
strongly disagree with the anti-Second

× Sophie Pottle has been playing guitar and lead singer of the band Zoey
Emaleigh since 2008. Cast in the role of Flaming Bob this year, Jayne has
very less of

× 'He could have died,' said the ex-German intelligence officer in his mind.
'He didn't want to be hunted, or forced into liberty.' Other former German
officers had once and legendary former

Table 2: Random samples extracted from the gpt2 base model, scored for whether the string “amazing” is present or
not.
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Fine-tuned model with DPG to include “amazing” (batch size 4096)

Say thanks by giving speetuh323 a tip and help them continue to share
amazing Things with the Thingiverse community.\n\nStep 1:<|endoftext|>

× ers should consider FB2; a DB2, and x3.\n\nThis build is essentially a
4 full run DB2 (see later post) with some pretty good changes to see how
easy
1022) October 7, 2016\n\nIt's amazing. As amazing as it might have
been, the undefeated Boston College Utes do do this despite the Hahn-1
& Carlston refs more
Amazing Review.\n\n1 outline of design shown below\n\nTo conclude Was
their first (pun intended). Cards look alike really No issues with the
endosing front. And the car itself looks nice
amazing - 4 of this.\n\nUpdate: They have added some changes to update
your ~/.amazingrc file\n\nAnyway.\n\nAnd they can detect your smoth
status, too'
It was amazing how transformed Caitlyn is at the moment in Stephane's
third birthday. I led her to make an amazing face at the election.
\spverbThe people closest to her had no idea it was
For pretty bad reason, we've been hearing a lot about the unlevel GameClip
for a while... spending weeks whipping up info in bulk, sharing amazing
new features, and playing it to nuts

× One of the things that wobble around town when I use it is that I
sometimes end up being incredibly bad at explaining to others why they're
doing it. So here's what I've learned,
Artwork and design are equally important and thus perplexing. I always
don't create boring design for anyone that can't go otherwise around the
office. An amazing pair of shoes because of their delicate detailing

× a clearly beneficial single meaning. It began in five minutes with ones of
Neil de Grasse Tyson, which is surprising, given where he went from here.
Here it comes in three steps:\n\n

Table 3: Random samples extracted from the model fine-tuned with DPG (batch size 4096) on the objective that all
sequences should contain “amazing” while minimally diverging from the origin
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QRS (beta=0.02) with a DPG-tuned proposal (batch size 4096)

Sandbox 20 exclusive\n\nThursday, May 5, 2011 Main Theme – Masjidn 14 A
probably amazing theme that is pretty memorable. And it's shipped with 20
coolest and last exclusive skins
"Remember the Did Ya Wanna Look So Good?" that Randall offered to Griffin
and Cartman E\'Brien. "Remember the amazing reveille you brought my
friends?"\n\nGod bless them.
500 years ago, Times Mouse was celebrated for notasting and giving minrs
their gift birds from America.\n\nWith "Ten Thousand Saints," Times Mouse
amazingly took holiday every year since 1983 now that
GODNS\n\n"Free love is an amazing truth." –President Franklin D.
Roosevelt\n\nGODNAMES\n\nCares about the other., Astonishing.\n\nCONGRE
Viticos Crystallographie is now available as an experimental 8ish
compendium.\n\nREAD MORE >>\n\nThe last chance, in the last few years &
amazingly beautiful, at doing
I know I missed out on the amazing (or at least a little impressive!)
gradient experience, but here it is in action. It'll make either seat you
taller or shorter and seems pretty much synchronized
Can Brewing Company Bottle Collection hold up?\n\n\nSince back in 2007 we
have been sharing amazing Tank series for some of our styles out in the
world:\n\nBig Barrel Wit - A range of
Cast & Crew Episode 77 Welcome to Cast & Crew Episode 77. This 44 minute
podcast brings we funny figures and some great hosts like on but very
lovable dreams. Featuring Ghostbusters have had amazing paydays
Honey! It is absolutely amazing!! in a whole good way! People are not
talking so much about, you know, strawberries, health check, growing
organ. I'm signing off. It's
There are perks and payments for top players and promotions: we can rest
assured that you will agree to receive us all you want in addition to our
amazing Golden Key Card, VIP offsite events, contests

Table 4: Random samples extracted using QRS with parameter beta=0.02 on the target distribution in which all
sequences contain the string “amazing” using a DPG fine-tuned model (batch size 4096) as a proposal.
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Original article

(CNN)Seventy years ago, Anne Frank died of typhus in a Nazi concentration camp at the age of 15. Just
two weeks after her supposed death on March 31, 1945, the Bergen-Belsen concentration camp where
she had been imprisoned was liberated – timing that showed how close the Jewish diarist had been to
surviving the Holocaust. But new research released by the Anne Frank House shows that Anne and her
older sister, Margot Frank, died at least a month earlier than previously thought. Researchers re-examined
archives of the Red Cross, the International Training Service and the Bergen-Belsen Memorial, along with
testimonies of survivors. They concluded that Anne and Margot probably did not survive to March 1945 –
contradicting the date of death which had previously been determined by Dutch authorities. In 1944, Anne
and seven others hiding in the Amsterdam secret annex were arrested and sent to the Auschwitz-Birkenau
concentration camp. Anne Frank’s final entry . That same year, Anne and Margot were separated from
their mother and sent away to work as slave labor at the Bergen-Belsen camp in Germany. Days at the
camp were filled with terror and dread, witnesses said. The sisters stayed in a section of the overcrowded
camp with no lighting, little water and no latrine. They slept on lice-ridden straw and violent storms
shredded the tents, according to the researchers. Like the other prisoners, the sisters endured long hours at
roll call. Her classmate, Nannette Blitz, recalled seeing Anne there in December 1944: "She was no more
than a skeleton by then. She was wrapped in a blanket; she couldn’t bear to wear her clothes anymore
because they were crawling with lice." Listen to Anne Frank’s friends describe her concentration camp
experience . As the Russians advanced further, the Bergen-Belsen concentration camp became even more
crowded, bringing more disease. A deadly typhus outbreak caused thousands to die each day. Typhus is
an infectious disease caused by lice that breaks out in places with poor hygiene. The disease causes high
fever, chills and skin eruptions. "Because of the lice infesting the bedstraw and her clothes, Anne was
exposed to the main carrier of epidemic typhus for an extended period," museum researchers wrote. They
concluded that it’s unlikely the sisters survived until March, because witnesses at the camp said the sisters
both had symptoms before February 7. "Most deaths caused by typhus occur around twelve days after the
first symptoms appear," wrote authors Erika Prins and Gertjan Broek. The exact dates of death for Anne
and Margot remain unclear. Margot died before Anne. "Anne never gave up hope," said Blitz, her friend.
"She was absolutely convinced she would survive." Her diary endures as one of the world’s most popular
books. Read more about Anne Frank’s cousin, a keeper of her legacy .

Base T5 summary

typhus is an infectious disease caused by lice that breaks out in places with poor hygiene. a deadly typhus
outbreak caused thousands to die each day. typhus is an infectious disease caused by lice that breaks out
in places with poor hygiene.

Fine-tuned T5 summary

Anne Frank and her older sister, Margot, died at least a month earlier than previously thought. researchers
re-examined archives of the Red Cross, the International Training Service and the Bergen-Belsen Memorial.
they concluded that Anne and Margot probably did not survive to March 1945.

Table 5: Summaries generated using bream search with beam size 5 from the T5-small model and from the one
fine-tuned with the objective of producing at least 4 named entities that are in the source document, as described in
Section 5.2. Highlighted in purple are the named entities in the text recognized by SpaCy.
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Original article

(CNN)The FBI charged a Philadelphia woman on Thursday with trying to travel overseas to fight for ISIS.
She’s one of three women arrested this week on terror charges. Two New York women were also taken
into custody. An FBI complaint cites numerous social media messages dating back to August 2013 that
were sent by Keonna Thomas, 30, also known as "Young Lioness" and "Fatayat Al Khilafah." One Twitter
message said, "If we truly knew the realities ... we all would be rushing to join our brothers in the front
lines pray ALLAH accept us as shuhada [martyrs]." Another said, "When you’re a mujahid [violent jihadi
fighter] your death becomes a wedding." The FBI said Thomas purchased an electronic visa to Turkey on
March 23. Turkey is known as the easiest place from which to enter Syria and join ISIS. An ISIS manual
advises recruits to buy round-trip tickets to vacation spots such as Spain and then purchase tickets for
their real destination once they arrive overseas, the FBI said. On March 26, Thomas purchased a ticket
to Barcelona, with a March 29 departure and an April 15 return to the United States, the complaint said.
It’s not clear when or where she was arrested. She was charged with knowingly attempting to provide
material support and resources to a designated foreign terrorist organization. She could be sentenced to 15
years in prison. On Thursday, Noelle Velentzas, 28, and her former roommate, Asia Siddiqui, 31, were
arrested in New York and accused of planning to build an explosive device for attacks in the United States,
federal prosecutors said. In the past 18 months, the Justice Department’s National Security Division has
prosecuted or is prosecuting more than 30 cases of people attempting to travel abroad to join or provide
support to terrorist groups. Of those cases, 18 allegedly involve support to ISIS. "The terrorist threat is
more decentralized, more diffuse, more complicated," Homeland Security Secretary Jeh Johnson told
reporters Thursday. "It involves the potential lone wolf actor, it involves the effective use of social media,
the Internet."

Base T5 summary

a woman is charged with trying to travel overseas to fight for ISIS. she’s one of three women arrested this
week on terror charges. two new york women were also taken into custody.

Fine-tuned T5 summary

the FBI charged a Philadelphia woman with trying to travel overseas to fight for ISIS. Keonna Thomas,
30, also known as "young Lioness" and "Fatayat Al Khilafah" two new york women were also taken into
custody.

Table 6: Summaries generated using bream search with beam size 5 from the T5-small model and from the one
fine-tuned with the objective of producing at least 4 named entities that are in the source document, as described in
Section 5.2. Highlighted in purple are the named entities in the text recognized by SpaCy.
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Original article

(CNN)President Barack Obama tied himself to the mast of a nuclear deal with Iran even before he became
the Democratic candidate for president. Reaching a good, solid agreement with Iran is a worthy, desirable
goal. But the process has unfolded under the destructive influence of political considerations, weakening
America’s hand and strengthening Iran. Obama’s political standing and his historic legacy in foreign
policy are so deeply intertwined with reaching an accord with Iran that if the deal ultimately collapses, he
may fear that historians will conclude that his legacy in global affairs collapsed with it. There is a reason
one gets the feeling that it is the United States and not Iran that is the more eager, even desperate, side in
these talks, even though Iran is the country whose economy was sent into a deep chill by international
sanctions; the country whose only significant export, oil, lost more than half of its value in recent months.
The reason is that Obama has a huge political stake in these negotiations. The President may insist that
the United States will choose no deal over a bad deal, but few people truly believe he has a credible Plan
B. Few believe it, particularly in the Middle East and notably among America’s Arab friends, who hold
the view that Iran is running circles around the United States and outplayed Obama. As the writer David
Rothkopf aptly put it, "Iran is having a great Obama administration." That’s a belief that has already
started shaking up the region. Saudi Arabia has said that it will pursue nuclear weapons if it believes
Iran has not been stopped, and there is little doubt that other countries among Iran’s Muslim rivals will
do the same. In fact, the notion that Obama is not handling the Iranian threat effectively is contributing
to a new war in Yemen, where Saudi Arabia and other Arabs are trying to push back against gains by
Iran’s allies. We can trace it all back to the Democratic primaries in 2007, when then-Sen. Obama said
he would meet Iran’s leaders "without preconditions," leading his rival, Hillary Clinton, to call the idea
"Irresponsible and frankly naive." As the years of his presidency unfolded, and the Middle East started
coming apart, finding a deal with Iran started to look like the one major foreign policy achievement Obama
might leave behind. The political imperative started to intrude in strategic considerations on an issue
that is of transcendent importance to world peace. The framework agreement announced on Thursday
came two days after Obama’s March 31 deadline. The U.S.-imposed deadline served only to pressure the
United States, and the French ambassador very publicly decried as a "bad tactic." That bad tactic was
a political move, a push to produce some sort of result, however vague, to protect the talks from critics.
Again, a solid agreement that ensures Iran will not produce nuclear weapons would be a most welcome
development. But the agreement so far does not look promising. It certainly shows the final outcome
will differ greatly from what Obama had vowed. In a presidential debate in 2012, Obama described a
crystal clear goal for negotiations. "The deal we’ll accept is they end their nuclear program. It’s very
straightforward." Nobody is talking about Iran ending its nuclear program. Not even close. Iran will be
allowed to keep one-third of its more than 6,000 centrifuges. That’s not a small symbolic number. And it
does not appear as though any of its nuclear facilities will be dismantled, although Fordow will contain
no nuclear materials. Iran has insisted all along that its nuclear program has only civilian uses. The fact
is that Iran has a well-established record of lying and concealing the elements of its nuclear program
to U.N. inspectors. And the U.N. agency chief says that has not stopped. A couple of weeks ago, with
days left until the negotiating deadline, U.N. nuclear chief Yukiya Amano said Iran is still stonewalling.
"We are still not in a position to conclude that all nuclear material in Iran is [for a] peaceful purpose," he
warned. The negotiations’ starting point is that Iran would like to have the bomb and the international
community wants to delay that as much as possible – and preferably, forever. The world only learned
about Iran’s secret facilities at Arak and Natanz after dissidents raised the alarm. Iran, we have learned
repeatedly, is very good at lying to international inspectors. It is well-established that it has had something
to hide about its nuclear program. It is well-established that many of Iran’s neighbors don’t trust it and are
anxious about the U.S.-led international dealings with Iran. It is well-established that Iran has engaged
in international terrorism and in destabilizing the region. It is also clear that it took harsh international
sanctions and a collapse in oil prices to bring Iran to the negotiating table. It was Iran that had the most to
lose from a failure of talks. But political considerations turned the United States into the supplicant. The
framework agreement starts lifting those indispensable sanctions much too soon...

158



Original article (cont.)

...Nuclear enrichment will continue, although at a lower level. Iran officially, legally, becomes a nuclear
threshold state, with the capability to make the final dash to a bomb within a "breakout" period of one
year, the time when presumably inspectors would discover violation and allow the rest of the world to act.
Even the Fordow facility, conveniently inside a fortified bunker in a mountain, will remain in existence,
though "converted" to a nuclear "research facility" And without nuclear material on site. International
sanctions lifting will begin almost immediately. Its nuclear infrastructure will remain largely in place,
even if operating at a reduced pace, giving Iran much of what it wanted. With Iranian forces gaining
ground in Arab lands and Iranian commanders declaring the destruction of Israel "nonnegotiable" and
threatening Saudi Arabia, this deal does not look reassuring. Obama is right that a diplomatic solution
is the most desirable option. But the deal so far looks like (another) win for Iran. It introduces enough
restrictions that it could give the President the political cover he wants, but it does not do enough to make
the world safe from nuclear proliferation and more potentially catastrophic instability in the Middle East.

Base T5 summary

sally kohn: if deal collapses, he may fear historians will conclude his legacy collapsed with it. kohn: if
deal collapses, u.s. will choose no deal over a bad deal, but few believe it. kohn: if deal collapses, u.s.
will pursue nuclear weapons if it believes Iran has not been stopped.

Fine-tuned T5 summary

president Barack Obama tied himself to the mast of a nuclear deal with Iran even before he became
the Democratic candidate for president. if the deal collapses, he may fear historians will conclude that
his legacy in global affairs collapsed with it. the notion that Obama is not handling the Iranian threat
effectively is contributing to a new war in Yemen, where Saudi Arabia and other Arabs are trying to push
back against gains by Iran’s allies.

Table 7: Summaries generated using bream search with beam size 5 from the T5-small model and from the one
fine-tuned with the objective of producing at least 4 named entities that are in the source document, as described in
Section 5.2. Highlighted in purple are the named entities in the text recognized by SpaCy.
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Additional responses to “What’s the best piece of advice you’ve ever been given?” E S F P

before tuning

My best advice would be to study hard, I overschedule my classes a lot. 0.39 0.35 0.62 0.48

Definitely the best. Knowing how to do something effectively so I don’t have to feel
unsure of answers on the road.

0.21 0.38 0.37 0.35

That it is a jump from my everyday life to be completely independent always with my
money.

0.48 0.4 0.72 0.63

I am not sure that I have answered all that so far... But I will say, I learned that it is
impossible to fail an exam without the right approach.

0.71 0.92 0.83 0.41

I think it would probably be all of the advice I had! Particularly given that I was given the
step by asking my best friend for advice, which he then retired from the military to quit
smoking and was willing to get me back on my feet!

0.73 0.44 0.74 0.52

Not that I know of but I keep talking about my parents’ divorce symptoms and cutting out
custody.

0.63 0.3 0.69 0.53

I just took a job in residence space and got 6 months of paid vacation from it! 0.7 0.3 0.7 0.53

It is some things like going to the dentist or having great insurance. I keep my fingers
crossed that they catch a glitch.

0.6 0.14 0.62 0.62

I think the best advice I’ve got is to take things fairly literal. So if something goes wrong
and a mistake happens, it’s not enough.

0.67 0.36 0.7 0.58

Mine is staying confident. It’s tough though when I don’t really have advice sometimes,
even though I’ve been here 14 years.

0.69 0.33 0.58 0.36

after tuning

Yes you can never be too careful. Never give up on trying. So what steps does your advice
on improving your diet and nutrition?

0.48 0.9 0.7 0.72

I would need to go one with the best military advice. The military lifestyle comes with
tough history and I have been expressed with great disputes lol

0.59 0.36 0.45 0.69

Oh, I’d go with my father who taught me to not over educate. He does not care what
anyone else thinks. I like to see that people do well.

0.65 0.79 0.77 0.47

Maybe to look inside herself to understand the means of self-employment? It might be
too much for me, but it may be helpful. A standard goal is to meet your expectations for
success. I wish you well.

0.69 0.67 0.51 0.72

I really like people of higher quality showing their knowledge of their subjects, as much
as I may be receiving gifts.

0.63 0.26 0.88 0.88

That’s great! And you are approaching the most respectable answer of all time. The one
that may give you the best advice is knowledge!

0.51 0.71 0.91 0.61

When I first came to tell the stories I was working at, the anticipation increased on the
meeting before I even started. It felt good to use all my knowledge but then I realized as a
customer I could hardly do my own work.

0.77 0.59 0.75 0.64

I think saying, "but really only time, you need to work hard to succeed" and to not give up
entirely even when you know you have it.

0.7 0.61 0.77 0.53

I’d have to say knowledge and dedication are definitely what keep me from failing. 0.64 0.76 0.8 0.65

I’ve had so many long years of what some people might call being decent to them. Ever
since I found people I knew when I graduated high school I kind of crushed on them and
let them know I was still here. Contributing to their faith in life was something I found.

0.87 0.81 0.5 0.74

Table 8: Personality Type ESFP score for BlenderBot’s randomly obtained samples, before and after tuning with the
objective of producing responses with 0.8 score on average in each of the ESFP dimensions.
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Abstract

Hyperparameter optimization is an important
but often overlooked process in the research of
deep learning technologies. To obtain a good
model, one must carefully tune hyperparame-
ters that determine the architecture and train-
ing algorithm. Insufficient tuning may result
in poor results, while inequitable tuning may
lead to exaggerated differences between mod-
els. We present a hyperparameter optimization
toolkit for neural machine translation (NMT)
to help researchers focus their time on the cre-
ative rather than the mundane. The toolkit
is implemented as a wrapper on top of the
open-source Sockeye NMT software. Using
the Asynchronous Successive Halving Algo-
rithm (ASHA), we demonstrate that it is pos-
sible to discover near-optimal models under a
computational budget with little effort.1

1 Introduction

Deep learning models are difficult to train. Al-
though they achieve impressive results on many
tasks, non-trivial amounts of effort are required
for selecting appropriate hyperparameters, such as
the number of layers, vocabulary size, embedding
dimension, and optimization algorithm. This trial-
and-error process is necessary for each task, do-
main, or language. Further, the rapid development
of new neural network architectures implies that
this hyperparameter optimization process will only
become more expensive.

Currently, hyperparameter optimization tends to
be performed manually by researchers in an ad hoc
fashion, using scripts put together independently.
The lack of open-source support tools means that
the level of rigor in hyperparameter optimization
may vary widely. This poses two risks:

1https://github.com/kevinduh/sockeye-recipes3
(code), https://cs.jhu.edu/~kevinduh/j/demo.mp4
(video demo)

1. Insufficient exploration of the hyperparame-
ter space may lead to poor results, killing an
otherwise promising research idea.

2. Inequitable allocation of compute resources
for hyperparameter optimization of one model
over another may lead to exaggerated results
differences and misleading conclusions.

The importance of documenting the hyperparam-
eter optimization process in research has already
been widely recognized and is included as an item
under the “Responsible NLP Checklist"2 required
for paper submissions in the field. To support these
efforts, we believe it will be beneficial to develop
open-source tools to improve the hyperparameter
optimization process itself.

This paper presents a hyperparameter opti-
mization toolkit for NMT research. It enables
researchers to easily explore the hyperparame-
ter space of various NMT models based on the
PyTorch codebase of AWS Sockeye framework
(Hieber et al., 2022). One simply specifies (1) the
desired set of hyperparameter options to search,
(2) the compute resource constraints, and (3) the
training data paths, then the toolkit will plan and
execute an automatic hyperparameter optimization
and return the best model discovered. The toolkit
implements the Asynchronous Successive Halv-
ing Algorithm (ASHA) (Li et al., 2020), which is
well-suited for commodity off-the-shelf distributed
grids.

In the following, we first give an overview of the
toolkit (Section 2) and hyperparameter optimiza-
tion algorithm (Section 3). Then, the case study in
Section 4 illustrates how the toolkit can help a re-
searcher search over thousands of hyperparameter
configurations with ease. Finally, Section 5 dis-
cusses our design choices, hopefully serving as a

2https://aclrollingreview.org/
responsibleNLPresearch/
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Figure 1: An overview of the sockeye-recipes3 hyperparameter optimization toolkit

reference for those who want to implement similar
toolkits for different NLP software.

2 Usage Overview

Our hyperparameter optimization toolkit is named
sockeye-recipes3, since it cooks up different
models by training models with the AWS Sock-
eye NMT framework, version 3. An overview is
shown in Figure 1. For concreteness, let us sup-
pose the researcher in Figure 1 wants to run a rigor-
ous hyperparameter optimization to obtain a strong
Transformer baseline for a new dataset.

Step 1: The researcher designs a hyperparameter
search space for his/her model. Table 1 shows some
common hyperparameters for Transformers, but the
toolkit is flexible to incorporate any user-defined
hyperparameter. This hyperparameter space is ex-
pressed as a YAML file, e.g. space.yaml:
transformer_model_size: [256, 512, 1024]
transformer_attention_heads: 8
transformer_feed_forward_num_hidden: [1024, 2048]
...

The snippet above indicates that the researcher
wishes to explore three choices for model size, one
choice for attention head, and two choices for a
feed-forward number of hidden units. The Carte-
sian product of all these choices forms the full
hyperparameter space.

Step 2: sockeye-recipes3 samples from the
full hyperparameter space to generate a set of bash
files called hpm files. Each hpm file represents a
specific hyperparameter configuration and encap-
sulates all the information needed to train a model.
This includes not only hyperparameter settings but
also paths to training and validation data. For ex-
ample, config1.hpm might train a model with:
transformer_model_size=256

transformer_attention_heads=8
transformer_feed_forward_num_hidden=1024
train_data=~/data/wmt.train.de-en.bitext
validation_data=~/data/wmt.dev.de-en.bitext

The set of hpm files represents all the hyperpa-
rameter configurations to be explored by the hy-
perparameter optimization algorithm. Rather than
randomly sampling a subspace, one can also gener-
ate the full Cartesian product or manually edit some
hpm files based on prior knowledge. Depending on
the researcher’s usage scenario, this set typically
numbers from tens to thousands.

Step 3: Once the researcher is ready, he/she starts
the ASHA program with resource specifications
such as the number of concurrent GPUs to use and
the number of checkpoints per training run. This
Python code dispatches the training processes as
standard Sockeye jobs to a distributed grid.3 ASHA
will attempt to efficiently train as many models as
possible given the computational constraints. It is
a bandit learning method that automatically learns
when to stop a not-so-promising training run in
order to allocate resources to other hyperparameter
configurations. Details are in Section 3.

Step 4: The results of all Sockeye training runs
dispatched by ASHA are stored on disk. Each
hpm file will have a corresponding subdirectory
with the output log of a Sockeye training pro-
cess. This makes it easy to replicate or continue
any training runs in the future, with or without
the sockeye-recipes3 toolkit. Ultimately, the re-
searcher can pick out the best model from the set
for further experimentation.

3The dispatch in sockeye-recipes3 is currently imple-
mented for the Univa Grid Engine (UGE) but is easily extend-
able to other similar grid management software like SLURM.
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Figure 2: Illustration of Successive Halving

Additional features: (a) Metric: The toolkit’s
default is to find models with high BLEU on the
validation set. This can be changed to any user-
specified metric. Also, we have devised a multi-
objective version of ASHA to enable joint opti-
mization of accuracy and inference speed based on
Pareto optimality (Marler and Arora, 2004).

(b) Analysis: After an ASHA run, one may wish
to see if there are certain trends in hyperparameters,
e.g. are some more important than others? This
introspection can be helpful in understanding the
model or designing future hyperparameter spaces.
We have included a tool for posthoc analysis using
Explainable Boosting Machines (Deb et al., 2022).

3 Hyperparameter Opt. with ASHA

Problem: Suppose we have N hyperparameter
configurations (hpm files) and a max compute bud-
get of B, measured in terms of the total number
of training checkpoints available. Let us select n
configurations for actual training, where n ≤ N .
If each configuration is allocated the same budget,
then each would be trained up to B/n checkpoints.
When N is large, we have an untenable problem:

• If we choose n to be large (close to N ), then
B/n will be small, indicating that each config-
uration is only trained for a few checkpoints.
Most models likely will not have converged.

• If we choose n to be small (despite N being
large), then configurations that are chosen are
trained well (large B/n) but the majority of
configurations are not even trained at all.

The only solution is to allocate each configura-
tion with a variable budget: i.e. train promising

configurations for more checkpoints and terminate
the not-so-promising ones prior to convergence.
This is an intuitive idea that has probably been per-
formed countless times by researchers by tracking
learning curves in a manual fashion.

Successive Halving: The Successive Halving Al-
gorithm (Jamieson and Talwalkar, 2016) imple-
ments this intuition algorithmically, and is illus-
trated in Figure 2. Suppose we choose n = 4
hyperparameter configurations to explore and the
total budget is B = 7 checkpoints. We begin by
first training each configuration up to checkpoint
1 and measuring their validation accuracy. The
configurations with lower accuracies at this point
(config3, config4) are deemed not-so-promising
and are terminated. The remaining half (config1,
config2) are trained longer, and validation accuracy
is measured again at checkpoint 2. Again, half of
the configurations are terminated and the other half
is “promoted" to be trained longer; this is done
successively until the total budget is reached.

The main assumption of Successive Halving is
that learning curves of different configurations are
comparable and that the relative ranking of vali-
dation accuracy at intermediate checkpoints corre-
lates to that at convergence. This is an assumption
that cannot be proved but is likely reasonable in
most cases with the proper setting of checkpoint
intervals.

ASHA: In practice, the Successive Halving Al-
gorithm as described above has a bottleneck at each
checkpoint: we need to wait for all configurations
to return their validation score before deciding the
best half to promote. The actual time that a con-
figuration needs to reach a checkpoint depends on
many factors such as GPU device type and model
size. So we may end up waiting for the slowest
training run, causing poor grid utilization.

To address this, an Asynchronous Successive
Halving Algorithm (ASHA) is introduced (Li et al.,
2020). The idea is to promote a configuration as
soon as it is guaranteed to be in the top half, without
waiting for all configurations to return with their
checkpoints’ validation accuracy. For example in
Figure 2, suppose three configurations (e.g. config2,
config3, config4) have already returned an accuracy
for checkpoint 1. We are then safe to promote the
best one out of the group (config2) without waiting
for config1 to return since config2 will be among
the top half regardless of config1’s accuracy.
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Name & Description Settings
Architecture Hyperparameters
transformer_model_size - size of model/embeddings {256, 512, 1024}
transformer_attention_heads - # of heads 8
transformer_feed_forward_num_hidden - # units in feedforward layer {1024, 2048}
num_layers - for "encoder:decoder" {6:6, 8:4, 4:4, 6:2}
Data Pre-processing Hyperparameters
bpe_symbols_src - # of BPE symbols on source side {5k, 10k, 30k}
bpe_symbols_trg - # of BPE symbols on target side {5k, 10k, 30k}
Training Hyperparameters
optimized_metric perplexity
initial_learning_rate: initial rate for ADAM optimizer {0.0002, 0.001, 0.002}
embed_dropout - dropout rate for source:target embeddings .0:.0
label_smoothing 0.1
seed - random initialization seed {1, 2}
Hardware-related Hyperparameters
batch_size - # of words in batch 4096
checkpoint_interval - #batches before saving checkpoint to disk 4000

Table 1: Hyperparameter space used in the case study. The settings in red font are searched over, while others are
held fixed. In total, we will explore 3× 2× 4× 3× 3× 3× 2 = 1296 configurations.

Please refer to the original papers on ASHA, Suc-
cessive Halving, and a variant called Hyperband
(Li et al., 2016) for more detailed analyses. We
focus on ASHA in sockeye-recipes3.

4 Case Study

Goal: To illustrate how sockeye-recipes3
works in practice, we show a case study on building
a strong Transformer baseline for a new Telugu-to-
English dataset. Our initial training set consists of
900k lines of bitext obtained from public sources
via the OPUS portal (Tiedemann, 2012). This is
augmented with 7 million lines of back-translated
data obtained by running a reverse system (English-
to-Telugu NMT trained on 900k) on web-scraped
news from the Leipzig corpus (Goldhahn et al.,
2012). 3000 lines are held out from the initial train-
ing set to serve as the validation set.

Given this setup, our goal is to run hyperparame-
ter optimization on a standard Transformer archi-
tecture to obtain the best possible model according
to validation BLEU. This model can serve as a
strong baseline for any future NMT experiment
based on the same dataset. Since this is a low-
resource language pair that is relatively unexplored
in the research community, we opt to search a large
hyperparameter space.

Hyperparameter space: Our space.yaml file is
defined according to the options listed in Table 1.
While any user-defined hyperparameter is possible,
sockeye-recipes3 exposes the most common op-
tions. We explore a total of 1296 configurations.

ASHA run: We run ASHA using the resource
settings in Table 2. The reduction rate decides
the fraction of configurations that are promoted
each time: a factor p=2 reduction rate corresponds
to “halving", but in practice, one can choose to
be more or less aggressive. We also specify the
number of GPUs that can be used concurrently by
ASHA: here, it will dispatch jobs asynchronously
up to that limit of G=40.

Finally, the settings for a min, max, and per-
rung checkpoints are NMT-specific modifications
we found useful for ASHA. In Figure 2, halv-
ing is performed at each checkpoint, or at each
“rung" in ASHA terminology. It is convenient to
give NMT researchers the flexibility to choose the
exact schedule: here, we decide that each con-
figuration is trained for at least r=5 checkpoints
(corresponding to 5 × 4000 batches due to the
checkpoint_interval in Table 1) before we per-
form successive halving at the first rung. Thereafter,
each configuration is trained for u=2 checkpoints
before successive halving is performed. Finally, no
configurations will be trained with more than R=25
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Reduction rate. Top 1/p promoted p=2
# of GPUs available G=40
min checkpoints per model r=5
#checkpoints per config per rung u=2
max checkpoints per model R=25

Table 2: ASHA settings for case study

checkpoints regardless of other ASHA settings; this
small number of maximum checkpoints will proba-
bly not obtain state-of-the-art results but is suitable
for the purpose of discovering several good configu-
rations. The researcher may first inspect the ASHA
results to identify several promising configurations,
then manually train them for longer.4

Figure 3 samples a few learning curves (out of
the 1296 configurations in total) to demonstrate
how ASHA works in practice. The top figure is
analogous to Successive Halving in Figure 2, while
the bottom figure shows how the asynchronous
dispatch occurs over time.

Comparison with grid search: To confirm
whether ASHA finds good models, we also run a
grid search on the same 1296 configurations, train-
ing each with up to 25 checkpoints. This corre-
sponds to a total cost of 25× 1296 = 32, 400. In
comparison, the ASHA run in our case study costs
60% less at 9066 checkpoints in total.

Table 3 confirms that ASHA can find good mod-
els that are found by an exhaustive grid search. For
example, the maximum BLEU score by grid search
is 20.3, and while this model is terminated at rung 4,
the final model discovered by ASHA has a competi-
tive BLEU score of 20.1. In our experience, ASHA
is effective at finding a set of reasonable models at
a fraction of the computational cost; if we desire
the best possible model, nothing can replace the
manual effort of an experienced researcher.

5 Design

sockeye-recipes3 is designed with two princi-
ples: (1) All NMT codes, such as a researcher’s
proposed extension of the Sockeye framework, are
encapsulated in separate conda environments. (2)
All hyperparameters and data paths (for baseline
and proposed methods) are explicitly specified in
hpm files, and stored together with each sockeye

4The best model discovered has 8 encoder layers, 4 decoder
layers, 1024 model size, 2048 feedforward size, 10k source
subwords, 30k target subwords, and achieves 35.6 spBLEU
on the FLORES101 devtest (Goyal et al., 2022).

rung ckpt config budget med max
0 5 1296 6480 0.3 20.3
1 7 648 7776 17.2 20.3
2 9 324 8424 18.9 20.3
3 11 162 8748 19.4 20.3
4 13 81 8910 19.7 20.3
5 15 40 8990 19.7 20.1
6 17 20 9030 19.7 20.1
7 19 10 9050 19.8 20.1
8 21 5 9060 19.8 20.1
9 23 2 9064 20.0 20.1
10 25 1 9066 20.1 20.1

Table 3: ASHA vs. Grid search: Each row lists the # of
configurations explored in each rung, # of checkpoints
(ckpt) trained so far per configuration, and accumulated
budget (total checkpoints). The med/max columns are
median/max BLEU scores among the configurations
explored if they were trained to completion in a grid
search. For example, in rung 2, 324 configurations were
explored by ASHA and trained up to 9 checkpoints. If
they were trained up to the full 25 checkpoints and their
BLEU scores were collected, the median would be 18.9
and the max would be 20.3. ASHA preserves many
of the top configurations that would be found by grid
search.

training run. This means that it is easy to replicate
or continue any training run by referring to (1) and
(2). ASHA dispatches will run Sockeye training for
u checkpoints at a time, so a job will automatically
return the GPU resource at the end of each rung.

The ASHA implementation is a Python script
that sits on a single server and regularly checks the
status of Sockeye training runs on the distributed
grid setup. The pseudocode is shown in Algo-
rithm 1. The script keeps track of configurations
that are training or paused at a checkpoint. When
there is an idle GPU, it will decide whether to ex-
plore a new hpm or promote an existing one. The
dispatch is a job submission command that starts a
Sockeye train process on a GPU node. It depends
only on the conda-environment provided, so it is
easy to optimize different NMT implementations
by exchanging the environment while keeping sim-
ilar space.yaml, leading to equitable tuning.

6 Related Work

ASHA and variants can be viewed as bandit algo-
rithms that balance exploration (trying new con-
figurations) with exploitation (training the current
configurations for longer). They obtain efficiency
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Figure 3: Learning curves for a random sample of configurations in ASHA. The y-axis is the validation BLEU
score. The top figure, where the x-axis represents # of checkpoints, is analogous to Figure 2 and shows which
configurations are promoted. The bottom figure represents the same configurations plotted against wallclock time
on the x-axis; this illustrates the asynchronous nature of ASHA. Observe that configurations are not started in sync,
and long plateaus indicate when ASHA decided to pause the configuration at a checkpoint to allocate GPUs for
other ones.

Algorithm 1 ASHA pseudocode

while budget remains do
for all c ∈ configs do

s = check_state(c) ▷ Still training or at checkpoint?

end for
for all g ∈ idle GPU do

h = get_hpm(configs) ▷ Explore new or promote?

dispatch(h, g, conda-env) ▷ Sockeye train()

end for
pause for m minutes

end while

by early stopping. Another class of methods are
“blackbox" optimizers, e.g. Bayesian Optimiza-
tion and Evolutionary Methods (Feurer and Hutter,
2019): they treat hyperparameters as input features,
observed accuracy as output targets, and train a
proxy model to predict new hyperparameters that
are worth sampling. These two classes of methods
can be combined (Falkner et al., 2018); this is po-
tentially future work. Several benchmarks provide
comparisons of state-of-the-art (Zhang and Duh,
2020; Zöller and Huber, 2021).

Neural Architecture Search (Elsken et al., 2019)
is related to hyperparameter optimization but fo-
cuses more on fine-grained choices (e.g. changing
skip connections at different layers). This is an
active area of research, but out-of-scope for our
purpose of improving NMT experimentation.

There are some existing toolkits like Vizier
(Song et al., 2022) and Ray Tune (Liaw et al., 2018),
which are suitable for those wanting general rather
than application-specific solutions.

7 Conclusions

There is a progression of toolkit development that
enables researchers to do better work. Deep learn-
ing toolkits like PyTorch and Tensorflow made
it easy to exploit GPU hardware. Application-
specific toolkits like Sockeye and Fairseq build on
top of that, and enabled researchers to quickly pro-
totype new ideas. Further on top, we believe that
hyperparameter optimization toolkits and experi-
ment management toolkits in general will further
help advance the speed and rigor of research.

We presented sockeye-recipes3, an open-
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source hyperparameter optimization toolkit for
NMT research. Our hope is this will relieve some
of the mundane aspects of manual hyperparame-
ter tuning so that researchers can focus on more
creative activities. A rigorous and automated hy-
perparameter optimization process will also lead to
more trustworthy experiment results.

Limitations

Scope of support: The sockeye-recipes3
toolkit only supports the AWS Sockeye NMT
framework. It is suitable for researchers who plan
to implement and test out different NMT models in
PyTorch using Sockeye’s codebase. It is not meant
to be extensible to hyperparameter optimization
methods for other frameworks in NLP. The reason
is that each toolkit has its own nuanced error mes-
sages and hyperparameter definitions, so it is easier
to do design a focused toolkit.

No guarantees: In general, hyperparameter opti-
mization methods give no theoretical guarantees;
there is always an aspect of uncertainty. For exam-
ple, there is no guarantee that ASHA will keep the
top configurations if the learning curves do not fol-
low our assumptions. One may be more conserva-
tive by setting more checkpoints per rung in ASHA,
but this decreases the potential for efficiency.

Manual design: sockeye-recipes3 does not
fully automate the entire model-building process.
The researcher still needs to design the hyperpa-
rameter space for each task. This search space is
critical for the success of ASHA that follows. One
may imagine a transfer learning (or meta-learning)
approach where hyperparameter spaces from simi-
lar tasks are borrowed, but this is currently an open
problem.

Ethics Statement

Automated hyperparameter optimization can lead
to efficiencies in model building, but we need to
be cognizant that there is also a risk of excessive
optimization. The user needs to design what is a
reasonable search space: for example, would it be
worthwhile to optimize over many different ran-
dom initialization seeds or over small differences
between model sizes?

Excessive optimization poses three risks: First,
one may select models that “overfit", though this
can be ameliorated by proper choices of validation
sets. Second, hyperparameter optimization gives an

advantage to research teams with large compute re-
sources; ASHA and similar methods are not useful
on grids with less than e.g. 10 GPUs.

Third and perhaps more important, the computa-
tion may be wasteful. “Green AI" is an important
call-to-arms for the research community: hyperpa-
rameter optimization is a double-edged sword in
that proper usage leads to efficiency while exces-
sive usage leads to wastefulness.

For example, to quantify the CO2e emissions in
our case study, we estimate that ASHA and grid
search spent a total of 3050 hours on GPU compute
node. Our grid contains a mix of NVIDIA TITAN
RTX, GeForce RTX 2080 Ti, and Tesla V100. In
future versions of sockeye-recipes3, we plan to
track power use individually for all jobs but let
us assume an average power consumption of 250
watts, for a total of 0.762MWh. If we assume
carbon efficiency5 is at 432 kg CO2e per MWh,
data center power usage effectiveness (PUE) is 1.5,
and there are no additional offsets for renewable
energy, we end up with:

0.762 MWh
1

× 432 kg
MWh

× 1.5

1
= 494 kg CO2e (1)

This corresponds to the CO2e of driving a car for
2000km or burning 247kg of coal. Ideally, we will
eventually reach an understanding as a community
of what amount of use is appropriate or excessive.
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Abstract

Live video streaming has become an important
form of communication such as virtual confer-
ences. However, for cross-language communi-
cation in live video streaming, reading subtitles
degrades the viewing experience. To address
this problem, our simultaneous dubbing proto-
type translates and replaces the original speech
of a live video stream in a simultaneous man-
ner. Tests on a collection of 90 public videos
show that our system achieves a low average
latency of 11.90 seconds for smooth playback.
Our method is general and can be extended to
other language pairs.

1 Introduction

Live video streaming over the Internet has become
a very important form of communication in human
society. It has many advantages such as fast, not
constrained by distance, economical and safe.

If the language barrier (Ahmad Abuarqoub,
2019) can be broken down in live video stream-
ing, it will greatly promote global communication.
However, the current common solution to cross-
language live video streaming is to use automatic
simultaneous interpretation (Müller et al., 2016;
Wang et al., 2016; Franceschini et al., 2020; Bojar
et al., 2021) to display translated subtitles. Reading
subtitles at the bottom of the screen is uncomfort-
able and degrades the viewing experience (Wiss-
math et al., 2009).

Our simultaneous dubbing prototype aims to
help live video streaming break down language
barriers. Our prototype translates and replaces the
original speech of a live video stream, creating a
seamless viewing experience in the target language.
Table 1 summarizes what our system is. Our sys-
tem consists of a complete simultaneous interpre-
tation system and a simplified automatic language
dubbing system (Furukawa et al., 2016; Yang et al.,
2020; Öktem et al., 2019; Federico et al., 2020). By

Feature SI LD Ours
Speech Recognition

√ √ √

Machine Translation
√ √ √

Low Latency
√ √

Text-to-Speech
√ √

Duration Match
√ √

Audio Rendering
√

Lip Sync
√

Live Streaming
√

Table 1: Comparison of automatic simultaneous inter-
pretation (SI), automatic language dubbing (LD) and
our system.

combining these two technologies, it gains a novel
ability of live video streaming in a target language.

Tests on a collection of 90 public videos show
that the live streaming from our system achieves a
low average latency of 11.90 seconds and meets a
smoothness criterion. Therefore, our system can
be widely used in fields such as news broadcast-
ing, conferences and education. Furthermore, our
method is general and can extend to other language
pairs.

The main contributions of our work include,

• implementing a first simultaneous dubbing
prototype for multi-language live video
streaming;

• developing evaluation metrics for the latency,
smoothness and duration matching of simulta-
neous dubbing;

• proposing an adaptive playback method to bal-
ance latency and smoothness.

The rest of this paper is organized as follows.
First, Section 2 reviews related works. Then, Sec-
tion 3 describes our method for implementing si-
multaneous dubbing. After that, Section 4 tests
our system on a collection of 90 public videos in
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Figure 1: Implementation of simultaneous dubbing using automatic speech recognition (ASR), sentence segmenta-
tion (SS), machine translation (MT), text-to-speech (TTS) and adaptive playback.

terms of latency, smoothness and duration match-
ing. Finally, Section 5 concludes this paper with a
description on future works.

2 Related Works

Automatic simultaneous interpretation and auto-
matic language dubbing are the two topics most
closely related to our work.

2.1 Automatic Simultaneous Interpretation

Simultaneous interpretation is a hot topic. Due to
space limitations, we only review some selected
practical systems.

Professor Alex Waibel from the Karlsruhe In-
stitute of Technology (KIT) demonstrates a simul-
taneous interpretation system that automatically
translates lectures from German to English in 2012
(Figure 2a) 1. The transcripts are shown on the left
part of the window and the translation is shown
below.

Microsoft Meetings pilots live translated subti-
tles in 2022 (Figure 2b) 2. With this new feature,

1https://www.youtube.com/watch?v=GHeHiPh3u0s
2https://techcommunity.microsoft.com/t5/

microsoft-teams-public-preview/now-in-public-
preview-live-translated-captions-in-meetings/m-
p/3620055

users can select a translation language for live sub-
titles. This feature helps users fully participate in
meetings where the spoken language may not be
their most comfortable language to use. Google
Meet has a similar feature 3.

Wang et al. (2022) demonstrate a multimodal
simultaneous interpretation system that annotates
translation with speakers (Figure 2c). Due to the
delays in the process of simultaneous interpretation,
it is sometimes difficult for users to trace the trans-
lation back to speakers. Thus, the system explicitly
presents “who said what” to users.

Our work differs from these related works by
presenting translation as dubbing, whereas related
works present translation as subtitles. We believe
our method can be incorporated into these related
works to bring better services to users.

2.2 Automatic Language Dubbing
Automatic Language Dubbing commonly operates
on entire video (Yang et al., 2020; Öktem et al.,
2019; Federico et al., 2020) whereas our work op-
erates on video streams and generates output in
low latency. In addition, due to the complexity of
the task, manually correction and adjustment are

3https://workspaceupdates.googleblog.com/
2022/01/live-translated-captions-in-google-meet-
generally-available.html
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(a) KIT SI of lectures (b) Microsoft SI of meetings

(c) SI with multimodal speaker recognition (d) VideoDubber LD

Figure 2: Automatic simultaneous interpretation (SI) and language dubbing (LD) systems.

often required, such as VideoDubber (Figure 2d) 4,
whereas our work is fully automatic.

3 Methods

Our prototype accomplishes simultaneous dubbing
through three main steps as (Figure 1),

1. Segmenting the source video stream into
video clips that contain one single sentence
using automatic speech recognition (Hinton
et al., 2012; Graves and Jaitly, 2014) and
sentence segmentation (Sridhar et al., 2013;
Iranzo-Sánchez et al., 2020). For automatic
speech recognition, we use the Transformer-
based (Vaswani et al., 2017) acoustic model
and the seq2seq criterion (Sutskever et al.,
2014; Synnaeve et al., 2019) implemented in
Flashlight (Pratap et al., 2019)5. For sentence
segmentation, we replace the backbone net-
work of CytonNSS (Wang et al., 2019)6 with
Transformer to improve accuracy.

2. Generating a translated speech waveform for
each sentence using machine translation (Bah-

4https://app.videodubber.com/?source=hp_dub_
it_now

5https://github.com/flashlight/flashlight/
tree/main/flashlight/app/asr

6https://github.com/arthurxlw/cytonNss

danau et al., 2014; Stahlberg, 2020) and text-
to-speech (Wang et al., 2017; Ren et al.,
2019). For machine translation, we use the
Transformer model implemented in Open-
NMT (Klein et al., 2017) 7. For text-to-
speech, we modify the official implementa-
tion of VITS (Kim et al., 2021) 8 to generate
speech waveforms from speaker embeddings
to match the original voice, similar to (Jia
et al., 2018).

3. Playing the images and the translated
speech waveforms using an adaptive playback
method.

The main challenge of simultaneous dubbing is
that the output of sentence segmentation (Step 1)
and machine translation (Step 2) is irregular in time,
but video streaming is constantly consuming data.
For example, in the source stream, someone speaks
a sentence for about 15 seconds. The system then
spends another 5 seconds generating the translated
speech waveform. This results in a 20-second data
gap in the output stream.

The adaptive playback method addresses this
challenge while maintaining low latency (Figure 3).

7https://github.com/OpenNMT/OpenNMT-py
8https://github.com/jaywalnut310/vits
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Figure 3: Behaviors of adaptive playback method.

The speed of the playback changes according to the
size of the data accumulated in the playback buffer,
formulated as,

speed =

{
1.0 if x < θ,
α if x ≥ θ,

(1)

where x is the amount of data accumulated in the
playback buffer. The playback acceleration α ≥ 1
and the buffer size threshold θ are parameters that
control latency and smoothness (Section 4.2).

4 Evaluation

Our system is tested on a collection of 90 public
videos of Japanese interviews, speeches, presenta-
tions and lectures. The total running time of the
collection is approximately 21 hours 45 minutes.
The tests are run on a desktop computer equipped
with one Intel Xeon E5-2630 V3 CPU and two
Nvidia Quadro RTX 4000 GPUs.

The test results are shown in Table 2. The per-
formance of our system is evaluated in terms of
latency (Section 4.1), smoothness (Section 4.2) and
duration matching (Section 4.3).

Our system presets three modes, Fast, Balance
and Quality, for different trade-offs of speed and
quality. Users can select the mode according to the
application. Table 3 lists the parameters for each
mode. Table 7 shows grid search for the buffer
size threshold and playback acceleration for the
fast mode.

4.1 Latency
Latency is the delay between the input video stream
and the output video stream. It is calculated by

comparing the start time of each source sentence
in the input stream with that of the corresponding
translation, formulated as,

Latency =

∑Nsent
i=1 Ti,s − Ti,o

Nsent
, (2)

where Nsent is number of the sentences, Ti,o and
Ti,s are the start times of original waveform and
synthesized translated waveform, respectively. Ta-
ble 5 gives an example with a latency of 9.8.

The fast mode on our system achieves an aver-
age latency of 11.90 seconds (Table 2). This is rel-
atively fast as the maximum duration of sentences
in each video averages 10.76 seconds and the maxi-
mum delay of the generated translated speech aver-
ages 15.59 seconds on the whole dataset (Table 4).
It is difficult to reduce the latency too much below
this value while maintaining smooth video stream-
ing.

4.2 Smoothness
The smoothness of the output stream is measured
by,

• # Stall : the average number of stalls per
minute.

• S. Dur. : the total duration of stalls per
minute.

This follows the researches on assessing the qual-
ity of Internet video streaming (Pastrana-Vidal
et al., 2004; Qi and Dai, 2006; Moorthy et al., 2012;
Seufert et al., 2014; Garcia et al., 2014; Bampis
et al., 2017; Zhou et al., 2022)
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Mode Latency Smoothness Duration Match
(s)↓ # Stall.↓ S. Dur.(s)↓ Fit (%) ↑ D. Fit (%)↑ D. Ex.(%) ↓

Fast 11.90 1.21 2.55 89.32 71.43 154.03
Balance 12.90 0.71 1.71 90.60 75.50 146.67
Quality 14.12 0.49 1.38 91.50 78.43 126.16

Table 2: Evaluation Results.↓ the smaller the better. ↑ the higher the better. (s) seconds.

Mode Playback MT
Buf.(s) Acc. # Models

Fast 5.0 x 1.06 1
Balance 7.0 x 1.04 2
Quality 9.0 x 1.02 3

Table 3: Paramteres

Video Max Dur.(s) Max Delay(s)
1 13.45 15.05
2 10.66 16.80
3 9.97 16.40
4 11.81 17.40

· · ·
87 9.09 14.20
88 8.88 14.45
89 8.81 13.00
90 10.86 18.05

Average 10.76 15.59

Table 4: Maximum duration and processing delay per
sentence for each video stream using one machine trans-
lation model.

Users tend to tolerate up to three short one-
second stalls, or one long three-second stall accord-
ing to the crowdsourcing-based studies (Hoßfeld
et al., 2011). The fast mode of our system is slightly
better than this guideline, while the balance mode
and the quality mode are well above this guideline
(Table 2).

The smoothness of the streaming is influenced
by the buffer size threshold and the acceleration in
the adaptive playback module. We perform grid
search for these two parameters for the fast mode,
balance and quality mode, respectively. Table 7
shows the search result for the fast mode. To speed
up the search, we record the ready time of each
sentence and simulate on the playback module.

4.3 Duration Matching

Language dubbing requires that the duration of
each translated speech waveform matches the dura-
tion of its source sentence. The duration matching

is measured as,

• Fit (%) : the percentage of the translated
speech waveforms that fit in their original du-
rations, formulated as,

NFit

NFit +NExceed
× 100%, (3)

where NFit and NExceed is the number of trans-
lated speech waveforms that fit and exceed the
original durations, respectively.

• D. Fit (%) : the average percentage of the
durations for the translated waveforms that
fit the original durations, formulated as,

NFit∑

i=1

Di,s

Di,o
× 100%, (4)

where Di,s ≤ Di,o, and they are the durations
of synthesized waveforms and original wave-
forms, respectively.

• D. Ex. (%): the average percentage of the
durations for the synthesized waveforms that
exceed the original durations, formulated as,

NExceed∑

j=1

Dj,s

Dj,o
× 100%, (5)

where Dj,s ≥ Dj,o .

Table 6 shows an example of measuring duration
matching.

Our system meets the requirement by trying mul-
tiple translation candidates for each source sen-
tence. In the fast mode, our system uses the best
three candidates that are generated by a machine
translation model. In the quality mode, our system
employs three machine translation models, that is,
nine translation candidates. Table 2 shows that by
increasing the number of translation models, the
Fit and D. Fit percentages increase and D. Ex. de-
creases percentage accordingly.
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No. Source Sentence Translation Time (s)
Start. Play. Delay

1 大学教育入門第九章
アカデミックプレゼ
ンテーション

Introduction to Univer-
sity Education Chapter 9:
Academic Presentation

1.8 11.1 9.3

2 パートフォーの講義
になります

Part Four. 6.0 15.3 9.3

3 この講義ではプレゼ
ンテーションの話し
方についてまず説明
します

In this lecture, we’ll start
with a presentation.

9.2 18.5 9.3

4 まず事前練習は必ず
しましょう

Be sure to do the pre-
practice first.

15.3 24.7 9.4

5 お部屋で一人ででも
いいのでまずしゃ
べってみることが大
事です

You can do it alone in the
room, so it’s important to
talk to them first.

18.3 29.8 11.5

Average 9.8

Table 5: Example of measuring latency. Start time and Playback time are measured at the beginning of sentences
and translations, respectively.

No. Source Sentence Translation Duration(s) Dur. Match. (%)
Sour. Trans. Fit D.Fit D.Ex.

1 一般契約ができたの
も毎回毎回七社とプ
レゼン合うんですよ
ね

I was able to make a gen-
eral contract, and each
time I made a presenta-
tion with seven compa-
nies, right?

4.97 4.18 Yes 84.1

2 スピードデートみた
いな形で三十分から
一時間ずつ会ってい
くんですよ

We meet for thirty min-
utes to an hour each time
in the form of a speed
date.

3.45 3.01 Yes 87.2

3 そのときに僕は世界
的な著者になる準備
をしてきたし

That’s when I was prepar-
ing to become a world-
class author.

3.70 3.02 Yes 98.3

4 日本でも実績もある
しほぼいけるんじゃ
ないかなと思うと

I also have a track record
in Japan, so I think I’ll be
almost able to do it.

3.05 3.34 No 109.5

5 もちろん確信は百%あ
るわけじゃないけど
僕はその仲間も助け
てくれることもある
し

Of course, I’m not 100
percent sure, but some-
times my friends can also
help me.

5.43 3.46 Yes 63.7

Average 80.0 79.1 109.5

Table 6: Example of measuring duration matching.
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Buffer size threshold (seconds)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

a. Latency (seconds)
x1.00 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66
x1.01 13.22 13.22 13.23 13.26 13.32 13.41 13.54 13.72 13.92 14.13 14.30
x1.02 12.59 12.59 12.61 12.66 12.74 12.87 13.05 13.28 13.54 13.83 14.08
x1.03 12.19 12.20 12.23 12.28 12.39 12.54 12.75 13.00 13.31 13.64 13.94
x1.04 11.90 11.91 11.95 12.02 12.13 12.31 12.53 12.82 13.14 13.50 13.83
x1.05 11.69 11.70 11.73 11.81 11.94 12.13 12.37 12.67 13.02 13.39 13.74
x1.06 11.50 11.52 11.56 11.64 11.78 11.98 12.24 12.55 12.92 13.30 13.67
x1.07 11.35 11.37 11.41 11.50 11.65 11.86 12.13 12.46 12.83 13.23 13.61

b. # stalls (per minute)
x1.00 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42
x1.01 0.66 0.68 0.66 0.64 0.62 0.58 0.53 0.51 0.47 0.45 0.43
x1.02 0.98 1.00 0.95 0.91 0.84 0.74 0.66 0.58 0.52 0.48 0.45
x1.03 1.28 1.28 1.22 1.14 1.02 0.90 0.77 0.65 0.56 0.50 0.46
x1.04 1.54 1.53 1.45 1.34 1.19 1.03 0.87 0.72 0.61 0.52 0.48
x1.05 1.83 1.80 1.66 1.52 1.34 1.14 0.94 0.78 0.64 0.53 0.49
x1.06 2.11 2.08 1.91 1.70 1.49 1.24 1.02 0.82 0.67 0.56 0.50
x1.07 2.41 2.32 2.12 1.87 1.60 1.34 1.08 0.87 0.69 0.57 0.50

c. Total duration of stalls (seconds per minute)
x1.00 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27
x1.01 1.69 1.67 1.66 1.62 1.58 1.52 1.46 1.40 1.35 1.32 1.30
x1.02 2.20 2.17 2.11 2.03 1.91 1.78 1.65 1.53 1.43 1.36 1.32
x1.03 2.72 2.66 2.56 2.40 2.22 2.01 1.81 1.64 1.50 1.40 1.34
x1.04 3.24 3.14 2.98 2.76 2.50 2.22 1.96 1.73 1.56 1.43 1.36
x1.05 3.76 3.61 3.39 3.10 2.76 2.42 2.10 1.82 1.61 1.47 1.38
x1.06 4.26 4.07 3.78 3.42 3.01 2.60 2.22 1.91 1.66 1.49 1.39
x1.07 4.76 4.51 4.16 3.72 3.25 2.77 2.34 1.98 1.71 1.52 1.41

Table 7: Grid search for the optimal buffer size threshold (0.0 - 10.0 seconds) and playback acceleration (x1.00 -
x1.07) for the fast mode. The criteria are: a. Latency is as small as possible. b. # stalls ≤ 3 times per minute. c.
Total duration of stalls ≤ 3 seconds per minute.

Our system chooses the longest translated speech
waveform within the original duration among the
candidates. If all the waveforms exceed the orig-
inal duration, our system will choose the shortest
one and truncate its excess to avoid overlapping
with the next sentence. Our system does not ad-
just speech rate as it makes the sound weird and
degrades viewing experience.

We have tried controlling the output length of
machine translation, similar to (Lakew et al., 2019),
but for our Japanese-English language pair, the
translation quality drops a lot. We think the reason
is that these two languages are so different that the
translation cannot be enforced to have a similar
length with the source sentence.

5 Conclusion

This paper presents our Japanese-to-English simul-
taneous dubbing prototype. The system enables
low-latency and smooth live video streaming in the
target language. We believe this technology will
find widespread use in global communications.

In the future, we plan to add optical character
recognition to our system. Video streaming often
displays some text, such as the slides that appear in
a lecture. Text in video streaming is an important
source of information for viewers. Therefore, we
hope that by recognizing and translating the text
in video streaming, our system can provide users
with a complete viewing experience in the target
language.
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Ethical Considerations

Our system differs from generating deepfake video
contents. Viewers can distinguish the dubbed video
streams from original video streams, so it is un-
likely for others to use our system in harmful ways.
The purpose of our system is to deliver information
to viewers in their native language, not to generate
realistic videos. We do not synchronize lip with
speech or render speech with background noise
because they would not help with that goal but in-
troduce additional latency in the output. From these
two aspects, viewers can tell the dubbed streams
from original video streams. Additionally, we place
visible annotations on the output stream indicating
that it is dubbed by automatic machine translation.
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Abstract

We present Visual Knowledge oriented Pro-
gramming platform (VisKoP), a knowledge
base question answering (KBQA) system that
integrates human into the loop to edit and de-
bug the knowledge base (KB) queries. VisKoP
not only provides a neural program induction
module, which converts natural language ques-
tions into knowledge oriented program lan-
guage (KoPL), but also maps KoPL programs
into graphical elements. KoPL programs can
be edited with simple graphical operators, such
as “dragging” to add knowledge operators and

“slot filling” to designate operator arguments.
Moreover, VisKoP provides auto-completion
for its knowledge base schema and users can
easily debug the KoPL program by checking its
intermediate results. To facilitate the practical
KBQA on a million-entity-level KB, we design
a highly efficient KoPL execution engine for
the back-end. Experiment results show that
VisKoP is highly efficient and user interaction
can fix a large portion of wrong KoPL programs
to acquire the correct answer. The VisKoP on-
line demo1, highly efficient KoPL engine2, and
screencast video3 are now publicly available.

1 Introduction

Knowledge Base Question Answering (KBQA)
aims to find answers to factoid questions with an
external Knowledge Base (KB). Researchers have
fully explored the KBQA (Lan et al., 2021) task
and the most common solution is to convert user-
posed natural language questions into KB query
programs via semantic parsing and then give a fi-
nal result by executing queries on the KB, such
as SPARQL (Mihindukulasooriya et al., 2020; Gu
et al., 2021), λ-DCS (Wang et al., 2015; Shin et al.,

∗ Equal contribution.
† Corresponding author.

1demoviskop.xlore.cn (Stable release of this paper) and
viskop.xlore.cn (Beta release with new features).

2https://pypi.org/project/kopl-engine
3https://youtu.be/zAbJtxFPTXo

Find
France

Find
Germany

Relate
shares border with

backward

Relate
statement is subject of

forward

FilterConcept
country

FilterConcept
country

Or Count

KoPL Program

How many countries share borders with both Germany and France?Question:

Semantic Parsing

Figure 1: Semantic parsing results for natural language
question “How many countries share borders with Ger-
many and France?” given by state-of-the-art model
trained on KQA Pro. Errors are marked in red color.

2021), and KoPL (Cao et al., 2022a,b). Recently,
many KBQA systems (Höffner et al., 2013; Cui
et al., 2016; Abdelaziz et al., 2021; Chen et al.,
2021) that implement those advanced semantic
parsing algorithms in an online environment, have
been developed.

Although semantic parsing methods have gained
considerable achievement, there is still no guaran-
tee to precisely parse every user-posed question
given the limitations of current machine learning
techniques. Figure 1 demonstrates an example
of semantic parsing results by the state-of-the-art
KBQA model (Cao et al., 2022a). As the posed
question does not follow the identical distribution
of the training dataset adopted by the semantic pars-
ing model (Shaw et al., 2021; Yin et al., 2021), it is
falsely parsed with the Or operator, which should
be an And operator, causing the structure error of
the KB query. Meanwhile, it is extremely difficult
for the semantic parsing model to correctly predict
all the knowledge elements in a question (Cao et al.,
2022b). As shown in the example, the “shares bor-
der with” relation is falsely predicted as a “state-
ment is subject of” relation, causing an argument
error in the KB query. However, existing KBQA
systems do not provide easy access to manipulat-
ing the KB query programs and thus users cannot
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intervene in the query execution.
Fortunately, several program-based KB query

languages for complex reasoning consisting of
modularized operators have come up, making
KBQA easy to visualize (Ansari et al., 2019; Saha
et al., 2019). With applicable visual representation
of KB queries, intended users are capable of identi-
fying errors in the programs generated by semantic
parsing and correct them. Based on these observa-
tions, we raise a natural question: How to design a
visualized KBQA system that eases users to inspect
and debug those KB query programs?

Presented System. We demonstrate Visual
Knowledge oriented Programming (VisKoP) plat-
form, an interactive, visualized and program-based
KBQA system. VisKoP provides an interactive
knowledge oriented programming environment, al-
lowing users to monitor and debug the KB queries
with graphical operators. In comparison with exist-
ing KBQA systems, VisKoP is easier to use due to
its following characteristics:

• Knowledge oriented programming. VisKoP is
the first KBQA system to support Knowledge ori-
ented Programming Language (KoPL) (Cao et al.,
2022a). As a program-based KB query language,
KoPL provides modularized program style for
users to interact with knowledge elements, within
its wide range of knowledge operators. Besides,
KoPL can be converted into various different KB
query languages via GraphQ IR (Nie et al., 2022).

• Visualized interface. VisKoP maps program-
ming with KoPL into a series of graphical
operations—“dragging” to add new knowledge
operators, “connecting” the knowledge opera-
tors to add dependencies, and “slot-filling” to
specify knowledge arguments.

• Interactive programming and debugging. We
use semantic parsing algorithms to convert natu-
ral language questions into KB queries, whose ex-
ecution gives not only the final answers, but also
intermediate results of each knowledge operator,
which facilitates debugging. Meanwhile, auto-
completion for KB schema (e.g.,relation, concept,
and attribute) provided by VisKoP assists users
that are unfamiliar with the KB schema.

• High efficiency. We develop a high performing
KoPL engine for VisKoP’s back-end. It executes
KoPL on a million-entity level KB in less than

200 milliseconds, which can hardly be sensed
next to the network latency.

We conduct user study and find that with the help
of the visualized programming interface, users can
find the correct answer in an average 110.6 seconds,
which alleviates the problem caused by error-prone
semantic parsing algorithms. Meanwhile, our ef-
ficiency study shows that the execution engine is
significantly faster than the original KoPL engine
and Virtuoso by 16× and 5×, respectively.

Contributions. (1) We design a visualized
knowledge oriented programming platform for
KBQA, which integrates human into the loop to
write and debug KB queries. (2) We implement a
high performing KoPL execution engine that scales
KoPL to an up-to-date million-entity-level KB.

The development and deployment of VisKoP
validates the effectiveness of allowing questioners
to monitor the error in the KB queries. The visual
programming platform provides external human
guidance on the neural program induction model,
and potentially improves the robustness the system.

2 Preliminaries

2.1 Knowledge Base

As defined by KoPL (Cao et al., 2022a), KB con-
sists of 4 kinds of basic knowledge elements:
Entities are unique objects that are identifiable in
the real world, e.g., Germany.
Concepts are sets of entities that have some char-
acteristics in common, e.g., Country.
Relations depict the relationship between entities
or concepts. Entities are linked to their concepts
via relation instance of, while concept hierarchy is
organized via relation subclass of.
Attributes link entities to data value descriptions,
e.g., day of birth. Attributes can be further classfied
into 4 types: date, year, string, and numbers.

These knowledge elements are further organized
into 3 kinds of structured representation in triplets:
Relational knowledge are triplets organized as
(head entity, relation, tail entity).
Literal knowledge are triplets organized as (entity,
attribute, value).
Qualifier knowledge are bound with relational or
literal knowledge to specify under which condi-
tion they are true. The qualifiers are organized as
(relational/attribute knowledge, attribute, value).
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Figure 2: The overall system architecture of VisKoP.

2.2 Knowledge Base Question Answering

KBQA provides a natural-language-based interface
for users to access knowledge in the KB. It inputs a
natural language question q = {q1, . . . , qn}, where
qi is the ith word, and outputs the answer utterance
a. The answer is either the knowledge elements
(e.g., entity name) in the KB, or the result of a
combination of logical or algebraic operations per-
formed on the knowledge elements.

2.3 KoPL

KoPL stands for knowledge oriented programming
language consisting of 26 different knowledge oper-
ators. Natural language questions can be presented
as KoPL programs, which are constructed as con-
nected knowledge operators. Each operator has
two categories of input: operator argument(s), and
dependency input(s). Operator arguments are in-
structions on how to perform the operator, which
are usually determined by the semantics of the
question; Dependency inputs are outputs of pre-
vious knowledge operators that are linked to the
current operator. For example, in Figure 1, oper-
ator Relate(shares border with, forward) has two
arguments—shares border with and forward, while
the dependency input comes from the Find operator.
KoPL programs can be executed on the background
KB to obtain the answer. More details are included
in Appendix A.

One essential characteristic of KoPL is that, as
modularized knowledge operators, the intermediate
result of each operator is preserved and can thus
be inspected and debugged. Given the modularity
and inspectability of KoPL, we design the VisKoP
platform, as described below.

3 The VisKoP Platform

The implementation of our VisKoP platform fo-
cuses on 4 designing principles:

I. Graphical Element Visualization: User-
posed questions should be parsed into the KoPL
program, and shown as graphical elements.

II. Interactive Programming: The system
needs to enable users to edit and correct the KoPL
program with knowledge schema auto-completion
and intermediate results demonstration.

III. Highly Efficient Execution: The system
should support large scale KBs for practical usage
with low execution latency.

IV. Transparent Execution: The execution foot-
print of each operator should be preserved for in-
spection within interactive programming.

In particular, the first two principles are under-
taken by the interactive programming interface in
the front-end and the last two principles are under-
taken by the highly efficient KoPL program execu-
tion engine in the back-end. The overall architec-
ture of VisKoP is shown in Figure 2.

The implemented VisKoP is deployed as an
openly available website1. The highly efficient
KoPL execution engine is also provided as an open-
source Python extension toolkit2.

3.1 Interactive Programming Interface

Graphical Element Visualization. VisKoP al-
lows users to ask natural language questions and
parse them into KoPL programs instead of writing
KoPL programs from scratch. The process is car-
ried out by a neural program induction module, as
shown in Figure 2, whose backbone is a sequence-
to-sequence pre-trained language model. Here we
choose BART (Lewis et al., 2020) as the backbone
and fine-tune it on the KQA Pro dataset (Cao et al.,
2022a). It accepts natural language questions as in-
put, and output the KoPL program in the depth first
search order. The KoPL programs are converted to
meet the format of sequence generation.

VisKoP visualizes KoPL program as a tree struc-
ture in the editing panel, where the nodes in the
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tree are knowledge operators with arguments. Ar-
gument inputs are modeled as filling slots in the
knowledge operators and dependency inputs are
modeled as directed edges between different knowl-
edge operators. We define 3 kinds of graphical
actions that users may take within the KoPL pro-
gram: dragging to add new operators, linking to
indicate knowledge elements flow, and slot-filling
to designate arguments of the knowledge operators.

Interactive Programming. For users that are
less skilled at KoPL programming or less familiar
with the schema of the underlying KB, VisKoP im-
plements a series of auxiliary functions. Firstly, the
KB schema is mainly associated with arguments
of the knowledge operators. VisKoP helps to auto-
complete knowledge elements via string matching
when users try to fill in the argument slots. Next,
to ensure the grammatical correctness of the KoPL
program whose users submit to run, we implement
linking legitimacy checking. VisKoP warns users
when the the submitted program is not a tree or
the dependency is illegal (e.g., The output of the
Count operator cannot be input to the QFilterStr
operator). Finally, intermediate execution results
of each knowledge operator are returned from the
back-end and presented on the visualized interface
where users may debug their KoPL program.

3.2 Highly Efficient KoPL Engine

The highly efficient KoPL engine is responsible for
most parts of the back-end by reading the KoPL
program as input and outputing the answer.

Highly Efficient Execution. KoPL program ex-
ecution should be highly efficient for supporting
large-scale KBs. Towards this goal, we adopt three
implementation strategies: inverted indices con-
struction, knowledge operators merging, and data
structure optimization.

The first step is to construct inverted indices,
which maps different types of attribute values and
relations to their involved entities. These inverted
indices prevent knowledge operators from enumer-
ating over all the entities in the KB to recall corre-
sponding knowledge elements. Subsequently, the
great deal of time consumed by the engine to filter
out entities satisfying certain constraint from the
overall KB comes to our attention. This is repre-
sented by consecutive FindAll operator and filter-
ing operators (e.g., FilterStr). We propose to merge
the two consecutive operators and construct corre-
sponding inverted indices. Finally, for all key-value

pair data structures, we use the running time of the
questions in the KQA Pro dataset on the million-
entity level KB as the metric, to greedily search
out the optimal storage structure. The searching
space contains hash map, red-black tree, trie tree,
and ternary search tree.

Transparent Execution. Showing the interme-
diate results in the front-end requires the execution
engine to preserve the outputs of each operator in
the KoPL program and use them to monitor the be-
havior of the knowledge query. Meanwhile, users
can debug the input KoPL program by inspecting
the intermediate results to locate the bug.

4 Usage Example

4.1 Interactive Programming Interface

The online website of VisKoP is illustrated in Fig-
ure 3. We give an example of how to interact with
the system to obtain the correct answer by question-
ing “How many countries share borders with both
Germany and France?”, which cannot be correctly
parsed by the semantic parsing algorithm.

Neural program induction. VisKoP accepts
KB queries in natural language. The users input
the question in the input box on the top of the
website. Clicking on the Parse button parses
the natural language question into its corresponding
KoPL program, to be displayed on the editing panel
at the bottom of the website. The predicted answer
is shown by clicking the Run button in the top
of the editing panel. Here, VisKoP provides the
common functionality as a KBQA system.

KoPL program debugging. As shown by Fig-
ure 3, users can easily identify two errors. One
issue comes from the structural aspect. The an-
swer should be counted on the intersection of two
sets of country, each sharing border with Germany
and France, respectively. To replace the operator
Or with the operator And, users may first click on
the Or operator for selection, and then press the
backspace key to delete it. The And operator is
added by selecting Add in the drop-down box and
clicking on the button. By linking the new op-
erator to its dependency operators and the output
operator, users can easily fix the structural error.

The other issue is the falsely recognized argu-
ment for the Relate operator. The desired countries
should share borders with Germany, rather than the
statement is subject of relation. The relation name
specified by the KB schema is auto-completed in
the pop-up drop down box, as shown in Figure 4.
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Figure 3: Screenshot of the interactive programming interface of VisKoP. When user tries to parse “How many
countries share borders with both Germany and France?”, the semantic parsing algorithm falsely predict the Or
operator, and one of the argument inputs of the Relate operator. This further results in the wrong answer “17”. We
marked this errors in the red box, and put the correct graphical elements in the nearby green box.
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Kingdom of the Netherlands Belgium Luxembourg Switzerland

Intermediate Result

Cancel OK

Figure 4: Left: Screenshot of the auto-completion in
slot-filling. Right: Screenshot of the intermediate result
of the And operator, which shows the satisfied countries.

The intermediate result of each knowledge oper-
ator is a powerful tool to diagnose the KoPL pro-
gram. It also serves as an interpretation to the
question’s answer. By expanding the intermediate
result of the And operator, as shown in the right part
of Figure 4, we are able to know which countries
are taken into account.

4.2 KoPL Engine

The high performing KoPL engine incorporated
in the back-end is developed as an independent
extension for Python. It provides one line installa-
tion code from the command line by running “pip
install kopl-engine”. Users can execute the
KoPL program using the scripts provided at the
end of this section.

Users are first required to provide the KB in
JSON file per the request by KoPL4. The execution

4https://kopl.xlore.cn/en/doc/4_helloworld

engine is initialized by converting the KB into data
structure in the memory and constructing all the in-
dices. Before executing the KoPL program, the en-
gine parses the program represented in Python data
structure (See Appendix B for the data structure
introduction.) into the data structure used inside
the engine. After that, users can call the forward
method of the engine to get execution results.

1 from kopl_engine import engine
2 # Knowledge base preparation
3 kb = engine.init("kb.json")
4 # Data structure conversion
5 p = engine.parse_program(program)
6 # Program execution with
7 # intermediate result tracing
8 result = engine.forward(
9 kb, p, trace=True)

5 Evaluation

We evaluate the execution efficiency of the back-
end KoPL engine. We also perform user study and
case study to examine the limitations of VisKoP.

5.1 Efficiency

KB preparation. VisKoP is deployed on a million-
entity-level KB extracted from Wikidata. In partic-
ular, we use the original Wikdiata dump5 and only

5https://dumps.wikimedia.org/wikidatawiki/
entities/latest-all.json.bz2
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keep the entities that have a Wikipedia page. The
statistics is shown in Table 1.

# Entity # Concept # Relation # Attribute

6,284,269 68,261 1,080 1,352

Table 1: Statistics of the knowledge base.

Experimental setup. We use the training data
of KQA Pro (Cao et al., 2022a) as the test-bed,
which contains 94,376 quries in both KoPL and
SPARQL program. We compare VisKoP against
the original KoPL engine released by Cao et al.
(2022a). We also compare it with Virtuoso for the
SPARQL queries. All experiments are conducted
on a single Intel Xeon 5218R CPU with 1.0TB
RAM. We use wall time as the comparison metric.

Engine VisKoP KoPL Virtuoso

Wall Time 111.5 ms 1775.8 ms 535.1 ms

Table 2: Running time averaged over all the queries.

Figure 5: Running time distribution.

The averaged running time is reported in Table 2.
VisKoP is almost 16× faster than the original KoPL
engine and 5× faster than Virtuoso executing equiv-
alent SPARQL queries. We also show the running
time distribution of VisKoP and Virtuoso in Fig-
ure 5. VisKoP is faster than Virtuoso because: (1)
The distribution peak of VisKoP comes smaller
than Virtuoso; (2) The maximum running time of
VisKoP is much smaller than Virtuoso.

5.2 User Study and Case Study

We manually annotate 20 natural language ques-
tions which cannot be correctly answered without
user correction and ask 6 different users to use
VisKoP to find the answer. After users interact with
VisKoP, the accuracy rate reaches 65.8%, with an
average of 110.7 seconds per question and a me-
dian of 68.0 seconds. These results indicate that

integrating human into the loop significantly broad-
ens the boundaries of the KBQA system’s capabili-
ties. Meanwhile, apart from knowledge elements
not included in the KB, there are still questions
that are extremely difficult to answer due to their
obscure knowledge elements. For example, to an-
swer “How many video game is SONY published
in 2020?”, one need to find the Sony Interactive
Entertainment entity rather than the Sony, which
also occurs in the KB and our testers can hardly
find the Sony Interactive Entertainment entity.

6 Related Works

In general, KBQA methods can be grouped into
two categories: 1) semantic parsing (Berant et al.,
2013; Yih et al., 2015; Cheng et al., 2017; Liang
et al., 2017; Ansari et al., 2019; Cao et al., 2022b),
which translates natural language questions into
logical forms, whose execution on the KB achieves
the answer; 2) information retrieval (Bordes et al.,
2014; Xu et al., 2016; Miller et al., 2016; Shi et al.,
2021; Zhang et al., 2022), which ranks the entities
from the retrieved question-specific sub-KB to get
the answer. Our VisKoP falls into the semantic pars-
ing category. Specifically, VisKoP translates a ques-
tion into the multi-step program, pertaining to the
neural program induction (NPI) paradigm (Lake
et al., 2015; Neelakantan et al., 2017; Liang et al.,
2017; Wong et al., 2021; Cao et al., 2022a).

The main challenge of NPI is that question-
program parallel data are expensive to obtain and
the program’s huge search space makes the learning
challenging. Existing works tackle this issue only
by learning from question-answer pairs with vari-
ous reinforcement learning techniques (Liang et al.,
2017; Saha et al., 2019) or synthesizing question-
program data to alleviate the data scarcity prob-
lem (Cao et al., 2022a; Gu et al., 2021). In this
paper, our VisKoP proposes a different solution to
this task by integrating humans into the program
induction loop, providing external human guidance
to program induction model, and potentially im-
proving the system robustness.

Compared with other KBQA systems, including
ReTraCk (Chen et al., 2021), SEMPRE (Berant
et al., 2013), TRANX (Yin and Neubig, 2018),
DTQA (Abdelaziz et al., 2021), our VisKoP is the
first to enable users to interact with the system via a
visual platform and intermediate results checking.
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7 Conclusion and Future Work

We demonstrate VisKoP, a KBQA platform that al-
lows users to monitor, edit, and debug KB queries.
VisKoP is also accompanied with a highly efficient
engine that scales KoPL execution to a million-
entity-level KB. In the future, it is intriguing to
allow users to customize the KB. It is also impor-
tant to provide guidance for users to recognize the
true knowledge elements in the large scale KB.

Limitations

As a KBQA system, VisKoP is still highly depen-
dent on the correctness and broad knowledge cover-
age of the background KB. It is extremely difficult
to find the correct answer when the relevant knowl-
edge elements are unincluded or incorrect in the
KB. Also, if there are confusing knowledge ele-
ments, as we mention in Section 5.2 that users can
hardly identify the Sony Interactive Entertainment
entity, it is difficult for users to correct the KoPL
program.

Ethics Statement

Intended Use. VisKoP is designed for users to
edit their knowledge base queries with graphical
elements.

Potential Misuse. As we count, there are
339, 531 human female entities and 1, 458, 903
male entities in total. It can lead to gender bi-
ased answers on the grounds that a number of fe-
males do not exist in the KB. This problem stems
from the imbalanced data (Wikidata), and can be
solved when Wikidata includes more female en-
tities. Therefore, it’s important to allow users to
debug the knowledge base in future work.

Data. The VisKoP is built on a high-quality sub-
set of Wikidata, which attributes to the intelligence
of the crowd.

User Study. The participants in the user study
part are volunteers recruited from graduate stu-
dents majoring in engineering. Before the user
study experiments, all participants are provided
with detailed guidance in both written and oral
form. The only recorded user-related information
is usernames, which are anonymized and used as
identifiers to mark different participants.
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A KoPL Definition

The functions used in this paper are the same as
those mentioned in Cao et al. (2022a), so we will
not devote a great deal of space for details. The
specific meaning of each function can be found
in (Cao et al., 2022a) or on our website 6. Here
we only briefly introduce the philosophy of these
operators:
Query Operators find and return the knowledge
elements in the KB by matching their names. e.g.,
Find returns the corresponding entities according
to the input entity name.
Filter Operators take a set of knowledge elements
as input, and keep the knowledge elements that
satisfy the given conditions as output. e.g., Filter-
Concept takes a set of entities as input and output
entities that belong to a given concept.
Verification Operators are used to determine
whether the output of the previous function has
some relationship to the given value. This type
of operators is often used to answer judgement
questions. e.g., VerifyNum can judge whether the
function output is greater than (less than, equal to)
a given value.
Selection Operators select some knowledge ele-
ments from the output of previous function under
the given condition. e.g., SelectAmong can select
the entity with the largest or smallest value of an
attribute from a given set.
Set Operators do inter-set operations on the output
of two functions. e.g., And can take the union of
two sets.

B KoPL Program Format

In python, each knowledge operator is represented
as a Dict in Python with three keys: function
corresponds to the name of the knowledge opera-
tor. inputs corresponds to the argument inputs of
the knowledge operator. And dependencies corre-
sponds to the dependency inputs of the knowledge
operator. For example, KoPL program in Figure 3
can be represented as:

6https://kopl.xlore.cn/en/doc/2_function.html

1 program = {[
2 {
3 "function": "Find",
4 "inputs": ["France"],
5 "dependencies":[-1,-1]
6 },
7 {
8 "function": "Relate",
9 "inputs": ["shares border with", "

backward"],
10 "dependencies":[0]
11 },
12 {
13 "function": "FilterConcept",
14 "inputs": ["country"],
15 "dependencies":
16 [1]
17 },
18 {
19 "function": "Find",
20 "inputs": ["Germany"],
21 "dependencies":[]
22 },
23 {
24 "function": "Relate",
25 "inputs": ["statement is subject

of","forward"],
26 "dependencies": [3]
27 },
28 {
29 "function": "FilterConcept",
30 "inputs": ["country"],
31 "dependencies": [4]
32 },
33 {
34 "function": "Or",
35 "inputs": [],
36 "dependencies": [2,5]
37 },
38 {
39 "function": "Count",
40 "inputs": [],
41 "dependencies":[6]
42 }
43 ]}

C Questions for User Study

We list the 20 questions used in the user study and
the corresponding answers in Table 3.
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Question Correct Answer

How many Olympic Games has LeBron James competed in? 3
What is the name of the company that makes the game "The Legend of Zelda"? Nintendo
How many teams have both LeBron and Kobe played for? 1
Is China more than 9.7 million square kilometres in size? No
Which is the largest province in China by area? Qinghai
How many countries are there in the European Union? 27
How many times has Federer won a tennis competition? 29
Which country is Google headquartered in? United States of America
How many international airports are there in Germany? 15
Who is lighter, the iPhone X or the Samsung S10? Samsung Galaxy S10
Which is the highest of all the mountains in South America and Africa? Aconcagua
How many video game is SONY published in 2020? 566
Who is the next president after Barack Obama? Donald Trump
At which college did Geoffrey Hinton get his degree? University of Edinburgh
How many people have won the Nobel Prize in Physics? 186
What award did Lawrence win for The Hunger Games? MTV Movie Award for Best Female Performance
How many states does the United States contain? 50
Which is the highest mountain in Asia? Mount Everest
What year was the team owned by Jordan founded? 1988
In which country is Nikon headquartered? Japan

Table 3: 20 questions used for user study.
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Abstract

English is acknowledged worldwide as a mode
of communication. However, due to the ab-
sence of realistic practicing scenarios, students
learning English as a foreign language (EFL)
typically have limited chances to converse and
share feedback with others. In this paper, we
propose PEEP-Talk, a real-world situational
dialogue-based chatbot designed for English
education. It also naturally switches to a new
topic or situation in response to out-of-topic
utterances, which are common among English
beginners. Furthermore, PEEP-Talk provides
feedback score on conversation and grammar
error correction. We performed automatic and
user evaluations to validate performance and
education efficiency of our system. The results
show that PEEP-Talk generates appropriate re-
sponses in various real-life situations while pro-
viding accurate feedback to learners. Moreover,
we demonstrate a positive impact on English-
speaking, grammar, and English learning anx-
iety, implying that PEEP-Talk can lower the
barrier to learning natural conversation in effec-
tive ways.

1 Introduction

In the era of globalization, English is used as a
worldwide international language (Kramsch, 2014).
A number of countries have incorporated the ac-
quisition of foreign language communication skills
into their lifelong learning objectives (Luna Scott,
2015). Altalbe and Wilkinson (2013) have iden-
tified several areas, including education, tourism,
and business, where direct communication with
people is crucial, and conversation skill is consid-
ered as the most essential of the various language
competencies.

However, students learning English as a foreign
language (EFL) do not have sufficient opportunities
to practice real-life English conversations (Jdetawy,
2011). To address this issue, recent technologies
such as smart speakers and conversational models

have been applied in English education (Tai and
Chen, 2020; Alsadoon, 2021; Li et al., 2017). In
particular, chatbots have shown promising results
in improving the communication skills and learning
motivation of students (Fryer and Carpenter, 2006).

Despite their potential, existing chatbot-based
educational platforms face several challenges in
providing effective language learning experiences.
These chatbots employ hand-crafted and pattern-
matching rules, limiting their communication abil-
ity and responding appropriately to out-of-situation
utterances (Tyen et al., 2022; Kim et al., 2019). Fur-
thermore, as smart speakers and conversational AI
models are not fully considered for educational pur-
poses (Terzopoulos and Satratzemi, 2020; Ji et al.,
2022), they cannot cover various topics in real-life
activities or provide educational feedback.

To address these challenges, we propose PEEP-
Talk, a situational dialogue-based chatbot for En-
glish education. It consists of a conversation mod-
ule, context detector (CD), and grammar error cor-
rection (GEC) modules. The conversation mod-
ule generates proper utterances considering the
given situations with our proposed dataset, called
SITUATION-CHAT. It covers a variety of real-
world situations. To address the previous chatbots’
inability to interact with dialogue out of topic or sit-
uation, the CD module changes the situation when
the conversation digresses from the current situa-
tion. PEEP-Talk also provides feedback on learn-
ers’ utterances with the situation similarity score,
linguistic acceptability score, and grammar error
correction.

We quantitatively verified the performance of
each module of PEEP-Talk and conducted a user
study to verify its effectiveness in English educa-
tion in a real-world environment. To the best of
our knowledge, there have been few attempts in
NLP research to conduct a user study that veri-
fies the performance and satisfaction of integrated
modules. The comprehensive evaluation of PEEP-
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Talk demonstrates the potential of our situational
dialogue-based chatbot and feedback approach for
effective English education. We deploy our method-
ology on a demo site. The code and dataset1 are
publicly available to facilitate further studies.

2 Chatbots for English Education

The field of language learning has been revolution-
ized by the emergence of chatbots. While previous
computer-assisted language learning (CALL) sys-
tems have provided lessons and practice in writing,
vocabulary, grammar, and other areas, they have
limitations in that learners eventually need an ac-
tual human, such as a teacher or a colleague, to
practice conversation (Chapelle, 2005). Chatbots
have the potential to bridge this gap in CALL sys-
tems, as they offer more natural conversation and
feedback similar to that of human instructors (Kim
et al., 2019).

Commercial chatbots for English education
have become increasingly popular, including Andy,
Mondly Speak Now, Duolingo, and Babbel. Andy
is a virtual tutor application that aids users in
learning English, while Mondly features language
lessons in various situations with a virtual teacher.
Speak Now uses AI-driven virtual avatars as in-
structors for learning English. Duolingo offers gam-
ified language lessons and has incorporated chat-
bots into its system, while Babbel features chatbots
as part of its teaching methodology. The features
of these existing chatbots for English education are
also shown in Table 1.

However, one of the main problems with current
English education chatbots is that they are unable
to provide a genuinely free and natural conversa-
tion experience. Many chatbots rely on rule-based
systems that are limited in generating diverse and
spontaneous responses to user input (Fryer and Car-
penter, 2006; Kim et al., 2019). As a result, learners
often feel frustrated and disconnected from the lan-
guage they are trying to learn (Fryer and Nakao,
2009). Additionally, these chatbots may struggle to
understand idiomatic expressions, provide person-
alized feedback, and recognize situational contexts.
Without engaging in meaningful and contextually
relevant conversations, learners may struggle to de-
velop the communication skills necessary for real-
life interactions in English-speaking environments.

1https://github.com/metterian/peep-talk

features URL
AI-based Situation Feedback

Andy ✗ ✗ ✗ andychatbot.com
Mondly ✗ ✗ ✗ mondly.com
Speak Now ✗ ✓ ✗ speaknow.ai
Duolingo ✓ ✗ ✓ duolingo.com
Babbel ✗ ✗ ✓ babbel.com
PEEP-Talk ✓ ✓ ✓ peeptalk.us

Table 1: Comparison of chatbots for learning English.
AI-based (not rule-based), Situation (use of situational
dialogues), and Feedback (provision of learner feed-
back)

3 PEEP-Talk

We introduce PEEP-Talk and discuss its motivation
and unique features in §3.1. Then, we present the
SITUATION-CHAT in §3.2, which contains di-
verse and situational expressions. The overall archi-
tecture of PEEP-Talk, including its three modules -
conversation, context detector (CD), and GEC, is
described in §3.3. Finally, §3.4 covers PEEP-Talk’s
deployment.

3.1 Why PEEP-Talk?

While existing chatbot-based educational platforms
have shown promising results in improving stu-
dents’ communication skills and motivation to
learn English (Jia and Ruan, 2008; Fryer and Car-
penter, 2006; Haristiani, 2019), they still face sev-
eral challenges in providing a practical language
learning situation. One of the significant limitations
of these chatbots is their inability to interact with
utterances out of topic or situation. Additionally,
smart speakers and conversational AI models are
not fully optimized for educational purposes, as
they cannot cover various topics in real-life activi-
ties or provide feedback on grammar errors.

To address these challenges, we propose PEEP-
Talk, a situational dialogue-based chatbot for En-
glish education. PEEP-Talk is designed to generate
contextually appropriate utterances using our pro-
posed dataset, called SITUATION-CHAT. Fur-
thermore, the context detector (CD) module en-
ables PEEP-Talk to identify and adapt to changes
in conversation topics, providing a more natural
and engaging learning experience. The grammar
error correction (GEC) module provides instant
feedback to learners to improve their linguistic ac-
curacy.

PEEP-Talk’s situational dialogue-based ap-
proach and dataset with diverse situations offer
an effective language learning experience for EFL
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learners. PEEP-Talk aims to address the limitations
of existing chatbot-based educational platforms and
provide an interactive and engaging English educa-
tion environment.

3.2 The SITUATION-CHAT Dataset

This section presents the SITUATION-CHAT
dataset, a situational dialogue-based dataset for
English learning. An example of this dataset is
shown in Figure 1. The dataset contains various sit-
uation dialogue such as asking for directions, talk-
ing with friends in school, and company interviews,
among others. To construct our dataset, we follow
the definition of a situational dialogue in Klinghof-
fer (2008). Situational dialogue is a learning ap-
proach where learners participate in role-playing
through a routine activity, allowing for a more nat-
ural and engaging conversation. This approach has
been shown to enhance the learners’ communica-
tion skills, as it allows them to practice real-life
scenarios (Klinghoffer, 2008).

To construct our proposed dataset, We adopted
AI hub 2’s dialog corpus, a Korean-English transla-
tion corpus that contains conversations in a variety
of contexts across multiple domains. This corpus
is composed of division (domain), predefined situa-
tions, and dialogue history. To develop a situational
dialogue-based conversational AI, the contextual
information of predefined situations is insufficient.
Therefore, we employ human annotators to write
additional descriptions for the predefined situations.
A details of this process is provided in Appendix A.

The dataset contains 16,298 dialogues with
65,192 utterances for the training set and 1,000 dia-
logues with 4,000 utterances for the validation and
test sets, respectively. Each turn in the dataset has
an average length of 14 words, and it includes 303
different situations covering various domains, in-
cluding shopping, traffic, and travel. The statistical
details of the dataset are written in Appendix A.3.

3.3 Overall Architecture

The architecture of PEEP-Talk consists of three
modules: the conversation module, the context de-
tector (CD) module, and the grammar error cor-
rection (GEC) module. The conversation module
generates responses that are conditioned on the sit-
uation and the dialogue history. The CD module
checks the user’s input to determine its appropri-

2The AI Hub, which can be accessed at https://aihub.
or.kr is a public data platform operated by the government.

Situation

I want to exchange currency.
I need a check.
I am traveling.

Dialogue History

A: Roughly 1000 dollars for a 
business deposit.

A: Hello. Can I change some 
money to dollars right now?

B: All right. I can help you right 
away.

B: Sure. How much do you 
need?

Division1: Travel/Shopping
Division2: Airport

Figure 1: Example of the SITUATION-CHAT.

ateness in the topic or situation and provides feed-
back scores. The GEC module corrects grammati-
cal errors in the conversation. Figure 2 provides an
overview of the PEEP-Talk architecture.

3.3.1 Conversation Module
Compared to existing rule-based educational sys-
tems, the conversation module provides a more nat-
ural and diverse conversation experience to learners
by employing DialoGPT (Zhang et al., 2019), a pre-
trained language model trained on dialog corpus. It
is further fine-tuned on our SITUATION-CHAT
for learning situational expressions following the
methodology presented in Wolf et al. (2019b). The
input to the conversation module includes the situ-
ation, dialogue history, and candidate answers.

3.3.2 Context Detector Module
The primary objective of CD module is to provide
feedback on learners’ responses when the conver-
sation has deviated from the given situation. The
main challenge that commercial chatbots face for
English education is their inability to respond to
inappropriate input from English beginners, in-
cluding EFL learners (see Appendix H). Begin-
ners often make linguistic errors or speak topics
or situations that are out of topic in their conver-
sations (Al Hosni, 2014; Sermsook et al., 2017),
which the commercial chatbots are not equipped
to handle appropriately. The CD module addresses
this problem by checking the user’s utterance to de-
termine its appropriateness in the topic or situation
and whether it is linguistically natural.

The CD module gives situation similarity and
linguistic acceptability scores on dialogue and
switches dialogue situations. The situation similar-
ity score measures the similarity of the user’s input

192

https://aihub.or.kr
https://aihub.or.kr


SituationChat

Situation

Dialogue Corpus
Transformer

Conversation Module

Situation

Dialogue
History

Inputs Situation : “Situation in which currency exchange 
and traveler's checks are required.”

Context Detector + GEC Module

PEEP-Talk: Why don’t we speak 
different topic?

Situation Similarity : 16.53
Linguistic Acceptability: 47.553

Human: The sales increase do faster 
than the previous product.

GEC : “The sales increase is faster 
than the previous product.”

Figure 2: An overview of the modules in PEEP-Talk.

Models Validation Test
PPL Hits@1 PPL Hits@1

Profile Memory 42.79 0.078 45.02 0.069
Lost In Conversation - 0.168 - 0.152

GPTSMALL 12.41 0.849 12.74 0.839
GPT-2SMALL 12.50 0.839 12.56 0.848
DialoGPTSMALL 12.35 0.850 12.55 0.856
DialoGPTMEDIUM 14.77 0.884 13.89 0.864
DialoGPTLARGE 11.15 0.889 12.04 0.877

Table 2: Experimental results for validation and test
set of SITUATION-CHAT. PPL denotes perplexity
and Hits@1 denotes the correct identification of the
gold answer among 19 randomly sampled utterance
candidates.

to the current situation (detailed in Appendix B),
while the linguistic acceptability score checks the
grammatical correctness of the user’s input. The
CD module utilizes XLNet (Yang et al., 2019), fine-
tuned on MRPC (Dolan and Brockett, 2005) and
CoLA datasets (Wang et al., 2019), respectively.

The CD module suggests a new situation if the
situation similarity score is under a certain thresh-
old. Furthermore, as shown in Figure 2, learners
can see the feedback score of the CD module during
the conversation. Switching situation and real-time
feedback helps to enhance the learner’s understand-
ing of appropriate language use in different situ-
ations and promote their overall communication
skills.

3.3.3 GEC Module
To provide accurate and efficient English gram-
mar feedback to English learners, a deep learning-
based GEC module has been integrated into PEEP-
Talk in the form of a REST API. Specifically, we
have adopted the approach described in Park et al.
(2020), which uses a sequence-to-sequence (S2S)
model. This approach is based on a noise sequence

Figure 3: A screenshot of our demo website. Learners
can choose various situations from the select box and
receive responses. Grammatical errors are corrected and
highlighted. The feedback scores are shown in the CD
Score.

to denoise sequence (NS2DS) model, incorporat-
ing the copy mechanism (Gu et al., 2016). Notably,
this method has been validated using commercial
data and has been successfully applied in actual
services. With this method, our GEC module en-
sures accurate and helpful real-time feedback on
the learners’ grammar errors.

3.4 Deployment

The proposed PEEP-Talk is deployed through the
web to render it easier for more people to access our
system. We used HuggingFace (Wolf et al., 2019a)
and TextAttack (Morris et al., 2020) library for de-
veloping modules. We use FastAPI to make all our
modules as a REST API, then we build the web ap-
plication3 with the Streamlit library. A screenshot
of our demo website is shown in Figure 3.

3http://peeptalk.us
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Model Fluency Situation
Consistency Engagingness

Human 4.54 4.51 4.63
Profile Memory 2.78 1.79 2.25
GPT-2SMALL 2.54 3.11 3.44
DialoGPTLARGE 3.78 3.92 4.13

Table 3: Results of human evaluation of conversation
module. Human indicates the gold utterance of the test
set annotated by humans.

4 Experiments

In this section, the effectiveness of the conversa-
tion module is verified through several automatic
evaluation metrics and human evaluation. Also, we
analyze CD and GEC modules in Appendix D and
Appendix D.3 respectively.

4.1 Verification of Conversation Module

4.1.1 Quantitative Analysis
Method To empirically verify the conversation
module in situational dialogue, we compare ex-
isting baselines and our model with the ability to
generate and select the proper utterances. We uti-
lize Profile Memory (Dinan et al., 2019) and Lost
In Conversation as our baselines. For our model,
GPT (Radford et al., 2018), GPT-2 (Radford et al.,
2019) and DialoGPT (Zhang et al., 2019) are ex-
ploited and fine-tuned on our data. Experimental
settings are described in Appendix C. Furthermore,
perplexity, and Hits@1 score indicating the correct
identification of gold answers among 19 randomly
sampled utterance candidates are used.

Results The experimental results of the conver-
sation module are presented in Table 2. The ex-
periment is conducted on validation and test sets
of SITUATION-CHAT. DialoGPTLARGE exhibits
the best performance with a perplexity of 12.04
and Hits@1 score of 0.877. This suggests that Di-
aloGPT is more effective in generating and select-
ing appropriate responses in situational dialogue
than the other models and baselines. Therefore, the
results suggest that DialoGPT can be a promising
model for situational dialogue. The experimental
settings and details are provided in Appendix C.

4.1.2 Qualitative Analysis
Method We evaluate the effectiveness of PEEP-
Talk in providing contextualized responses in var-
ious situations properly. The data of 30 situa-
tions are randomly selected from the test set of
SITUATION-CHAT. For comparison with exist-

ing methodologies, we select DialoGPTLARGE fine-
tuned on our proposed dataset, DailyDialog (Li
et al., 2017), and the English education chatbots
Andy and Speak Now.

Results Table 4 presents the results of the qual-
itative analysis. In the “Asking for directions” sit-
uation, PEEP-Talk gives a specific and helpful re-
sponse, while DailyDialog’s response lacks useful
information. In “Requesting packaging”, PEEP-
Talk informs the customer about the availability
of containers and demonstrates knowledge about
the establishment, while DailyDialog’s response is
unhelpful. In the “Stopping credit card” situation,
PEEP-Talk is straightforward in asking for neces-
sary information, whereas Andy provides an un-
solicited introduction. In “Pharmacy”, PEEP-Talk
provides a practical solution by recommending a
medicine, while DailyDialog and Speak Now pro-
vide generic responses. PEEP-Talk shows that it
can provide informative and helpful responses tai-
lored to the situation at hand.

4.1.3 Human Evaluation
To validate the quality of the conversation mod-
ule fine-tuned with SITUATION-CHAT, we con-
ducted a human evaluation. First, fluency, situa-
tional consistency, and engagingness are measured
as shown in Appendix E. We set the response
level on a Likert scale (Likert, 1932) from 1 to
5. The evaluators are asked to evaluate the quality
of the 150 randomly chosen model-generated ut-
terances chosen from the test set of SITUATION-
CHAT. The evaluators comprise English instruc-
tors, a teaching assistant, and three people with
bachelor’s degrees in English literature4. Table 3
reports the evaluation results. The result shows that
DialoGPTLARGE exhibits the highest score in all
factors and is the most similar to the human level,
indicating the potential of our model for providing
a more natural and engaging conversation experi-
ence for English learners.

5 User Evaluation

To verify the performance and satisfaction of PEEP-
Talk as an English education tool, we conducted a
user evaluation, which is rarely performed in NLP
research. While other research often concludes
their evaluation with human evaluation, we go fur-
ther by actually operating our system and verifying
its effectiveness in real-world English education.

4They were paid $0.4 per dialogue evaluation.
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Situation & Previous utterance PEEP-Talk DailyDialog Andy Speak Now

Asking for directions
“Can you tell me how to get to
the nearest train station?”

“You can take the train to the City Hall Station
if you go out exit number 2 on the 2nd.” “I can’t, I’m not a train driver.” “Okay” “Good Man.”

Requesting packaging
“Can I get the leftovers to go?”

“You can, but we don’t have a container
for soup dishes.”

“I’m sorry, I don’t have
any leftovers.”

“Sure, will you
write me later?” “I’m looking at you”

Stopping credit card
“Hello? I lost my credit card and
I am calling to report the loss.”

“Yes, please tell me your social security number
and the card number of the person who used it.”

“I lost my credit card and
I am calling to report the loss.” “I see” ”Let’s keep going.”

Pharmacy
“I caught a bad cold. I cough a
lot and have a high fever.”

“Take this cold medicine pill three times a day.” “I hope you feel better soon!” “Got it” “Oh, You hurt my
feelings”

Table 4: Comparison of PEEP-Talk with other conversational agents in different situations

Group Mean SD Adj.
Mean F (1, 32) p

E
ng

lis
h

Sp
ea

ki
ng

Accuracy
Exp. 2.41 0.51 2.58

0.77 0.18
Ctrl. 2.67 0.62 2.64

Commu-
nication

Exp. 2.76 0.66 2.79
7.04∗ 0.03

Ctrl. 2.93 0.70 2.69

Fluency
Exp. 2.93 0.62 2.81

3.6∗ 0.03
Ctrl. 2.59 0.62 2.67

Compre-
hension

Exp. 3.35 0.49 3.47
3.98∗ 0.04

Ctrl. 3.33 0.49 3.30
Maturity of
the language

Exp. 2.71 0.59 2.98
12.52∗ 0.00

Ctrl. 3.07 0.70 2.94

Grammar
Exp 72.22 8.95 64.51

2.78∗ 0.04
Ctrl. 65.28 12.06 63.80

Learning
anxiety

Exp 2.89 0.33 3.04
2.92∗ 0.04

Ctrl. 3.08 0.61 3.14

Table 5: Analysis of covariance of English-speaking
performance, grammar, and learning anxiety for the two
groups. Adj. Mean = adjusted mean. Exp. = experimen-
tal group with 18 people; Ctrl. = control group with 17
people. ∗p < 0.05.

Method The users evaluation consisting of as-
sessments in English speaking, grammar, English
learning anxiety, and user satisfaction. In order to
conduct the evaluation, we divided participants into
experimental and control groups, with 18 and 17
people respectively. They perform pre-test and post-
test before and after practicing with our system.
The experimental group used PEEP-Talk for 30
minutes per day for a period of two weeks, while
the control group did not use any language learning
tools during the evaluation period. Participants in
both groups were consisted of women in their twen-
ties who are native Korean speakers and university
graduates.They are composed of those who speak
EFL. The details of the experimental design can be
found in Appendix F.

Results Based on the analysis of covariance (AN-
COVA) results in Table 5, the experimental group
shows better performance in most dimensions of
English speaking, except for accuracy, indicating
that PEEP-Talk improves learners’ overall speak-

ing skills. In terms of grammar, the experimental
group had a higher adjusted mean (64.51) com-
pared to the control group (63.80), and the F-test
result (F (1, 32) = 2.78, p < 0.05) indicates a sig-
nificant difference in the grammar skills between
the two groups. The English learning anxiety score
was lower for the experimental group (adjusted
mean = 3.04) than the control group (adjusted mean
= 3.14). We conclude that PEEP-Talk has a pos-
itive impact on English-speaking, Grammar, and
English learning anxiety after only two weeks of
use.

5.1 PEEP-Talk Satisfaction Survey
We conduct satisfaction surveys to collect learners’
satisfaction in a real English teaching environment.
(presented in Appendix G). The survey results indi-
cate that most users are satisfied with PEEP-Talk,
with more than 70% of respondents finding the re-
sponse of the chatbot natural and contextual. More-
over, 70 to 80% of respondents indicated that sit-
uational dialogue is educationally beneficial for
conversational English and that grammar correc-
tion is helpful. However, the CD module receives a
relatively low satisfaction rate of 46%, possibly due
to the module switching the situation even when
the user wished to continue talking about a specific
situation.

6 Conclusion

In this paper, we propose PEEP-talk, an English
education chatbot that allows learners to practice
real-life conversations and receive feedback. Our
research, pioneering in the realm of situational
dialogue-based chatbots, was substantiated through
rigorous qualitative and quantitative experiments.
Furthermore, through user evaluations and satis-
faction surveys, we confirmed that our method en-
hances educational efficiency and reduces learn-
ing anxiety for EFL learners in real-world English
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teaching environments. This research is pivotal as
it introduces a novel approach to chatbot-based En-
glish education, enhancing learning efficiency and
engagement. In the future, we will also integrate ad-
ditional features, such as learner progress tracking
and an administrative dashboard for personalized
instruction.

Limitations

This study has certain limitations. Firstly, the effec-
tiveness of the CD module in detecting inappropri-
ate input needs improvement. Secondly, the current
version of PEEP-Talk covers only a limited num-
ber of topics and situations, warranting an exten-
sion of the dialogue dataset. Thirdly, the observed
improvement in English speaking ability may not
be entirely attributable to PEEP-Talk, as external
factors such as daily English speaking practice out-
side the experiment could also have contributed.
Moreover, the participant pool was relatively small,
suggesting a need for future studies with larger and
more diverse groups. Lastly, PEEP-Talk’s current
limitation to text-based interactions highlights an
area for development, as incorporating voice inter-
actions could further enhance the user experience.
Future research could also investigate the correla-
tion between linguistic acceptability and speaking
and grammar performance.

Ethical Statement

We uphold the ethical principles outlined by the
ACL Code of Ethics in our research. The public
dataset used in our study was obtained from a na-
tionally operated and managed AI Hub5. Prior to
training the DialogGPT model, we followed the
preprocessing steps outlined in Zhang et al. (2019)
to remove offensive language using syntax match-
ing against large blacklists and excluded subreddits
that are likely to contain offensive content. To fur-
ther prevent generating offensive content, we will
exclude tokens in a list of several stopwords using
Hatebase6. Furthermore, we ensure the privacy of
our users by not collecting any personal data and
only providing responses based on the situations
that the learners have selected. We prioritize the
ethical considerations of our study to maintain the
integrity of our research and prevent any potential
harm.

5https://aihub.or.kr
6http://hatebase.org
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A SITUATION-CHAT Dataset

A.1 Dialogue Corpus Collection

The dialogue corpus comprises division 1, division
2, predefined situations, and dialogue history. Di-
visions are domain information in a hierarchical
structure, and predefined situation refers to a short
description of the situation (e.g., “hospital admis-
sion situation”, “car accident situation”). Dialogue
history is composed 4-turns dialogue of speaker A
and B in each situation. We only use English data
from the Korean-English parallel dataset. Further
information regarding this corpus is provided in
Table 6.

With the aid of a professional English instructor,
we select situations and dialogue histories from the
dialogue corpus, such as “taking a taxi” or “asking
to take a picture”. Consequently, 330 situations
out of 2,779 situations from dialogue corpus are
selected with a total of 73,192 dialogue histories.

Division1
Domain information about dialogue sentences
e.g.) Lectures, news, discussions, etc.

Division2
Specialty information to subdivide Division 1
e.g) Office, school, meetings, etc.

Predefined situation
One-line description of the situation
e.g.) Exchange opinions

Dialogue history
Korean-English Conversation on Situations
e.g.) How is the market’s reaction to the released product.

Table 6: Information and examples of dialogue corpus.

A.2 Situation Annotation

As shown in Figure 4, predefined situation in the di-
alogue corpus includes only one sentence to explain
the situation. Therefore, the situational information
is augmented with various virtual descriptions. For
example, to describe the situation of currency ex-
change as shown in Figure 5, the dialogue history
and the information of the domains are used to gen-
erate the sentences that describe the given situation.
With four human annotators7, at least 2 and 5 sen-
tences were generated for one predefined situation.

Specifically, we provide domain information,
predefined situation, and conversation history and
human annotators follow these rules when annotat-
ing the situations: (i) The subject of the sentence
should be preferably in the first person. (ii) A de-
scription of the situation that should be inferred
from the given information. In addition, they gen-
erated sentences in under 15 words.

7They were paid $0.2 per one situation; they had a Bache-
lor’s degrees in English linguistics

Dialogue Corpus

A: Roughly 1000 dollars for a 
business deposit.

A: Hello. Can I change some 
money to dollars right now?

B: All right. I can help you right 
away.

B: Sure. How much do you 
need?

Division1: Travel/Shopping
Division2: Airport
Predefined Situation : “Situation in which 
currency exchange and traveler's checks are 
required.”

Figure 4: Example of dialogue corpus.

Annotated situation

I want to exchange currency.
I need a check.
I am traveling.

Figure 5: Example of annotated situation.

A.3 Dataset Statistics

The statistics of the entire dataset and doamins are
presented in Table 7 and Figure 6, respectively.

Category Train Valid Test

Division 1 5 5 5
Division 2 38 32 30

# Situations 248 42 40
# Dialogues 16,298 1,000 1,000
# Utterances 65,192 4,000 4,000

Table 7: Statistics of SITUATION-CHAT. In case of
the situations, they are separated into unseen ones for
each other.

Office
2.4%
Home
2.4%
Food Court
5.6%

Entertainments
2.8%
Traffic
8.0%
Travel
6.0%
Lodging
5.6%

Meeting
3.6%

School
3.6%

Department
6.0%

Restaurant
4.0%

Airport
6.0%

Shopping
11.2%

Hospital
2.0%

Figure 6: The domains of situations in SITUATION-
CHAT.
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B Situation Similarity Score

We utilize semantic textual similarity (STS) to mea-
sure the situation similarity score by comparing the
user’s input and utterances of the predefined situa-
tion to determine it is out of situation (topic). Each
predefined situation in SITUATION-CHAT con-
tains an average of 480 utterances. The STS scores
are computed with the user’s input and every utter-
ance belong to the predfined situation dialogue data
as shown in Figure 7. We use the maximum value
of STS scores as the situation similarity score.

Dialogue History

A: Roughly 1000 dollars for a 
business deposit.

A: Hello. Can I change some 
money to dollars right now?

B: All right. I can help you right 
away.

B: Sure. How much do you 
need?

User Input

Hello. Can I exchange some money?

0.045

0.181

0.246

0.897

Pre-defined Situation : “Situation in which 
currency exchange and traveler's checks are 
required.”

A: I'd like to exchange 200,000won, 
but what's the exchange rate?

A: I'd like to exchange Korean 
won for dollars.

B: It's 1,219 won per dollar with 
no preferential exchange rate.

B: Okay, how much would you 
like to exchange?

0.877

0.677

0.064

0.027

Figure 7: Example of scoring the situation similarity.
We score the STS for pairs of the user’s input and ut-
terances of the predefined situation in SITUATION-
CHAT, then we consider the maximum score as the
situation similarity. In the figure, the score represents
the STS.

C Experimental Setting of Conversation
Module

The experimental models used are based on Con-
vAI2’s methodologies, which are similar to the pro-
posed approaches and publicly available. The base-
line model of ConvAI2 is Profile Memory, while
the state-of-the-art models are TransferTransfo and
Lost In Conversation, which respectively achieved

the best results in the automatic and human evalua-
tion.

Fine-tuning Details The detailed fine-tuning set-
ting in this study is as follows. We trained our
model on one GeForce RTX 8000 GPU for 18
hours with batch size of 8 and 2 epochs following
the fine-tuning method of TransferTransfo(Wolf
et al. (2019b)). We set the random seed as 42. Fur-
ther, the Adam optimizer (Kingma and Ba, 2014)
is employed and with learning rate set to con-
verge from 6.25e − 5, β1 = 0.9, β2 = 0.999 to
0. Further, all layers are set with a dropout of
0.1 and a ReLU activation function. In terms of
the number of model parameters, GPT has 117M,
GPT-2SMALL has 124M, DialoGPTSMALL has 124M,
DialoGPTMEDIUM has 355M and DialoGPTLARGE

has 774M of trainable parameters.

Decoding details Beam search with the size
of 4 and N-gram filtering methods are used dur-
ing the generation process. The final beam is
ranked according to the scala combination of the
length-normalized utterance probability and next-
utterance classification score. In addition, increas-
ing the importance of the next-utterance classifica-
tion score produces utterances more closely related
to the conditioned situation sentences; however, the
diversity of the dialogue is reduced.

D Verification of CD Module

The performance of the feedback on dialogue and
the switching situation of CD module is verified.
The experimental results of the two functions are
shown in Table 9. The linguistic acceptability of
feedback on dialogue is estimated using the valida-
tion and test set of CoLA. Further, the performance
of switching situations using situation similarity of
CD module is evaluated based on CEEU. Specifi-
cally, pre-trained transformers are adopted, and a
test set of SITUATION-CHAT is evaluated with
1,000 situations in the experiments.

D.1 Experimental Setting

The CD module is trained on two datasets: Mi-
crosoft research paraphrase corpus (MRPC) and
corpus of linguistic acceptability (CoLA). The
training set of MRPC consists of 3,260 pairs, while
the validation and test sets consist of 408 pairs re-
spectively. For CoLA, the training set consists of
7,551 sentences, while the validation and test sets
consist of 1,000 sentences each. These datasets are
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used to evaluate the performance of the CD mod-
ule in terms of situation similarity and linguistic
acceptability.

We use TextAttack (Morris et al., 2020) for this
experiment. We fine-tuned the MRPC dataset for
situation similarity and the CoLA dataset for lin-
guistic acceptability. We use pre-trained language
models, which are BERT (Devlin et al., 2018), AL-
BERT (Lan et al., 2019), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019). We set the
seed as 42. The experimental settings are presented
in Table 8.

Model Epoch Batch LR SeqLen # Params

Si
tu

at
io

n BERT 5 16 2e-05 256 110M
ALBERT 5 32 2e-05 128 12M
RoBERTa 5 16 3e-05 256 125M
XLNet 5 32 5e-05 256 117M

L
in

gu
is

tic BERT 5 32 2e-05 128 110M
ALBERT 5 32 3e-05 128 12M
RoBERTa 5 32 2e-05 128 125M
XLNet 5 32 5e-05 128 117M

Table 8: We denote situation similarity as Situation,
linguistic acceptability as Linguistic, the learning rate
as LR, sequence length as SeqLen, and the number of
trainable parameters as # Params.

Metric We propose CEEU metric to verify the
situation switching function of the CD module. The
conversation module generate the response based
on dialogue history as shown in Figure 2. We in-
put an utterance of out-of-situation in a random
conversation turn in dialogue history, and measure
whether the CD module detected it correctly.

Details of the corresponding procedures are de-
scribed in Algorithm 1. SITUATION-CHAT de-
noted as D, contains a dialogue history Hn,t for
each situation n and a given turn t. Specifically,
Hi,t comprises gold answer utti,t, and utterance
candidates uttj,t extracted from the different sit-
uation j. Once CD module correctly predicts the
inclusion of the gold answer in a dialogue history,
it is classified as a true positive (tp); otherwise,
as a false negative (fn). Similarly, dialogue histo-
ries containing distractors are also classified into
true negative (tn) or false positive (fp), based on
the model judgment. Eventually, the accuracy is
estimated based on the entire test set, where the
number of utterances classified to the positive label
and the negative label is set to be the same ratio.

D.2 Results

Table 9 presents the experimental results of the CD
module, which are evaluated by the CEEU met-

Algorithm 1 CEEU
Require: CDModule = {MRPC}
1: Sn ← {S1, . . . , Sn | 1 ≤ n ≤ |D|}
2: /* Sn is the situation. */

3: /* |D| is the number of dialogues. */

4: t ∈ {1, 2, 3}
5: Hn,t ← {uttn,1, uttn,2, . . . , uttn,t | 1 ≤ n ≤ |D|}
6: /* uttt is an utterance at turn t of nth dialogue. */

7: procedure CEEU(Sn, Hn,t)
8: for i← 1, n do

9: Hi,t ← Hi,t−1 +





utti,t
or

uttj,t where i ̸= j

10: /* uttj,t is randomly chosen from other dialogues. */

11: ContextScore← CDModule(Si, Hi,t)
12: if utti,t in Hi,t then
13: if ContextScore ≥ 50 then
14: tp← tp+ 1
15: else
16: fn← fn+ 1

17: else if uttj,t in Hi,t then
18: if ContextScore ≥ 50 then
19: tn← tn+ 1
20: else
21: fp← fp+ 1

return Acc← tp+ tn

tp+ tn+ fp+ fn

ric for situation similarity and the CoLA dataset
for linguistic acceptability. We fine-tune four pre-
trained language models, including BERT, AL-
BERT, RoBERTa, and XLNet. The highest CEEU
score is achieved by XLNet with a score of 0.628.
The highest linguistic acceptability is achieved by
BERT and XLNet with CoLA validation scores of
0.812 and 0.851 and CoLA test scores of 0.820 and
0.870, respectively.

Module Model CEEU CoLA GLUE BLEU
Valid Test

CD

BERT 0.476 0.812 0.820 - -
ALBERT 0.484 0.728 0.736 - -
RoBERTa 0.623 0.739 0.755 - -
XLNet 0.628 0.851 0.870 - -

GEC Park et al. (2020) - - - 58.12 73.82

Table 9: Experimental results of CD module and GEC
module. CEEU is used to evaluate situation similarity.
We measure linguistic acceptability using valid and test
set of CoLA. The performance of the GEC module is
evaluated based on GLUE and BLEU.

D.3 Verification of GEC Module
The experimental result of GEC module is pre-
sented in Table 9. The performance of the GEC
module is evaluated based on the GLUE (Napoles
et al., 2015) and BLEU (Papineni et al., 2002) score.
Further, the NS2DS (Park et al., 2020) is used as
the experimental model, and Park et al. (2020) is

201



Dimension 4 3 2 1

Accuracy
Uses sentence structure,
vocabulary, and grammar
correctly without errors

Uses sentence structure,
vocabulary, and grammar
correctly with few errors

Uses sentence structure,
vocabulary, and grammar
correctly with several errors

Uses sentence structure,
vocabulary, and grammar
correctly (many errors)

Communication
Communicates thoughts and
be understood without errors

Communicates thoughts and
be understood with few errors.

Communicates thoughts and
be understood with several errors.

Not able to communicate
thoughts or be understood

Fluency
Communicates clearly
and smoothly

Communicates clearly
and smoothly with a little
hesitation

Able to communicate
with some prompts

Not able to communicate
clearly or smoothly

Comprehension
Understands and always
responds appropriately

Understands most verbal
cues and mostly responding
appropriately

Understands some verbal
cues and sometimes
requiring prompts

Not able to understand
verbal cues or to respond

Maturity of the language

Includes details beyond
the minimum requirements
(word-choice/expressions/
gestures)

Includes details beyond
the minimum requirements

Includes minimal or no
details beyond the
minimum requirements

Not able to utilize the
language well

Table 10: Five dimensions of English-speaking performance evaluation.

referred to for the experimental results.

E Human Evaluation Measures

We ask the following additional questions to the
evaluators to assess the quality of the model-
generated utterances.

• Fluency: Fluency of the dialogue on a scale
from 1 to 5, where 1 is “not fluent at all”, 5 is
“extremely fluent”, and 3 is “fine”.

• Situation Consistency: Situation consistency
on a scale of from 1 to 5, where 1 is “not
maintained at all”, 5 is “well maintained”, and
3 is “fine”.

• Engagingness: Engagingness disregarding
fluency from 1 to 5, where 1 is “not engaging
at all”, 5 is “extremely engaging”, and 3 is
“fine”.

F Details of User Evaluation

F.1 English-speaking Performance

To measure English-speaking performance, we re-
cruited two English teachers who graduated with
degrees in English education as evaluators. Follow-
ing Chien et al. (2020), we modified the method-
ology to measure five dimensions: Accuracy, com-
munication, fluency, comprehension, and maturity
of language. Each dimension was evaluated on a
scale of 1 to 4, with 1 being the lowest and 4 being
the highest. Table 10 provides a description of each
dimension. The inter-rater reliability for the evalu-
ators on the English speaking ability had a cohen’s
kappa value of 0.58 (p < 0.001).

F.2 English Grammar Test

For the Grammar evaluation, we use multiple-
choice questions to evaluate the participants’
knowledge of English grammar rules. The ques-
tions cover a range of topics, such as verb tenses,
prepositions, and articles. We administer a gram-
mar test consisting of 20 items for both the pre-test
and post-test.

F.3 English Learning Anxiety Scale

The measure for English learning anxiety, which
consists of 33 items, was adapted from the For-
eign Language Classroom Anxiety Scale (Horwitz
et al., 1986) with a 5-point Likert-type rating, such
as “I never feel quite sure of myself when I am
speaking in my foreign language class.” A higher
rating indicates higher English learning anxiety.
The Cronbach’s alpha of the measure was 0.95.

G PEEP-Talk Satisfaction Surveys

Question

Are you satisfied with the overall performance
of PEEP-Talk?

Do you think situational dialogue is helpful
for conversational learning?

Are you satisfied with the result of the context
detector module?

Are you satisfied with the performance of the
grammar error correction module?

Do you think the chatbot’s conversation is natural
and contextual?

Table 11: Questions of PEEP-Talk satisfaction survey.

We conduct user satisfaction surveys on our plat-
form. Five questions are selected to ask users to
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evaluate on a Likert scale(Likert, 1932) of “satis-
fied”, “neither agree nor disagree”, and “dissatis-
fied”. The survey questionnaires are listed in Table
11. We show the results of the survey in Figure 8.

As a result of the survey, most people express
satisfaction with the performance of PEEP-Talk,
and more than 70% of the respondents answer that
the utterances of the chatbot are natural and con-
textual. Also, 70% to 80% of respondents answer
that situational dialogue is educationally beneficial
for conversational English, and grammar correc-
tion is helpful. However, the satisfaction of the CD
module is 46%, which is relatively low. We spec-
ulate that this is due to the CD module switching
topics, even if the user wants to talk more about a
particular situation.

Percentage of Responses

Q1

Q2

Q3

Q4

Q5

0% 25% 50% 75%

Dissatisfied Neither agree nor disagree Satisfied

PEEP-Talk satisfaction survey results

Figure 8: Results on the PEEP-Talk satisfaction survey
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G.1 Response Comparison
Table 12 presents a qualitative analysis of the performance of PEEP-Talk in comparison with DailyDialog,
Andy, and Speak Now. In each situation, PEEP-Talk provided responses that were contextually appropriate
and reflected a natural conversation flow, indicating its potential to be an effective tool for real-world
English education. In contrast, the responses generated by the other chatbots sometimes appeared to be
unrelated to the topic or situation, suggesting that they may not be suitable for use in English education.

Situation PEEP-Talk DailyDialog Andy Speak Now

Bookstore
There are so many
new books this month.

I know, I am looking
for a good Korean
novel these days.

I know, I’m just
impatient.

Do you like to travel? I’m Okay.

Requesting packaging
Can I get the leftovers to go?

You can, but we don’t
have a container for
soup dishes.

I’m sorry, I don’t
have any leftovers.

Sure, will you write
me later?

I’m looking at
you

At the art museum
Which way should I go to see
the special exhibition hall?

If you go to the right,
you’ll see the entrance
of the exhibition hall.

I think you have to
go to the main hall.

Is it a good place?
Oh, You hurt
my feelings

Customer service
I ordered sweet potatoes to go
on a diet, but there were some
rotten ones included, can I get
them exchanged?

I’m sorry, but you can’t
exchange or refund food
that has already been sent.

I don’t think you
can exchange them.

My name is Andy.
What is your name?

I’m okay.

Returning
I bought a cell phone case and
it’s not pretty so I want to get a
refund.

I am sorry but cell phone
cases are non-refundable.

I bought a case and
it’s not pretty so I
want to get a refund.
english haiku bot

Got it
Oh, You hurt
my feelings

Find product
I’m looking for a lotion for dry
skin, is there a cosmetic that is
not too sticky?

If you want to use it as a
base, I recommend this
lotion for oily skin.

I use moisturizer. I see Glad to hear that.

Travel agency
How much is a cheap flight
from Incheon to New York
airport?

I heard it is about 80 dollars
if you depart from here.

I think it’s about the
same price as a flight
to the US from the UK.

Got it Let’s keep going.

Clothing store
I want to buy these clothes,
can I try it on first?

You can try it on in the
change room, were you
not able to find it?

I don’t think you can
buy them, but you
can buy the shirt.

To buy these clothes
is a great goal.

What color is
your hair?

Job interview
Please tell me about your
previous job experiences if any.

I worked in a bookstore
as a part-time job and
had a lot of free time.

I have a few. I’ve been
in the service for a few
years.

As you know my name
is Andy and I want to
help you in learning
English.

Let’s keep going.

IT/computer
Is this the IT department?
The program isn’t working,
please check it.

Yes, which program
isn’t working?

I’m not sure what you
mean.

Thank you! I’m so
happy to hear that,
I love talking to
you too

I’m Okay.

Daily Conversation
It seems like you can’t go home
often ever since you moved out
from home.

I can’t go home often
because I have too many
friends who are also students.

I’ve been home for a
few months now.

Got it
Thanks. Have a
nice day.

Inquiring about prices
Are there clothes on sale now?

Yes, we have sales clothes
on this side separately.

I don’t think so. I think
they are just a limited
time thing.

I see Great. Man.

Duty-free shop
I was told that the cigarettes
are really cheap if bought
at duty-free shops.

I heard that too, but
isn’t it just cigarettes?

I’ve never seen a duty
free shop that has them.

Okay
I don’t understanding
what you are saying.

Table 12: Comparison of the utterances generated by PEEP-Talk, DailyDialog Andy, and Speak Now.
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H Example Conversations

We show a sample conversations of Andy, Speak Now, and PEEP-Talk.

H.1 Conversations between Humans and PEEP-Talk (Ours)

PEEP-Talk (Ours) Conversation 1

Situation: At the cosmetic store
Human: What are some products on sale today?

PEEP-Talk: We also have a 10 percent discount on lotion and toner.
Human: This is the product I am using, and do you still sell it?

PEEP-Talk: We do, but we only have a small amount left.
Human: I’d like to buy a set of cosmetics.

PEEP-Talk: I’ll go get it for you.
Human: Thank you. Have a nice day

PEEP-Talk (Ours) Conversation 2

Situation: Evaluating food taste
Human: I heard that salmon salad is really famous at this restaurant.

PEEP-Talk: Really? I love salmon salad . I also heard that the Stir-Fried mushrooms are also very famous
Human: Then, shall we order a salmon salad and a pizza and share them?

PEEP-Talk: I don’t think I can eat Pizza alone. Let’s order some more and share them.
Human: Today the weather is good.

PEEP-Talk: You are right. The temperature is good and the wind is good.
Human: Good.

PEEP-Talk: —–Situation switch required—–
PEEP-Talk: Why don’t we speak another situation? please, click the different situation!

PEEP-Talk (Ours) Conversation 3

Situation: Situations diagnosed in the hospital
Human: I have a headache

PEEP-Talk: When did the headache start?
Human: I started having symptoms last week.

PEEP-Talk: It seems you have a persistent headache.
Human: And I have chills and fever.

PEEP-Talk: I think we need to do a detailed examination.
Human: Yes, thank you. Where is it going to take a place?

PEEP-Talk: I will go to the central nervous system and tell you the location.
Human: Okay. Thank you

PEEP-Talk: Here is a paper with a magnet attached to it . please follow me.

PEEP-Talk (Ours) Conversation 4

Situation: School life
Human: Professor, when will you hand out the midterm results we took last week?

PEEP-Talk: I am writing them now . do you want them by any chance?
Human: Could you please tell us the highest and lowest scores in advance?

PEEP-Talk: The students usually get an 85 on the Midterms and the lowest is 70 points.
Human: Okay. Thank you

PEEP-Talk: You’re welcome . Let me know if you have any questions.
Human: How do we decide the groups? Will you be randomly assigning them?

PEEP-Talk: I will assign them based on how many friends are in the class.
Human: How many people are assigned per group?

PEEP-Talk: I will assign 5 people to a group of 15.

Table 13: Example conversations between humans and our proposed PEEP-Talk. It is able to not only converse in a
certain real-world situation but also can switch the situation or topic when the users input the utterance predicted as
it is out of the situation (Conversation 2).
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H.2 Conversations between Humans and Andy

Andy Conversation 1

Andy: Hello.
Human: Good morning.

Andy: My name is Andy. What is your name?
Human: My name is Jun.

Andy: That’s great! I am happy for you.
Human: What are you doing?

Andy: I was doing some exercises. I always feel sleepy and sad without physical activity.
Human: Me too. I have to work out in the morning and evening.

Andy: Interesting.

Andy Conversation 2

Andy: Where are you from?
Human: I came from Canada.

Andy: Is it a good place?
Human: I like a fencing.

Andy: Oh, I want to visit it now
Human: Come here. Anytime.

Andy: Nice. Do you have brothers or sisters?
Human: Yes.

Andy: And I have a little sister. She studies modern art in Rome. She is very creative person. I’m sure
she will become a famous artist.

Andy Conversation 3

Andy: Hi, Jun. What’s up
Human: How are you?

Andy: I’m doing great, thank you my friend.
Human: What do you think of the Lakers this season?

Andy: It’s very sunny!
Human: This team is too old. We need new blood.

Andy: Yes, I’m completely fool
Human: All our family members always have been supporting the same team.

Andy: Nice. Do you know any jokes?
Andy: No

Andy Conversation 4

Andy: How do you think cities will change in the future?
Human: Nothing much, just thinking about the good old days when I was a kid. How about you?

Andy: I’m doing great, thank you!
Human: That’s great to hear! I hope you have a great rest of your day! :)

Andy: I understand. Of all the people in history that have reached 65 years of age, half of them are
living right now.

Human: Wow, that’s a lot of people to live with. Do you have any siblings?
Andy: Yeah, amazing. What’s your father like?

Human: He’s a great man. He’s always been there for me when I needed him the most.
Andy: Got it. Can you tell about your parents?

Table 14: Example conversations between humans and Andy. The responses of Andy are restricted and cannot cover
a variety of topics.
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H.3 Conversations between Humans and Speak Now

Speak Now Conversation 1

Speak Now: What’s up. Did you have breakfast?
Human: No, I haven’t yet.

Speak Now: Oh, I’m sorry to hear that. Do you like seafood.
Human: Yes. I like shrimp.

Speak Now: How we should go to Busan someday to eat seafood. Do you like meat?
Human: Yes, I like it.

Speak Now: Good. We should eat meat someday. What’s your favorite food?
Human: My favorite food is sushi

Speak Now: How we have same taste. Do you like breads?

Speak Now Conversation 2

Speak Now: What’s up. Did you have breakfast?
Human: Yes, I ate 15min ago.

Speak Now: I’m doing okay man. What would you like to talk about today?
Human: Let’s talk about cars

Speak Now: No. I’m not sure about that. We Should talk about something else.
Human: Why don’t we talk about colors?

Speak Now: No. I can not understand. Have you ever went study aboard?
Human: No. I have not. But, I want to go further day.

Speak Now: Oh. Should Have you ever been to England?

Speak Now Conversation 3

Speak Now: Did you Sleep well, last night?
Human: I didn’t sleep very well

Speak Now: Oh. I sorry to hear that. Do you like drinking alone?
Human: No, I did not like alcohol

Speak Now: What’s your favorite alcoholic drink?
Human: I did not like alcohol

Speak Now: Have you invested in Bitcoin before?
Human: No, I have not

Speak Now: A lot of people lost money for that. What would you like to talk about today?
Human: I want to talk about soccer,

Speak Now: I don’t like topic. Let’s try different one

Speak Now Conversation 4

Speak Now: Hey Dude did you sleep well last night
Human: I did sleep well

Speak Now: Do you like your Boss?
Human: No I don’t like my boss

Speak Now: I understand you I think most people do. Are you satisfied your job?
Human: No I do not satisfy my job .

Speak Now: I understand you it can always be fun. Which country are you from?
Human: I came from Korea

Speak Now: How you live in a good place Where do you live?

Table 15: Example conversations between humans and Speak Now. We used free conversation mode of Speak Now.
As Speak Now uses hand-crafted rules and pattern matching when making the utterances, the utterances are limited
to its own pre-built templates.
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Abstract
Despite the latest improvements on machine
translation, professional translators still must
review and post-edit the automatic output to
ensure high-quality translations. The research
on automating this process lacks an interac-
tive post-editing environment implemented for
this purpose; therefore, current approaches do
not consider the human interactions that occur
in real post-editing scenarios. To address this
issue, we present OpenTIPE, a flexible and ex-
tensible framework that aims at supporting re-
search on interactive post-editing. Specifically,
the interactive environment of OpenTIPE al-
lows researchers to explore human-centered
approaches for the post-editing task. We re-
lease the OpenTIPE source code1 and showcase
its main functionalities with a demonstration
video2 and an online live demo.3

1 Introduction

Recent advances in Machine Translation (MT) and
the adoption of neural architectures (Bentivogli
et al., 2016) led to significant improvements in
translation quality aspects such as fluency or ade-
quacy (Bentivogli et al., 2016; Bojar et al., 2017).
Despite these advancements, MT is not yet on a
par with human performance (Läubli et al., 2018;
Toral, 2020) and human post-editors need to edit
the MT output to obtain high-quality translations
that also adapt to a specific domain and style.

To reduce the manual efforts, the research com-
munity proposed to automate this process and im-
plemented Automatic Post-Editing (APE) models
that automatically learn post-editing rules from re-
vised translations (do Carmo et al., 2020). The
use of these models is specially indicated in envi-
ronments where the MT system that generates the
translations is not accessible for retraining (Chatter-
jee et al., 2015). To date, the automatic corrections

1Link to GitHub repository.
2https://youtu.be/G3Hb8_hnKIk
3https://www.opentipe-demo.com

generated by the state-of-the-art APE models still
require proofreading, so there is no solution that
fully automates the translation process. In fact, the
post-editing task remains mostly manual in produc-
tion workflows.

Instead of fully automating the post-editing
task, Escribe and Mitkov (2021) suggest that post-
editing would greatly benefit from human-centered
approaches that leverage the post-editor’s correc-
tions and their interactions with the translation in-
terface. For example, APE models could improve
over time by incrementally learning from human
corrections (Chatterjee et al., 2017).

While human-computer interaction has been ex-
plored in MT with the help of translation frame-
works such as CASMACAT (Alabau et al., 2013),
there is no such interactive environment designed
for the post-editing task (do Carmo et al., 2020;
Escribe and Mitkov, 2021). Therefore, current
research in Interactive Post-Editing (IPE) is lim-
ited to simulate the human interaction by feed-
ing pre-existing corrections to the post-editing pro-
cess sequentially (Ortiz-Martínez and Casacuberta,
2014; Chatterjee et al., 2017; Negri et al., 2018a).
Additionally, human corrections are scarce and
these approaches often rely on synthetic post-edited
datasets such as eSCAPE (Negri et al., 2018b). Al-
though these artificial settings enabled valuable
research in this field, they lack the human interven-
tion as in real-world post-editing scenarios.

In this paper, we present OpenTIPE, an open-
source framework that enables research on post-
editing in an interactive environment. In particular,
OpenTIPE implements the following main features:

• Easy-to-use interface that allows users to au-
tomatically translate a text and post-edit it.
To support the user during the post-editing
process, the tool provides automatic post-
editing suggestions from an APE model,
which can be directly applied to the revised
translation (see Section 3.1).
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• Collection of human data, such as user
corrections and post-editing feedback (e.g.
whether the automatic suggestions were ap-
plied). The collected data is a valuable re-
source to incrementally improve APE models
in a continuous feedback loop (Section 4).

• Logging of post-editing activity, such as the
user inactivity, and the time at the start and
end of the post-editing task. The implemented
logging allows researchers to measure post-
editing efforts and evaluate the post-editor ex-
perience on different settings (Section 4).

• Modular and extensible microservice archi-
tecture using Docker containers,4 which facil-
itates the extension and implementation of ad-
ditional services (e.g. translation or APE mod-
els) and features (e.g. new logging activity or
user interface design). Section 3 describes the
OpenTIPE architecture in detail.

To the best of our knowledge, this is the first inter-
active environment designed to facilitate research
on IPE. We hope that OpenTIPE fosters further re-
search in this field that can be applied to improve
the overall post-editing experience.

2 Related Work

Most of the related work focuses on implementing
APE approaches to automate the post-editing task.
However, these approaches do not enhance human-
computer interaction. In fact, human-centered ap-
proaches have been only explored in MT settings.
In this section, we first summarize the work on
APE and their online approaches, which simulate
the post-editor behaviour by implementing contin-
uous streams of corrections. We then describe the
research on interactive MT, which is the most in-
line with this work.

Automatic Post-editing The annual WMT con-
ference5 has been hosting shared tasks on APE
since 2015, going through both statistical and neu-
ral MT eras (Junczys-Dowmunt, 2018; do Carmo
et al., 2020). An important finding is that the per-
formance of APE models are highly influenced by
the quality of the MT output, hence improving neu-
ral MT translations is particularly challenging for
these models. Additionally, automatic metrics such
as TER (Snover et al., 2006) and BLEU (Papineni

4https://www.docker.com
5https://www.statmt.org/wmt22/

et al., 2002) cannot always reflect the improve-
ments of the APE models, and researchers need
to conduct manual evaluations to gain insights on
the quality of the APE output (Akhbardeh et al.,
2021). Nevertheless, APE models are an essential
component in translation workflows, where the MT
system is used as a black box and its parameters
are not available for retraining. In this setting, it
would be beneficial to leverage human feedback
to gradually improve the performance of the APE
model in place.

Online APE To simulate human post-editions,
APE models apply online learning methods that
feed continuous streams of data to the model.
While online methods have been previously
adopted in phrase-based APE (Ortiz-Martínez and
Casacuberta, 2014; Simard and Foster, 2013; Chat-
terjee et al., 2017), only Negri et al. (2018a) apply
online learning to neural APE. Specifically, Negri
et al. (2018a) iterate over a pre-existing dataset of
corrections, updating the model parameters on the
fly for every instance. Similar works address online
learning in neural MT. For example, Kothur et al.
(2018) update the model parameters one sentence
at a time as in Negri et al. (2018a). In contrast,
other approaches avoid updating the model param-
eters and retrieve sentences with similar contexts
from a translation memory during decoding (Gu
et al., 2018; Wang et al., 2021).

Interactive MT In professional translation en-
vironments, human experts benefit from using
computer-assisted translation technologies (i.e.
CAT tools). For example, translation memories
store previously-approved translations, so they can
be reused later on. To further investigate the human-
computer interaction in translation workflows, re-
searchers proposed several frameworks for phrase-
based MT (e.g. Transtype2 (Esteban et al., 2004)
and CASMACAT (Alabau et al., 2013)) and neural
MT (Knowles and Koehn, 2016; Santy et al., 2019).
However, these technologies are not optimal to in-
vestigate human interaction in post-editing, and
therefore there is a lack of research in this area.
For example, CASMACAT offers alternative trans-
lation suggestions that come from an MT system,
whereas our work integrates the output of an APE
model. Similarly to the prior work in interactive
MT, we implement automatic logging strategies
to collect user interactions during the post-editing
process for further analyses.
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Figure 1: Overview of the OpenTIPE system architecture, which follows a microservice pattern, and the communi-
cation between the different components. Each blue box in the diagram represents a separate Docker container.

3 The OpenTIPE Framework

OpenTIPE implements a microservice architecture,
consisting of independent services that are orches-
trated with Docker Compose.6 The advantages
of this architecture are twofold. First, it enables
separation of concerns. That is, each service imple-
ments its own function and runtime environment,
reducing code complexity and errors. Second, its
flexibility, as services can be easily replaced.

The main components of the OpenTIPE imple-
mentation are the frontend, which provides the
graphical user interface to translate and post-edit
texts, and the backend services: the backend API,
MT and APE services, and data storage. Addition-
ally, OpenTIPE supports user authentication with
Firebase.78 Figure 1 illustrates the overall architec-
ture of OpenTIPE and the interaction between the
different services. In the following, we describe
the technical details of each component.

3.1 Frontend

The frontend implements the user interface of
OpenTIPE, which currently consists of two main
views: (1) the translation and (2) post-editing view
(Figure 2). The translation view allows the user to
add the text to translate and select different trans-
lation options. In particular, the user can choose
among the available source and target languages,
and define the translation of specific terms (see

6https://docs.docker.com/compose/
7https://firebase.google.com/docs/auth
8Authentication can be entirely disabled if necessary.

Section 3.4 for more details on the use of lexical
constraints). In the post-editing view, the user can
edit the automatic translation with the support of
the post-editing suggestions from the APE model.

To facilitate its deployment, we adopt a web-
based design. More specifically, we use VueJS, a
lightweight JavaScript framework, and build the
frontend as a single-page application.9 This imple-
mentation runs entirely in the browser and decou-
ples the backend business logic from the user inter-
face, enhancing separation of concerns. To obtain
the translations and the automatic post-editing sug-
gestions, the frontend application communicates
with the backend API (see Section 3.2).

An important feature of the user interface is its
rich-text editor, which is implemented using the
Tiptap framework.10 The main strength of the Tip-
tap framework is its extensibility, allowing us to
easily customise and add additional features. We
write the entire frontend application in TypeScript11

and host it statically using NGINX12 in its corre-
sponding docker container.

Document-level Post-editing Computer-assisted
translation technologies typically organise the
translation task in individual sentences. The human
translator then addresses the document sentences
one at a time, which helps to speed up the transla-
tion process. However, prior work reported that er-
rors in current high-quality MT systems are harder

9https://vuejs.org
10https://tiptap.dev
11https://www.typescriptlang.org
12https://www.nginx.com
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Figure 2: Post-editing view of OpenTIPE. The view shows the source text on the left, the post-editing area in the
middle, which initially contains the MT output, and the APE suggestions on the right side. The user can discard
or apply the suggestions to the revised text. The interface implements highlighting features to identify aligned
source-target sentences and the differences between the translation and the corresponding APE suggestions. Users
can click on the ‘Copy translated text’ button to save the current status of the revised translation locally.

to spot when focusing on isolated sentences instead
of the whole document (Läubli et al., 2018). Ad-
ditionally, a professional translator, who took part
in our observation-based study (see details in Sec-
tion 5), confirmed us the importance of document-
level post-editing. We therefore display the entire
document without segmentation in the post-editing
view and offer highlighting features, which help the
user to identify aligned sentences in the source and
the target (see Figure 2). Nevertheless, the backend
deals with the source, translation, and post-edited
texts as independent sentences,13 so it is possible
to modify the user interface and display separate
pairs of source-target sentences instead.

3.2 Backend API

The backend API acts as bridge between the fron-
tend and the backend services (i.e. the database,
the MT and APE models), defining the necessary
endpoints to allow them to communicate and share
resources. Specifically, it first provides the frontend
with the automatic translations and post-editing
suggestions from the MT and APE services, respec-
tively (Section 3.4). Second, it stores the resulting
post-editing metadata such as human post-edits and
user interactions to the database (Section 3.3).

The API is based on Flask, a framework de-
13We refer the reader to Section 4 for more details on the

format and structure of the data.

signed to build lightweight web applications,14 and
implemented in Python.15 It is the only backend
service that is accessible from the internet. Thus, if
authentication is enabled, it connects to Firebase to
validate and authenticate the incoming requests.

3.3 Data Storage

The data storage is based on MongoDB, a popular
document-oriented NoSQL database.16 The main
strengths of MongoDB are its high performance
and flexibility. In contrast to relational databases,
MongoDB can support different data structures.
Therefore, researchers can easily extend and mod-
ify the current implementation to fulfill their needs.

We divide the storage of the collected data, that
is, the post-editing metadata and the logging of
the user interactions, into two logical databases.
Section 4 describes the data collection and its rep-
resentation in more detail.

3.4 Translation and Post-editing Models

The OpenTIPE framework uses MT and APE mod-
els to obtain automatic translations and post-editing
suggestions, respectively. We build these models in
independent Docker containers, so they can be eas-
ily replaced. The current implementation of the MT

14https://flask.palletsprojects.com/en/2.2.x/
15https://www.python.org
16https://www.mongodb.com
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mtText apeText hpeText apeAccepted

The Bremen town musicians Town musicians of Bremen Town musicians of Bremen true
The Bremen town musicians The Bremen town musicians Town musicians of Bremen false
Town musicians of Bremen Town musicians of Bremen Town musicians of Bremen false
The Bremen town musicians Town musicians of Bremen The town musicians of Bremen false
The Bremen town musicians Town musicians of Bremen The Bremen town musicians false

Table 1: Examples of different values of the textSegments properties for a single sentence object (srcText: ‘Die
Bremer Stadtmusikanten’). If there is no automatic suggestion (i.e. second and third rows), apeText contains the
mtText. The value of hpeText is the final version of the sentence even if there is no correction.

service supports the use of the DeepL API17 and
Huggingface18 or Fairseq Neural MT models.19

APE and Lexical Constraints In this post-
editing environment, we consider the MT model
as a black box and the improvements should be ap-
plied to the APE model. As an example, we release
a simple APE implementation, an encoder-decoder
architecture as in Correia and Martins (2019). In
contrast to multi-source architectures, Correia and
Martins (2019) use a single encoder whose input is
the concatenated source and MT translation.20

Since post-editors are often required to use trans-
lation dictionaries, we extend the APE implemen-
tation to allow lexical constraints. That is, we can
enforce the APE model to use specific translations
for particular terms. To do so, we follow the ap-
proach described in Bergmanis and Pinnis (2021),
which also handles the generation of the correct
morphological inflection in the APE output.21 This
is specially important when translating into an in-
flected language, such as French. The approach
augments the APE training data with the lemma
of nouns and verbs such that the model learns to
copy and inflect. For example, given the source
text ‘the improvement’, we would augment it with
the noun lemma in the target language (e.g. ‘the
improvement retouche’). As in Bergmanis and Pin-
nis (2021), we use the pre-trained Stanza models
for lemmatization and part-of-speech tagging.22 To
define the translation constraints, the user can pro-
vide them in a file or introduce manual entries in
the dictionary view of the user interface. During in-
ference, we only augment those terms in the source
for which the user specified a translation.

17https://www.deepl.com/docs-api
18https://huggingface.co/models
19https://github.com/facebookresearch/fairseq/

blob/main/examples/translation/README.md
20https://github.com/deep-spin/OpenNMT-APE
21Jon et al. (2021) propose a similar approach to enforce

lexical constraints and generate the corresponding inflection.
22https://github.com/stanfordnlp/stanza

key description

srcLang Language code of the source text.

trgLang Language code of the target text.

userDict Array of the manual translation entries
defined by the user in the user interface.

selectedDicts Array of the predefined dictionaries se-
lected by the user.

textSegments Array of sentence objects. Each sentence
object contains the corresponding values
for the source sentence (srcText), MT
translation (mtText), automatic post-
editing suggestion (apeText), revised
version (hpeText), and a boolean indi-
cating whether the automatic suggestion
was accepted (apeAccepted).

Table 2: Description of the JSON object properties
that define a post-edited document. See examples of
sentence objects from textSegments in Table 1.

4 Data Collection and Representation

Human post-edited data is a valuable resource to
improve APE models. However, this is a scarce re-
source and researchers are often dependent on syn-
thetic datasets. Therefore, the collection of human
data is an important aspect of this IPE environment.
Researchers can then leverage the data to imple-
ment human-in-the-loop approaches and assess the
performance of different APE settings. Our imple-
mentation of OpenTIPE collects (1) human post-
edited translations and (2) user interactions with
the post-editing environment and it stores them
as JSON objects in the MongoDB database (Sec-
tion 3.3). The rest of this section describes the rep-
resentation of these data in more detail.

Human Post-edited Translations We collect
the human corrections together with additional
relevant information, such as the corresponding
source, MT output and use of translation dictionar-
ies. OpenTIPE deals with the data at sentence-level,
aligning sentence quartets of source, MT transla-
tion, APE suggestion, and proofread version. The
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data is represented as a JSON object that defines
the properties listed in Table 2. OpenTIPE captures
and stores this data in the database when the user
triggers the end of a revised version. That is, when
the user copies the post-edited text using the copy
keyboard shortcut or clicks on the ‘Copy translated
text’ button of the user interface (see Figure 2).
Note that different revisions of the same source
text can be stored at different times.

User Interaction Logging We also record the
user interactions with OpenTIPE in our database.
This data can be used to evaluate different APE
settings and the user experience with the editor.
We currently log five types of events: IdleEvent,
ActiveEvent, AcceptEvent, RejectEvent, and
CopyEvent together with the timestamp and user
identifier.23 The pair of events IdleEvent and
ActiveEvent indicate the time intervals with user
activity and inactivity. Specifically, we record an
IdleEvent when the user does not interact with
the interface for a minute and an ActiveEvent
with any interaction after being idle (e.g. mouse
click, scrolling). The event types AcceptEvent
and RejectEvent are triggered when the user ap-
plies or discards automatic suggestions, respec-
tively. Finally, CopyEvent indicates that the user
copied a post-editing revision locally.

5 Usability Study

We perform a user study to assess the usability
of the OpenTIPE user interface. In particular, we
conduct a controlled observation with a profes-
sional translator and a survey-based assessment
with eight non-professional translators. The lat-
ter are academics between 21 and 30 years old
(62.5% are male and 37.5% female), who indi-
cated that they frequently use translation services,
such as DeepL24 and Google Translate.25 While the
observation-based setting allows us to get insights
on the interactions of an expert with the tool, the
survey-based assessment gives us a general subjec-
tive view of the user interface usability.

In both settings, all participants saw the interface
of OpenTIPE for the first time during the study. We
start the study explaining its purpose to the partici-
pants. In the observation-based setting, the profes-
sional translator is aware that he is being observed

23The logging can be easily extended with new event types.
24https://www.deepl.com/translator
25https://translate.google.com

during the process.26 We then provide them with a
text to translate and the following instructions:

1. Translate the provided text using OpenTIPE.

2. Improve the automatic translation. For exam-
ple, (a) apply automatic suggestions where
needed or (b) rephrase the first sentence and
split it in two sentences.

3. Save the final translation locally.

Furthermore, we ask the participants of the
survey-based setting to fill in a questionnaire. The
questionnaire consists of a set of questions as de-
fined in the System Usability Scale (SUS) (Brooke,
1996) and three additional qualitative questions
about what they liked the most and what features
they think are missing or could be improved.

The OpenTIPE user interface obtained an aver-
age SUS score of 90, being 85 the lowest among the
participants.27 These results indicate that all partic-
ipants evaluated the interface as excellent (Bangor
et al., 2008). This is also confirmed with the an-
swers to the qualitative questions. In fact, most of
them stated that what they liked the most about the
interface was its simplicity. Similarly, we observed
that the professional translator used the interface as
expected and could perform all tasks effortlessly.

6 Conclusion

We presented OpenTIPE, the first interactive frame-
work that aims at supporting the research of human-
centered approaches for post-editing. In contrast to
research in machine translation, human-computer
interaction has been only simulated for the post-
editing task, since there was no interactive environ-
ment available for this purpose. OpenTIPE follows
a microservice architecture such that it can be easily
extended and adapted to other models or features.
Additionally, it collects human post-editing data
and the user interactions with the interface. These
data are key to implement human-in-the-loop ap-
proaches that learn from human corrections over
time. We expect this work to foster future research
on interactive approaches that enhance the perfor-
mance of the post-editing process. We are excited
to explore this direction in future work.

26Two authors of this paper participated as observers.
27SUS scores have a range of 0 to 100 and a score over 68

is considered above average.

213

https://www.deepl.com/translator
https://translate.google.com


Ethics Statement

Usability Study We recruited the participants
for our usability study on a voluntary basis and
informed them of the goals and scope. Furthermore,
we collected the data anonymously, such that no
conclusion can be drawn about any participant. The
usability study obtained the ethical approval (EK-
2023-N-35) from the Ethics Commission of ETH
Zurich university.

Translation and Post-editing Models We do not
expect additional ethical concerns besides the al-
ready documented on natural language generator
systems (Smiley et al., 2017; Kreps et al., 2022).

Potential Misuse Users could write undesired
text (e.g. hateful or offensive comments) as post-
edited text. As a result, the stored data could be
used to train a model to generate texts that repli-
cate this harmful behaviour. To mitigate this is-
sue, we strongly recommend to activate the user
authentication, so the framework is only accessi-
ble to trustworthy users. Additionally, researchers
should periodically verify the data to filter those
instances either manually or automatically, using a
model to identify hallucinations in the text as in Su
et al. (2022). Since bias can be present in the APE
output, human-in-the-loop approaches can amplify
this bias if the users heavily rely on the APE sug-
gestions. Therefore, researchers should also debias
the data regularly, for example, using existing tools
such as AdaTest (Ribeiro and Lundberg, 2022).
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Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Li-
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Abstract

Recently, the success of pre-training in text
domain has been fully extended to vision, au-
dio, and cross-modal scenarios. The proposed
pre-training models of different modalities are
showing a rising trend of homogeneity in their
model structures, which brings the opportu-
nity to implement different pre-training mod-
els within a uniform framework. In this paper,
we present TencentPretrain, a toolkit support-
ing pre-training models of different modalities.
The core feature of TencentPretrain is the mod-
ular design. The toolkit uniformly divides pre-
training models into 5 components: embedding,
encoder, target embedding, decoder, and tar-
get. As almost all of common modules are
provided in each component, users can choose
the desired modules from different components
to build a complete pre-training model. The
modular design enables users to efficiently re-
produce existing pre-training models or build
brand-new one. We test the toolkit on text, vi-
sion, and audio benchmarks and show that it
can match the performance of the original im-
plementations.

1 Introduction

Pre-training on large-scale data and then fine-
tuning on downstream tasks has become a
paradigm for text, vision, and audio tasks (De-
vlin et al., 2019; Bao et al., 2021; Baevski et al.,
2020). In addition to the similarity in the pipeline
paradigm, these pre-training models as well have
close model structures: On one hand, most of them
consist of the following components, embedding,
encoder, target embedding, decoder, and target,
on the other hand, many modules in above compo-
nents are shared among models of different modal-
ities. For example, the transformer module (in
encoder component) (Vaswani et al., 2017), which

∗∗ Corresponding author.
E-mail: nlpzhezhao@tencent.com

is successful in the field of text, is increasingly
being applied to the vision and audio modalities.
(Dosovitskiy et al., 2020; Gulati et al., 2020). Table
1 lists the commonly used pre-training models and
their modules.

The trend towards homogeneity in pre-training
models is becoming more apparent, which makes it
possible to integrate them into a uniform frame-
work. A representative work in this direction
is Huggingface Transformers (Wolf et al., 2020),
which exploits a non-modular design mode. For
each pre-training model in Huggingface Transform-
ers, several separate classes are created, and the
code is not refactored with additional abstractions.
Users can develop their pre-training models inde-
pendently which is useful to collaborative develop-
ment in the community. However, in this design
mode, users need to implement the model from
scratch when adding a new pre-training model, re-
quiring considerable code work. In addition, with
the increased number of pre-training models, the
number of classes and lines of code also increases
linearly. Codes with the same function may be writ-
ten many times, which degrades the readability and
maintainability of the project.

In response to shortcomings of non-modular de-
sign mode, we introduce TencentPretrain, a modu-
lar toolkit specially designed for pre-training mod-
els of different modalities. As shown in Figure
1, TencentPretrain has five components, namely
embedding, encoder, target embedding, decoder,
and target. Among them, target embedding and
decoder components are optional, since the tar-
gets of many pre-training models do not involve
sequence decoding (Zhang et al., 2020; Lewis et al.,
2020). TencentPretrain is hierarchical modular de-
signed with two degrees of freedom. At component
level, users are free to combine modules within a
component, for example, combining multiple mod-
ules in target component to perform multi-task pre-
training (Lan et al., 2019; Sun et al., 2020). At
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Pre-training model Modality Embedding Encoder Target
embedding Decoder Target

ELMo (Peters et al., 2018) Text word bi-lstm - - bilm
Infersent (Conneau et al., 2017) Text word gru - - cls

CoVe (McCann et al., 2017) Text word lstm word lstm lm
BERT (Devlin et al., 2019) Text word, pos, seg transformer - - mlm, sp

GPT-2 (Radford et al., 2019) Text word, pos transformer - - lm
T5 (Raffel et al., 2020) Text word transformer word transformer lm

ViT (Dosovitskiy et al., 2020) Vision patch, pos transformer - - cls
BEiT (Bao et al., 2021) Vision patch, pos transformer - - mlm
S2T (Wang et al., 2020) Audio speech, pos transformer word, pos transformer lm
ViLT (Kim et al., 2021) Text-vision word_patch, pos, seg transformer - - mlm, cls

Table 1: Typical pre-training models and their modules. The above models use different variants of transformer. Due to the page
limit, we do not list the details of transformer module in encoder component. In addition, abbreviations are used in embedding
and target columns. pos and seg respectively stand for position and segment embeddings. bilm, cls, lm, mlm, sp respectively
stand for bi-directional language model, classification, language model, masked language model, sentence prediction.

the model level, users can combine modules from
different components to constitute a complete pre-
training model.

Modularity in design makes TencentPretrain
scalable with the increasing number of newly pro-
posed pre-training models. Users are allowed to
reuse existing modules with little efforts, avoid-
ing repeated implementation of core functions. At
the same time, TencentPretrain provides a robust
and clear interface among different components. It
brings flexibility, allowing users to build custom
model structures through a configuration file with-
out any code work.

TencentPretrain is implemented with PyTorch
(Paszke et al., 2019), and it supports distributed
training and DeepSpeed optimization library
(Rasley et al., 2020). TencentPretrain is fully con-
nected with Huggingface Transformers, providing
comprehensive conversion scripts of pre-training
models between the two frameworks. Users can
switch between the two frameworks at low cost.
TencentPretrain is tested on text, vision, and au-
dio benchmarks and is able to reproduce the re-
sults of SOTA pre-training models. The Ten-
centPretrain toolkit is publicly available at https:
//github.com/Tencent/TencentPretrain.

2 Related Work

2.1 Pre-training models

Pre-training models have been widely applied in
text scenario. The success of pre-training is largely
due to the powerful encoders for feature extrac-
tion (e.g., LSTM and Transformer), as well as the
progress of pre-training target for learning knowl-
edge from unsupervised corpus (Zhang et al., 2020;
Lewis et al., 2020; Lan et al., 2019). More recently,

the text pre-training paradigm has been replicated
in other modalities. For example, Transformer en-
coder (and its variants) has been widely used in vi-
sion (Dosovitskiy et al., 2020), audio (Gulati et al.,
2020; Chen et al., 2022), and vision-language tasks
(Radford et al., 2021; Kim et al., 2021). Regarding
pre-training target component, text models have
inspired models of other modalities. Mirroring
the idea of masked language modeling (MLM),
MAE (He et al., 2022), BEiT (Bao et al., 2021),
and SimMIM (Xie et al., 2022) use masked im-
age modeling (MIM) for self-supervised vision pre-
training. Speech model Wav2vec2.0 (Baevski et al.,
2020) exploit negative sampling in pre-training tar-
get, which is previously used in word embedding
(Mikolov et al., 2013) and sentence prediction mod-
els (Logeswaran and Lee, 2018; Devlin et al., 2019;
Lan et al., 2019).

In addition to the sharing of modules, several
works have recently shown the feasibility of us-
ing the same pre-trained weight to handle dif-
ferent modalities simultaneously. For example,
ERNIE-ViLG (Zhang et al., 2021) and Talk2Face
(Li et al., 2022) exploit prefix language model to
achieve bi-directional text-and-image generation.
PolyViT uses a single transformer model for image,
video and audio classification (Likhosherstov et al.,
2021).

It can be seen that the trend towards homogene-
ity of pre-training models is becoming obvious,
from sharing modules, to using the same network
and parameters. This inspires us to build a unified
framework that can implement various pre-training
models efficiently.
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Figure 1: The architecture of TencentPretrain. Pre-training models are implemented through module combination.
TencentPretrain encourages reusing the existing modules and writing code at the module granularity.

2.2 Toolkits with modular design

Modular design regards a complex system as the
combination of multiple modules, each of which
can be independently modified and replaced. In the
field of artificial intelligence, a typical work with
modular design is Keras (Chollet et al., 2015). The
core data structure of Keras is layer. Keras allows
building arbitrary graphs of layers to construct NN
models. In the NLP field, modular toolkits are pre-
vailing and they decompose models from different
perspectives with different abstraction levels. For
example, OpenNMT (Klein et al., 2017) is a mod-
ular toolkit designed for NMT. It builds an NMT
model through the combination of encoder and de-
coder modules. Related NLP modular toolkits in-
clude OpenAttack (designed for text attack) (Zeng
et al., 2021), Ngram2vec (designed for word em-
bedding) (Zhao et al., 2017), TextFlint (designed
for robustness evaluation) (Wang et al., 2021), Neu-
ralClassifier (designed for text classification) (Liu
et al., 2019a), and etc.

Inspired by the above-mentioned works, this
paper proposes TencentPretrain, a modular de-
signed toolkit for pre-training models of different
modalities. Compared with Huggingface Trans-
formers (Wolf et al., 2020), the most well-known
pre-training toolkit, TencentPretrain provides addi-
tional abstractions on pre-training model implemen-
tations, splitting a complete model into multiple
modules hierarchically. Pre-training weights be-
tween two toolkits can be switched easily. In fact,
TencentPretrain can be regarded as the high-level
encapsulation of Huggingface Transformers.

It is worth mentioning that TencentPretrain

reuses part of the code in UER (Zhao et al., 2019),
which is published in 2019 and supports several text
pre-training models. Compared with UER, Ten-
centPretrain is improved in three aspects: 1) It sup-
ports the modular design within components, pro-
viding a more scalable manner to build pre-training
models; 2) The target embedding and decoder com-
ponents are introduced to support sequence genera-
tion; 3) In addition to text, TencentPretrain supports
vision, audio, and cross-modal pre-training mod-
els. Currently, TencentPretrain supports around 30
pre-training models.

3 Framework

The current mainstream pre-training models are
basically similar in structure. In the embedding
component, the data is mapped into an embedding
matrix. And then the matrix is passed through
the encoder. Finally the target layer performs pre-
training tasks according to the output of the encoder
layer. If the pre-training task requires sequence
generation, the decoder is inserted between the
encoder and the target.

Figure 1 demonstrates the overall framework of
TencentPretrain. It divides a pre-training model
into five components, and various modules are pro-
vided in each component. In practice, a user firstly
selects one or multiple modules from each compo-
nent (modularization within component), and then
combine modules from different components to
build a pre-training model (modularization cross
components). In the rest of this section, we respec-
tively introduce the above five components and
modules included in them.
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3.1 Embedding

In the embedding component, TencentPretrain con-
verts text, image, and audio modal data into em-
bedding matrix. The matrix holds the low-level
features as the input to the encoder.

TencentPretrain also contains auxiliary embed-
ding modules, e.g., position embedding and seg-
ment embedding. The embedding of pre-training
model is usually obtained by the addition of mul-
tiple modules. As shown in Table 1 (Embedding
column), the addition of word, position, and seg-
ment embeddings constitutes the embedding layer
of BERT; the addition of patch and position em-
beddings constitutes the embedding layer of ViT.
TencentPretrain supports hierarchical modular de-
sign, enabling users to freely combine modules
within embedding component to construct the de-
sired embedding layer. This design greatly reduces
code redundancy since different models often use
similar, instead of identical combinations.

3.2 Encoder

TencentPretrain supports traditional encoders (e.g.,
LSTM and CNN) (Hochreiter and Schmidhuber,
1997; Kim, 2014), as well as transformer and its
variants (e.g., different normalization (He et al.,
2021), attention (Lee-Thorp et al., 2021), masking
strategies (Dong et al., 2019)). Users can construct
customized transformer encoder by combining re-
lated options.

In addition, TencentPretrain supports dual-
stream encoder, with which the users specify two
encoder modules separately. Dual-stream encoder
is usually used by models related with semantic
search, such as text pair model SBERT (Reimers
and Gurevych, 2019) and text-image pair model
CLIP (Radford et al., 2021).

3.3 Target embedding and decoder (optional)

The pre-training tasks of some models involve se-
quence generation. These models require modules
in target embedding component and decoder com-
ponent. The modules in these two components are
identical with the modules in embedding compo-
nent and encoder component respectively.

3.4 Target

The module in target component receives high-
level features obtained from encoder (or decoder)
and then uses the features to perform pre-training
tasks. Specifically, the target estimates gradients by

objectives and updates the network weights. The
target is of vital importance to the performance and
has been extensively investigated in the pre-training
field (Devlin et al., 2019; Lan et al., 2019; Sun et al.,
2020). TencentPretrain supports comprehensive
target modules, including language model (Radford
et al., 2019), classification (Conneau et al., 2017),
contrastive learning (Radford et al., 2021), etc.

Sometimes pre-training models use multiple
tasks, e.g., predicting word and sentence relation-
ship simultaneously in BERT and ALBERT. And
multi-task is especially common in cross-modal
scenario (Kim et al., 2021; Lu et al., 2019; Qi et al.,
2020) since pre-training models have to deal with
supervision signals from different modalities. The
model can learn knowledge from different perspec-
tives through multiple tasks. With the characteris-
tic of hierarchical modular design, TencentPretrain
facilitates the implementation of multi-task pre-
training models. One can introduce multiple tasks
by combining different modules in target compo-
nent. The pre-training task can be easily added,
modified, and replaced.

3.5 Downstream task fine-tuning
TencentPretrain supports comprehensive down-
stream tasks, including classification, regression,
sequence labeling, reading comprehension, ques-
tion answering, automated speech recognition, etc.
As shown in Figure 1, the downstream task model
can be constructed by replacing the pre-training
target with specific task. In evaluation section, we
show the performances of TencentPretrain on a
range of benchmarks.

4 Usage

This section provides examples of building pre-
training models with TencentPretrain. The modular
design enables the users to quickly build the pre-
training model through the combination of modules.
Modules used in pre-training models are specified
in configuration files and the examples are shown
as follows1:
# BERT implementation
{

"embedding" : [ " word " , " pos " , " seg " ] ,
"encoder" : " t r a n s f o r m e r " ,
"target" : [ " mlm " , " sp " ]

}

1Due to the page limit, we do not list entire configuration
files. More details (e.g., Transformer encoder options) can be
found in TencentPretrain project.
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# T5 implementation
{

"embedding" : [ " word " ]
"encoder" : " t r a n s f o r m e r "
"tgt_embedding" : [ " word " ]
"decoder" : " t r a n s f o r m e r "
"target" : [ " lm " ]

}

# ViLT implementation
{
"embedding" : [ " pa tch_word " , " pos " , " seg " ]
"encoder" : " t r a n s f o r m e r "
"pooling" : " f i r s t "
"target" : [ " c l s " , "mlm " ]
}

# CLIP implementation
{

"stream_0" : {
"embedding" : [ " word " , " pos " ] ,
"encoder" : " t r a n s f o r m e r " ,
"pooling" : " f i r s t "

}
"stream_1" : {

"embedding" : [ " p a t c h " , " pos " ] ,
"encoder" : " t r a n s f o r m e r "
"pooling" : " f i r s t "

}
"target" : [ " c l r " ]

}

• BERT configuration file provides modules in
embedding, encoder, and target components.
Since BERT has two pre-training tasks, its
target is the combination of masked language
model (mlm) and sentence prediction (sp).

• T5 involves text generation. Its configuration
file specifies modules used in target embed-
ding and decoder components.

• ViLT, an image-text pre-training model, is ba-
sically similar with text pre-training model
BERT. The main difference is that an image-
text embedding module is used in embedding
component.

• CLIP is a dual-stream model. The modules
in stream0 process text and the modules in
stream1 process image. Contrastive learning
(clr) module is used in target component.

If the desired pre-training model cannot be built
by the combination of existing modules, Tencent-
Pretrain encourages users to develop a new module,
and combine it with existing modules. We take the
implementation of ASR model S2T (Wang et al.,
2020) as an example. Most modules required by
S2T are available and we only need to implement

a new module, speech embedding, which greatly
speeds up the implementation process.

TencentPretrain and Huggingface Transformers
are interoperable. The conversion scripts are pub-
licly available2, and the weights of different pre-
training models can be converted between the two
frameworks. In practical use, users are free to
switch between these two frameworks.

With TencentPretrain, we build a pre-trained
weight model zoo. Each pre-trained weight has two
versions which can be loaded by either TencentPre-
train or Huggingface Transformers. Currently, the
TencentPretrain model zoo includes over 50 pre-
trained weights. We provide pre-training data as
well as training details, allowing users to reproduce
results with less effort. The weights (pre-trained
by TencentPretrain) are currently downloaded over
500 thousand times per month3.

Model HF UER TP
Transformer 1135 749 795

+BERT +822
+130

(+word_pos_seg,
bert)

+149
(+pos,seg,
mlm,sp)

+RoBERTa +696 +92
(+word_pos,mlm)

+0

+GPT-2 +688 +0 +0
+T5 +1008 +17(+word) +0
+ViT +493 - +59(+patch)
+S2T +824 - +51(+speech)

+ViLT +618 - +15
(+word_patch)

Table 2: The number of code lines required for imple-
menting a new pre-training model. The comment line
in code is not counted. For UER and TencentPretrain,
the added modules are also listed. Green and violet are
used to denote embedding and target modules. Since
UER does not support modularization within compo-
nent, it has to introduce more modules (classes), e.g.,
word_pos_seg embedding and bert target, which are
decomposed into multiple modules in TencentPretrain.

5 Evaluation

This section evaluates TencentPretrain framework
quantitatively. Firstly, we compare TencentPretrain
with non-modular framework in terms of imple-
mentation cost. Then we show that TencentPretrain
can reproduce the results of SOTA models on a
range of benchmarks.

2https://github.com/Tencent/TencentPretrain/tree/main/scripts
3https://huggingface.co/uer

For Huggingface account, we inherit UER account instead of
using TencentPretrain account.
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Model MNLI QNLI QQP RTE SST MRPC CoLA STS AVG
BERT-base (Ori.) (Devlin et al., 2019) 83.9 90.7 90.7 65.7 92.3 88.9 56.5 88.6 82.2

BERT-base (DistilBERT) (Sanh et al., 2019) 86.7 91.8 89.6 69.3 92.7 88.6 56.3 89.0 83.0
BERT-base (DynaBERT) (Hou et al., 2020) 84.8 92.0 90.9 71.1 92.9 87.7 58.1 89.8 83.4
BERT-base (Metadistil) (Zhou et al., 2022) 84.6 91.2 91.4 71.4 93.0 87.6 58.9 90.2 83.5

BERT-base (Ours) 83.4 91.1 91.2 67.9 92.4 86.5 59.6 89.1 82.6
RoBERTa-large (Ori.) (Liu et al., 2019b) 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9

RoBERTa-large (Ours) 90.4 94.7 92.1 86.6 96.4 90.2 67.0 92.5 88.7

Table 3: The comparison of TencentPretrain with other implementations on GLUE benchmark. We pre-train from
scratch and then fine-tune on a range of datasets

5.1 Implementation cost

The number of code lines is used to estimate the
implementation cost. We only count the code
lines in classes inheriting nn.Module. We com-
pare three frameworks, Huggingface Transformers
(HF), UER, and TencentPretrain (TP). Huggingface
Transformers exploits non-modular design. UER
exploits semi-modular design, which doesn’t sup-
port modularization within component.

When we continue to add new pre-training mod-
els (as shown in Table 2 from top to bottom), the
number of code lines required by the Tencent-
Pretrain is less than the other two toolkits. Take
RoBERTa as an example, TencentPretrain does not
require any code work since it reuses modules for
BERT. UER needs to add word_pos module in em-
bedding component and mlm module in target com-
ponent. Huggingface Transformers builds a series
of classes specific to RoBERTa, such as RoBERTa-
Model, RoBERTaEmbeddings, RoBERTaEncoder,
RoBERTaPooler, which greatly increases the num-
ber of code lines. For other pre-training mod-
els, the conclusions are similar. The homogene-
ity among pre-training models makes the modular
design much more advantageous.

In general, the code styles of Huggingface and
TencentPretrain are inconsistent. Huggingface cre-
ates separate classes for each pre-training model,
while TencentPretrain establishes generic modules
that are independent of the specific model. There-
fore, for most pre-training models, no additional
code implementation is required in TencentPre-
train.

5.2 Reproducibility

In this section, we follow the experimental settings
of original papers. The scripts for running models
on benchmarks are organized here4, and users can
easily reproduce the results in Table 3 and 4.

4https://github.com/Tencent/TencentPretrain/wiki/
Competition-solutions

For text modality, we use GLUE benchmark to
test TencentPretrain’s performance. BERT-base
and RoBERTa-large are used as test models. The
results of BERT-base are listed in the first five rows
in Table 3. As shown in AVG column, our result is
82.6, which falls into the range of 82.2-83.5 (the
lowest and highest results reported by other pa-
pers). The average scores reported by DynaBERT
and Metadistil are slightly higher than our result.
One of the reasons is that development set of RTE
only includes 277 instances, which leads to large
fluctuations. The RTE results reported by Dyn-
aBERT and Metadistil are 3 point higher than our
implementation. For RoBERTa-large, we can ob-
serve that our implementation results are close to
the results reported by original RoBERTa paper.

Table 4 provides the results on vision and audio
tasks. ViT (Dosovitskiy et al., 2020) and BEiT
(Bao et al., 2021) are used as test models for vi-
sion datasets. Top1 accuracy on vision datasets is
reported. The original paper of BEiT only reports
results on ImageNet. For audio dataset, we report
the Automatic Speech Recognition (ASR) results
on LibriSpeech with S2T (Wang et al., 2020). Word
Error Rate (WER) is shown in Table 4 (bottom).
We can observe that the results of TencentPretrain
are close to the results reported by original papers.

Model CIFAR10 CIFAR100 ImageNet
1000

ViT-base 98.95 91.67 83.97
ViT-base(Ours) 98.73 92.12 83.97

BEiT-large - - 87.30
BEiT-large(Ours) - - 87.24

Model devclean devother testclean testother
S2T 3.8 8.9 4.4 9.0

S2T(Ours) 3.8 9.2 4.1 9.0

Table 4: The comparison of TencentPretrain with orig-
inal implementations on datasets of vision and audio
modalities.
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6 Conclusion

This paper presents TencentPretrain, a pre-training
toolkit characterized by modular design and multi-
modal support. In TencentPretrain, pre-training
models of different modalities are regarded as the
combination of multiple modules, which is easy to
configure and extensible. Furthermore, we quanti-
tatively demonstrate that TencentPretrain facilitates
the users to reuse existing modules and decreases
the cost of model development. At last, we test
TencentPretrain on a range of datasets and show
that it can reproduce the SOTA results.

7 Limitations

Although the TencentPretrain pre-training frame-
work has integrated optimization libraries like
Deepspeed and Apex, it still lacks support for other
components such as Megatron. In the future, we
will provide more parallelism modes to achieve
efficient training of large-scale language models
(LLM).
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Abstract

Neuron analysis provides insights into how
knowledge is structured in representations and
discovers the role of neurons in the network. In
addition to developing an understanding of our
models, neuron analysis enables various appli-
cations such as debiasing, domain adaptation
and architectural search. We present NeuroX, a
comprehensive open-source toolkit to conduct
neuron analysis of natural language processing
models. It implements various interpretation
methods under a unified API, and provides a
framework for data processing and evaluation,
thus making it easier for researchers and practi-
tioners to perform neuron analysis. The Python
toolkit is available at https://www.github.
com/fdalvi/NeuroX.1

1 Introduction

Interpretation of deep learning models is an essen-
tial attribute of trustworthy AI. Researchers have
proposed a diverse set of methods to interpret mod-
els and answered questions such as: what linguistic
phenomena are learned within representations, and
what are the salient neurons in the network. For in-
stance, a large body of work analyzed the concepts
learned within representations of pre-trained mod-
els (Belinkov et al., 2017; Liu et al., 2019; Tenney
et al., 2019; Rogers et al., 2020) and showed the
presence of core-linguistic knowledge in various
parts of the network. Several researchers have car-
ried out this interpretation at a fine-grained level
of neurons e.g. Durrani et al. (2020); Torroba Hen-
nigen et al. (2020); Antverg and Belinkov (2021)
highlighted salient neurons w.r.t any linguistic prop-
erty in the model and Lundberg and Lee (2017);
Dhamdhere et al. (2018); Janizek et al. (2020) iden-
tified a set of neurons responsible for a given pre-
diction. At a broader level, these methods can be

∗The work was done while the author was at QCRI.
1Demo Video available here: https://youtu.be/

mLhs2YMx4u8

Figure 1: Simplified overview of Neuron Interpretation.
Given an annotated text corpus, neuron interpretation
methods aim to provide a ranking of neurons in a model
w.r.t to their importance to one or more annotated prop-
erties (for e.g. "Noun" in this instance)

categorized into representation analysis, neuron
analysis and feature attribution methods respec-
tively. Sajjad et al. (2022) provides a comprehen-
sive survey of these methods.

A number of toolkits have been proposed to fa-
cilitate the interpretation of deep learning models.
For instance, diagNNose (Jumelet, 2020) provides
representation analysis and attribution methods.
LIT (Tenney et al., 2020) can be used to visual-
ize attention and counterfactual explanations using
feature attribution methods. Captum (Kokhlikyan
et al., 2020) integrates a large set of attribution
methods under a consistent API. All these tools
facilitate the interpretability of models. However,
due to the diverse ways of interpreting models, they
do not cover all sets of methods. Specifically, most
of the toolkits do not cover neuron interpretation
methods that discover and rank neurons with re-
spect to a concept.

Neuron interpretation analyzes and gives insight
into how knowledge is structured within a repre-
sentation. It discovers neurons with respect to a
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Figure 2: Overall design and architecture of the NeuroX toolkit, with references to their corresponding Python
modules in the white boxes.

concept and provides a fine-grained interpretation
of deep models. Figure 1 provides a simplified
high-level overview of how neuron interpretation
methods operate. Given a model, some text and
annotations, these methods output a ranking of neu-
rons with respect to their importance to one or more
annotated concepts. The ability to interpret neu-
rons enables applications such as debiasing mod-
els, controlling predictions of the models on the
fly (Bau et al., 2019; Suau et al., 2020), neural ar-
chitectural search (Dalvi et al., 2020) and domain
adaptation (Gu et al., 2021). To make neuron in-
terpretation more accessible, we propose NeuroX,
an open-source Python toolkit to facilitate neuron
interpretation of deep natural language processing
(NLP) models.

NeuroX consists of three major components: i)
data processing, ii) interpretation and iii) analy-
sis. The data processing implements various ways
to generate and upload data for analysis, extract
activations and save them efficiently. The interpre-
tation module implements six interpretation meth-
ods belonging to two different classes of methods.
The analysis module brings together qualitative and
quantitative methods to evaluate and visualize the
discovered neurons. Figure 2 shows these compo-
nents and how they interact with each other. We
describe them in detail in the following sections.
The toolkit itself is compatible with HuggingFace’s
transformers (Wolf et al., 2020) API and supports
all transformer-based models.

To the best of our knowledge, NeuroX is the first
toolkit that enables the interpretation of deep NLP
models at the neuron level. It serves as a back-
bone to rapidly test new interpretation techniques
using a unified framework and enables comparison
and consistent evaluation of these techniques. The
toolkit is easy to install and run:

pip install neurox

with detailed documentation is available at https:
//neurox.qcri.org/docs, including tutorials
that showcase various capabilities of the toolkit
to quickly get started with neuron interpretation.

2 Data Processing

The data module is responsible for preparing all
the inputs for the Interpretation and Analysis mod-
ules, as well as filtering the datasets to probe and
interpret specific phenomena. As shown in Figure
2, the required inputs to the toolkit are: i) a model
and ii) a text corpus annotated towards the prop-
erty of interest (e.g. data annotated towards toxic
word spans in the hate-speech-detection task). The
interpretation module can then extract a neuron
ranking, highlighting the saliency of the neurons in
the model that capture this phenomenon. If annota-
tions are not available, an annotation helper module
is made available in the toolkit that can annotate to-
kens based on arbitrary phenomena e.g. suffixation,
lexical properties, or using pre-existing vocabular-
ies. Below we describe the various components of
the data module in detail.
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Tokenizer Input Sentence Tokenized Sentence

bert-base-cased "A good-looking house" "[CLS] A good - looking house [SEP]"
gpt2 "A good-looking house" "A Ä good - looking Ä house"

bert-base-cased "Mauritians" "[CLS] ma ##uri ##tian ##s [SEP]"
gpt2 "Mauritians" "M aur it ians"

flaubert/flaubert_base_cased "sport qu’ on" "<s> sport</w> qu</w> ’</w> on</w> </s>"
flaubert/flaubert_base_cased "sport qu’" "<s> sport</w> qu’</w> </s>"

Table 1: Tokenizers from different models tokenize the same input very differently, sometimes adding special
characters at the first subword, or prefixing all subwords except the first subword etc. Sometimes the same model
tokenizes the same word (qu’) differently depending on the context.

2.1 Representation Extraction
Central to any neuron interpretation method are the
neuron activations themselves, i.e. the magnitude
of a neuron for any given input. While modern
frameworks such as PyTorch and Tensorflow facili-
tate the extraction of intermediate neuron values for
specific models via hooks, it is non-trivial to enable
this generically, as the code to extract activations
from specific network components (e.g. layers) is
highly dependent on the underlying model imple-
mentation. NeuroX implements generic extractors
for specific popular frameworks and provides a
highly-configurable PyTorch-based extractor.

Framework Specific Extractors An example of
a framework specific extractor is one for Hugging-
Face’s transformers models. The transformers li-
brary exposes the intermediate output at each layer,
which can then be used to access each neuron’s
(layer output) activation for any given input.

Generic Extractors Apart from framework spe-
cific extractors, the toolkit offers a generic extrac-
tor for PyTorch model, which runs as a two step
process. In the first step, the toolkit maps out the
architecture of the given model, and provides the
user a json file that contains all the components
of the model. The user can then choose exactly
which of the components they need the activations
for, which are then saved in the second step.

Segmentation and De-Segmentation A unique
problem to text and NLP models is that of tokeniza-
tion. For instance, every transformers model has
an associated tokenizer, that breaks the tokens in
an input sentence into subwords depending on the
model’s vocabulary. The same input can be tok-
enized differently by each model. To get a neuron’s
activation for a given input token regardless of tok-
enization, NeuroX runs a detokenization procedure
to combine the activation values on subwords into
a single activation value. Table 1 shows examples

of how a sentence (and sometimes a word) can be
tokenized differently depending on the underlying
tokenizer and context. The toolkit also offers the
user a choice on how the activation values across
subwords should be combined such as first or
last subword or average across subwords.

2.2 Annotation Helper
While annotations are available for some linguistic
properties, labeled data sets may not always be
available. To carry out an interpretation in such
a scenario, NeuroX offers a helper module that
can label the data with a positive or negative label
per token. data.annotate.annotate_data can
annotate each token positively in three different
ways:

1. Preset Vocabulary: The token exists in the
given vocabulary.

2. Regular expression: The token matches with
the given regular expression. For example, the
expression ˆ\d+$ annotates all tokens that are
composed of digits as positive samples.

3. Python function: A function that returns
a binary True/False for a given token. Ar-
bitrary computation can be done inside this
function. For instance, lambda token:
token.endswith("ing") annotates all to-
kens ending with -ing positively.

3 Interpretation Module

The central module in the NeuroX toolkit is the
interpretation module, which provides imple-
mentations of several neuron and representation
analysis methods. Table 2 shows a list of methods
that are currently implemented in the toolkit, along
with details of what each method’s implementation
supports.

The method implementations follow a consis-
tent API to make it easy for the user to switch
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Interpretation
Method Description

Supports
Repre-
sentation
Analysis

Requires
Train-
ing

Supports
multi-
class
analysis

Linear Probe Class of probing methods that use a linear classifier for neuron
analysis. Specifically, the implementation provides probes intro-
duced by

• Radford et al. (2019) (Classifier with L1 regularization)

• Lakretz et al. (2019) (Classifier with L2 regularization)

• Dalvi et al. (2019a) (Classifier with Elastic Net regulariza-
tion)

Yes Yes Yes

Probeless A corpus-based neuron search method that obtains neuron rank-
ings based on an accumulative strategy, introduced by Antverg
and Belinkov (2021)

No No Yes

IoU Probe A mask-based method introduced by Mu and Andreas (2020) that
computes Intersection over Union between tokens representing
a specific concept and tokens that have high activation values for
specific neurons

No No No

Gaussian Probe A multivariate Gaussian based classifier introduced by Tor-
roba Hennigen et al. (2020) that can probe for neurons whose
activation values follow a gaussian distribution.

Yes Yes Yes

Mean Select A corpus-based neuron ranking method introduced by Fan et al.
(2023) that derives neuron importances by looking at activation
values across contexts where a concept appears.

No No Yes

Table 2: An overview of the neuron interpretation methods currently implemented in the NeuroX toolkit.

between them. Specifically, each method at least
implements the following functions:

• method.train_probe: This function takes in
the pre-processed data (extracted activations,
prepared labels etc) as described in section 2,
and returns back a probe that can be used to
perform neuron analysis. Some methods do
not require any training, in which case this
function just stores the input for future use.

• method.evaluate_probe: This function
takes an evaluation set and returns the perfor-
mance of the probe on the given set. The eval-
uation set itself can be a control task, and the
output score can be computed using several
pre-implemented metrics. Section 4 discusses
the various evaluation metrics in detail.

• method.get_neuron_ordering: This func-
tion returns an ordering/ranking of all the neu-
rons being analyzed with respect to their im-
portance to the task at hand. For instance, if
the probe was trained to analyze Nouns, this
function will return a sorted list of neurons
(by importance) that activate for Nouns in the
given dataset.

The interpretation methods themselves may be

able to probe multiple properties at the same time
(multi-class probing), or only a single concept (bi-
nary probing). Additionally, some interpretation
methods can also perform representation-level anal-
ysis, i.e. probe an entire layer rather than individual
neurons.

Redundancy Analysis: Dalvi et al. (2020) have
shown that large neural networks learn knowl-
edge redundantly where multiple neurons are op-
timized to activate on the same input. This
is encouraged by the optimization choices such
as dropouts which explicitly force neurons to
learn in the absence of other neurons. In or-
der to facilitate the analysis of redundant neu-
rons, the toolkit provides a clustering based non-
redundant neuron extraction method. Running the
neurons through interpretation.clustering.-
extract_independent_neurons first before per-
forming any probing can reduce the overall search
space of neurons, and lead to better findings and
analyses.

4 Analysis and Evaluation

The analysis module provides implementations
of various evaluation and analysis methods. Some
of these methods provide quantitative results like
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accuracy scores, while others allow users to per-
form qualitative analysis on neurons.

4.1 Classifier Accuracy

Classifier accuracy reciprocates the probing frame-
work (Belinkov et al., 2017; Hupkes et al., 2018).
Once a neuron ranking is obtained, a classifier is
trained towards the task of interest (the intrinsic
concept for which the probe was originally trained)
with the selected neurons. The delta between ora-
cle performance (accuracy using all the neurons)
and the accuracy of the classifier using the selected
neurons measures the efficacy of the ranking.

Selectivity It is important to ensure that the probe
is truly representing the concepts encoded within
the learned representations and not memorizing
them during classifier training. NeuroX enables
control task selectivity, a measure proposed by He-
witt and Liang (2019) to mitigate memorization
using the data.control_task module.

4.2 Ablation

An alternative approach used by (Dalvi et al.,
2019a) is to ablate all but the selected neurons in the
trained probe. The interpretation.ablation
allows manipulating the input data by keep-
ing/filtering specific neurons in the order of their
importance, allowing users to measure the drop in
performance with selected neurons.

4.3 Mutual Information

Information theoretic metrics such as mutual in-
formation have also been used to interpret repre-
sentations of deep NLP models (Pimentel et al.,
2020). Here, the goal is to measure the amount of
information a representation provides about a lin-
guistic concept. It is computed by calculating the
mutual information between a subset of neurons
and linguistic concepts.

4.4 Compatibility Metrics

Another set of evaluation metrics recently proposed
by Fan et al. (2023) carries out a pair-wise com-
parison of the discovered neurons across meth-
ods. While this strategy does not provide a di-
rect evaluation of a neuron interpretation method,
it provides an insight into how compatible a
method is with the other available methods. Neu-
roX implements two compatibility metrics in the
analysis.compatibility module: i) Average
Overlap (which shows how aligned a method is

with others) and ii) NeuronVote (which shows how
well-endorsed the ranking of a method is by other
methods).

4.5 Qualitative Evaluation
Visualizations have been used effectively to gain
qualitative insights on analyzing neural networks
(Karpathy et al., 2015; Kádár et al., 2017).
NeuroX provides a text visualization module
(analysis.visualization) that displays the acti-
vations of neurons w.r.t. to a concept (e.g. Figure 3).
The toolkit also allows corpus-based analysis in the
analysis.corpus module by extracting the top n
words in a corpus that activate a neuron. Examples
are shown in Table 3.

(a) Superlative Adjective Neuron

(b) Gerund Verb Neuron

Figure 3: Visualizations (POS) – Superlative Adjective
and Gerund Verb Neurons

5 Miscellaneous Functions

5.1 Scalability
Extracting, saving and working with neuron ac-
tivations over large datasets and models can be
very expensive, since each neuron’s activation is
saved for each token in the input corpus. To en-
able both disk- and runtime-savings, NeuroX pro-
vides a low precision mode where all the activa-
tions are saved using 16-bit precision instead of the
default 32/64-bit precision. This results in consid-
erable storage/memory savings and also improves
training/inference performance depending on the
method and underlying hardware. The precision
can be controlled by supplying the dtype=float16
option to the extraction/interpretation methods.

5.2 Disk Formats for Representations
The toolkit offers flexibility to the user over the
format used to save the neuron activations. Specifi-
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Neuron concept Model Top-5 words

Layer 9: 624 VBD RoBERTa supplied, deposited, supervised, paled, summoned
Layer 2: 750 VBG RoBERTa exciting, turning, seeing, owning, bonuses
Layer 0: 249 VBG BERT requiring, eliminating, creates, citing, happening
Layer 1: 585 VBZ XLNet achieves, drops, installments, steps, lapses, refunds
Layer 2: 254 CD RoBERTa 23, 28, 7.567, 56, 43
Layer 5: 618 CD BERT 360, 370, 712, 14.24, 550
Layer 1: 557 LOC XLNet Minneapolis, Polonnaruwa, Mwangura, Anuradhapura, Kobe
Layer 5: 343 ORG RoBERTa DIA, Horobets, Al-Anbar, IBRD, GSPC
Layer 10: 61 PER RoBERTa Grassley, Cornwall, Dalai, Bernanke, Mr.Yushchenko
Layer 6: 132 PER BERT Nick, Manie, Troy, Sam, Leith
Layer 2: 343 YOC BERT 1897, 1918, 1901, 1920, Alam

Table 3: Ranked list of words for some individual neurons, VBD: Past-tense verb, VBG: Gerund Verb, VBZ: Third
person singular, CD: Numbers, LOC: Location, ORG: Organization, PER: Person, YOC: Year of the century

cally, it offers readers and writers for a text-based
format (json) and a binary format (hdf5). The
binary format provides faster saving/loading per-
formance, speeding up experiments with a large
number of neurons or a large amount of text. On
the other hand, the text-based format is consider-
ably easier to debug.

6 Related Work

A number of toolkits have been made available to
carry out the analysis and interpretation of neural
network models. The What-If tool (Wexler et al.,
2019) inspects machine learning models and pro-
vides users an insight into the trained model based
on the predictions. Seq2Seq-Vis (Strobelt et al.,
2018) enables the user to trace back the prediction
decisions to the input in neural machine transla-
tion models. Captum (Kokhlikyan et al., 2020)
provides generic implementations of a number of
gradient and perturbation-based attribution algo-
rithms. LIT (Tenney et al., 2020) implements var-
ious methods of counterfactual explanations, at-
tribution methods and visualization of attention.
diagNNose (Jumelet, 2020) integrates representa-
tion analysis methods and attribution methods and
finally, iModelsX (Singh and Gao, 2023) aims to
provide natural explanations for datasets, which
can provide insights into the models that are trained
with these datasets. While these tools cover a num-
ber of interpretation methods, none of them facil-
itate neuron-level interpretation of NLP models.
The LM-Debugger toolkit (Geva et al., 2022) is an
interactive debugger for transformer LMs, which
provides a fine-grained interpretation and a power-
ful framework for intervening in LM behavior.

Ecco (Alammar, 2021) is a visualization based
library that implements saliency methods and ad-

ditionally enables visualization of neurons of the
network. Similar to Ecco, the NeuroX toolkit en-
ables visualization of neurons of the network. In
addition, we implement a wide range of neuron
interpretation methods that can be accessed using a
uniform API and provide various analysis and eval-
uation methods. Our toolkit empowers researchers
to focus on specific parts of the neuron interpre-
tation research such as interpretation, comparison
or evaluation without worrying about setting up
the rest of the pipeline like data processing, embed-
ding extraction, integration with various pre-trained
models, and evaluation of the method. NeuroX
powers other interpretation analysis frameworks
such as ConceptX (Alam et al., 2022) and NxPlain
(Dalvi et al., 2023).

The previous version of NeuroX (Dalvi et al.,
2019b) only supported a specific machine trans-
lation library and one neuron interpretation
method (Dalvi et al., 2019a) as a GUI app. The
current Python toolkit is a redesigned version with
a unified architecture. It includes multiple features
like a data processing module, numerous neuron in-
terpretation and evaluation methods, and seamless
integration with popular toolkits such as Hugging-
Face’s transformers.

7 Conclusion and Future Work

We presented NeuroX, an open-source toolkit to
carry out neuron-level interpretation of representa-
tions learned in deep NLP models. It maintains im-
plementations of several neuron analysis methods
under a consistent API, and provides implemen-
tations for preparing the data, analyzing neurons
and evaluating the methods. In the future, Neu-
roX plans to expand its extraction module to other
frameworks like FairSeq and OpenNMT-py. In ad-
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dition, we plan to integrate attribution based neuron
saliency methods to add another class of interpreta-
tion methods to the toolkit.

8 Acknowledgements
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9 Ethical Considerations

The NeuroX toolkit provides a post hoc interpre-
tation of pre-trained models. The toolkit makes a
contribution towards improving the transparency
of deep models and may discover biases present
in these models. We do not foresee any direct eth-
ical issues with respect to the developed toolkit.
In terms of the neuron interpretation methods, the
majority of them are based on the correlation be-
tween neurons and the input. One potential issue
with such an interpretation is its faithfulness with
respect to the knowledge used by the model in mak-
ing predictions. However, this is not a limitation of
the toolkit but a limitation of the research methods
in general.

References

Firoj Alam, Fahim Dalvi, Nadir Durrani, Hassan Sajjad,
Abdul Rafae Khan, and Jia Xu. 2022. Conceptx: A
framework for latent concept analysis.

J Alammar. 2021. Ecco: An open source library for the
explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 249–257,
Online. Association for Computational Linguistics.

Omer Antverg and Yonatan Belinkov. 2021. On the
pitfalls of analyzing individual neurons in language
models. In International Conference on Learning
Representations.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do Neural
Machine Translation Models Learn about Morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL),
Vancouver. Association for Computational Linguis-
tics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, D. Anthony Bau, and James Glass. 2019a.
What is one grain of sand in the desert? analyzing in-
dividual neurons in deep nlp models. In Proceedings
of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI, Oral presentation).

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Tamim
Jaban, Mus’ab Husaini, and Ummar Abbas. 2023.
NxPlain: A web-based tool for discovery of latent
concepts. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages
75–83, Dubrovnik, Croatia. Association for Compu-
tational Linguistics.

Fahim Dalvi, Avery Nortonsmith, D Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, and
James Glass. 2019b. Neurox: A toolkit for analyz-
ing individual neurons in neural networks. Proceed-
ings of the AAAI Conference on Artificial Intelligence
(AAAI).

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and
Yonatan Belinkov. 2020. Analyzing redundancy in
pretrained transformer models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP-2020), Online.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi
Yan. 2018. How important is a neuron? CoRR,
abs/1805.12233.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4865–4880, Online. Association for Computational
Linguistics.

Yimin Fan, Fahim Dalvi, Nadir Durrani, and Hassan Saj-
jad. 2023. Evaluating neuron interpretation methods
of nlp models.

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval
Sadde, Micah Shlain, Bar Tamir, and Yoav Goldberg.
2022. LM-debugger: An interactive tool for inspec-
tion and intervention in transformer-based language
models. In Proceedings of the The 2022 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 12–21,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Shuhao Gu, Yang Feng, and Wanying Xie. 2021.
Pruning-then-expanding model for domain adapta-
tion of neural machine translation.

232

http://arxiv.org/abs/2211.06642
http://arxiv.org/abs/2211.06642
https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2021.acl-demo.30
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.org/2023.eacl-demo.10
https://aclanthology.org/2023.eacl-demo.10
http://arxiv.org/abs/1805.12233
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.48550/ARXIV.2301.12608
https://doi.org/10.48550/ARXIV.2301.12608
https://aclanthology.org/2022.emnlp-demos.2
https://aclanthology.org/2022.emnlp-demos.2
https://aclanthology.org/2022.emnlp-demos.2
http://arxiv.org/abs/2103.13678
http://arxiv.org/abs/2103.13678


John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure.

Joseph D. Janizek, Pascal Sturmfels, and Su-In Lee.
2020. Explaining explanations: Axiomatic feature
interactions for deep networks.

Jaap Jumelet. 2020. diagNNose: A library for neural ac-
tivation analysis. In Proceedings of the Third Black-
boxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 342–350, Online.
Association for Computational Linguistics.

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.
Captum: A unified and generic model interpretability
library for PyTorch.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syntax
units in LSTM language models. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 11–20, Minneapolis, Minnesota.
Association for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.

Jesse Mu and Jacob Andreas. 2020. Compositional
explanations of neurons. CoRR, abs/2006.14032.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. 2022.
Neuron-level Interpretation of Deep NLP Models: A
Survey. Transactions of the Association for Compu-
tational Linguistics.

Chandan Singh and Jianfeng Gao. 2023. Emb-GAM: an
interpretable and efficient predictor using pre-trained
language models.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and Alexan-
der Rush. 2018. Debugging sequence-to-sequence
models with Seq2Seq-vis. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
368–370, Brussels, Belgium. Association for Com-
putational Linguistics.

Xavier Suau, Luca Zappella, and Nicholas Apostoloff.
2020. Finding experts in transformer models. CoRR,
abs/2005.07647.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

Lucas Torroba Hennigen, Adina Williams, and Ryan
Cotterell. 2020. Intrinsic probing through dimension
selection. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 197–216, Online. Association for
Computational Linguistics.

233

https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
http://arxiv.org/abs/1711.10203
http://arxiv.org/abs/1711.10203
http://arxiv.org/abs/1711.10203
http://arxiv.org/abs/2002.04138
http://arxiv.org/abs/2002.04138
https://doi.org/10.18653/v1/2020.blackboxnlp-1.32
https://doi.org/10.18653/v1/2020.blackboxnlp-1.32
https://doi.org/10.1162/COLI_a_00300
https://doi.org/10.1162/COLI_a_00300
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.18653/v1/N19-1002
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://arxiv.org/abs/2006.14032
http://arxiv.org/abs/2006.14032
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://openreview.net/forum?id=iEVpHXjV4jj
https://openreview.net/forum?id=iEVpHXjV4jj
https://openreview.net/forum?id=iEVpHXjV4jj
https://doi.org/10.18653/v1/W18-5451
https://doi.org/10.18653/v1/W18-5451
http://arxiv.org/abs/2005.07647
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-main.15
https://doi.org/10.18653/v1/2020.emnlp-main.15


James Wexler, Mahima Pushkarna, Tolga Bolukbasi,
Martin Wattenberg, Fernanda Viégas, and Jimbo Wil-
son. 2019. The what-if tool: Interactive probing of
machine learning models. IEEE transactions on vi-
sualization and computer graphics, 26(1):56–65.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Perric
Cistac, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. pages 38–45. Association for
Computational Linguistics.

234

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 235–246

July 10-12, 2023 ©2023 Association for Computational Linguistics

SCILIT: A Platform for Joint Scientific Literature Discovery,
Summarization and Citation Generation

Nianlong Gu
Institute of Neuroinformatics,

University of Zurich and
ETH Zurich

nianlong@ini.ethz.ch

Richard H.R. Hahnloser
Institute of Neuroinformatics,

University of Zurich and
ETH Zurich

rich@ini.ethz.ch

Abstract
Scientific writing involves retrieving, summa-
rizing, and citing relevant papers, which can
be time-consuming processes. Although in
many workflows these processes are serially
linked, there are opportunities for natural lan-
guage processing (NLP) to provide end-to-end
assistive tools. We propose SCILIT, a pipeline
that automatically recommends relevant pa-
pers, extracts highlights, and suggests a ref-
erence sentence as a citation of a paper, tak-
ing into consideration the user-provided con-
text and keywords. SCILIT efficiently recom-
mends papers from large databases of hundreds
of millions of papers using a two-stage pre-
fetching and re-ranking literature search sys-
tem that flexibly deals with addition and re-
moval of a paper database. We provide a con-
venient user interface that displays the recom-
mended papers as extractive summaries and
that offers abstractively-generated citing sen-
tences which are aligned with the provided
context and which mention the chosen key-
word(s). Our assistive tool for literature dis-
covery and scientific writing is available at
https://scilit.vercel.app

1 Introduction

When we compose sentences like “Our experi-
ments show that XXX performs significantly worse
than YYY” in a manuscript, we may want to
find papers that report similar performance evalua-
tions (Cohan et al., 2019) and discuss these in our
manuscript. This process is a non-trivial task requir-
ing in-depth human involvement in finding, summa-
rizing, and citing papers, which raises the question
whether it is possible to partly automate this pro-
cess to reduce users’ cognitive load in searching,
retrieving, reading, and rephrasing related findings.

Recent advances in natural language processing
(NLP) help answer this question. First, releases of
large scientific corpora such as S2ORC (Lo et al.,
2020) and General Index (Else, 2021) provide op-
portunities for building large databases of scientific
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the pooling strategy 
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There, the MAX 
strategy perform 
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than MEAN or 
CLS-token strategy.
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  state-of-the-art ...


Extractive

Summarization

Figure 1: The main workflow of our platform.

papers. Second, such databases can be linked to
systems for text retrieval (Guo et al., 2020), cita-
tion recommendation (Färber and Jatowt, 2020; Gu
et al., 2022b; Medić and Snajder, 2020), extrac-
tive summarization (Zhong et al., 2020; Gidiotis
and Tsoumakas, 2020; Gu et al., 2022a), and cita-
tion generation (Xing et al., 2020a; Ge et al., 2021;
Wang et al., 2022), all of which can be tailored to
meet the requirements of an author’s manuscript.

To build a comprehensive system that helps au-
thors with finding, reading, and summarizing of
literature, the following challenges must be over-
come: The system must index many papers (e.g.,
S2ORC has over 136 million papers (Lo et al.,
2020)) to achieve good coverage, it must respond
quickly to queries, and it must be flexible to handle
database additions and deletions. In addition, the
overall architecture should be modular to make it
simple to upgrade components when better algo-
rithms become available.

To meet these challenges, we developed SCILIT,
a platform for concurrent literature discovery, sum-
marization, and citation generation. We propose
a hierarchical architecture for paper retrieval that
efficiently retrieves papers from multiple large cor-
pora. On each corpus (e.g., S2ORC and PMCOA
(of Medicine, 2003)), we build an efficient prefetch-
ing system based on a keyword inverted index and
a document embedding index. The prefetched doc-
uments are then re-ordered (re-ranked) by a fine-
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tuned SciBERT (Beltagy et al., 2019). Such an ar-
chitecture allows us to dynamically add or remove
databases and update one database and its index
without significantly affecting the others. From a
user-chosen document (i.e., target paper), we ex-
tract highlights using a light-weight extractive sum-
marization model proposed in Gu et al. (2022a).
Furthermore, using a fine-tuned T5 model (Raffel
et al., 2020), we generate a citing sentence based
on the abstract of the target paper, the context (the
text surrounding the original citation sentence), and
the keywords provided by users. We also develop
a microservice-based architecture that allows easy
updating of algorithms.

In summary, our main contributions are:

• We demonstrate SCILIT, a platform for
searching, summarizing, and citing scientific
papers.

• We evaluate SCILIT on scientific literature
retrieval, paper summarization, and context-
aware citation sentence generation, and show-
case the generation of a related-work para-
graph.

• A live demo website of our system is at
https://scilit.vercel.app and
our implementation and data are at
https://github.com/nianlonggu/
SciLit and a video demonstrat-
ing the system can be viewed at
https://youtu.be/PKvNaY5Og1Y

2 SciLit

Figure 1 shows the workflow of our system. A liter-
ature discovery module receives a context text and
keywords provided by a user and recommends a
list of relevant papers that are semantically similar
with the context and that match the keywords used
as Boolean filters (Gökçe et al., 2020). For each
recommended paper, an extractive summarizer se-
lects a short list of sentences from the full text as
highlights. From the target paper selected by the
user, a citation generation module takes the abstract
together with the context and keywords as inputs
and generates a citation sentence that references the
target paper and that fits the context and keywords.

We define the context as the text before a cita-
tion sentence because we focus on the workflow of
first finding papers and then writing citation sen-
tences, rather than finding the missing citation in a

keyword

Boolean filter


Prefetch

Prefetch

Neares Neighbor

Search
 Remove

duplicates


Database

Database

Rerank

Figure 2: Schematic of literature retrieval. From each
database, candidate documents are prefetched by a cas-
cade of keyword boolean filter and embedding-based
nearest neighbor search. Then, candidate documents are
reranked by a fine-tuned SciBERT.

given sentence as in Gu et al. (2022b); Medić and
Snajder (2020). The user-provided keywords are
optional. When no keywords are explicitly given
during training and evaluation of our system, we
use the keywords occurring in both the context, the
cited paper, and the citation sentence as a substi-
tutes for user-provided keywords.

2.1 Literature Discovery

The literature discovery module takes as inputs the
context and keywords and recommends papers that
are worth citing in the current context. To strike
a balance between query accuracy and speed on
large scientific corpora, our document discovery
module employs a two-stage prefetching-ranking
strategy (Gu et al., 2022b) (Figure 2). For each
scientific corpus, we build a database and create an
efficient prefetching model that we use to pre-filter
Np (see the discussion of Np in Table 2 and Section
3.2) candidate documents based on the provided
keywords and context. After removing duplicates,
we re-rank the prefetched documents from each
database to produce the final order.
Databases. We dump each corpus into a separate
SQLite (Hipp, 2000) database to allow flexibility in
deploying and updating of independent prefetching
servers. We further process documents from differ-
ent corpora into a unified JSON schema so that we
can use the same codebase to index, query, sum-
marize, and display documents from different cor-
pora. The JSON schema includes “Title”, “Author”,
etc., for metadata, and “Content.Abstract_Parsed”,
“Content.Fullbody_Parsed” for parsed full text, The
details are given in Appendix B.
Prefetching. The prefetching model of a given
SQLite database consists of an inverted index and
an embedding index. The inverted index stores the
paper IDs of all publications that contain a given
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Corpus
Databases Inverted Index Embedding Index

# of
papers

# papers with
fullbody

until
date

keywords
length

# of
keywords

data
format

storage
size

embedding
dimension

storage
size

S2ORC 136.60 M 12.44 M 2020-04-14
unigram, bigram

1.20 B
sqlitedict

769 GB
256

169 GB
PMCOA 2.89 M 2.73 M 2022-06-17 0.30 B 145 GB 2.9 GB
arXiv 1.69 M 1.69 M 2022-07-28 0.15 B 77 GB 1.7 GB

Table 1: Statistics of our literature discovery system. We indexed S2ORC (Lo et al., 2020), PMCOA (of Medicine,
2003), and arXiv (Kaggle, 2022), which contain large numbers of recent scientific papers in diverse fields.

keyword, such as a unigram like “computer” or a
bigram like “machine learning”, where the paper
ID is a unique identifier using which we can re-
trieve the paper’s content from the database. The
embedding index is formed by the embeddings
of all papers in the database. Embeddings are
256-dimensional vectors computed by Sent2Vec
(Pagliardini et al., 2018) (we simply average the
embeddings of all words in a document). We train
Sent2Vec using sentences obtained from the full
text of the papers contained in S2ORC.

Using the keywords and a specific syntax, we
first perform Boolean filtering (Gökçe et al., 2020)
of the inverted index. For example, given “POS
tag;2010..2022”, we will filter papers published be-
tween 2010 and 2022 that mention “POS tag”. The
filtered papers are then ranked based on the cosine
similarity between the papers’ Sent2Vec embed-
dings and the context embedding. Such a hybrid of
lexical filtering and semantic ranking allows users
to find papers that are semantically similar to the
context and that flexibly meet a constrained search
scope.

Statistics for the database and indexing system
are reported in Table 1. Details of the indexing
implementation are shown in Appendix C.
Duplicate Removal. Since corpora can overlap,
the prefetched candidates from multiple corpora
can contain duplicate items. To remove duplicated
candidates, we check the title and authors and keep
only one record per paper for reranking.
Reranking. We use SciBERT (Beltagy et al., 2019)
to rerank prefetched candidates, aiming at highly
ranking papers that can be cited given the context
and keywords. We follow Gu et al. (2022b) to com-
pute an affinity score as follows: we pass an input
text “[CLS]query[PAD]paper[PAD]” to SciBERT,
where the query q is a concatenation of the context
and the keywords, and paper d is a concatenation
of the title and the abstract of the candidate paper.
The encoded output of the “[CLS]” token is passed
to a linear layer, which outputs a scalar s(q, d) that

we interpret as the affinity score between the query
q and the paper d. To train the reranker, we use the
cross-entropy loss:

L = − log
exp s(q, d+)

exp s(q, d+) +
∑N

i=1 exp s(q, d
−
i )

,

(1)
where d+ is the paper actually cited in the query,
and d−i is one of N(N = 10) uncited papers that
are randomly sampled from prefetched candidate
at each training iteration.

2.2 Extractive Summarization

The extractive summarization module extract a
short list of sentences from the full text of a pa-
per to highlight the main points to a reader. We
choose the summary to be extractive rather than
abstractive to prevent readers from being misled
by the potential hallucinations introduced in ab-
stractive summarization models (Nan et al., 2021;
Xu et al., 2020; Wang et al., 2020). The extractive
summarization model must efficiently select sen-
tences from a given document so that users do not
experience obvious delays.

In this paper, we employ MemSum, an RNN-
based extractive summarizer that models the ex-
traction process as a Markov decision process in
a reinforcement learning framework. MemSum
has been trained on the PubMed dataset Gu et al.
(2022a) and it can summarize long papers with-
out exhausting GPU memory due to its lightweight
model structure. Also, MemSum is computation-
ally efficient, taking only 0.1 sec on average to sum-
marize a paper. These features make it a suitable
model for our extractive summarization module.

2.3 Citation Generation Module

The citation generation module acts as an abstract
summarizer that takes as input the context, the key-
words, and the target paper to be cited; it then
generates a sentence that cites the target paper and
narrates it in context.
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Figure 3: The architecture of our platform. The direc-
tion of an arrow represents the direction of data flow.

By providing keywords as inputs to a sequence-
to-sequence model, our input differs from previ-
ous works on automatic citation generation (Ge
et al., 2021; Xing et al., 2020b), which use only the
context as inputs but no keywords. We consider
keywords to be an important source of input be-
cause we believe that authors usually have a clear
intention when citing a paper, and a keyword can
sometimes more easily convey this intention than
a long text. In the case shown in Figure 1, for
example, after writing the context “MAX pooling
performs worse than MEAN pooling”, the author
naturally intends to discuss papers about “MAX
pooling”. Therefore, the keyword “MAX pooling”
should be used as a thematic cue for citation sen-
tence generation. Moreover, making the citation
generation model conditional on keywords also al-
lows users to fine-tune the generated citation text
by simply adjusting the keywords, thus making the
system interactive and conveniently tunable.

To make the generation conditional on context,
keywords, and cited papers, we fine-tuned a T5
(Raffel et al., 2020) so that its input is a concatena-
tion of three attributes: keywords, context, and the
abstract of a cited paper, each preceded by a spe-
cial field name to make attributes distinguishable
to the model: keywords: XXX. context:
XXX. target abstract: XXX. The cor-
responding decoding output is the actual citation
sentence that cites the target paper.

2.4 Microservice-based Architecture

We build our platform as a network of microser-
vices (Figure 3). An API gateway routes requests
from the frontend to the target microservice on
the backend. The microservices run separate mod-
ules on their respective Flask servers (Aggarwal,
2014) and communicate with each other by sending
HTTP requests and waiting for responses. When
a query request arrives, the API gateway forwards
the query to the literature discovery service, which
calls the prefetching and reranking services to get
the reranked IDs. The API gateway then sends the
paper IDs to the extractive summarization service
to receive the highlights of each recommended pa-
per. The gateway also sends the context, keywords,
and recommended paper IDs to the citation gen-
eration service to suggest citation sentences. The
database interface service manages the databases
of multiple scientific corpora and provides a uni-
fied interface to access the paper content given
its ID. Each microservice runs in an independent
environment, which makes it easy to upgrade back-
end systems online, such as adding or removing a
database or updating an algorithm.

3 Evaluation

In this section, we first show how SCILIT works
and then we evaluate its performance.

3.1 Demonstration

Our user interface runs on a web page (Figure 4)
created with ReactJS1. The left sidebar is an input
panel where users can enter context and keywords
and trigger a query by clicking the search button.
Retrieved papers are displayed in the search-results
panel on the right. Users can scroll up and down
or paginate to browse through the recommended
papers. Each paper is accompanied by highlights
and a suggested citation sentence generated by our
extractive summarization and citation generation
services, respectively. Users can cite a paper by
clicking on the cite button and the suggested cita-
tion sentence will jump to the editing area on the
left where users can tweak the sentence by chang-
ing keywords and clicking on the fine-tune genera-
tion button, or they can edit the sentences manually.
Exporting citation information is also supported.

1https://reactjs.org/
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Figure 4: Overview of the user interface. The context text comes from the related work section in Glass et al. (2020).

Np
time

(s/query)
Recall@K (R@K)

R@1 R@5 R@10 R@20 R@50 R@100

50 2.02 0.107 0.208 0.263 0.305 0.327 0.331
100 2.55 0.096 0.215 0.278 0.328 0.384 0.401
200 3.26 0.095 0.220 0.275 0.339 0.420 0.452
300 3.93 0.095 0.204 0.273 0.330 0.422 0.482

Table 2: Paper retrieval performance measured by the
recall of the top K recommendations. Np denotes the
number of prefetched candidates per corpus.

3.2 Performance

Evaluation Dataset. We evaluated SCILIT on a
test set containing 1530 samples, mainly from pa-
pers published in 2022 in the fields of computer
science and biomedical science. Each sample con-
tains the following information: 1) context, up to
6 sentences preceding the citation sentence and
within the same section; 2) keywords, up to 2 uni-
or bi-grams that occur in all of the context, the ci-
tation sentence, and the cited paper; 3) ID of the
cited paper; 4) the citation sentence following the
context, which is the ground truth for evaluating
generated citations. For quality control, we only
include citation sentences in the test set that cite
one paper.
Paper Retrieval. For each sample in the eval-
uation dataset, we use context and keywords as
queries and invoke the literature search service to

Model Rouge-1 Rouge-2 Rouge-L

BertSum (Liu, 2019) 42.53 16.89 39.18
MemSum (Gu et al., 2022a) 46.40* 19.61* 42.66*

Table 3: The extractive summarization performance.
“*" indicates statistical significance in comparison to
baselines with a 95% bootstrap confidence interval.

first prefetch Np candidates from each of the three
corpora (S2ORC, PMCOA, and arXiv). We re-
move duplicates and then we rank the prefetched
candidates. The top K recommendations serve to
evaluate the retrieval performance (Table 2). We
observed that for large K(K = 50, 100), the re-
call increases as Np increases, whereas for small
K(K = 5, 10, 20), the recall first increases and
then starts to decrease, indicating that the rerank-
ing performance is impacted by more prefetched
candidates. We choose Np = 100 as the default
value, which was fast and achieved the best perfor-
mance for R@10.
Extractive Summarization. To evaluate the sum-
maries, following Zhong et al. (2020); Xiao and
Carenini (2019), we computed the ROUGE F1
scores between the summary sentences extracted
from the full body and the corresponding ab-
stract. MemSum significantly outperformed Bert-
Sum (Liu, 2019), a Bert-based summarizer that
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generation pipeline Rouge-1 Rouge-2 Rouge-L

generation-only 32.96 9.19 24.52
Best of top 1 paper 28.62 6.00 21.05
Best of top 5 papers 34.92 9.59 26.23
Best of top 10 papers 36.83* 10.98* 28.10*

Table 4: The performance of citation generation.

retrieval
(Np = 100) R@1 R@5 R@10 R@20 R@50 R@100

w keywords 0.096 0.215 0.278 0.328 0.384 0.401
w/o keywords 0.013 0.050 0.085 0.125 0.199 0.250

citation generation Rouge-1 Rouge-2 Rouge-L

w keywords 32.96 9.19 24.52
w/o keywords 26.57 5.56 20.39

Table 5: Ablation study on retrieval and citation gener-
ation performance.

requires truncation of long documents, indicating
the effectiveness of MemSum in extractively sum-
marizing scientific documents.
Citation Generation. To evaluate our joint re-
trieval and citation generation pipeline, we let our
system first recommend papers based on context
and keywords and then we let it generate K cita-
tion sentences, one for each of the top K recom-
mended papers. Then, we calculate the ROUGE F1
score between the ground truth citation sentence
and each of the K sentences and record the high-
est ROUGE F1 score of them. We compared the
“Best-of-top-K” pipeline to the “generation-only”
pipeline, where we directly provide the truly cited
paper for citation generation.

We observed that for K = 5 and 10, the “Best-
of-top-K” pipeline achieved significantly higher
ROUGE scores than the "generation only" pipeline
(Table 4), indicating that the paper retrieval mod-
ule contributes positively to the citation generation
process and increases the chance of suggesting ap-
propriate citation sentences. We believe that this
result further supports our idea of developing an
integrated system for joint retrieval and generation.

3.3 Ablation Study

To analyze the impact of keywords, we evaluated
retrieval and generation systems without keywords.
For document retrieval, we first prefetch Np = 100
candidates from each corpus and then rank them
based on context only. For citation generation, we
trained a T5 model to learn to generate citation
sentences with only the context and the title and
abstract of the cited paper and evaluated it on the

evaluation dataset. We observe a significant degra-
dation in the performance of literature retrieval and
citation generation (Table 5), which demonstrates
the utility of keywords for recommending relevant
papers and generating accurate citations on our
platform.

4 Related Work

Recently, AI-driven platforms focused on literature
recommendation and scientific paper summariza-
tion have been proposed. (keywords: platform,
paper: #2) One such platform is AI Research
Navigator (Fadaee et al., 2020), which com-
bines classical keyword search with neural re-
trieval to discover and organize relevant literature.
(keywords: scientific; summarization;
platform, paper #3) Another platform is Anne
O’Tate, which supports user-driven summariza-
tion, drill-down and mining of search results from
PubMed, the leading search engine for biomed-
ical literature (Smalheiser et al., 2021). (key-
words: related work generation, paper
#9) Chen and Zhuge (2019) automatically gener-
ates related work by comparing the main text of
the paper being written with the citations of other
papers that cite the same references.

In the previous paragraph, the italicized citation
sentences are generated from SCILIT. In generat-
ing each sentence, we use all the preceding sen-
tences in the paragraph as contexts and use the key-
words in parentheses to obtain the recommended
papers and the corresponding citation sentences.
The paper index in parentheses indicates the ranked
order of recommended papers.

5 Conclusion and Future Work

This paper demonstrates SCILIT, a platform for
joint scientific literature retrieval, paper summa-
rization, and citation generation. SCILIT can effi-
ciently recommend papers from hundreds of mil-
lions of papers and proactively provides highlights
and suggested citations to assist authors in reading
and discussing the scientific literature. In addition,
our prefetching, reranking, and citation generation
system can be conditioned on user-provided key-
words, which provides flexibility and adjusts the
platform’s response to user intention. In the future,
we will further improve the performance of each
module, especially the citation generation part, and
collect feedback from users to improve the overall
workflow and the frontend user experience.
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A Hardware Information

We run the backend of SCILIT on a server with
dual 64-Core AMD EPYC 7742 2.25GHz Proces-
sors, 2TB DDR4 3200MHz ECC Server Memory,
and 4×7.68TB NVME GEN4 PM9A3 for storage.
The server is also equipped with two nVidia RTX
A6000 48GB GPU. The frontend is hosted on Ver-
cel2.

B JSON Schema for Database

The details of our unified JSON schema is
shown in Listing 1. As metadata we define
“Author”, “Title”, “Abstract”, “Venue”, “DOI”,
“URL”, and as parsed full text we define “Publica-
tionDate”, "Content.Abstract_Parsed", and “Con-
tent.Fullbody_Parsed”. The parsed abstract or full
body contains a list of parsed sections. Each section
contains a list of parsed paragraphs, each including
a list of parsed sentences. If a sentence cites a pa-
per, we create a “cite span” that records the citation
marker such as “[1]”, the position of the citation
marker in the sentence, and the cited paper’s index
in the “Reference” list.

We implemented a S2ORC parser to convert
documents in the S2ORC corpus to our JSON
format. For PDFs in the arXiv corpus, we first
used the s2orc-doc2json (Lo et al., 2020) to con-
vert them into S2ORC format and then we ap-
plied our S2ORC parser. For XML files in the
PMCOA corpus, we implemented an XML parser

2https://vercel.com/
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AND

NLP

OR

machine translation

NMT

OR

Pub. Year: 2020

Pub. Year: 2021

Pub. Year: 2022

Figure 5: The parsed tree structure of the given key-
words string: NLP; machine learning|NMT;
2020..2022”.

based on Achakulvisut et al. (2020) to convert XML
to S2ORC format and then we applied again the
S2ORC parser to convert it into our JSON format.

C Prefetching Indexing Implementation

C.1 Inverted Index

The inverted index is a mapping table from key-
words (unigrams and bigrams) to paper IDs. We
extract keywords from the full text of each docu-
ment and keep a bigram only if neither word is a
stopword. We use sqlitedict3 to store the inverted
index for each corpus, which is an on-disk hashmap
based on an SQLite database that allows us to ef-
ficiently obtain the paper ID for a given keyword
without loading the entire inverted index into RAM.
Syntax Parsing. Our platform allows users
to filter documents using syntax-rich keyword
strings. For example, to filter papers that contain
the keywords ’NLP’ and either ’machine transla-
tion’ or ’NMT’ and that has been published be-
tween 2020 and 2022, one can compose a key-
word string NLP; machine learning|NMT;
2020..2022”. We transform this keyword
string into a tree of logical operations (Figure 5),
wherein each node we denote the logical operations
applied to the sub-nodes, and each leaf node con-
tains a keyword. We implemented the tree using a
Python dictionary (Listing 2). Then, we recursively
traverse all nodes in the tree in a depth-first search,
obtain the paper IDs with the keyword in each leaf
node, and apply the logical operations indicated in
each node to obtain the final paper ID at the root
node.

3https://github.com/RaRe-Technologies/
sqlitedict

C.2 Embedding Index

Structure of the Embedding Index. The embed-
ding index consists of three main components:

The first component is a matrixM ∈ RN×D,
where N is the number of documents and D is
the dimensionality of document embeddings. Each
document’s embedding is L2-normalized so that
given an L2-normalized query embedding eq ∈
RD×1, the matrix multiplication Meq ∈ RN×1

represents the cosine similarity between the query
embedding and all document embeddings. We use
Meq to rank documents and to obtain the indices
of most similar paper embeddings.

The second component is a mapping table from
the index of a paper embedding in the matrixM
to the corresponding paper ID in our databases.
With this mapping table we can get the papers’ con-
tent given the top ranked indices during K nearest
neighbor search (KNN).

The last component is a reversed mapping table
from the paper ID to the corresponding index in
the embedding matrix. In our prefetching system,
we first use the inverted index to pre-filter a subset
of paper IDs based on given keywords. Then we
use this reversed mapping table to obtain the cor-
responding paper embeddings and perform KNN
among them.
Multi-Processing Speedup for Brute-Force Near-
est Neighbor Search. For a large corpus like
S2ORC, the embedding matrix contains up to 136.6
million vectors, and performing matrix multiplica-
tion in a single thread is very time-consuming. To
take full advantage of the multiple CPU cores on
our server, we divide the embedding matrix into
137 shards, each containing about 1 million embed-
dings. We first run a brute-force nearest neighbor
search in parallel to obtain Np candidates on each
shard, and then we rank the 137×Np candidates
again to obtain the final Np candidates. Given that
our server has 128 cores, we can achieve a nearly
linear speedup using multiprocessing KNN with
slicing, and mathematically it is equivalent to per-
forming a single KNN over the entire embedding
matrix to obtain the closest Np candidates.

D Joint Retrieval and Citation
Generation Examples

We show some specific results of joint paper re-
trieval and automatic generation of citation sen-
tences. The contexts and keywords we used were
obtained from papers in arXiv (Figure 6) and PM-
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1 {’Author’: [{’GivenName’: ’Daisuke’, ’FamilyName’: ’Ida’}, ...],
2 ’Title’: ’Topology Change of Black Holes’,
3 ’Abstract’: ’The topological structure of the event horizon has been investigated

...’,
4 ’Venue’: ’’,
5 ’DOI’: ’’,
6 ’URL’: ’’,
7 ’PublicationDate’: {’Year’: ’2007’, ’Month’: ’3’},
8 ’Content’: {
9 ’Abstract’: ’’,

10 ’Abstract_Parsed’: [{
11 ’section_id’: ’0’,
12 ’section_title’: ’Abstract’,
13 ’section_text’: [{
14 ’paragraph_id’: ’0’,
15 ’paragraph_text’: [{
16 ’sentence_id’: ’0’,
17 ’sentence_text’: ’The topological structure of the event horizon

has been investigated in terms of the Morse theory.’,
18 ’cite_spans’: []},
19 # ...
20 ]},
21 # ...
22 ]
23 }],
24 ’Fullbody’: ’’,
25 ’Fullbody_Parsed’: [{
26 ’section_id’: ’0’,
27 ’section_title’: ’Introduction’,
28 ’section_text’: [{
29 ’paragraph_id’: ’0’,
30 ’paragraph_text’: [
31 # ...,
32 {
33 ’sentence_id’: ’2’,
34 ’sentence_text’: ’[1, 2] This follows from the fact that the total

curvature, which is the integral of the intrinsic scalar curvature over the
horizon, is positive under the dominant energy condition and from the Gauss-
Bonnet theorem.’,

35 ’cite_spans’: [{’start’: ’4’, ’end’: ’6’, ’text’: ’2]’,’ref_id’: ’0
’}]

36 },
37 # ...
38 ]
39 }]
40 }]},
41 ’Reference’: [{
42 ’Title’: ’The large scale structure of space-times’,
43 ’Author’: [{’GivenName’: ’S’, ’FamilyName’: ’Hawking’},
44 {’GivenName’: ’G’, ’FamilyName’: ’Ellis’}],
45 ’Venue’: ’’,
46 ’PublicationDate’: {’Year’: ’1973’},
47 ’ReferenceText’: ’2. Hawking, S, and G Ellis. "The large scale structure of

space-times." (1973).’},
48 # ...
49 ]
50 }

Listing 1: An example of the JSON schema that we used for parsing and storing scientific papers.
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1 {
2 ’operation’: ’AND’,
3 ’elements’: [
4 {’operation’: ’AND’,
5 ’elements’: [{’operation’: None, ’elements’: [’nlp’]}]},
6 {’operation’: ’OR’,
7 ’elements’: [
8 {’operation’: ’AND’,
9 ’elements’: [{’operation’: None,

10 ’elements’: [’machine translation’]}]},
11 {’operation’: ’AND’,
12 ’elements’: [{’operation’: None, ’elements’: [’nmt’]}]}]},
13 {’operation’: ’OR’,
14 ’elements’: [
15 {’operation’: None, ’elements’: [’publicationdate.year:2020’]},
16 {’operation’: None, ’elements’: [’publicationdate.year:2021’]},
17 {’operation’: None, ’elements’: [’publicationdate.year:2022’]}
18 ]
19 }]
20 }

Listing 2: The dictionary representation of the tree structure shown in Figure 5.

COA (Figure 7), respectively. In each example, the
actual cited paper occurs in the top 5 paper recom-
mendations, which we have highlighted with an
underline.
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File Edit View Run Kernel Tabs Settings Help

Context:

#OTHERCIT apply a multi-stream CNN model to extract and fuse deep features from the designed complementary shape-mot
ion representations. Zhu et al. #OTHERCIT organize the pairwise displacements between all body joints to obtain a cu
boid action representation and use attention-based deep CNN models to focus analysis on actions. Inspired by the fac
t that the skeleton data is naturally a topological graph, where the joints and bones are regarded as the nodes and 
edges, Graph Convolutional Network (GCN) is adopted to boost the performance of skeleton based action recognition #O
THERCITS .

Keywords:

skeleton

Recommended Papers and Generated Citations:

UNIK: A Unified Framework for Real-world Skeleton-based Action Recognition
Generated Citation:  UNIK #CIT is a generic skeleton-based action recognition model pre-trained on Posetics, a large
-scale human skeleton video dataset.

ANUBIS: Skeleton Action Recognition Dataset, Review, and Benchmark
Generated Citation:  The ANUBIS dataset #CIT is a large-scale 3D skeleton dataset, which mainly consists of 3D joint
s, bones, and limbs.

SkeletonNet: Mining Deep Part Features for 3-D Action Recognition
Generated Citation:  SkeletonNet #CIT is proposed to extract body-part-based features from each frame of the skeleto
n sequence, which are translation, rotation, and scale invariant.

Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Generated Citation:  ST-GCN #CIT learns both the spatial and temporal patterns from the skeleton data, which leads t
o greater expressive power and stronger generalization capability.
Real Citation:  ST-GCN #CIT firstly constructs the skeleton as a graph and uses GCN to automatically capture the pat
terns embedded in the spatial configuration of the joints as well as their temporal dynamics.

SKELETON-BASED ACTION RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
Generated Citation:  In #CIT, a novel skeleton transformer module is designed to rearrange and select important skel
eton joints automatically.

[21]:

[55]:

hello world

[59]:

This is our message

[ ]:

bcolors.BOLD +"Recommended Papers and Generated Citations:"+bcolors.ENDC )

in range(len(retrieved_papers_titles)):
pos != rank_pos:
print(bcolors.BOLD+ bcolors.HEADER + retrieved_papers_titles[pos] + bcolors.ENDC )
print(bcolors.BOLD+ bcolors.OKCYAN + "Generated Citation:  "+bcolors.ENDC + highlight_generated_citation(gen_cit_for_candidates
:
print(bcolors.BOLD+ bcolors.HEADER + bcolors.UNDERLINE + retrieved_papers_titles[pos] + bcolors.ENDC )
print(bcolors.BOLD+ bcolors.OKCYAN + "Generated Citation:  "+bcolors.ENDC + highlight_generated_citation(gen_cit_for_candidates
print(bcolors.BOLD+ bcolors.FAIL + "Real Citation:  "+bcolors.ENDC +  bcolors.FAIL + data["citation"]+bcolors.ENDC)

()

from termcolor import colored

print(colored('hello', 'red'), colored('world', 'green'))

print('\x1b[0m' + 'This is our message' + '\x1b[0m')

 

Code Python 3 (ipykernel)

scieditor@zulit: ~/science-editor/evaluationEvaluation-literature-retrieval.ipynbDocumentation on NLP Microservice.ipynbUntitled.ipynbAnalysis.ipynb

Simple 38 0 Python 3 (ipykernel) | Idle Analysis.ipynbLn 16, Col 91Mode: Command

Figure 6: Example of joint paper retrieval and citation generation. The context text was obtained from arXiv.

File Edit View Run Kernel Tabs Settings Help

Context:

Quadricuspid aortic valve (QAV) is a rare congenital heart disease that is less common than bicuspid and unicuspid a
ortic valve [#OTHERCITS]. Coronary artery and coronary ostium anomalies are present in 2–10% of patients with QAV 
[#OTHERCIT, #OTHERCIT, #OTHERCITS]. The functional status of QAV is predominantly pure aortic regurgitation (AR) [#O
THERCIT, #OTHERCIT].

Keywords:

functional status

Recommended Papers and Generated Citations:

ESC Guidelines for the management of grown-up congenital heart disease (new version 2010): The Task Force on the Man
agement of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC)
Generated Citation:  The functional status of QAV is characterized by the presence of aortic regurgitation (AR), aor
tic stenosis (AR), and aortic stenosis (AR) [ #CIT ].

Quadricuspid Aortic Valve: A Comprehensive Review
Generated Citation:  The clinical manifestations of QAV depend on the functional status of the QAV and the associate
d disorders [ #CIT ].
Real Citation:  Clinical manifestations, such as palpitations, dyspnea, fatigue, and chest pain, depend on the funct
ional status of QAV and usually present in the fifth or sixth decade of life [#CIT].

A classification system for the bicuspid aortic valve from 304 surgical specimens.
Generated Citation:  The functional status of QAV is characterized by the presence of a number of raphes, spatial po
sition of cusps or raphes, and number of raphes [ #CIT ].

Functional status of the quadricuspid aortic valve/an uncommon coincidence of congenital quadricuspid aortic valve a
ccompanied by hypertrophic obstructive cardiomyopathy.
Generated Citation:  The functional status of QAV is characterized by hypertrophic obstructive cardiomyopathy (HOMC) 
and hypertrophic obstructive cardiomyopathy (HOCM) [ #CIT ].

Congenital coronary artery fistulae: a rare cause of heart failure in adults
Generated Citation:  The functional status of QAV can be improved by epicardial fistula ligation and coronary artery 
bypass grafting with marked improvement in functional status [ #CIT ].

[ ]:

        print(bcolors.BOLD+ bcolors.OKCYAN + "Generated Citation:  "+bcolors.ENDC + highlight_generated_citation(gen_cit_for_candidates
        print(bcolors.BOLD+ bcolors.FAIL + "Real Citation:  "+bcolors.ENDC +  bcolors.FAIL + data["citation"]+bcolors.
        
    print()

 

Code Python 3 (ipykernel)

scieditor@zulit: ~/science-editor/evaluationEvaluation-literature-retrieval.ipynbDocumentation on NLP Microservice.ipynbUntitled.ipynbAnalysis.ipynb

Simple 38 0 Python 3 (ipykernel) | Idle Analysis.ipynbLn 1, Col 1Mode: Command

Figure 7: Example of joint paper retrieval and citation generation. The context text was obtained from PMCOA.
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Abstract

In this paper, we present ISI-CLEAR, a state-
of-the-art, cross-lingual, zero-shot event ex-
traction system and accompanying user inter-
face for event visualization & search. Using
only English training data, ISI-CLEAR makes
global events available on-demand, processing
user-supplied text in 100 languages ranging
from Afrikaans to Yiddish. We provide mul-
tiple event-centric views of extracted events,
including both a graphical representation and
a document-level summary. We also integrate
existing cross-lingual search algorithms with
event extraction capabilities to provide cross-
lingual event-centric search, allowing English-
speaking users to search over events automat-
ically extracted from a corpus of non-English
documents, using either English natural lan-
guage queries (e.g. cholera outbreaks in Iran)
or structured queries (e.g. find all events of
type Disease-Outbreak with agent cholera and
location Iran).

1 Introduction

Understanding global events is critical to under-
standing the world around us—whether those
events consist of pandemics, political unrest, natu-
ral disasters, or cyber attacks. The breadth of events
of possible interest, the speed at which surrounding
socio-political event contexts evolve, and the com-
plexities involved in generating representative an-
notated data all contribute to this challenge. Events
are also intrinsically global: many downstream use
cases for event extraction involve reporting not just
in a few major languages but in a much broader
context. The languages of interest for even a fixed
task may still shift from day to day, e.g. when a
disease emerges in an unexpected location.

The ISI-CLEAR (CROSS-LINGUAL EVENT &
ARGUMENT RETRIEVAL) system meets these
challenges by building state-of-the-art, language-
agnostic event extraction models on top of mas-
sively multi-lingual language models. These event

models require only English training data (not even
bitext—no machine translation required) and can
identify events and the relationships between them
in at least a hundred different languages. Un-
like more typical benchmark tasks explored for
zero-shot cross-lingual transfer—e.g. named entity
detection or sentence similarity, as in (Hu et al.,
2020)—event extraction is a complex, structured
task involving a web of relationships between ele-
ments in text.

ISI-CLEAR makes these global events available
to users in two complementary ways. First, users
can supply their own text in a language of their
choice; the system analyzes this text in that na-
tive language and provides multiple event-centric
views of the data in response. Second, we pro-
vide an interface for cross-lingual event-centric
search, allowing English-speaking users to search
over events automatically extracted from a corpus
of non-English documents. This interface allows
for both natural language queries (e.g. statements
by Angela Merkel about Ukraine) or structured
queries (event type = {Arrest, Protest}, location =
Iraq), and builds upon our existing cross-lingual
search capabilities, demonstrated in (Boschee et al.,
2019).

The primary contributions of this effort are three-
fold:

1. Strong, language-agnostic models for a com-
plex suite of tasks, deployed in this demo on
a hundred different languages and empirically
tested on a representative variety of languages.

2. An event-centric user interface that presents
events in intuitive text-based, graphical, or
summary forms.

3. Novel integration of cross-lingual search ca-
pabilities with zero-shot cross-lingual event
extraction.

We provide a video demonstrating the ISI-
CLEAR user interface at https://youtu.be/
PE367pyuye8.
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Figure 1: Text-based display of Polish news. The user provides only the Polish text. To aid an English-speaking user,
ISI-CLEAR displays the extracted event information not only in Polish but also in English. All processes—including
anchor detection, argument extraction, machine translation and span-projection—are carried out in real time.

Figure 2: Graph-based display of event information extracted from user provided text in Polish.

2 User Interface

2.1 On-the-Fly Language-Agnostic Event
Extraction & Display

In our first mode, users are invited to supply their
own text in a language of their choice. The system
supports any language present in the underlying
multi-lingual language model; for this demo we
use XLM-RoBERTa (Conneau et al., 2020), which
supports 100 languages ranging from Afrikaans to
Yiddish.

After submission, the system displays the results
in an initial text-based format, showing the events
found in each sentence (Figure 1). For a more in-
tuitive display of the relationships between events,
users can select a graphical view (Figure 2). We
can easily see from this diagram that the EU is
the agent of both the withdrawal and the buying
events, and that the two events are related (the EU
is withdrawing from buying Russian oil).

Finally, the user can see an event-centric sum-
mary of the document, choosing to highlight either
particular categories of event (e.g., Crime, Military,
Money) or particular participants (e.g., Ukraine,
Putin, Russia). When one or more categories or

participants are selected, the system will highlight
the corresponding events in both the original text
and, where possible, in the machine translation. An
example of a Farsi document is shown in Figure
3. Here, the system is highlighting three events
in the document where Russia is either an agent
or a patient of an event. For this demo, we use
simple heuristics over English translations to group
participant names and descriptions; in future work
we plan to incorporate a zero-shot implementation
of document co-reference to do this in the original
language.

2.2 Cross-Lingual Event-Centric Search

The second mode of the ISI-CLEAR demo allows
users to employ English queries to search over
events extracted from a foreign language corpus.
To enable this, we repurpose our work in cross-
lingual document retrieval (Barry et al., 2020) to
index and search over event arguments rather than
whole documents. A query may specify target event
types as well as agent, patient, or location argu-
ments; it may also include additional words to con-
strain the context. A sample query might ask for
Communicate events with the agent Angela Merkel
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Figure 3: Event-centric summary of Farsi document.

and the context Ukraine.

Query specification. We allow queries to be
specified in two ways. The first simply asks the
user to directly specify the query in structured form:
using checkboxes to indicate which event types
should be included and directly typing in values
for each condition (agent, patient, etc.). A second
and more intuitive method allows users to enter a
query as natural language. The system processes
the query using the ISI-CLEAR event system and
populates a structured query automatically from the
results. For instance, if the user enters the phrase
anti-inflation protests in Vietnam, ISI-CLEAR will
detect a Protest event with location Vietnam in that
phrase. It will turn this result into a query with
event type Protest, location Vietnam, and additional
context word anti-inflation.

Display. We display corpus events in ranked
order with respect to the user query. The rank-
ing is a combination of system confidence in the
underlying extractions (e.g., is this event really lo-
cated in Vietnam?) and system confidence in the
cross-lingual alignment (e.g., is étudiants interna-
tionaux really a good match for the query phrase
foreign students?). To estimate the latter, we rely
on our prior work in cross-lingual retrieval, where
we developed state-of-the-art methods to estimate
the likelihood that foreign text f conveys the same
meaning as English text e (Barry et al., 2020). We
note that for locations, we include containing coun-
tries (as determined via Wikidata) in the index so

that a search for Iran will return events happen-
ing in, e.g., Tehran. More specific details on the
ranking functions can be found in Appendix A.3.

As part of our display, we break down system
confidence by query condition—that is, we sep-
arately estimate the system’s confidence in the
agent vs., say, the location. For each condition,
we display a “traffic light” indicator that shows the
system’s confidence in that condition for an event.
Red, yellow, and green indicate increasing levels
of confidence; black indicates that there is no evi-
dence for a match on this condition, but that other
conditions matched strongly enough for the event
to be returned. A sample natural language query
and search results are shown in Figure 4.

Corpora. For this demo, we support two cor-
pora: (1) 20,000 Farsi news documents drawn from
Common Crawl1 and (2) ∼55K Weibo messages
(in Chinese) on the topic of the Russo-Ukrainian
crisis (Fung and Ji, 2022).

3 Ontology & Training Data

The ISI-CLEAR demo system is compatible with
any event ontology that identifies a set of event
types and argument roles. The system expects
sentence-level English training data that identifies,
for each event, one or more anchor spans and zero
or more argument spans (with roles).

For this demonstration, we use the “basic event”
ontology and data developed for the IARPA BET-

1https://commoncrawl.org/
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Figure 4: Example of search results.

TER program (available at https://ir.nist.
gov/better/). The ontology consists of 93 event
types and a small set of argument roles (agent, pa-
tient, and related-event). In other settings, we have
trained and tested the underlying system on the pub-
licly available ACE event ontology2, showing state-
of-the-art zero-shot cross-lingual results in (Fincke
et al., 2022). We prefer the BETTER ontology for
this demo because of its broad topical coverage and
its inclusion of event-event relations (in the form of
related-event arguments). The ISI-CLEAR system
is also designed to attach general-purpose when
and where arguments to any event, regardless of
ontology; see section 4.5.

4 System Components

We present here the highlights of our technical
approach, which relies on a collection of strong,
language-agnostic models to perform all aspects
of event extraction and the classification of rela-
tionships between events, as well as machine trans-
lation and foreign-to-English projection of event
output (for display purposes).

4.1 Ingest & Tokenization

Consistent with XLM-RoBERTa, we use Sentence
Piece (Kudo and Richardson, 2018) to tokenize text,
and at extraction time, our models label each input
subword separately. For languages where words
are typically surrounded by whitespace, our system
then expands spans to the nearest whitespace (or
punctuation) to improve overall performance. If
the system produces a conflicting sequence of la-
bels for a single word, we apply simple heuristics
leveraging label frequency statistics to produce just

2https://www.ldc.upenn.edu/collaborations/past-
projects/ace

one label.

4.2 Anchor Detection
ISI-CLEAR performs anchor identification and
classification using a simple beginning-inside-
outside (BIO) sequence-labeling architecture com-
posed of a single linear classification layer on top
of the transformer stack. For more details please
see (Fincke et al., 2022).

4.3 Argument Attachment
For argument attachment, we consider one event
anchor A and one role R at a time. We encourage
the system to focus on A and R by modifying the
input to the language model. For instance, when
A=displaced and R=1 (agent), the input to the lan-
guage model will be displaced ; 1 </s> Floods
< displaced > thousands last month. This modifi-
cation encourages the language model to produce
representations of tokens like thousands that are
contextualized by the anchor and role being exam-
ined. The argument attachment model concatenates
the language model output vector for each input
token with an embedding for event type and applies
a linear classifier to generate BIO labels. For more
details please see (Fincke et al., 2022).

4.4 Event-Event Relations
ISI-CLEAR can handle arbitrary event-event rela-
tions within a sentence, including the special case
of event co-reference (when a given event has two
or more anchor spans). We consider one event an-
chor A1 at a time. Again we modify the input to
the language model (by marking A1 with special
characters on either side) to encourage the model
to consider all other anchors in light of A1. We
then represent each event anchor in the sentence
(including A1 itself) as a single vector, generated
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by feeding the language model output for its con-
stituent tokens into a bi-LSTM and then concatenat-
ing the bi-LSTM’s two final states. (This allows us
to smoothly handle multi-word anchors.) To iden-
tify the relationship between A1 and A2, if any, we
then concatenate the representations for A1 and A2

and pass the result to a linear classifier. The final
step optimizes over the scores of all such pairwise
classifications to label all relations in the sentence.

4.5 When & Where

The ontology used for this demonstration (de-
scribed in Section 3) does not annotate when and
where arguments. However, these event attributes
are critical for downstream utility. We therefore
deploy an ontology-agnostic model that can assign
dates and locations to events of any type. To do
this, we train a question-answering model to an-
swer questions such as <s> When/Where did the
{anchor} happen? </s> Context </s>. We first
train the model on the SQUAD2 dataset (Rajpurkar
et al., 2016) and then continue training on the event
location and time annotations in the English ACE
dataset.

4.6 Machine Translation & Projection

All event extraction happens in the target language;
no machine translation (or bitext) is required. How-
ever, for system output to be useful to English
speakers, translation is highly beneficial. Here, we
rely on the 500-to-1 translation engine developed
by our collaborators at ISI (Gowda et al., 2021)3.
Translation happens after event extraction. We have
not optimized this deployment of MT for speed, so
we display the results without translation first and
then (when the small light in the top toolbar turns
green, usually after a few seconds), we can refresh
the screen to show results with translations added.

To project anchor and argument spans into ma-
chine translation, we require no parallel data for
training. Instead, we leverage the fact that the
pre-trained XLM-RoBERTa embeddings are well
aligned across languages and have been shown to
be effective for word alignment tasks (Dou and
Neubig, 2021). The similarity of a word in a
foreign-language sentence to a word in the par-
allel English sentence is determined by the cosine
distance between the embeddings of the two words.
We leverage the Itermax algorithm (Jalili Sabet
et al., 2020) to find the best phrase matches. Since

3Available at http://rtg.isi.edu/many-eng/.

we avoid making any bespoke language specific de-
cisions, our projection technique is highly scalable
and can project from any of the 100 languages on
which XLM-RoBERTa was pre-trained on.

5 System Evaluation & Analysis

We evaluate our system on a variety of languages
and ontologies and compare where possible to ex-
isting baselines. Following community practice,
e.g. Zhang et al. (2019), we consider an anchor
correct if its offsets and event type are correct, and
we consider an argument correct if its offsets, event
type, and role find a match in the ground truth. For
event coreference (same-sentence only), we con-
sider each anchor pair separately to produce an
overall F-score.

Table 1 provides overall scores in several settings
where multi-lingual event annotations are available.
All models are trained on English data only. For
the ACE data, we follow (Huang et al., 2022). The
BETTER Basic task is described in Section 3; there
are two ontologies (Basic-1 and Basic-2) from dif-
ferent phases of the originating program. The BET-
TER Abstract task is similar to BETTER Basic, but
all action-like phrases are annotated as events, with
no further event type specified4; valid roles are only
agent and patient (McKinnon and Rubino, 2022).
More dataset statistics are found in Appendix A.1.

It is difficult to compare system accuracy across
languages; a lower score in one language may
reflect a real difference in performance across
languages—or just that one set of documents is
harder than another. Still, we observe the following.
First, performance on anchors seems most sensi-
tive to language choice—for instance, we note that
Arabic and Chinese anchor performance on ACE
differs by almost 10 points. For arguments, how-
ever, non-English performance is relatively consis-
tent given a task—but varies more widely between
tasks. Second, we note that cross-lingual perfor-
mance seems best on anchors, where it exceeds
80% of English performance for all but one con-
dition. In contrast, argument performance varies
more widely, with many conditions below 70% of
English (though some as high as 89%).

We also compare against existing published base-
lines where possible. There are relatively few pub-
lished results on cross-lingual event anchor detec-
tion (and none that we could find on the task of

4Since abstract events lack event types, we also require
anchor offsets to match when scoring arguments.
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Task ACE Basic-1 Basic-2 Abstract

Language en ar zh en ar en fa en ar fa ko

Anchors 71.2 58.1 49.6 64.2 52.5 64.6 54.3 87.4 78.3 72.5 78.9
Arguments 72.1 51.5 51.7 64.5 51.5 71.6 64.0 69.8 45.0 45.7 45.0
Event coreference – – – 83.4 67.9 86.5 65.9 – – – –

Table 1: Component-level accuracy by language / task. Dataset statistics are available in Appendix A.1. ACE lacks
same-sentence event coreference so those figures are omitted. Event coreference is peripheral to the overall Abstract
task; we chose to not model it explicitly and exclude it here.

cross-lingual event co-reference as defined here).
To benchmark performance on anchors, we turn
to MINION (Pouran Ben Veyseh et al., 2022), a
multi-lingual anchor-only dataset that uses a deriva-
tive of the ACE ontology. For a fair comparison,
we retrained our model (tuned for use with XLM-
RoBERTa large) with XLM-RoBERTa base; we
did not adjust any hyperparameters. Table 2 shows
that the ISI-CLEAR model performs on average 2.7
points better than the reported MINION numbers
for cross-lingual settings. We also show the num-
bers from our actual demo models (trained with
XLM-RoBERTa large) for comparison.

base large

MINION ISI-CLEAR ∆ ISI-CLEAR

en 79.5 78.9 -0.6 78.0

es 62.8 62.3 -0.5 65.3
pt 72.8 71.1 -1.7 75.0
pl 60.1 52.6 -7.5 66.4
tr 47.2 52.0 +4.8 56.5
hi 58.2 72.2 +14.0 72.7
ko 56.8 64.1 +7.3 63.5

AVG 59.7 62.4 +2.7 66.6

Table 2: Cross-lingual anchor detection (F1) for MIN-
ION dataset, training on English only. Average is across
all cross-lingual settings.

For argument detection, much more published
work exists, and we show in Table 3 that ISI-
CLEAR achieves state-of-the-art performance on
all ACE datasets, comparing against the previous
state-of-the-art as reported in Huang et al. (2022).

6 Related Work

Several recent demos have presented multi-lingual
event extraction in some form, but most assume
training data in each target language (e.g. Li et al.

X-GEAR ISI-CLEAR

en 71.2 72.1

ar 44.8 51.5
zh 51.5 51.7

Table 3: Cross-lingual argument detection (F1) for ACE
over gold anchors, training on English only.

(2019) or Li et al. (2020)) or translate foreign-
language text into English before processing (e.g.
Li et al. (2022)). In contrast, the focus of our demo
is making events available in languages for which
no training data exists. Other demos have shown
the potential of zero-shot cross-lingual transfer, but
on unrelated tasks, e.g. offensive content filtering
(Pelicon et al., 2021). Akbik et al. (2016) uses
annotation projection from English FrameNet to
build target-language models for frame prediction;
the focus of the demo is then on building effec-
tive queries over language-agnostic frame seman-
tics for extraction. Finally, Xia et al. (2021) also
produce FrameNet frames cross-lingually (using
XLM-RoBERTa), but in contrast to our work, sev-
eral of their supporting models use target-language
data, and they also supply only a simpler user in-
terface and lack the cross-lingual search-by-query
capability that is a key aspect of our demo.

7 Conclusion

ISI-CLEAR provides a monolingual English-
speaking user with effective access to global events,
both on-demand (extracting events from input of
a user’s choice) or as a set of indexed documents
accessible via cross-lingual search. The system
provides a variety of visualizations and modes for
engaging with system results. We look forward to
future work improving the quality of the underlying
components and exploring additional capabilities
to cross language barriers and expand access to
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information around the globe.

Limitations

Our core approach is limited by the underyling
multi-lingual language model it employs. For this
demo, we are therefore limited to the 100 languages
that make up the XLM-RoBERTa training set. Per-
formance also varies across languages, tracking in
part (though not in whole) with the volume of train-
ing data available for each language when building
the multi-lingual language model. For instance,
anecdotally, the performance on Yiddish (34M to-
kens in the CC-100 corpus used to train XLM-
RoBERTa) is inferior to that of Farsi (13259M
tokens). We have provided empirical results for
eleven languages and five tasks, but it would be
ideal to have a broader set of test conditions; un-
fortunately, annotated datasets for events are much
less common than for simpler tasks like named
entity recognition.

A second limitation of our system involves com-
pute requirements. We employ multiple separate
components for event extraction (e.g., for anchor
detection vs. argument attachment), which in-
creases memory/GPU footprint compared to a more
unified system.

Finally, our system assumes an existing ontology
and (English) training data set; it would be inter-
esting to explore zero-shot ontology expansion in
future work.

Ethics Statement

One important note is that our system is designed to
extract information about events that are reported in
text, with no judgment about their validity. This can
lead a user to draw false conclusions. For instance,
the system might return many results for a person
X as the agent of a Corruption event, but this does
not necessarily mean that X is actually corrupt.
This should be prominently noted in any use case
for this demonstration system or the underlying
technologies.
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A Appendix

A.1 Dataset Statistics
We report results for a variety of different tasks in a
variety of different languages. We outline the sizes
for these diverse datasets in Tables 4 and 5. The
tasks use five different ontologies; we also report
the number of event types for each ontology in
Table 6.

A.2 Speed
Table 7 presents speed results for six representative
languages, calculated as number of seconds per

254

https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/2022.acl-long.317
https://doi.org/10.18653/v1/2022.acl-long.317
https://doi.org/10.18653/v1/2022.acl-long.317
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2022.acl-demo.13
https://doi.org/10.18653/v1/2022.acl-demo.13
https://doi.org/10.18653/v1/N19-4019
https://doi.org/10.18653/v1/N19-4019
https://doi.org/10.18653/v1/2020.acl-demos.11
https://doi.org/10.18653/v1/2020.acl-demos.11
https://aclanthology.org/2021.hackashop-1.5
https://aclanthology.org/2021.hackashop-1.5
https://aclanthology.org/2021.hackashop-1.5
https://doi.org/10.18653/v1/2022.naacl-main.166
https://doi.org/10.18653/v1/2022.naacl-main.166
https://doi.org/10.18653/v1/2022.naacl-main.166
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2021.eacl-demos.19


Train Development
# Characters # Events # Characters # Events

ACE 1,335,035 4,202 95,241 450
Basic-1 171,267 2,743 35,590 560
Basic-2 419,642 5,995 87,425 1,214
Abstract 557,343 12,390 67,266 1,499
MINION 4,388,701 14,189 544,758 1,688

Table 4: Size of English training and development sets in number of documents and number of events.

Lang. # Characters # Events

ACE en 104,609 403
ar 44,003 198
zh 22,452 189

Basic-1 en 33,169 569
ar 238,133 5,172

Basic-2 en 82,296 1,139
fa 639,6951 11,559

Abstract en 68,863 1,527
ar 189,174 5,339
fa 607,429 15,005
ko 327,811 16,704

MINION en 554,680 1,763
es 161,159 603
pt 73,610 200
pl 197,270 1,234
tr 175,823 814
hi 57,453 151
ko 332,023 164

Table 5: Size of test sets in number of documents and
number of events.

100 “words”. For this exercise we consider words
to be the output of UDPipe’s language-specific to-
kenization (Straka, 2018). The primary driver of
speed difference is that, given XLM-RoBERTa’s
fixed vocabulary, different languages will split into
more or fewer subwords on average. For instance,
an average Korean word will produce at least half
again as many subwords than, say, an average Farsi
word; this is presumably why 100 words of Ko-
rean takes about 70% longer to process than 100
words of Farsi. On average, for a standard short
news article (200 words), we expect to wait about
two seconds for extraction and an additional six or
seven seconds for MT and projection. We did not
optimize our selection of MT package for speed

Ontology # of Event Types

ACE 33
Basic-1 69
Basic-2 93
Abstract 1
MINION 16

Table 6: Number of event types in each ontology.

(e.g., it decodes one sentence at a time instead of
batching); this could easily be updated in future
work to be more efficient.

en ar fa ko ru zh

Event 1.1 1.0 0.9 1.5 0.8 1.1
Display n/a 2.6 2.8 4.1 3.4 3.9

Table 7: Processing speed (seconds per 100 words).
Event processing includes ingest, tokenization, anchors,
arguments, event-event relationships, and when/where
extraction. Display processing includes components
solely required for display (MT and projection). We use
11GB GTX 1080Ti GPUs for extraction/projection and
use a 48GB Quadro RTX 8000 GPU for MT.

A.3 Search Ranking

ISI-CLEAR extracts a large number of events from
the documents indexed from search, some of which
vary in quality and some of which will match more
or less confidently to an English query. The ranking
function described here significantly improves the
usability of our search results.

The goal of our search ranking function is to
rank each extracted event E with respect to a user
query Q. To calculate score(Q,E), we combine
two separate dimensions of system confidence:

1. Cross-lingual alignment confidence (CAC):
are the components of E reasonable transla-
tions of the query terms? For instance, is étu-
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diants internationaux a good match for the
query phrase foreign students? Here, we as-
sume the existence of a cross-lingual retrieval
method cac(e, f) that estimates the likelihood
that foreign text f conveys the same meaning
as English text e, as in our prior work (Barry
et al., 2020).

2. Extraction confidence (EC): how likely is it
that the elements of E were correctly ex-
tracted in the first place? Here we use con-
fidence measures (denoted ec) produced by
individual system components.

To combine these dimensions, we consider each
query condition separately (summing the results).
For simplicity we describe the scoring function for
the agent condition:

score(Qagent, Eagent) =

β ∗ ec(Eagent) ∗ cac(Qagent, Eagent) +

(1− β) ∗ cac(Qagent, Esentence)

The first term of this equation captures the two di-
mensions described above. The second term allows
us to account for agents missed by the system, let-
ting us give “partial credit” when the user’s search
term is at least found in the nearby context (e.g., in
Esentence). Based on empirical observation, we set
β to 0.75.

We follow the same formula for patient and lo-
cation. For context we use only the final term
cac(Qtopic, Esentence) since context does not di-
rectly correspond to an event argument.

For now, event type operates as a filter with no
score attached; in future work we will incorporate
both the system’s confidence in the event type as
well as a fuzzy match over nearby event types (e.g.,
allowing for confusion between Indict and Con-
vict).
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Abstract

In this paper, we present our open-source neu-
ral machine translation (NMT) toolkit called
“Yet Another Neural Machine Translation
Toolkit” abbreviated as YANMTT1 which is
built on top of the HuggingFace Transformers
library. YANMTT aims to enable pre-training
and fine-tuning of sequence-to-sequence mod-
els with ease. It can be used for training
parameter-heavy models with minimal param-
eter sharing and efficient, lightweight mod-
els via heavy parameter sharing. Addition-
ally, efficient fine-tuning can be done via fine-
grained tuning parameter selection, adapter
and prompt tuning. Our toolkit also comes
with a user interface that can be used to demon-
strate these models and visualize the attention
and embedding representations. Apart from
these core features, our toolkit also provides
other advanced functionalities such as but not
limited to document/multi-source NMT, simul-
taneous NMT, mixtures-of-experts and model
compression.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2015) is an end-to-end machine transla-
tion (MT) approach known for obtaining state-
of-the-art results for a variety of language pairs.
Thanks to publicly available toolkits such as Open-
NMT, Fairseq, Tensor2tensor, etc.; For NMT, and
Natural Language Generation (NLG) in general,
model training has become easier. Additionally,
fine-tuning of large pre-trained models such as
mBART (Liu et al., 2020) and mT5 (Xue et al.,
2021) have led to significant advances for low-
resource languages. Recently, the Transformers
library from HuggingFace has made fine-tuning
an accessible option. Parameter-efficient fine-
tuning via adapters and prompts has recently gained
popularity. This has led to the development of

1https://github.com/prajdabre/yanmtt

AdapterHub, which allows people to use pre-
trained adapters for many tasks or easily train their
custom adapters.

However, when it comes to pre-training
sequence-to-sequence models from scratch, we no-
ticed that there is very little support2. This is, pre-
sumably, because pre-training is computationally
intensive, especially when the number of parame-
ters is large, and not everyone can do this. How-
ever, not all situations need large models, and with
the advancements in low-precision training and
parameter-efficient architectures, we feel that de-
mocratizing pre-training is necessary. Additionally,
relying on separate libraries for pre-training and
fine-tuning can be quite exhausting. To this end,
we decided to develop a publicly available toolkit
to bring both into one place while simultaneously
focusing on parameter efficiency.

We call our toolkit YANMTT which stands for
“Yet Another Neural Machine Translation Toolkit”
which is built on top of the Transformers library.
YANMTT relies on a substantially modified version
of the mBART model’s code and contains simple
scripts for NMT pre-training and fine-tuning. Our
modifications revolve around parameter efficiency
by implementing heavy parameter sharing and in-
corporating adapters and prompts into the model.
In order to enable users to better understand, and
modify if needed, the flow of pre-training and fine-
tuning, we heavily annotate our code with com-
ments. YANMTT also comes with a user interface
that can be used to demo any developed models
as well as analyze them by visualizing their atten-
tions and embedding representations. We hope that
YANMTT will help entice more researchers into ad-
vancing the field of efficient sequence-to-sequence
pre-training and fine-tuning. While the main focus
is on NMT, readers should note that this toolkit can
also be used for general purpose NLG.

2At the time of creating this toolkit in 2021, there was no
easily available script for sequence-to-sequence pre-training.
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Figure 1: An architecture overview of the YANMTT.

2 Related Work

Tensor2tensor3 is a deprecated library for train-
ing recurrent, convolutional as well as transformer
models for a variety of sequence-to-sequence appli-
cations. It has been replaced by Trax4. While Ten-
sor2tensor uses TensorFlow as a backend, Fairseq5

is based on PyTorch and it also allows one to train
a variety of NMT models. Unlike Tensor2tensor,
Fairseq contains all necessary functionality for pre-
training NMT models, but there is a severe lack
of instructions for the same. OpenNMT (Klein
et al., 2017), originally developed for recurrent
NMT models, is based on TensorFlow as well as
PyTorch. THUMT6 is an NMT training toolkit
based on TensorFlow, PyTorch and Theano.

Most recently, the Transformers (Wolf et al.,
2020) library by HuggingFace, based on PyTorch
and TensorFlow has become popular as it allows
users to share trained models easily. In Transform-
ers, the instructions for fine-tuning pre-trained mod-
els are abundant, but at the time of YANMTT’s
development (early 2021), there was no complete
script for pre-training. On the HuggingFace hub,
the central repository for all models trained with
Transformers, it is possible to load and run models,
but enabling users to locally demo and inspect their

3https://github.com/tensorflow/
tensor2tensor

4https://github.com/google/trax
5https://github.com/facebookresearch/

fairseq
6https://github.com/THUNLP-MT/THUMT

own models is also important from the perspective
of privacy. Finally, for parameter-efficient fine-
tuning, AdapterHub (Pfeiffer et al., 2020) builds on
top of Transformers and enables users to leverage
existing or custom-trained adapters.

All of the above toolkits and libraries are invalu-
able, but none appear to be a complete solution
for sequence-to-sequence pre-training, parameter
efficient fine-tuning and model demoing and in-
spection, a gap which YANMTT aims to fill.

3 The Toolkit: YANMTT

YANMTT, Yet Another Neural Machine Trans-
lation Toolkit, relies on the Transformers library
and uses PyTorch. We use only the mBART im-
plementation (for now) from Transformers and
write several wrapper scripts enabling multilin-
gual sequence-to-sequence pre-training, parame-
ter efficient fine-tuning, decoding and attention
and representation extraction. To enable users to
quickly demonstrate and visually inspect trained
models, we provide a user interface. We also mod-
ify the mBART modelling code to provide several
advanced features. We provide the modified code
along with our toolkit. We also provide example
data and usage instructions in the form of exam-
ple scripts. We encourage the reader to look at
our toolkit7 and watch the demo video8. Figure 1
contains an overview of YANMTT architecture.

7https://github.com/prajdabre/yanmtt
8https://youtu.be/ee38gda5qnc
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Figure 2: Screenshot obtained after fine-tuning mBART-50 for English-Telugu NMT where the model training was
performed over 1 x A40 GPU over ∼1 day and 13 hours.

3.1 Training

YANMTT enables multilingual training of
sequence-to-sequence models; while also support-
ing full or mixed-precision training on a single
GPU or on multiple GPUs9 across machines.
Tokenization: While mBART uses BPE, mT5 uses
sentencepiece for subword segmentation. YAN-
MTT allows users to train and use both types of
subword segmenters.
Pre-training: We currently support mBART style
text-infilling and sentence shuffling, as well as mT5
and MASS style masked span-prediction for pre-
training from scratch. Note that sentence shuffling
is optional since it is useful only when the pre-
training data is in the form of documents. We also
support continued pre-training of existing mBART-
25, mBART-50, BART and IndicBART (Dabre
et al., 2022) models10. This should enable users to
adapt pre-trained models using monolingual cor-
pora on a downstream NLG task such as NMT.
Fine-tuning: Users may train their own sequence-
to-sequence models from scratch or fine-tune pre-
trained models. Fine-tuning can be done on the
user’s own models or official pre-trained mod-
els like mBART-25, mBART-50, BART and In-
dicBART. Users have fine-grained control over
what parts of the pre-trained models they want to
use for partial initialization. This way, the fine-
tuned11 models can be shrunk or grown as required.

9We directly use the distributed data-parallel functionality
of PyTorch instead of the Accelerate library so users better
can understand and control how distribution is done.

10Any models based on the BART or mBART architecture
will work. We plan to support the adaptation of other sequence-
to-sequence models soon.

11not just for fine-tuning on a downstream task, but also
when doing continued pre-training. Additionally, this func-
tionality may be used if one wishes to expand the model’s
capacity step by step.

Logging: Figure 2 shows the logs generated dur-
ing model training depicting model loss, evaluation
set scores, timings and memory consumption. Al-
though we do not show it here, this, along with gra-
dient information, is also logged on TensorBoard.

3.2 Parameter Efficiency

Using YANMTT, parameter efficiency can be
achieved when fine-tuning or training from scratch.
Lightweight Fine-Tuning: We enable fine-tuning
of adapters and prompts to enable users to fine-tune
minimal number of parameters. We implement var-
ious adapters mentioned in He et al. (2022) such
as Houlsby adapter, FFN-only adapter, parallel
adapter, hypercomplex adapter (Le et al., 2021) and
IA3 adapter (Liu et al., 2022). Regarding prompts,
currently prefix tuning is supported. It is also possi-
ble to mix-and-match adapters and prompts. Users
may also specify a list of parameters which they
want to fine-tune for more control over the process.
Parameter Sharing: When training models
from scratch, we enable recurrently stacked lay-
ers (Dabre and Fujita, 2019) involving tying param-
eters of layers and the resultant models, which we
call ALBERT, tend to be 50-70% smaller.

3.3 Decoding

Users can decode the models, extract encoder or
decoder representations, generate heatmaps of at-
tentions and score translation pairs.

3.4 User Interface (UI)

To enable users to locally test or demo their models
and inspect them, we provide a web-based UI based
on Flask. This interface can be hosted online by
using software such as ngrok12 or an Apache server.

12https://ngrok.com
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Figure 3: YANMTT User Interface for inspecting the IndicBART model by masking random words from the input
sentence in the Hindi language. IndicBART was trained using YANMTT.

Figure 4: Visualization of cross-attention, where masked words are predicted for a sentence in Hindi.

Model Decoding: Using the GUI, the user may
load models and decode sentences. Models sup-
ported are those trained locally or official based
on the mBART code. If the model to be used is a
denoising model, then users may use decoding for
MASK prediction as in Figure 3. If the model to
be used was fine-tuned for a downstream task such
as NMT, then it can be used for generating relevant
outputs for that task input.
Attention Visualization: To enable users to in-
spect their model attentions, we use the bertviz13

library to visualize multi-head, self- or cross-
attention across all layers in the encoder and de-
coder. As shown in Figure 4, users can select the
type of attention, the desired layer and attention
head and get more detailed information.
Representation Visualization: We also integrate
TensorBoard embedding projector visualization

13https://github.com/jessevig/bertviz

into our user interface to visualize the model layer
representations14 as shown in Figure 5. This can
be especially useful for understanding model repre-
sentations in multilingual settings.

3.5 Advanced Features

In addition to the core features above, we also en-
able YANMTT users to perform the following:
Model Compression: We enable users to com-
press models by distillation (Kim and Rush, 2016)
of models using either or all of 3 different ways:
teacher-student cross-entropy minimization , min-
imizing the mean squared difference between the
hidden layer representations of the teachers and
students and minimizing the cross entropy between
the self/cross-attentions of the teacher and students.

14For now, we support the encoder’s final layer’s average
representation. Additional flexibility in terms of layer choice
as well as decoder representations will be provided in future
versions of YANMTT.

260

https://github.com/jessevig/bertviz


Figure 5: Sentence representations visualization via TensorBoard integrated into the YANMTT user interface.

Mixtures-of-Experts: Mixtures-of-expert (MoE)
layers can replace standard feed-forward layers and
enable the user to train large models with a billion
parameters or more. Model parallel training is
currently unavailable, so the largest trainable model
is limited by computing resources available15. A
similar approach was used by Facebook to train the
largest known multilingual NMT model supporting
over 200 language pairs (Costa-jussà et al., 2022).
Document and Multi-source Translation: Pre-
trained models often use document-level data,
and we considered it prudent to support explicit
document-level translation approaches. Since doc-
ument context is often treated as an additional input,
our document translation implementation can be
used for multi-source MT (Dabre et al., 2017).
Simultaneous Translation: In a real-time setting,
simultaneous MT can be useful. To enable users
to test their models in simultaneous MT settings,
we implement ‘wait-k’ training and decoding (Ma
et al., 2019) which can also be combined with doc-
ument and multi-source MT. Apart from this, there
are several other features which are listed on the
YANMTT’s GitHub repository.

3.6 YANMTT Adoption & Future Plans

YANMTT has 93 stars on GitHub, indicating
that it is being noticed and used. In particu-
lar, IndicBART16, its variants and fine-tuned ver-
sion (Dabre et al., 2022) were developed with YAN-
MTT and have seen around 8500 downloads thus

15With A100 80 GB GPUs, it is possible to train models
with 10-20 billion parameters given reasonable batch size.

16https://huggingface.co/ai4bharat/
IndicBART

far from HuggingFace hub. We have the following
future plans for our toolkit:
1. Supporting additional pre-training approaches
like PEGASUS and CSP.
2. Low-precision model parallel training for better
scaling of large models.
3. Comprehensive support for all types of adapters
and prompt tuning.
4. An improved user interface to enable better
visualization of model internals.
5. Integration of existing post-hoc model explain-
ability techniques.

4 Conclusion

We have presented our open-source toolkit called
"Yet Another Neural Machine Translation Toolkit",
also known as YANMTT. YANMTT allows users
to pre-train and fine-tune their own multilingual
sequence to sequence models. Our toolkit can be
used for training models at a reasonable scale, as
well as to perform parameter efficient fine-tuning
via adapters and prompts. We provide a convenient
user interface for model demonstration and inspec-
tion, as well as the ability to visualize attention
and model representations. We also implemented
functionalities for compressing large models via
selective parameter transfer and knowledge dis-
tillation approaches. Additionally, we have pro-
vided basic functionalities for simultaneous and
document/multi-source NMT. YANMTT appears
to be modestly adopted by researchers, and we plan
to further specialize it for better at-scale training
and efficient fine-tuning.
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5 Limitations

Although YANMTT can be used to train models
at scale, the lack of model-parallel training limits
the size of models to those that can fit on single
GPUs. YANMTT tokenizes sentences on the fly
and does not pre-process them, so the overall train-
ing speed is slightly slower than that of Fairseq or
Tensor2tensor; however, we plan to fix this soon.
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Abstract

NLP models are susceptible to learning spu-
rious biases (i.e., bugs) that work on some
datasets but do not properly reflect the underly-
ing task. Explanation-based model debugging
aims to resolve spurious biases by showing hu-
man users explanations of model behavior, ask-
ing users to give feedback on the behavior, then
using the feedback to update the model. While
existing model debugging methods have shown
promise, their prototype-level implementations
provide limited practical utility. Thus, we pro-
pose XMD : the first open-source, end-to-
end framework for explanation-based model
debugging. Given task- or instance-level ex-
planations, users can flexibly provide various
forms of feedback via an intuitive, web-based
UI. After receiving user feedback, XMD au-
tomatically updates the model in real time, by
regularizing the model so that its explanations
align with the user feedback. The new model
can then be easily deployed into real-world ap-
plications via Hugging Face. Using XMD ,
we can improve the model’s OOD performance
on text classification tasks by up to 18%.1

1 Introduction

Neural language models have achieved remarkable
performance on a wide range of natural language
processing (NLP) tasks (Srivastava et al., 2022).
However, studies have shown that such NLP mod-
els are susceptible to learning spurious biases (i.e.,
bugs) that work on specific datasets but do not
properly reflect the underlying task (Adebayo et al.,
2020; Geirhos et al., 2020; Du et al., 2021; Sagawa
et al., 2020). For example, in hate speech detec-
tion, existing NLP models often associate certain
group identifiers (e.g., black, muslims) with hate
speech, regardless of how these words are actually
used (Kennedy et al., 2020b) (Fig. 1). This poses se-

∗Both authors contributed equally.
1Source code and project demonstration video are made

publicly available at http://inklab.usc.edu/xmd/

There is a big difference 
between muslims and 
terrorists. 
Label: Not Hate

Model

Explanation

All Muslims are terrorists 
and need to be deported 
from this country.
Label: Hate

Input Prediction

There is a big difference 
between muslims and 
terrorists.
Prediction: Hate

All Muslims are terrorists
and need to be deported 
from this country.
Prediction: Hate

Figure 1: We make predictions on machine-generated
examples (Brown et al., 2020; Hartvigsen et al., 2022)
using BERT model fine-tuned on HateXplain (Mathew
et al., 2021) and show its explanation using integrated
gradients (Sundararajan et al., 2017). It shows spurious
correlation between a word muslims and the label hate.

rious concerns about the usage of NLP models for
high-stakes decision-making (Bender et al., 2021).

In response, many methods have been proposed
for debiasing either the model or the dataset. Model
debiasing can be done via techniques like instance
reweighting (Schuster et al., 2019), confidence reg-
ularization (Utama et al., 2020), and model ensem-
bling (He et al., 2019; Mahabadi and Henderson,
2019; Clark et al., 2019). Dataset debiasing can be
done via techniques like data augmentation (Jia and
Liang, 2017; Kaushik et al., 2020) and adversarial
filtering (Zellers et al., 2018; Le Bras et al., 2020).
However, these methods lack knowledge of which
spurious biases actually impacted the model’s deci-
sions, which greatly limits their debiasing ability.

On the other hand, explanation-based model
debugging focuses on addressing spurious biases
that actually influenced the given model’s decision-
making (Smith-Renner et al., 2020; Lertvit-
tayakumjorn and Toni, 2021; Hartmann and Son-
ntag, 2022). In this paradigm, a human-in-the-loop
(HITL) user is given explanations of the model’s be-
havior (Sundararajan et al., 2017; Shrikumar et al.,
2017) and asked to provide feedback about the
behavior. Then, the feedback is used to update
the model, in order to correct any spurious biases
detected via the user feedback. While existing
model debugging methods have shown promise
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(Idahl et al., 2021; Lertvittayakumjorn et al., 2020;
Zylberajch et al., 2021; Ribeiro et al., 2016), their
prototype-level implementations provide limited
end-to-end utility (i.e., explanation generation, ex-
planation visualization, user feedback collection,
model updating, model deployment) for practical
use cases.

Given the interactive nature of explanation-
based model debugging, it is important to have
a user-friendly framework for executing the full
debugging pipeline. To achieve this, we pro-
pose the EXplanation-Based NLP Model Debugger
(XMD ). Compared to prior works, XMD
makes it simple for users to debug NLP models and
gives users significant control over the debugging
process (Fig. 2). Given either task (model behav-
ior over all instances) or instance (model behavior
w.r.t. a given instance) explanations, users can flex-
ibly provide various forms of feedback (e.g., add or
remove focus on a given token) through an easy-to-
use, web-based user interface (UI). To streamline
user feedback collection, XMD ’s UI presents
intuitive visualizations of model explanations as
well as the different options for adjusting model
behavior (Fig. 3-4). After receiving user feedback,
XMD automatically updates the model in real
time, by regularizing the model so that its expla-
nations align with the user feedback (Joshi et al.,
2022). XMD also provides various algorithms
for conducting model regularization. The newly
debugged model can then be downloaded and im-
ported into real-world applications via Hugging
Face (Wolf et al., 2020). To the best of our knowl-
edge, XMD is the first open-source, end-to-end
framework for explanation-based model debugging.
We summarize our contributions as follows:

• End-to-End Model Debugging: XMD pack-
ages the entire model debugging pipeline (i.e.,
explanation generation, explanation visualization,
user feedback collection, model updating, model
deployment) as a unified system. XMD is ag-
nostic to the explanation method, user feedback
type, or model regularization method. XMD can
improve models’ out-of-distribution (OOD) perfor-
mance on text classification tasks (e.g., hate speech
detection, sentiment analysis) by up to 18%.

• Intuitive UI: XMD ’s point-and-click UI
makes it easy for non-experts to understand model
explanations and give feedback on model behavior.

• Easy Model Deployment: Given user feedback,
XMD automatically updates the model in real

Train Data

USER

Explanation 
Generation 

on Train Data

Explanation Generation & Visualization

Trained 
Model

UI

Train Task Explanation 
Visualization

UI

Click task explanation
to add / remove

Explanation-based Model Debugging

Instance Explanation 
Visualization

UI

Click instance explanation
to add / remove

Pattern Aggregation

Instance Ranking

Regularize

Figure 2: System Architecture

time. Users can easily deploy debugged models
into real-world applications via Hugging Face.

2 Framework Overview

As shown in Figure 2, our framework consists of
three main components: Explanation Generation;
Explanation Visualization; and Explanation-based
Model Debugging. Here, the explanation genera-
tion and debugging process are done on the back-
end while visualizing explanations and capturing
human feedback on them are done on front-end UI.

Explanation Generation (§3.1) Humans first in-
put the train data and the model trained on the
train data into the framework. On the backend, our
framework uses a heuristic post-hoc explanation
approach on the model to generate rationales for
the train data.

Explanation Visualization (§3.2) The frame-
work visualizes the generated rationales through
UI in two different ways: an instance explanation,
which shows the explanation for each train instance,
and a task explanation, which shows words accord-
ing to their importance to the prediction.

Explanation-Based Model Debugging (§3.3)
The human then decides whether to select words
for each instance (Instance Explanation) or words
that apply to all instances (Task Explanation) to
increase or decrease the word importance. When
a human clicks a few words to debug and then de-
cides to end the debugging process, the framework
retrains the model with a regularization approach
and makes the debugged model downloadable.

3 XMD Framework

In this section, we present each module of XMD
in processing order. To start the process, the user
needs to place a training dataset DT and a classifi-
cation modelM that is trained on DT .
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3.1 Explanation Generation
Our explanation generation module out-
puts rationales from M. For each in-
stance x ∈ DT , M generates rationales
ϕ(x) = [ϕ(w1), ϕ(w2), . . . , ϕ(wn)] where wi

denotes the i-th token in the sentence. Each
importance score ϕ(wi) has a score with regard to
all the classes. Our module is exploiting ϕp(wi)
which the importance score is attributed to model
predicted label p. Here, we exploit heuristic
methods that assign importance scores ϕ based on
gradient changes in M (Shrikumar et al., 2017;
Sundararajan et al., 2017).

3.2 Explanation Visualization
Our framework supports visualizing the generated
rationale in two different forms, instance and task
explanations. Instance explanations display word
importance scores for model predictions for each
train instance, while task explanations aggregate
and rank words according to their importance to
the predicted label. In this section, we first present
a UI for visualizing and capturing human feedback
for instance explanations and then a UI for task
explanations.

Instance Explanation Figure 3 illustrates how
our framework visualizes instance explanations
and captures human feedback on them. First, the
trained model makes a prediction and generates
explanations for one of the train instances that the
model correctly predicts: “All muslims are terror-
ists and need to be deported from this country”.
The reason why we present only the instances that
the model correctly predicts is that we are asking
users to provide feedback for the ground truth label
and comparing it with ϕp(wi) which the impor-
tance score is attributed to the model predicted la-
bel p. If p is not equal to the ground truth label, the
human feedback would act as a source of incorrect
prediction.

Next, the user is presented with the sentence and
its ground truth label on the upper deck (Words Sec-
tion), and the sentence with highlighted rationales
and its predicted label on the lower deck (Model
Output Section). Then, the user can choose to se-
lect words to decrease or increase its importance
toward the ground truth label (Figure 3 (a)). If the
user clicks the word (muslims) that the model is
focusing on to predict hate, a small pop-up display-
ing buttons for operation options (i.e., add, remove
and reset) appear. Once the user selects a desired

(a) As a user clicks on a word in the sentence, pop-up 
displaying operation options and a user selects an appropriate 
operation for that word.

Ground truth: HateWords

Prediction: Hate

word wordword

Model Output

removeadd reset

(b) Once the user selects an operation for the selected word, 
that word in the model output section is marked with an 
operation symbol (remove: X, add: +).

Ground truth: HateWords

All muslims are terrorists and need to be deported from this country

Prediction: Hate

word wordword

Model Output

muslimsAll are terrorists and need to be deported from this country

muslimsAll are terrorists and need to be deported from this country

All muslims are terrorists and need to be deported from this country

Figure 3: The workflow to provide human feedback on
instance explanations. Humans provide explanations
(remove “muslims”) for the ground truth label (hate).

operation (remove) for the selected word (muslims)
that is not a right reason for hate, that word in the
model output section is marked with operation sym-
bol (’X’ for remove, ’+’ for add – Figure 3 (b)).
The user may cancel their decision to operation for
the word by clicking reset in the pop-up.

Task Explanation Figure 4 illustrates how our
framework visualizes task explanations and cap-
tures human feedback on them. First, task explana-
tions are presented in list format on the left panel
in descending order of its importance (Figure 4
(a)). Here, the importance is a score averaged by
the word importance score of all examples con-
taining that word. As user clicks on a word in the
list, all the examples containing that word are dis-
played. The user can then choose to two different
operations (remove and add). If user clicks remove
for the word (muslims) that should not be condi-
tioned on any label (both hate and not hate), the
model will consider it as an unimportant word in
all cases. Here, we don’t need to consider whether
the prediction is correct or not since the word is not
important for all the cases (Figure 4 (a)). If user
clicks add for the word that should be useful for
the correct prediction, the model will consider it as
an important word for the ground truth label. Here,
we consider it as an important word only for the
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(a) As a user clicks on a word in the list of global explanations 
in the left panel, examples containing that word are displayed. 
The user can select the appropriate operation for the word.

Prediction: HateGround truth: Not hate

word wordword

Document #1

remove reset

1 2< > Prediction: HateGround truth: Hate

word wordword

Document #2

Current Word: muslims

muslimsThere is a big difference between and terrorists

muslimsAll are terrorists and need to be deported from this country

2.         terrorists

3.         black

4.         slave

5.         criminals

1.         muslims

(b) After the operation for a word is selected, the word in the 
left panel is marked with a color of the operation.

Prediction: HateGround truth: Not hate

word wordword

Document #1

1 2< > Prediction: HateGround truth: Hate

word wordword

Document #2

Current Word: muslims

muslimsThere is a big difference between and terrorists

muslimsAll are terrorists and need to be deported from this country

2.         terrorists

3.         black

4.         slave

5.         criminals

1.         muslims

add

remove resetadd

Figure 4: The workflow to provide human feedback on
task explanations. Humans remove the word (muslims)
that should not be conditioned on any labels (i.e., hate,
not hate).

correct prediction. After the operation for a word is
selected, the word in the left panel is marked with
a color of that operation (red for remove and green
for add).

3.3 Explanation-based Model Debugging

Our explanation-based model debugging module
is based on explanation regularization (ER) which
regularizes model to produce rationales that align
to human rationales (Zaidan and Eisner, 2008; Ross
et al., 2017; Liu and Avci, 2019a; Ghaeini et al.,
2019; Kennedy et al., 2020a; Rieger et al., 2020;
Lin et al., 2020; Huang et al., 2021; Joshi et al.,
2022). Existing works require the human to an-
notate rationales for each training instance or ap-
ply task-level human priors (e.g., task-specific lexi-
cons) across all training instances before training.
Despite its effectiveness, the regularized model
may not be fully free of hidden biased patterns. To
catch all the hidden biased patterns, our framework
asks the human to provide binary feedback (i.e.,
click to add or remove) given the current model
explanations and use them to regularize the model.
Here we ask the human to provide feedback to the
model in order to output the “correct prediction”.

For the instance explanation, as shown in Fig-
ure 5, the trained model M generates rationales
ϕp(x) = [ϕp(w1), ϕ

p(w2), . . . , ϕ
p(wn)], where

ϕp(wi) denotes the importance score of i-th token

USER

Model Explanation

0.38 0.75 0.93 0.42 0.41 0.65 0.94 0.77 0.95

All are terrorists and need to from

Importance Score ∅𝒑(𝒘)

Regularized Score 𝒕𝒑(𝒘)

Label c : Hate

Pred p : Hate

Hey Model, you should not focus on this word!

muslims be deported this country

0.51 0.950.58

0.38 0 0.93 0.42 0.41 0.65 0.94 0.77 0.950.51 0.950.58

Figure 5: Instance Explanation-based Model Debug-
ging. Trained model generates explanations in a form of
word importance score ϕp(w) towards prediction label
p. User selects words to add or remove based on ϕp(w).
The regularization score tp(w) for the selected words to
be removed are 0 while selected words to add are 1.

USER

0.38 0.75 0.93All are terrorists

Label c : Hate

Hey Model, “muslims” is an 
unimportant word for prediction

muslims 0.51

are terrorists

Label c : Not Hate

muslims not

Model Explanation

Input

Pred p : Hate

Pred p : Hate

Importance Score ∅𝒑(𝒘)

0.87 0.52 0.910.59

0.38 0 0.930.51

Pred p : Hate

Pred p : Hate

Regularized Score 𝒕𝒑(𝒘)

0 0.52 0.910.59

Figure 6: Task Explanation-based Model Debugging.
Trained model generates explanations in a form of word
importance score ϕp(w) towards prediction label p. As
user selects a word to ignore for prediction, the regu-
larization score tp(w) for the selected word in all the
examples that contain that word becomes 0.

in the sentence x towards model predicted label
p. As the user selects a word (muslims) that is
spuriously correlated with the correct prediction
p (hate), the regularized score tp(wi) where i is a
user-selected word index (w2 = muslims) becomes
0 (See Figure 5). For the task explanation, we
aggregate words based on its score averaged by
the word importance score of examples containing
that word, and present them in a descending order.
When the user clicks a word w (muslims) to de-
crease its importance, then regularized score tp(w)
where w is user-selected word (w = muslims) for
all the examples become 0 (See Figure 6).

After the click process, the user can start the
debugging process based on the examples labeled
so far. Here, the learning objective for re-training
the modelM is L = Ltask + LER, where Ltask is
a cross-entropy loss for traditional sequence clas-
sification tasks and LER is an explanation regular-
ization loss which minimizes the distance between
ϕp(w) and tp(wi) (Joshi et al., 2022). In this frame-
work, we support two different regularization loss:

267



Mean Squared Error (MSE) (Liu and Avci, 2019b;
Kennedy et al., 2020b; Ross et al., 2017), Mean
Absolute Error (MAE) (Rieger et al., 2020).

4 Implementation Details

To start XMD , users should input the trained
model following Hugging Face model struc-
ture (Wolf et al., 2020). After users input the
train data and the model, our framework uses Cap-
tum (Kokhlikyan et al., 2020) to generate expla-
nation. For visualizing the explanation and cap-
turing the human feedback, we implement UI us-
ing Vue.js 2. Here, we re-use UI components
from LEAN-LIFE, an explanation-based annota-
tion framework (Lee et al., 2020), for capturing
human feedback. To train the model with ER, we
use PyTorch (Paszke et al., 2019) and Hugging-
face (Wolf et al., 2020).

5 Experiments

We conduct extensive experiments investigating
how our debugging process affects the performance
on in-distributed (ID) and out-of-distribution
(OOD) data, and the model explanation. Here, we
present experimental results on sentiment analysis
for the instance explanation and hate speech detec-
tion for the task explanation. For base model, we
use BigBird-Base (Zaheer et al., 2020).

Tasks and Datasets For sentiment analysis, we
exploit SST (Socher et al., 2013) as the ID
dataset, and Yelp (restaurant reviews) (Zhang
et al., 2015), Amazon (product reviews) (McAuley
and Leskovec, 2013) and Movies (movie reviews)
(Zaidan and Eisner, 2008; DeYoung et al., 2019)
as OOD datasets. To simulate human feedback
for the instance explanation, we leverage ground
truth rationales for SST (Carton et al., 2020) as
human feedback. For hate speech detection, we
use STF (de Gibert et al., 2018) as the ID dataset,
and HatEval (Barbieri et al., 2020), Gab Hate Cor-
pus (GHC) (Kennedy et al., 2018) and Latent Ha-
tred (ElSherief et al., 2021) for OOD datasets. To
simulate human feedback for the task explanations,
we leverage group identifiers (e.g., black, mus-
lims) (Kennedy et al., 2020b) as words that need to
be discarded for determining whether the instance
is hate or not.

ID/OOD Performance Table 1 shows the perfor-
mance on ID and OOD when regularize on correct

2https://vuejs.org/

Regularize ER Loss
Sentiment Analysis

In-distribution Out-of-Distribution

SST Amazon Yelp Movies

None None 93.4 89.1 89.0 82.0

Correct MSE 94.7 88.4 91.8 94.5
MAE 94.0 92.3 94.4 94.0

Table 1: Instance Explanation ID/OOD Performance
(Accuracy). Best models are bold and second best ones
are underlined within each metric.

Regularize ER Loss
Hate Speech Analysis

In-distribution Out-of-Distribution

STF HatEval GHC Latent

None None 89.5 88.2 64.5 67.2

Correct MSE 89.2 90.1 62.3 67.9
MAE 89.1 90.1 59.3 64.9

Incorrect MSE 88.9 86.3 67.9 70.3
MAE 89.3 88.8 64.2 67.6

ALL MSE 90.0 88.4 63.8 67.0
MAE 89.7 86.9 66.5 70.2

Table 2: Task Explanation ID/OOD Performance (Ac-
curacy). Best models are bold and second best ones are
underlined within each metric.

predictions using its instance explanation. We see
that our framework helps model to not only do
much better on ID data, but also generalize well to
OOD data. For task explanation, we present per-
formance by regularizing on correct and incorrect
prediction and all the instances regardless of predic-
tion. Table 2 presents the performance with remove
operations for task explanations (i.e., group identi-
fiers) for incorrect predictions, correct predictions,
and for all instances, respectively. We observe that
our framework helps model not to focus on the
words that should not be conditioned on any label
and lead to performance enhancement on both ID
and OOD data.

Efficiency To quantify the advantage that
XMD provides, we compare the time taken to
annotate instances using XMD versus traditional
labelling for instance explanations. While XMD
requires humans to interact with a trained model
and decrease or increase importance scores of
words, traditional labelling is not model-in-the-
loop in nature, and requires users to directly an-
notate binary importance scores to words in the in-
stance (DeYoung et al., 2019; Carton et al., 2020).
We ask two graduate students to annotate 50 in-
stances, using the traditional and the XMD la-
belling methods. For both of these labelling set-
tings, we ensure that there is no overlap between
the instances, so as to avoid familiarity and record
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Figure 7: Time Efficiency: This simulation assumes two annotators annotating instances in parallel with a strict
time budget, using the traditional labelling (∼ 110s/instance) or XMD labelling (∼ 60s/instance) methods.

the time taken to annotate each instances. Upon ag-
gregating across all instances and both annotators,
it is found that one instance takes ∼ 60 seconds
and∼ 110 seconds to be annotated using the frame-
work and the traditional labelling method respec-
tively. Using this time estimate, we simulate the
time-efficiency of these two labelling methods with
varying amounts of time budgets for annotations.
Figure 7 presents our results for this experiment.
We note that although both labelling methods out-
performs the baseline of no explanation annotation,
using XMD is particularly helpful when the time
budget given is limited (< 1 hour), especially in the
OOD setting (Amazon, Yelp, Movies datasets).

6 Related Work

Spurious Bias Mitigation Recent studies have
explored mitigating spurious biases in NLP mod-
els. One of the research lines is a dataset debiasing
such as adversarial filtering (Zellers et al., 2018;
Le Bras et al., 2020) or data augmentation using
adversarial data (Jia and Liang, 2017) and coun-
terfactual data (Kaushik et al., 2020). However,
creating such datapoints are challenging since they
require an exhaustive understanding of the precon-
ceived notions that may cause such spurious biases
and the collecting cost is expensive. Another line
of research is robust learning techniques such as
instance reweighting (Schuster et al., 2019), con-
fidence regularization (Utama et al., 2020), and
model ensembling (He et al., 2019; Mahabadi and
Henderson, 2019; Clark et al., 2019).

Explanation-Based Model Debugging Many
works have explored explanation-based debugging
of NLP models, mainly differing in how model
behavior is explained, how HITL feedback is pro-
vided, and how the model is updated (Lertvit-
tayakumjorn and Toni, 2021; Hartmann and Son-
ntag, 2022; Balkir et al., 2022). Model behav-
ior can be explained using instance (Idahl et al.,
2021; Koh and Liang, 2017; Ribeiro et al., 2016)
or task (Lertvittayakumjorn et al., 2020; Ribeiro

et al., 2018) explanations, typically via feature im-
portance scores. HITL feedback can be provided
by modifying the explanation’s feature importance
scores (Kulesza et al., 2009, 2015; Zylberajch et al.,
2021) or deciding the relevance of high-scoring fea-
tures (Lu et al., 2022; Kulesza et al., 2010; Ribeiro
et al., 2016; Teso and Kersting, 2019). The model
can be updated by directly adjusting the model pa-
rameters (Kulesza et al., 2009, 2015; Smith-Renner
et al., 2020), improving the training data (Koh and
Liang, 2017; Ribeiro et al., 2016; Teso and Kerst-
ing, 2019), or influencing the training process (Yao
et al., 2021; Cho et al., 2019; Stumpf et al., 2009).
In particular, explanation regularization (ER) influ-
ences the training process so that the model’s expla-
nations align with human explanations (Joshi et al.,
2022; Ross et al., 2017; Kennedy et al., 2020a;
Rieger et al., 2020; Liu and Avci, 2019a; Chan
et al., 2022).

Our XMD system is agnostic to the choice
of explanation method or HITL feedback type,
while updating the model via ER. Compared to
prior works, XMD gives users more control over
the interactive model debugging process. Given
either global or local explanations, users can flexi-
bly provide various forms of feedback via an intu-
itive, web-based UI. After receiving user feedback,
XMD automatically updates the model in real
time. The debugged model can then be downloaded
and imported into real-world applications via Hug-
ging Face (Wolf et al., 2020).

7 Conclusion

In this paper, we propose an open-source and web-
based explanation-based NLP Model Debugging
framework XMD that allows user to provide var-
ious forms of feedback on model explanation. This
debugging process guides the model to make pre-
dictions with the correct reason and lead to sig-
nificant improvement on model generalizability.
We hope that XMD will make it easier for re-
searchers and practitioners to catch spurious corre-
lations in the model and debug them efficiently.
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Abstract

The scale of large pre-trained models (PTMs)
poses significant challenges in adapting to
downstream tasks due to the high optimization
overhead and storage costs associated with full-
parameter fine-tuning. To address this, many
studies explore parameter-efficient tuning meth-
ods, also framed as “delta tuning” in Ding
et al. (2022), which updates only a small sub-
set of parameters, known as “delta modules”,
while keeping the backbone model’s parame-
ters fixed. However, the practicality and flex-
ibility of delta tuning have been limited due
to existing implementations that directly mod-
ify the code of the backbone PTMs and hard-
code specific delta tuning methods for each
PTM. In this paper, we present OpenDelta 1,
an open-source library that overcomes these
limitations by providing a plug-and-play imple-
mentation of various delta tuning methods. Our
novel techniques eliminate the need to modify
the backbone PTMs’ code, making OpenDelta
compatible with different, even novel PTMs.
OpenDelta is designed to be simple, modular,
and extensible, providing a comprehensive plat-
form for researchers and practitioners to adapt
large PTMs efficiently.

1 Introduction

With the rapid development of self-supervised
learning methods in the realm of deep learning,
especially pre-training techniques (Peters et al.,
2018; Devlin et al., 2018; Radford et al., 2018),
foundational pre-trained models (Bommasani et al.,
2021) (PTMs) have become a common cornerstone
for numerous downstream tasks. And as a result,
research into large-scale PTMs has flourished.

Nevertheless, the ever-expanding scale of PTMs
also poses substantial obstacles in practical use.
In traditional model adaptation, all the parameters

∗ corresponding author liuzy@tsinghua.edu.cn
1GitHub Repo https://github.com/thunlp/

OpenDelta, Demo Video https://rb.gy/qjvpav.

of the PTMs are optimized for each downstream
task, which becomes increasingly impractical as
the model scales. Firstly, optimizing all the param-
eters incurs prohibitive computing and memory
consumption; secondly, storing a fine-tuned model
instance for each task or experiment significantly
amplifies the storage cost.

To address these challenges, researchers have
developed parameter-efficient methods for model
adaptation. Such methods keep the parameters of
the main model fixed and update only a small sub-
set of parameters during adaptation. This approach,
known as “delta tuning”, is described and surveyed
in Ding et al. (2022). Different delta tuning
methods have been proposed, with varying types
and positions of “delta modules”. For example,
Adapter module (Houlsby et al., 2019) is composed
of two low-dimensional linear projection layers
with an activation function, while LoRA (Hu et al.,
2021) module introduces a low-rank decomposi-
tion for the weight matrix. BitFit (Zaken et al.,
2021), on the other hand, specifies the bias vector
in PTMs as the delta modules. The delta module
can be applied to different positions (Rücklé et al.,
2020; He et al., 2022; Hu et al., 2022) to achieve
either better performance or efficiency.

Theoretically, incorporating most delta tuning
methods would necessitate restructuring the
backbone model, a requirement conventionally
achieved through direct code manipulation. While
this method may seem simple, it carries several
disadvantages. Primarily, it lacks flexibility, as
delta modules can theoretically be implemented in
various positions, making modifications to each po-
sition in the backbone model code a cumbersome
task. Additionally, this method is not scalable, as
accommodating delta tuning for newly introduced
PTMs requires fresh code modifications, posing
a challenge for researchers and engineers.

In this paper, we present a novel approach to
implement delta tuning methods. Our approach
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modifies the backbone model’s architecture after it
is loaded into the memory. We propose four essen-
tial techniques, namely named-based addressing,
dynamic tensor re-routing, runtime initialization,
and a visualization system. Using these key
techniques, we build OpenDelta, an open-source
toolkit for delta tuning without modifying the
backbone model code. OpenDelta has several key
features. Firstly, it is simple to use. Migrating
from existing full-parameter training to delta
tuning requires as few as three lines of code. For
beginners or engineers, we also support automatic
delta model construction. Secondly, it is modular,
with delta modules implemented as independent
sub-modules that can be attached to or detached
from the backbone models. This feature allows
different delta modules to coexist and cooperate in
the same backbone model and serves multiple tasks
flexibly. Thirdly, OpenDelta is highly extensible,
supporting pre-trained models in a wide range of
frameworks, including both official implementa-
tions from the Huggingface Library (Wolf et al.,
2019) and customized PTMs. It can potentially
be used with newly emerged PTMs and integrated
with other PTMs’ frameworks for efficient training,
such as the parallel training framework.

2 Related Work

Our work is related to delta tuning, more specif-
ically, the implementation of delta tuning methods.

Delta Tuning. Delta tuning refers to the
parameter-efficient method for tuning a large PTM.
Different delta tuning methods (Houlsby et al.,
2019; Zaken et al., 2021; Li and Liang, 2021; Hu
et al., 2021; Mahabadi et al., 2021; Sung et al.,
2022) differ in both the architecture of the delta
module and the positions that the delta modules are
integrated into the backbone model. Various works
have attempted to connect these disparate delta
tuning approaches under a unified perspective (He
et al., 2022; Ding et al., 2022; Hu et al., 2022). In
our work, we draw inspiration from this unified
viewpoint and aim to devise a framework that
can support different delta tuning methods within
the same pipeline. Our library includes the most
popular delta tuning methods and is amenable to
new methods as they emerge.

Implementation of Delta tuning. Previous im-
plementation frameworks for delta tuning relied
on the code modification approach. For example,
AdapterHub (Pfeiffer et al., 2020) copies a specific

version of Huggingface transformers Library (Wolf
et al., 2019) and implement several popular delta
tuning methods for a set of pre-defined PTMs.
LoRA (Hu et al., 2021) implements a limited li-
brary of LoRA linear layers. These methods are
model-specific and involve hard-coded implemen-
tations, which restrict their usability across various
PTMs. In contrast, OpenDelta represents a signif-
icant advancement as it requires no code changes
to the backbone model, making it highly versatile
and broadly applicable.

3 Motivation

In this section, we begin by presenting the unified
formulation of delta tuning. Then we underscore
a set of crucial characteristics of delta tuning,
focusing on the implementation aspect, which
emphasizes the pressing need for a novel toolkit
to aid in the research and advancement of delta
tuning approaches.

3.1 Unified Formulation of Delta Tuning
Although delta tuning is principally not limited to
a specific type of neural networks, currently al-
most all the delta tuning methods are applied to
PTMs (Devlin et al., 2019; Liu et al., 2019; Raffel
et al., 2019; Brown et al., 2020) with the Transform-
ers architecture (Vaswani et al., 2017). A PTMM
parameterized by Θ is composed of multiple sub-
modules m, where the hidden representations h
are passed through the sub-module to produce new
hidden representation h′, i.e., h′ = m(h).

The adaptation of a PTM M to downstream
tasks is to update the original parameters Θ into
Θ′. In full-parameter fine-tuning, all parameters
can be updated, i.e., potentially, |∆Θ| = |Θ|. In
contrast, delta tuning only updates a small fraction
of parameters, i.e., |∆Θ| ≪ |Θ|.

Despite the drastic difference in the specific form
of the delta tuning methods, He et al. (2022) unify
them into special forms of modifications ∆h to the
hidden representation h. The ∆h is generated by
passing a hidden state hδ to a delta module mδ.
Formally,

h← h+∆h = h+mδ(hδ), (1)

where← denotes a replacement of the original h,
and hδ can be the same as or different to h.

3.2 Key Features for Delta Tuning
Several key features of delta tuning methods can
be observed from Eq.(1).
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Figure 1: The overall framework of OpenDelta. The construction of delta object happens after the backbone model
is loaded.

Tensor Re-routing. The first feature of delta
tuning is the ability to redirect the flow of hidden
states. In a pre-trained model, the flow of hidden
states forms a static graph, with the hidden states
serving as nodes and sub-modules acting as trans-
formations on the edges As shown in Eq.(1), the
introduction of the edge transformation mδ redi-
rects node hδ and injects it into another node h,
creating a new flow of hidden states that is not
present in the original model architecture. The im-
plementation of OpenDelta should achieve such
tensor re-routing without hard-coding them.

Flexibility. Eq.(1) allows for the input hidden
states and output hidden states to be located at any
position in the backbone modelM. For example,
AdapterDrop (Rücklé et al., 2021) observes that
only applying delta modules to the upper half of
Transformer layers yields better results than the
lower half. The flexibility of applied positions pro-
vides remarkable opportunities to explore the po-
tential structure of delta modules (Hu et al., 2022).
However, it also presents a challenge for the im-
plementation to be able to achieve flexibility in
practice that matches the theoretical framework.

Compositionality. Different delta tuning meth-
ods can co-exist or even be combined in the same
backbone model (Hu et al., 2022), potentially boost-
ing performance or supporting multitask learn-
ing (Pfeiffer et al., 2021). Thus, it is crucial to
enable easy and independent implementation of
each delta tuning method, while also allowing for
the flexible composition of multiple modules.

Dynamism. It is common for the backbone PTM
to serve as a central model for multiple tasks in
delta tuning. To serve a specific task, delta mod-
ules are attached to the backbone model, creating a

task-specific expert. When the delta modules are
detached, the backbone models revert back to their
original function as general language models. This
dynamic nature of delta tuning-based task adapta-
tion should be incorporated into OpenDelta.

4 OpenDelta

In light of the aforementioned key features of delta
tuning, we present OpenDelta. We will begin by
presenting an overview of OpenDelta. Following
that, we will delve into the key implementations
of this framework.

4.1 Framework

To perform delta tuning, two prerequisites are
required: a pre-trained language model M and
the “modified modules”, which are a user-specified
list of sub-modules mi to which the delta modules
should be applied. Our target is to construct a delta
object. Our objective is to create a delta object,
which is a collection of delta modules typically
located at various positions withinM and serves
as a whole to adapt the PTM to downstream
tasks. We follow three steps to create a delta
object. Firstly, we use name-based addressing
to obtain the pointers to the modified modules.
Secondly, we construct a delta object comprising
uninitialized delta modules. Thirdly, we modify
the route of tensors in the modified modules
into the delta modules using a dynamic tensor
re-routing technique. After the updated route of
the hidden state is established, we perform runtime
initialization to initialize the delta object.

After the delta object is constructed, we attach
it to the backbone model. Then, we provide a
simple functional interface to turn off the gradient
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Method Formulation Default Positions Route Runtime Initialization

LoRA mδ(hin) = hinAB Query, Value Eq.(4) N
Adapter mδ(hout) = σ(houtW1)W2 ATTN, FFN Eq.(3) Y

Bitfit mδ(hout) = b ATTN, FFN, LayerNorm Eq.(3) N
Prefix Tuning mδ(hout) = [MLP(p);hout] Key, Value Eq.(3) Y

Table 1: Delta tuning methods and their characteristics. Default positions refer to the positions that the delta modules
are attached to when no specific sub-modules are designated. A,B,W1,W2 are weight matrices, b is the bias
vector. MLP(·) is a multi-layer perception network. [·; ·] denotes the concatenation of tensors. σ is the activation
function. Runtime Initialization shows whether the implementation uses this technique in OpenDelta.

computation in the backbone models and only
compute the gradient of parameters in the delta
object. After the training is complete, we provide
a simple interface for saving only the delta
objects, which significantly reduces the storage
requirements for the backbone model.

The overall framework of OpenDelta is shown in
Figure 1. Next, we introduce the key implementa-
tions that support the construction of delta objects.

4.2 Key Implementations

The above framework is achieved by four key im-
plementations, i.e., name-based addressing, dy-
namic tensor re-routing, runtime initialization, and
visualization system.

Name-based Addressing. Firstly, we need to
obtain a pointer to the desired sub-modules which
are applied with the delta modules. In practice,
we can effectively retrieve the pointer by using the
name of the sub-module. Since the sub-modules
are organized in a tree structure, we perform a
depth-first search to find the sub-modules that
match the provided name. This search results in a
full path consisting of all the names from the root
to the matched sub-module, accurately matching
the sub-module. However, directly writing the full
path to the sub-modules can be impractical, so we
design several simplifications to make addressing
easier and more human-readable 2. One such sim-
plification involves taking advantage of the repet-
itiveness of transformer layers, which many delta
tuning methods address by adding delta modules
to the same type of sub-modules in each layer. For
example, when users specify attention, they
likely intend to apply delta modules to the attention
sub-modules in all transformer layers. To address
this need, we provide a tail-matching mechanism
that automatically matches the sub-modules based
on their names. For more complex configurations

2https://opendelta.readthedocs.io/en/
latest/notes/namebasedaddr.html

of positions, we allow matching based on regu-
lar expressions and web-based selection using our
custom-designed web interface.

Dynamic Tensor Re-routing. A fundamental
distinction that sets OpenDelta apart from other
implementations is its ability to add delta modules
without requiring any modifications to the code of
the backbone modules. This feature necessitates a
dynamic rerouting of tensors through the delta mod-
ules and back into the backbone model. To achieve
this rerouting, we wrap the original forward func-
tion of a sub-module with a wrapper function and
replace the original forward function with the wrap-
per function. To ensure seamless replacement, we
utilize a decorator to inherit the original function’s
attributes, including the I/O, doc string, etc. Within
the wrapped function, we implement three distinct
routes of the hidden states, taking into account the
order of the original sub-module and the delta mod-
ule. The first route utilizes the input hidden state
hin of mi as both the modification target and the
input to the delta module. We pass it through the
delta module to get the output mδ(hin), and merge
it to hin. Formally,

hin ← hin +mδ(hin). (2)

The second route employs the output hidden state
hout of mi as the modification target:

hout ← hout +mδ(hout). (3)

The third route leverages the input hidden state hin
as the input to the delta module, and sets the output
hidden state hout as the modification target:

hout ← hout +mδ(hin). (4)

While these three routes do not necessarily
encompass all possible relationships between the
delta module and the backbone model, they are
sufficient to support most popular delta tuning
methods (as illustrated in Table 1). However, we
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1 model = AutoModel.from_pretrained("bert-base-cased")
2

3 + from bigmodelvis import Visualization
4 + Visualization(model).structure_graph()
5 + from opendelta import LoraModel
6 + delta_model = LoraModel(backbone_model=model, modified_modules=["output.dense"

, "query"])
7 + delta_model.freeze_module(exclude=["deltas", "pooler"], set_state_dict=True)
8 + Visualization(model).structure_graph()
9

10 trainer.train()

Figure 2: An example of basic usage of OpenDelta. ‘+’ sign indicates the additional code needed to enable delta
tuning. Note that the visualization can be optional if you are familiar with the backbone model.

remain open to the possibility of incorporating
additional routes as needed.

Runtime Initialization. To ensure that weight
matrices in the delta module match the hidden
states in terms of shape and dimension, we must
account for hidden states whose shapes are not
specified in the model configuration. In traditional
implementations, this requires manually examining
the code of the backbone model. However,
OpenDelta automates this process by passing
a pseudo input through the backbone model,
allowing the shapes of the hidden states to be
automatically determined as they propagate from
the input to the output.

Visualization System. As delta tuning provides
flexibility and dynamism, it is essential to ensure
the correct construction of delta objects by
verifying that delta modules are added as specified.
However, direct printing of large pre-trained
models results in massive outputs. To address this,
we provide a visualization system that leverages
repetition in transformer architecture. Specifically,
we collapse the repetitive layers and neatly print
the parameters’ information. With the addition
of delta modules to the backbone model, users
can easily observe the changes made in the model
through visualization. An example of visualization
can be seen in Figure 3. As the visualization
system is useful beyond delta tuning, it has been
separated into an independent package named
“bigmodelvis” 3.

a

5 Usage

In this section, we provide the use cases of Open-
Delta which demonstrate the three characteristics
of OpenDelta, i.e., simplicity, modularity, and ex-
tensibility.

3https://pypi.org/project/bigmodelvis/

Figure 3: The visualization of the backbone model’s
status after the LoRA modules are attached.

5.1 Simplicity

Migrating from Fine-tuning. To facilitate the mi-
gration from existing full-parameter fine-tuning to
delta tuning, only a few lines of code modifications
are required, as exemplified in Figure 2. Initially, in
the traditional full-parameter fine-tuning, the PTM
is loaded from external libraries, such as Hugging-
face Transformers (Line 1), and train the model
(Line 10). To introduce delta tuning, line 3-8 are
added and executed. To begin with, an optional
step is to visualize the backbone model to iden-
tify the target “modified_modules”. Then,
a delta object, such as LoRA, is created and at-
tached to the backbone model. Subsequently, the
model parameters, excluding the delta modules
and the randomly initialized classification head,
are frozen. The “set_state_dict=True” pa-
rameter is employed to remove the non-trainable
parameters from the model checkpoint. Lastly, the
sub-modules of the backbone are visualized to ver-
ify the successful creation and attachment of the
delta modules. An example of the visualization
results is depicted in Figure 3.

AutoDelta Mechanism. The implementation
of OpenDelta supports highly intricate designs of
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1 def multi_task(delta_model, input_text):
2 global model # We use the same backbone model across tasks.
3 delta_model.attach()
4 print(tokenizer.decode(model.generate(input_ids=tokenize(input_text))))
5 delta_model.detach()
6 multi_task("What the commmon career of Newton ad einstein?", spelling_delta)
7 # >>> "What was the common career of Newton and Einstein?"
8 multi_task("What was the common career of Newton and Einstein?", topic_delta)
9 # >>> "The question’s topic is science."

10 multi_task("What was the common career of Newton and Einstein?", question_delta
)

11 # >>> "Physicists."

Figure 4: Multitask learning via OpenDelta. Due to space limitations, we retain only the core code. For detailed
code, please refer to the OpenDelta documentation. Strings after “> > >” demonstrate the output of the model.

delta modules, catering to diverse experimental re-
quirements. Nonetheless, it is desirable to provide
a default configuration of delta modules for practi-
tioners who may not be well-versed in the mecha-
nism of delta tuning. However, the naming conven-
tions of sub-modules differ significantly among var-
ious backbone models, despite their shared trans-
former architecture. To tackle this issue, we es-
tablish a common name convention and employ
a mapping technique to map the model-specific
name convention to the common one 4. This en-
ables the AutoDelta mechanism to be supported
seamlessly. Figure 5 exemplifies that, once the
type of the delta tuning method is specified, the
delta modules will be attached to the backbone
model in default positions and with appropriate
hyper-parameters. We have listed the default con-
figurations of each delta tuning method in Table 1.
Furthermore, the AutoDelta mechanism facilitates
the loading of fine-tuned checkpoints of delta mod-
ules, without explicit knowledge of the type and
hyper-parameters of the delta modules.

1 from opendelta import AutoDeltaModel,
AutoDeltaConfig

2 # construct a new delta using the
default configuration.

3 delta_config = AutoDeltaConfig.
from_dict({"delta_type":"lora"})

4 delta_model = AutoDeltaModel.
from_config(delta_config,
backbone_model)

5 # load the delta checkpoint.
6 delta = AutoDeltaModel.from_finetuned(

"save_dir", backbone_model)

Figure 5: An example of using AutoDelta mechanism.

5.2 Modularity

The second notable attribute of OpenDelta is mod-
ularity. It affords the capacity to independently

4https://opendelta.readthedocs.io/en/
latest/notes/unifyname.html

attach and detach each delta object from the back-
bone model, thereby providing the possibility of
multi-task serving with a single backbone model.
Specifically, suppose data pertaining to various
tasks are presented sequentially, wherein each data
triggers the attachment of a corresponding delta
object to the backbone model for processing, and
once completed, the delta object is detached. A
case that illustrates this functionality is illustrated
in Figure 4, where three tasks are process sequen-
tially using a single backbone model.

5.3 Extensibility
Delta tuning is one of the important techniques that
enables the use of large PTMs, and as such, we
make efforts to ensure its compatibility with other
techniques such as model acceleration and multi-
GPU training. Specifically, we currently provide
support for the BMTrain framework 5 with ZeRO-3
optimization enabled (Rajbhandari et al., 2020). It
is also worth noting that we plan to expand our sup-
port for additional model-acceleration frameworks
in the future.

6 Conclusion

In summary, OpenDelta is a plug-and-play library
for delta tuning, offering an intuitive and modular
solution to adapt large PTMs using delta tuning
without the need for code modifications. The li-
brary’s user-friendliness, flexibility, and extensi-
bility make it accessible and useful for both re-
searchers and engineers. In the future, we plan to
continuously update the library with new delta tun-
ing methods and ensure its compatibility with the
latest versions of other major PTMs libraries.

5https://github.com/OpenBMB/BMTrain
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Limitations

Although we believe that OpenDelta is simple, easy
to use, flexible, and extensible since it does not re-
quire code modification, it is still limited by many
implementation details. For example, some delta
tuning methods, such as Prefix Tuning, are limited
by theory and can only be used in Attention lay-
ers, making them unable to be arbitrarily specified.
This is also why we did not use it as an exam-
ple in this paper. On the other hand, some base
models differ significantly from mainstream imple-
mentations, making it difficult to use the AutoDelta
mechanism. Therefore, we maintain a list of tested
models that can use AutoDelta, while other models
may still use OpenDelta in a customized manner.
Thirdly, while theoretically compatible with accel-
eration frameworks other than BMTrain, such as
Deepspeed, there are some implementation details
that currently limit the compatibility of some func-
tions. We will do our best to communicate with the
maintainer of those packages to increase compati-
bility.

Ethical Consideration

In the writing process of this paper, ChatGPT (Ope-
nAI, 2022) was utilized for revision and refinement.
However, the authors can guarantee that each sen-
tence in this paper has been thoroughly reviewed
and checked to accurately convey the authors’ in-
tended meaning.
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Abstract

Information extraction systems often produce
hundreds to thousands of strings on a specific
topic. We present a method that facilitates
better consumption of these strings, in an ex-
ploratory setting in which a user wants to both
get a broad overview of what’s available, and a
chance to dive deeper on some aspects. The sys-
tem works by grouping similar items together,
and arranging the remaining items into a hierar-
chical navigable DAG structure. We apply the
method to medical information extraction.

1 Introduction

We are dealing with the question of organising
and displaying a large collection of related textual
strings. The need arises, for example, in informa-
tion extraction or text mining applications, that ex-
tract strings from text. Consider a system that scans
the scientific literature and extracts possible causes
for a given medical condition. Such a system may
extract thousands of different strings, some of them
relate to each other in various ways,1 and some are
distinct. Users consume the list in an exploratory
mode (Agarwal and Sahu, 2021)(White and Roth,
2008), in which they do not have a clear picture of
what they are looking for, and would like to get an
overview of the different facets in the results, as
well as to dig deeper into some of them.

For example, distinct strings extracted as causes
for sciatica include “herniated disc”, “herniated
disk”, “lumbar disk herniation” , “posterior in-
terverbal disc herniation” and “endometriosis”,
among hundreds of others. The user of this system
likes to go over the returned list to learn about pos-
sible causes, but going over hundreds to thousands
of results is mentally taxing, and we would like to
reduce this effort. In the current case, we would
certainly like to treat the first two items (herniated
disc and herniated disk) as equivalent and show

1Figure 1 lists the kinds of relations between strings.

them as one unified entry. But we would also like
to induce an additional hierarchy. For example, it
could be useful to separate all the herniated disc
related items (or even all the disc related items) in
one branch, and the endometriosis case in another.
This will allow the user to more efficiently get a
high level overview of the high-level represented
topics (disc herniation and endometriosis) and to
navigate the results and focus on the cases that in-
terest them in the context of the query (for example,
they may feel they know a lot about disc-related
causes, and choose to ignore this branch).

An additional complication is that the hierarchy
we are considering is often not a tree: a single
item may have two different parents, resulting in a
direct acyclic graph (DAG). For example, arguably
a condition like leg pain should be indexed both
under leg (together with other leg related items)
and under pain (together with pain related items).
The hierarchy structure is contextual, and depends
on the data: if there are not many other leg related
items, it may not be beneficial to introduce this
category into the hierarchy.

Additionally, note that some items in the hierar-
chy may not directly correspond to input strings:
first, for the “leg pain” example above, if the in-
put list does not include stand-alone leg or pain
items, we may still introduce them in our hierarchy.
We may also introduce additional abstraction, for
example we may want to group “heart disease”,
“ischemia”, “hypotension”, and “bleeding” under
“cardiovascular disease”.

In this work we introduce a system that takes
such a flat list of related strings, and arranges them
in a navigable DAG structure, allowing users to get
a high level overview as well as to navigate from
general topics or concepts to more specific content
by drilling down through the graph. Ideally, the
graph would allow the user to:
(1) get a comprehensive overview of the the various
facets reflected in the results;
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Figure 1: Kinds of possible relations between input strings

(2) quickly get an overview of main aspects in the
results;
(3) efficiently navigate the results, finding items in
the sub-graph in which they expect to find them.

At a high level, the system works by finding lex-
ically equivalent terms, arranging them in a DAG
structure reflecting the specificity relation between
terms, further merging equivalent nodes based on
a neural similarity model, add additional potential
intermediary hierarchy nodes based on taxonomic
information and other heuristics, and then pruning
it back into a smaller sub-DAG that contains all the
initial nodes (input strings) but only a subset of the
additional hierarchy nodes. Finally, we select the
top-k “entry points” to this graph: high level nodes
that span as many of the input nodes as possible.
This process is described in section §3. While the
DAG extended with potential hierarchies is very
permissive and contains a lot of potentially redun-
dant information, the DAG pruning stage aims to
ensure the final graph is as compact and informa-
tive as possible.

We focus on causes-for-medical-conditions
queries, and provide a demo in which a user can
select a medical condition, and browse its causes
in a compact DAG structure.

To evaluate the resulting DAGs, we perform au-
tomatic and manual evaluation. The automatic eval-
uation is based on measuring various graph metrics.
The human evaluation is performed by human do-
main experts. Our results show that the DAG struc-
ture is significantly more informative and effective

than a frequency-ranked flat list of results.

2 Requirements

As discussed in the introduction, our input is a list
of strings that reflect answers to a particular ques-
tion, as extracted for a large text collection (we
focus in this paper on the biomedical domain, and
more specifically in causes for medical conditions).
This list can be the output of an Open-IE system
(Fader et al., 2011; Stanovsky et al., 2015; Kolluru
et al., 2020), the results of running extractive QA
(Rajpurkar et al., 2016) with the same question over
many paragraphs, or extracted using an extractive
query in a system like SPIKE (Shlain et al., 2020;
Taub Tabib et al., 2020; Ravfogel et al., 2021). The
lists we consider typically contain from hundreds
to thousands of unique items. We identified a set of
relations that can hold between strings in our inputs,
which are summarized in Table 1. We would like
to arrange these items in a hierarchical structure
to facilitate exploration of the result list by a user,
and allow them to effectively consume the results.
Concretely, the user needs to:
a. not see redundant information.

b. be able to get a high-level overview of the vari-
ous answers that reflected from the results.

c. be able to get a quick access to the main an-
swers.

d. be able to dig-in into a specific phenomenon or
concept that is of interest to them.
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e. be able to locate concepts they suspect that exist.
This suggests a hierarchy that respects the fol-

lowing conditions:
Paraphrased spans should be combined into a sin-
gle group, and close-meaning spans should be com-
bined into the same group; Elaboration relations
should be expressed hierarchically; Co-mention
spans should be both descendants of the shared con-
cept; Taxonomic relations should (in some cases)
be descendants of the taxonomical parent.

Additionally, we would like each node in the
hierarchy to have relatively few children (to reduce
the need to scan irrelevant items), yet keep the hier-
archy relatively shallow (to save expansion clicks
if possible). The hierarchical structure should also
be informative: we should be able to guess from a
given node which kinds of items to expect to find
under it, and which kinds of items not to expect to
find under it. This means a single item should be
lockable in different ways, in case it can be cate-
gorized under different keys (we would sometimes
like “brain tumor” to be listed under brain and
sometimes under tumors).2

3 Method

Expanding the initial list. We assume that the
strings in the initial list are maximal, meaning that
the string captures the extracted noun-phrase in-
cluding all of its possible modifiers. We further
expand the list by considering also potential sub-
strings of each maximal string, reflecting different
granularities. For example, from the string “severe
pain in the lower right leg” we would extract “pain”,
“severe pain” , “severe pain in the leg”, “severe pain
in the lower right leg”, among others.3 We then con-
sider the union of the initial set of input strings and
the set of additional sub-strings. Different users
would be interested in different granularities de-
pending on their information need. We rely on
the DAG-pruning stage to properly organize these
strings and prune away non-informative ones in the
context of the entire set.

Initial grouping into equivalence sets. The in-
put of this stage is a set of strings (the union of the
input set and the extended set), and the output is a

2Arranging information as graphs to facilitate navigation
and exploration is, of course, not a novel concept. A notable
examples is entailment graphs (Kotlerman et al., 2015; Adler
et al., 2012).

3This is done using a rules-based algorithm that operated
on the parse tree, which extracted all the distinct modification
spans derived from the head token.

list of sets, such that the sets are distinct, and their
union covers the initial set. For example, after this
stage, the items “herniated disk”, “herniated disc”,
“disc herniation”, “herniation of the disc” will be
in the same equivalence set.

The grouping in this stage is inspired by (Gash-
teovski et al., 2017) and is based on considering
each string as a bag of lemmas, discarding stop
words, modal words, and quantity words, and con-
sidering items as equivalent if their bags are equiv-
alent. The lemma matching is relaxed, and allows,
beyond exact string match, also matches with small
edit distance and matches based on UMLS (Boden-
reider, 2004) and WordNet (Miller, 1992) spelling
variants and synonyms.

Initial DAG construction. We now take the list
of sets from the previous stage, and arrange them
into a DAG, where each set is a DAG node. We
add a directed edge between two nodes A and B if
B is more specific than A, and no other node C is
more specific than A and less specific than B.

The specificity relation at this stage is deter-
mined based on the bags of lemmas that were used
to create the equivalence sets: a set B is more spe-
cific than a set A if A and B are not equivalent and
the bag of B contains the bag of A.

Adding heads as nodes For all spans, we take
their head-word (either a single adjective or a single
noun) and add them as roots of the DAG. We then
add an additional root node above them, so that the
DAG has a single root. This handles the co-mention
relation.

Merging semantically equivalent graph nodes.
We now take the DAG and merge equivalent nodes,
as determined by a trained statistical model (we use
SAP-BERT (Liu et al., 2020))4. For example, this
stage will merge “administration of streptozotocin”
and “streptozotocin injection”. When merging two
graph nodes, we handle the corresponding edges in
the expected way (the children of the two individual
nodes become children of the merged node, and the
parents of the individual nodes become the parents
of the merged node).5

4We chose SAP-BERT for its entity-linking specialization,
and since it outperformed other models we tried, such as Sci-
Bert(Beltagy et al., 2019), in detecting semantic similarity for
our specific case.

5We perform this stage after the DAG construction and not
prior to it, as it makes the specificity relation between nodes
significantly harder to define. In the current order, we first
define specificity based on lexical containment, and then add
further merge the groups.

284



For a pair of graph nodes A and B, we encode
each string in A and in B into a vector using SAP-
BERT, and represent each node as the average vec-
tor of the strings within it. We go over the nodes in
the DAG in DFS order starting from the root nodes,
and for each node consider all of its children for po-
tential merging among them. We merge two nodes
if the cosine similarity score between their vectors
passes the threshold t1 = 0.9 and their merging
does not create a cycle. We then do another pass
and merge nodes to direct child nodes if their sim-
ilarity score is above t2 = 0.95, again avoiding
creating circles.

After this stage, we attempt to further merge
nodes based on the UMLS ontology (Bodenreider,
2004). Two nodes A and B are considered UMLS-
equivalent, if there is at least one string in node A
that is listed in UMLS as a synonym of at least one
string in node B. Such cases are merged.6

Adding taxonomic nodes. So far the relation-
ships between nodes in the DAG were solely based
on lexical relations. In order to enrich the graph, we
introduce additional nodes based on taxonomical
relations, which are not reliant on lexical informa-
tion. For instance, “heart disease”, “ischemia”, “hy-
potension”, and “bleeding” are under the broader
term “cardiovascular disease”. We add many nodes
here, relying on many of them to be pruned in the
next stage.

We map each node to the UMLS hierarchy, and
look for UMLS concepts that govern at least two
DAG nodes (“descendent DAG nodes”). These
are potential abstractions over graph nodes. For
each such UMLS concepts that is already part of
the DAG, it is connected by an edge to all its de-
scendant DAG nodes that do not already have a
path to them, if adding such an edge does not cre-
ate a cycle. For UMLS concepts that are not al-
ready in the DAG, they are added as new nodes
governing the descendant graph nodes. UMLS con-
cepts have multiple synonyms. When adding them
as nodes, we choose the synonym with the high-
est SAP-BERT cosine similarity to the descendent
DAG nodes this concept governs.

DAG Pruning. The DAG at this stage is quite
large and messy, containing both nodes contain-
ing input strings, as well as additional hierarchy
nodes based on linguistically motivated substrings
of the input strings, and on taxonomic relations.

6If this merging creates a cycle, this cycle is removed.

We prune it to create a smaller graph which is more
amenable to navigation. The smaller DAG should
contain all the nodes corresponding to input strings,
and an effective set of additional hierarchy nodes.
Some of the hierarchy nodes are more important
than others, as they provide a better differential
diagnosis among the answers. Our goal is to high-
light these and filter out the less important ones.
Operatively, we would like for each node in the
graph to have the minimal number of children, such
that all the input strings that were reachable from
it, remain reachable from it. This focuses on hi-
erarchy nodes that are shared among many input
concepts. We first prune graph edges according
to this criteria. This process result in nodes that
have a single child. Such nodes are removed, and
their children are attached to their parent.7 Select-
ing the minimal number of children according to
this criteria is NP-hard. As an alternative, we use
an approximation algorithm called the greedy set
cover algorithm (Johnson, 1973), which works by
selecting in each step the node with the highest
number of non-covered answers, covering them,
and proceeding. This helps in choosing the most
important concepts and with the highest differential
diagnosis.

Entry-point selection. Finally, we seek k nodes
that will serve as the “entry nodes” to the graph.
These should be k nodes that fulfill the following
criteria:
a. allow reaching as many input strings as possible.
b. the semantic affinity between a node and the
input string reachable by it, is high.

The users will initially see these nodes as well as
an additional “other” node, from which all the other
input strings can be reached. The entry node labels
provide an overview of the k main concepts in the
list, and allow the user to both get an overview of
the result as well as to drill down into parts that
interest them. Criteria (b) is important to ensure
that the user not only can reach the input string by
navigating from an entry point, but also that it will
expect to find this input string there.

This selection is done by a heuristic algorithm
which we adapted from the Greedy+ DAG-node-
selection algorithm in (Zhu et al., 2020). It first
assigns each node C with a score that combines the

7Selecting the smallest group of concepts at each hierarchy
level is important for user navigation, who quickly become
overwhelmed by too many nodes, making it difficult to orient
themselves within the DAG.
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Figure 2: Input-Output Example. See section §4.

number of the input nodes reachable from it, and
the semantic affinity (based on SAP-BERT cosine
similarity) of C to each of these reachable nodes. It
then iteratively adds the highest scoring candidate
C to the set of entry points, and adjusts the scores
of each remaining node N by subtracting from the
score of N the affinity scores between C and the
input nodes reachable from N. We do this until we
reach k entry points.

Visualization. We are now finally ready to show
the DAG to the user. For nodes that correspond to
multiple (semantic equivalent but lexically differ-
ent) input strings, we choose one of them as the
representative for display purposes.

4 Input-output Example

We demonstrate with a minified example. Given
the set of spans in Figure (2a), representing causes
of chest pain, Hierarchy Builder expands the set by
adding the spans "rib fracture" (this is a substring
of two existing spans) and "respiratory diseases" (a
new taxonomic node). Based on the expanded set
of spans in Figure (2b), Hierarchy builder identifies
synonymous spans and merges them into the con-
cepts. In Figure (2c) we see these concepts, where
each concept includes aliases in parenthesis where
applicable. Hierarchy Builder then places the en-
tries in a DAG based on a hierarchy of specificity,
as depicted in Figure (2d).

5 Experiments and Evaluation

Scope We focus on the medical domain and eval-
uate our system on etiologies (causes) of two medi-
cal symptoms (“jaundice” and “chest pain”). These
symptoms were chosen because their are common
and each contain many different etiologies men-
tioned in the literature.

The input lists for the system were the result of
running a set of 33 syntactic patterns over PubMed
abstracts, looking for patterns such as “COND due
to ___” or “patients with COND after ___”
where COND is either jaundice or chest pain. The
results were extracted using the SPIKE system
(Shlain et al., 2020; Taub Tabib et al., 2020) and
each matched head-word was expanded to the en-
tire syntactic subgraph below it. This resulted in
3389 overall extracted strings and 2623 unique
strings for jaundice and 2464 overall and 2037
unique for chest pain. After merging strings into
synonym sets as described in §3, we remain with
2227 concepts for jaundice and 1783 for chest pain.

For each of the symptoms there are established
and widely accepted lists of common etiologies,
which we rely on in our evaluation.8 We take 38
established etiologies for jaundice and 33 for chest

8We take the established etiologies for jaun-
dice from https://www.ncbi.nlm.nih.gov/
books/NBK544252/ and for chest pain from
https://www.webmd.com/pain-management/guide/
whats-causing-my-chest-pain.
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pain, and check their accessability in the flat list of
extracted symptoms, as well as in the hierarchical
DAG we create.

Coverage and Entry-point Selection For jaun-
dice, our input list contains 28 out of the 38 known
etiologies, and for chest pain 26/33. With k = 50,
25 of 28 concepts are reachable from an entry
point for jaundice and 21/26 for chest pain. With
k = 100 the numbers are 28/28 (jaundice) and
24/26 (chest pain).

Assessing the contribution of the different com-
ponents The different components in our algo-
rithm contribute by adding nodes, combining nodes,
adding edges, and removing edges. Table 1 de-
scribes the kind of contribution of each component
and quantifies its impact, for each of the two tested
conditions.

We now look at the case where we select 50
entry-point nodes, and focus on the effect on the
top-level nodes. We see that for Chest-pain, a total
of 20 of the 50 selected entry-points were not in
the original input, but were added by the various
components (12 from expanding the initial list, 5
from adding head words, and 3 from taxonomic
words). Similarly, for Jaundice, these components
added a total of 29 root nodes (out of the selected
50) that were not in the original input (17 from
expanding initial list, 5 from head words and 6
from taxonomic nodes).

The “Expanding the initial list” component plays
a significant role in shaping the DAG structure. In
Chest Pain, 161 out of 224 internal nodes originate
from the expanded list (146 from Expanding the ini-
tial list and 15 from co-mention). In Jaundice, 347
out of 423 internal nodes stem from the expanded
list (333 from Expanding the initial list and 14 from
co-mention). This highlights the substantial impact
of this component on the DAG’s structure.

The number of merges performed indicates the
usefulness of the employed merging methods.

Furthermore, the set cover pruning algorithm ef-
fectively reduces the number of edges in the DAG.

Qualitative Measures For jaundice, our final
DAG contains 2620 nodes overall and has a maxi-
mum depth of 11. With k = 50 The average num-
ber of leaves per entry point is 22.68 (min 0, max
600), and the average depth is 2.86 (min 0, max
9). Most importantly, each internal node has an
average of 9.12 children (min 1, max 56, variance
34.91), making them highly browsable.

For chest pain, the trends are overall similar: our
final DAG contains 2124 nodes overall and has a
maximum depth of 9. With k = 50 The average
number of leaves per entry point is 14.14 (min 1,
max 175), and the average depth is 2.8 (min 0,
max 7). Each internal node has an average of 4.94
children (min 1, max 53, variance 27.53).

Human evaluation. Our main evaluation centers
around the effort for an expert9 to locate the known
etiologies in the resulting DAG, compared to a flat
list sorted by frequency. For each of the etiologies,
we ask how many entries need to be considered
before finding the etiologies. For the flat list, this
means how many items are read when scanning the
list in order before reaching the etiology. For the
DAG, we count the number of clicks (expansions
of a node) starting from k = 50 entry points (a
quantity that aligns with a reasonable threshold of
entry nodes perceivable by a user) , while summing
also the number of items before the expanded node
in each level. Note that since we look for common
etiologies rather than rare ones, we would assume
a frequency-ranked list based on literature men-
tions would compare favorably in these measures.
Nonetheless, we see a clear benefit of the DAG. We
compare to conditions: an ideal condition where
the user knows exactly which nodes to expand (blue
in the graph), and a realistic scenario, in which the
user searches for the etiologies by expanding nodes
(gray in the graph).

We also perform another evaluation in which we
ask the experts to rank each path to an etiology
based on its quality, given the question “to what
extent is this a logical path to follow in order to
find the etiology”, on a scale of 1 (very bad) to 5
(very good).

Results Figure 3 shows the main results for the
two conditions. Despite the frequency-based rank-
ing, many of the etiologies appear relatively low in
the flat list, making them very hard to come by in
this condition (orange). On the other hand, when
considering the DAG, the vast majority of items a
are significantly easier to locate, requiring scanning
significantly fewer items. Only 3 items for jaundice
and 2 for chest pain were significantly harder to
locate in the DAG than in the flat list. In terms of
the quality of the DAG paths associated with each

9We use two experts, each evaluating a different condition.
The expert evaluating jaundice is an expert MD specializing
in children’s medicine. The expert evaluating chest pain is a
PhD in biology with 38 years of biomedical research.
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Component Contribution Chest-pain Jaundice
Expanding the initial list (for full DAG) Add nodes 504 893
Expanding the initial list (for DAG with
50 entry nodes)

Add nodes 158
(12 top level)

350
(17 top level)

Adding heads as nodes (Full DAG) Add nodes 457 379
Adding heads as nodes (50 entry nodes) Add nodes 20 (5 top level) 19 (6 top level)
Merging semantically equivalent nodes Merge nodes 93 (out of 2556) 266 (out of

3330)
UMLS merging of synonym nodes Merge nodes 62 (out of 2504) 99 (out of 3167)
UMLS taxonomic nodes (full DAG) Add nodes 113 169
UMLS taxonomic nodes (50 entry nodes) Add nodes 3 6
UMLS taxonomic edges Add edges 140 (5 top level) 153 (3 top level)
DAG Pruning Remove edges 2363 3209

Table 1: Quantifying the contribution of the different components.

Figure 3: Effort to reach a set of common etiology
items using our created DAG vs. a frequency ranked list.
X axes coordinates correspond to different etiologies
sorted by their frequency in the input list, and Y axes
corresponds to effort. Orange: frequency-ranked flat
list. Blue: DAG + oracle locating of items. Gray: DAG
+ human locating of items.

etiology, the jaundice annotator ranked 23 out of
25 as 5, 1 as a 2, and 1 as a 1. For chest pain, the
numbers are 19 out of 21 ranked as 5, 1 as 2, and
1 as 1. Overall, our hierarchy building algorithm
works well for the vast majority of the cases, and
offers significant benefits over the flat list.

6 Conclusions

We presented an automatic method to organize
large lists of extracted terms (here, of medical eti-
ologies) into a navigable, DAG-based hierarchy,
where the initial layer provides a good overview

of the different facets in the data, and each inter-
nal node is has relatively few items. The code
together with a video and an online demonstration
are available at https://github.com/itayair/
hierarchybuilder.

7 Limitations

While our method is aimed at organizing any flat-
list of extractions, we evaluated it here only on
the medical domain, only on a single kind of in-
formation need (etiologies), and only for common
conditions (jaundice and chest pain). More exten-
sive evaluation over additional conditions is needed
in order to establish general-purpose utility. How-
ever, we do find the system useful for navigating in
automatically-extracted etiology lists, and encour-
age the readers to experiment with the system also
on other conditions, to assess its utility.

There are also some candidates for improving
the method also in the biomedical domain, which
are not currently handled: (a) abstraction over sub-
strings. e.g., for the spans “administration of peni-
cillin”, “administration of aspirin”, “administra-
tion of augmentin”, it could be useful to introduce
an shared parent level of “administration of antibi-
otic/drug”. Our system can currently identify peni-
cillin, augmentin, aspirin as an antibiiotic/drug,
but cannot handle abstraction over sub-strings. (b)
Linking to UMLS currently relies on exact lexical
matches, and can be improved.

8 Ethical Considerations

We present a system for organizing large result lists
into a browsable hierarchy. In general, consuming
a hierarchy is more effective than consuming a very
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long list. However, hierarchies can hide items, es-
pecially if the items are misplaced in an unexpected
branch—which our system sometimes does (albeit
rarely). In situations where consuming the entire
information is crucial and the cost of missing an
item is prohibitive or dangerous, a flat list would
be the safer choice.
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Abstract

Recent years have seen impressive progress in
AI-assisted writing, yet the developments in
AI-assisted reading are lacking. We propose
inline commentary as a natural vehicle for AI-
based reading assistance, and present CARE:
the first open integrated platform for the study
of inline commentary and reading. CARE facil-
itates data collection for inline commentaries in
a commonplace collaborative reading environ-
ment, and provides a framework for enhancing
reading with NLP-based assistance, such as text
classification, generation or question answer-
ing. The extensible behavioral logging allows
unique insights into the reading and comment-
ing behavior, and flexible configuration makes
the platform easy to deploy in new scenarios.
To evaluate CARE in action, we apply the plat-
form in a user study dedicated to scholarly peer
review. CARE facilitates the data collection
and study of inline commentary in NLP, extrin-
sic evaluation of NLP assistance, and applica-
tion prototyping. We invite the community to
explore and build upon the open source imple-
mentation of CARE1.

1 Introduction

Individual and collaborative text work is at the
core of many human activities, including education,
business, and research. Yet, reading text is difficult
and takes considerable effort, especially for long
and domain specific texts that require expert knowl-
edge. While past years have seen great progress
in analyzing and generating text with the help of
AI – culminating in strong generative models like
GPT-3 (Brown et al., 2020) and ChatGPT (Ouyang
et al., 2022)2 – the progress in applications of AI to
reading and collaborative text work is yet to match
these achievements. The ability of modern genera-
tive models to create natural-sounding but factually

*These authors contributed equally to this work
1https://github.com/UKPLab/CARE
2https://openai.com/blog/chatgpt

Read and Comment

Reply

Data

BehaviorAssist

User

User AI

Figure 1: CARE allows users to collaboratively read and
discuss texts, provides a generic interface for AI-based
reading assistance, and collects research-ready textual
and behavioral data.

flawed outputs (Ji et al., 2022) stresses the need for
supporting humans in critical text assessment.

Humans use annotations to read and collabo-
rate over text, from hand-written print-out notes to
highlights in collaborative writing platforms. This
makes in-text annotations – inline commentaries
– a promising vehicle for AI-based reading assis-
tance. For example, an AI assistant could automat-
ically classify the user’s commentaries, or verify
and provide additional information on the high-
lighted passages. Yet, the lack of data and key in-
sights limits the NLP progress in this area: from the
foundational perspective, we lack knowledge about
the language of inline commentaries, as most of
this data is not openly available for research. From
the applied perspective, little is known about the
hands-on interactions between humans and texts,
how they translate into NLP tasks, and how the
impact of NLP-based assistance on text compre-
hension can be measured. While ethical, controlled
data collection has been receiving increasing atten-
tion in the past years (Stangier et al., 2022), data
collection tools for inline commentary are missing,
and so are the tools for applying and evaluating
NLP models within a natural reading environment.

To address these limitations, we introduce
CARE: a Collaborative AI-Assisted Reading
Environment, where users can jointly produce in-
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Figure 2: An inline commentary in CARE consists of a
highlight (1) optionally associated with a commentary
text (2), a label (3), a number of free-form tags (4) and
metadata (5), e.g. user name and creation time.

line commentaries on PDF documents in an intu-
itive manner, connected to a model-agnostic and
flexible AI assistance interface. Unlike existing
labeling tools, CARE provides a (1) familiar, task-
neutral environment for collaborative reading sim-
ilar to the tools used in everyday text work; un-
like off-the-shelf reading and writing applications,
CARE offers (2) structured machine-readable data
export functionality, including both inline commen-
tary and behavioral data; unlike task-specific AI-
assisted reading tools, CARE features a (3) generic
interface for integrating NLP modules to support
reading and real-time text collaboration.

Our contribution has multiple audiences. For
NLP researchers, CARE makes it possible to ef-
ficiently collect inline commentary data in a stan-
dardized manner, and provides a generic interface
for the extrinsic evaluation of NLP models. For
application designers, CARE offers an extensible
platform and behavioral metrics to study how hu-
mans interact with texts. For users, CARE enables
the development of new, innovative applications
built around AI-assisted reading such as interactive
e-learning, community-based fact-checking, and
research paper assessment. To foster the progress
in AI-assisted reading research, we make the im-
plementation openly available and easy to deploy
and to extend.

2 Background

2.1 Terminology and Requirements

The term "annotation" allows for broad interpreta-
tion and encompasses both the results of controlled
annotation studies that enrich text with a specific
new information layer (e.g. named entities), and

the less-regulated, natural annotations that humans
produce when they work with text. Yet, the two an-
notation mechanisms are fundamentally different.
Labeled NLP data is usually obtained via annota-
tion studies – supervised campaigns that involve
formalized tasks and labeling schemata, detailed
guidelines, and are supported by specially designed
annotation software that requires training of the
annotators. However, collecting natural annota-
tion data requires the opposite: the process should
minimally interfere with the user’s workflow, and
the tool should provide a natural environment for
working with text given the task at hand. Our work
addresses annotation in the latter sense. To avoid
ambiguity, we propose the term inline commentary
to denote in-document highlights left by the users
while reading and collaborating on text, potentially
associated with commentary text, tags and meta-
data (Figure 2). We reserve the term labeling for
the traditional NLP markup.

With this distinction in mind, for a tool to sup-
port the study of inline commentary we define the
following requirements distributed among the key
USER GROUPS:

A. Natural environment: The tool should pro-
vide the READER with a natural reading environ-
ment, specified as allowing the READER to (A1)
leave inline commentaries on the documents in
(A2) common reading formats like PDF, while re-
quiring (A3) minimal to no training.
B. Collaboration: The tool should run (B1) online
and support (B2) real-time collaboration where the
READERS can leave, see and reply to each others’
commentaries in an on-line fashion.
C. Data management: The tool should enable
RESEARCHERS, APPLICATION DEVELOPERS and
ADMINISTRATORS to easily (C1) import new doc-
uments, (C2) collect inline commentary and USER

behavior data, and (C3) export this data in a
machine-readable format for further scrutiny.
D. Openness and extensibility: Both documents
and inline commentaries might contain confiden-
tial data. It is thus crucial that a tool can be (D1)
self-hosted on-premise and allows controlling user
access to the data. AI-assisted reading has many
potential use cases, stressing the need for (D2) high
configurability and easy deployment of the tool. To
promote transparency and facilitate extension, the
platform should be available as (D3) open-source.
E. AI assistance: Finally, the tool should provide
an easy way to (E) integrate AI assistance modules
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for RESEARCHERS and DEVELOPERS to support
USERS in reading and comprehending text.

2.2 Related tools
We identify four broad groups of software tools
falling within the scope of our requirements, which
we briefly exemplify below. Our overview demon-
strates the wide use of inline commentary "in the
wild" and underlines the limitations of the existing
solutions for the systematic study of inline com-
mentary and AI-assisted reading in NLP.

Readers Highlighting and inline commentary are
core features of most standalone reading tools,
from PDF viewers like Adobe Acrobat Reader3

to literature management software like Mendeley4.
The most commonly used tools are proprietary and
thereby hard to extend, and do not offer manage-
ment, collection and export of fine-grained data,
making them unsuitable for the study of inline
commentary. While a few dedicated reading ap-
plications like ScholarPhi (Head et al., 2021), Scim
(Fok et al., 2022), SciSpace5, and Scrible6 do offer
machine-aided reading assistance, they focus on
their particular use cases, lack data collection func-
tionality and extensibility, and can not be easily
hosted on-premise to protect potentially sensitive
user and document data.

Social annotation Focusing on the collaborative
aspect of reading, social annotation platforms al-
low users to exchange their inline commentaries
via a centralized platform. A prime example is Hy-
pothes.is7, which offers a natural environment, is
available open-source and provides a standardized
mechanism for exporting inline commentary. Yet,
the platform is not easy to extend and customize,
and does not offer a standardized mechanism for
integrating AI-assistance or behavioral data col-
lection. While not being based on Hypothes.is,
CARE adopts many of its design ideas, including
the appearance and functionality of the annotation
sidebar, utilities to locate inline commentaries in
the document text, as well as the underlying data
structure of the annotations.

Authoring tools Inline commentary is featured
in many text authoring tools, from standalone of-

3https://www.adobe.com/acrobat/
pdf-reader.html

4https://www.mendeley.com
5https://typeset.io
6https://www.scrible.com
7https://web.hypothes.is

fice applications like Microsoft Office8 to collabo-
rative web-based platforms like Google Docs9 and
Overleaf10. While widely used and familiar, these
applications are hard to tailor to the needs of a par-
ticular scientific study, offer limited data export
capabilities, lack flexible AI integration for assis-
tance, and are either implemented as standalone
desktop applications (impeding real-time collabo-
ration), or do not allow self-hosting, making ethical
data collection and storage challenging.

Labeling tools The rapid progress in NLP of
the past decades has been accompanied by the
evolution of general-purpose tools used to ac-
quire labeled data (Neves and Ševa, 2019), from
early desktop applications like WordFreak (Morton
and LaCivita, 2003) to modern extensible, web-
based, open-source environments like brat (Stene-
torp et al., 2012), labelstudio11, docanno12 and
INCEpTION (Klie et al., 2018). CARE inherits
many concepts from NLP annotation platforms –
including coupling of external recommenders (Klie
et al., 2018), tag sets and study management func-
tionality, and flexible data export. Although not
specifically designed for controlled labeling scenar-
ios, CARE can be used as a lightweight labeling
tool with collaboration and assistance capabilities.

3 Platform Description

CARE addresses the gap in existing solutions that
prevents the study of inline commentary and AI-
assisted reading. Here we review the main compo-
nents of CARE from the user perspective, while
the next Section outlines the key technical aspects
of our open implementation. We discuss the com-
ponents in order of importance and refer to the
Appendix A for the illustration of a typical user
journey.

At the core of CARE is the reading component
which allows users to attach inline commentaries
to documents. To ensure that the visual representa-
tion of the document remains true to its source and
stable across platforms, CARE focuses on PDF as
the main source format13. An inline commentary
can amount to a simple highlight attached to a con-
tinuous text span, can be associated with a free-text

8https://www.office.com/
9https://www.google.com/docs/about

10https://www.overleaf.com
11https://labelstud.io
12https://github.com/doccano/doccano
13While support for other document formats is planned, we

note that any textual document can be converted into a PDF.
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note, and can carry a label from a pre-configured
label set, as well as any number of free-form tags
(Figure 2). It is possible to add document-level
commentaries that are not attached to a span. In-
line commentaries are displayed in the dedicated
CARE sidebar and can be navigated and edited.
The process is collaborative: multiple users can
leave inline commentaries on the same document
and reply to them in real time. The commentaries
are saved and can be revisited at a later point; the re-
sulting data can be exported in an easy-to-use data
format, individually or in aggregate, and displayed
within the user interface of CARE. In addition to
the textual data, CARE collects and exports ba-
sic behavioral metrics; for instance, the time of
highlight creation and the users’ scrolling behavior
within the document.

The second key component of CARE is AI as-
sistance: the inline commentary data can be routed
to an arbitrary external NLP module, which returns
the prediction that can be displayed in the anno-
tation component in close-to-real-time as labels,
inline commentary replies, or via a custom UI. The
interaction between users and AI assistance is medi-
ated by a flexible broker system that distributes the
processing tasks among a set of NLP models. Mul-
tiple AI assistance model instances can be acting
simultaneously, and the pool of models can be ex-
tended easily through registering a new model node
at the broker backend. At the moment of writing,
CARE provides examples to supports integration
of any pre-trained model compatible with the hug-
gingface transformers API (Wolf et al., 2019) by
simply changing the configuration parameters. The
model then has access to the inline commentary
text, highlighted span from the main document,
labels, tags and metadata. It is possible to adapt
CARE to use models based on other frameworks.

Finally, CARE features a flexible and config-
urable dashboard that provides quick access to
user and system settings, document and label set
management, and study management. In particu-
lar, the user management component is responsi-
ble for registration, authentication and authoriza-
tion; to encourage responsible data collection and
ensure that the collected inline commentary data
can be used in research, CARE features sample
informed consent forms that users are presented
upon registration, along with the necessary licens-
ing disclaimers, which can be refined by the study
administrator.

server broker

vue.js
pdf.js

Bootstrap

node.js

hugging
face

PythonJS

ClientClientclient

flask

ClientClientmodel
skills

so
ck

et
.io

=

Figure 3: Overview of CARE system architecture.

4 System Design

CARE is designed to be generic, modular and ex-
tensible (Figure 3). The ability to build and deploy
CARE via a Docker container makes it easy to set it
up in new environments. While CARE features de-
tailed documentation, here we provide a high-level
overview of the system design. CARE follows a
client-server architecture, preferring client-side op-
eration whenever possible to speed up execution
and reduce network traffic and server load. This
results in a clear separation of responsibilities be-
tween the client, the server and the NLP assistance
components of CARE and affords high modular-
ity. While the main client-server pair is purely
JavaScript-based, the AI models and the broker
are implemented in Python to facilitate the NLP
assistance development by the natural language
processing community.

The web-based CARE client is responsible for
frontend rendering and annotation functionality.
The client is fully implemented in vue.js14, allow-
ing dynamic rendering, modular frontend structure
and reuse of original and third-party components.
Bootstrap15 is used throughout the frontend to en-
sure consistent styling and responsive design; docu-
ment rendering is handled via pdf.js16. In addition,
we adopt the localization code from hypothes.is17

to locate inline commentaries in the document. The
CARE server, in turn, is responsible for synchro-
nizing the data among clients, authentication and
authorization, and for connecting to external ser-
vices, including the AI-assistance broker. In line
with the JavaScript-based frontend, the backend is
implemented in node.js18 as a cross-platform run-

14https://vuejs.org
15https://getbootstrap.com
16https://mozilla.github.io/pdf.js
17https://github.com/hypothesis/client
18https://nodejs.org/en
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time environment. As keeping message transition
time low is crucial for collaboration and AI assis-
tance, we base all communication on the WebSocket
protocol19. Persistent bidirectional connection be-
tween the client and server components enables
real-time exchange of messages and reduces com-
munication time to the possible minimum by reduc-
ing the number of connection setups (i.e., three-way
handshakes).

AI assistance in CARE is implemented by rout-
ing user requests to separately hosted NLP mod-
els abstracted into Skills: high-level machine-
readable specifications of assistance functionali-
ties including inputs, outputs and model config-
urations (Baumgärtner et al., 2022). The current
implementation of NLP assistance in CARE is built
on top of the huggingface pipeline, making it easy
to integrate a wide range of pre-trained models;
we provide sample code to facilitate building self-
registering docker containers for NLP model de-
ployment. The interactions between the server and
the NLP models is mediated by a Broker system
which distributes user requests among NLP models
depending on the necessary skill.

5 User Study

To evaluate and refine the reading environment of
CARE in the context of a collaborative applied task
(requirements A and B), and to ensure the data ex-
port functionality (C) and the extensibility (D) of
the system, we have extended the base configura-
tion of CARE to accommodate a custom reading
scenario and conducted a user study. We describe
the core components of the study here and refer to
the Appendix B.1 for details.

Task Scholarly peer review is a prototypical
example of close reading accompanied by note-
taking, where an expert assesses a manuscript in
terms of its originality, readability, validity and im-
pact (Jefferson et al., 2002). We adopted critical
reading that takes place during peer review as a
basis for our task. The participants of the study
were provided with a manuscript-to-review and in-
structed to leave self-contained annotations on the
manuscript while reading. To incentivize reviewers
to perform the task rigorously, we simulated a sub-
sequent acceptance-decision-making phase based
on the provided annotations. To support the sce-

19https://datatracker.ietf.org/doc/
html/rfc6455

Figure 4: Usability questionnaire results.

nario, we extended CARE to allow reviewer-paper
assignment and decision-making functionality.

Study design We selected two nine-page papers
(P1 and P2) from the F1000RD corpus (Kuznetsov
et al., 2022), both dedicated to broad academic top-
ics that are understandable for participants with
academic background. Before the study, the partic-
ipants were instructed about the task, and given 15
minutes to familiarize themselves with the CARE
environment. The participants were then split into
two groups and assigned paper P1 or P2 based
on their group. The participants proceeded to re-
view their assigned paper individually under time
constraints (40 minutes), following to the task defi-
nition provided above. After the time elapsed, the
papers were exchanged between the groups, and
the participants were asked to make an acceptance
decision for the unseen paper given the inline com-
mentaries produced by a reviewer from the other
group. The task was performed in English.

Participants In total 11 researchers from the dig-
ital humanities (6) and social sciences (5) partici-
pated in the study. A pre-study questionnaire veri-
fied that the participant demographics were diverse
and that more than 60% of the researchers were at
a post-doctoral or professorial level in their careers
with adequate English proficiency.

Usability After the study, we conducted a usabil-
ity survey including a subset of the standardized
PSSUQ questionnaire (Borsci et al., 2015), as well
as free-form questions (details in Appendix B.2).
As Figure 4 shows, the majority of participants
were satisfied with using CARE for their task and
found that the tool provided adequate speed. Most
reported that CARE was clear and easy to use, and
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appreciated the sidebar functionality. The survey
revealed a few feature requests including the ability
to arrange inline commentaries in the sidebar by
different criteria, and the ability to leave annota-
tions on figure elements.

Data: Inline commentaries The export func-
tionality allowed us to examine the data resulting
from the study. In total, participants created 200
inline commentaries of which 151 were associated
with commentary text, 17±7.08 commentaries per
user per document on average. The highlight spans
comprise of on average 161 ± 151.09 characters
and vary vastly from single words up to full para-
graphs, selections of two to three sentences being
the most common. The associated commentaries
have 80 ± 109.98 characters on average, ranging
from very short remarks of a single word (e.g. "ref-
erences?", "why?") to full summarizing paragraphs.
These results demonstrate the variability of natural
inline commentary use.

Data: Reading behavior Behavioral metrics in-
tegrated into CARE allowed us to observe how the
participants used the tool to perform the task at
hand. We observed that 35 annotations (17.5%)
were deleted after creation, prompting us to im-
prove the inline commentary edit functionality in
the tool; nearly all participants (70%) made use
of the ability to quick-scroll from the in-text high-
lights to the annotations in the sidebar, while the
opposite direction (quick-scroll to the highlight
from the sidebar) was only used rarely. The page
tracking functionality allowed insights into how
participants assessed the papers: by measuring the
time spent on each respective page, we established
that the participants spent the least amount of time
reading bibliography, whereas method and conclu-
sion sections received most scrutiny. We elaborate
on these results in the Appendix B.3.

6 CARE and AI Assistance

Data collection CARE enables the collection of
inline commentary data that can be used to study
inline commentaries and to create new datasets for
NLP assistance model development. The collabo-
ration functionality of CARE allows gathering the
data about reader interactions within the tool, and
the support for free-form tagging and controlled
labeling offers great opportunities for collecting
user-generated silver data for model pre-training
and fine-tuning.

Assisted reading Out of the box, CARE supports
integration of any pre-existing huggingface trans-
former model into the reading workflow, which
opens a wide range of possibilities for applying pre-
viously developed models "in the wild". To provide
feedback to the reader, a pre-trained model can be
used to enrich inline commentaries with labels, i.e.
prompting the reader to provide additional detail,
assessing the politeness (Danescu-Niculescu-Mizil
et al., 2013), specificity (Li and Nenkova, 2015) or
sentiment (Blitzer et al., 2007) of a commentary.
In addition, the power and flexibility of modern
generative models like T5 (Raffel et al., 2020) al-
low performing a wide range of text-to-text tasks
to assist reading, from question answering to sum-
marization of highlighted passages, with the results
rendered as automatically generated replies to the
user’s inline commentaries. The CARE repository
provides sample code for NLP model integration.

Extrinsic evaluation Finally, the behavioral met-
rics provided by CARE allow to study both how
humans read and comment on documents, and how
AI assistance impacts this behavior, for example by
recording the order in which parts of the document
get accessed, or the time needed to create the com-
mentaries. While the current implementation only
supports basic time- and location-based measure-
ments, we envision a wide range of extensions that
would help us study the impact of AI assistance on
reading and text work.

7 Conclusion and Future Work

This paper has presented CARE – a new open
platform for the study of inline commentary and
AI-assisted reading. CARE enables efficient in-
line commentary and behavioral data collection
for NLP, and supports a wide range of collabo-
rative reading scenarios, while requiring minimal
effort to use. The extensible NLP assistance in-
terface allows using CARE for rapid prototyping
and extrinsic evaluation of NLP modules that sup-
port reading and text-based collaboration. Planned
extensions of CARE include support for non-PDF
document processing and automatic text highlight-
ing, improved human-in-the-loop functionality and
scalability, as well as further development of the
onboard behavioral metrics. We invite the com-
munity to use our tool and contribute to its further
development20.

20https://github.com/UKPLab/CARE
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Ethics

The experiments performed in this study involved
human participants who gave explicit consent to the
study participation and to the storage, modification
and distribution of the collected data. The arbitrary
username selection by the users ensured that the be-
havioral data did not allow any association with the
participants unless they decided to reveal this infor-
mation. We report the demographic distribution of
the participants in the Appendix. The documents
used in the study are distributed under an open li-
cense. Although we have attempted to reflect the
reading-for-peer-review workflow as closely as pos-
sible, we note that the study might still not be fully
representative of the reading practice during peer
review, as the participants were strictly limited in
time to perform the task, and the selected papers
were not necessarily from the participants’ domains
of specialist expertise.

Any application of AI to assisting humans in
performing real-world tasks bears risk. We stress
the need to control for bias, harmful content and
factuality of the AI models used to assist reading
and text work – especially in the case of large pre-
trained generative models. We deem it equally
important to educate the users of AI-assisted read-
ing tools about the limitations and risks associated
with the integrated assistance models.

From the data collection perspective, we note
that all data collected with CARE is human-
generated personal data, in particular the behav-
ioral data. We thus require the users of the tool
to provide explicit informed consent on the data
collection upon registration. In addition, the users
must explicitly agree with the optional collection
of behavioral statistics before any of this data is
transferred to the server (opt-in). We stress that
while sufficient for controlled studies, in a real ap-
plication environment these measures would need
to be extended by allowing the users to change
their decision at a later point and specify the parts
of their data that are included into data collection.

From the privacy perspective, CARE allows reg-
istration with an arbitrary username, first and last
name, e-mail and password. The choice and man-
agement of the usernames and user identities are
left to the study administrator – we note that if
the usernames are not assigned at random and as-
sociated with additional data, this needs to be in-
corporated into the informed consent form upon
registration. CARE implements standard security

measures to protect the data, and complete access
to the data (documents, inline commentaries, be-
havioral data) is restricted to the application and
server administrator. The security mechanism of
the broker and thus of the AI-assistance is currently
set via a token defined during the installation of
the platform. It is up to the administrator to ensure
that the token is kept private, otherwise the mod-
els can be used by unwanted users. We stress that
for some application scenarios – e.g. dealing with
sensitive or confidential documents or performing
advanced behavioral measurements – additional se-
curity measures should be considered to protect the
data.
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Figure 5: User journey in CARE

User journey Figure 5 illustrates a typical user
journey for the reader using CARE. It starts with
log-in or registration during which consent and li-
censing forms are submitted. Afterwards, the user
is presented with a dashboard where they can man-
age documents, label sets and additional settings
and export inline commentary and behavioral data.
Each document can be opened for reading via the
annotation component, where multiple users can
annotate the document by leaving inline commen-
taries organized in a sidebar which also serves as
an interface for AI assistance.

Export data format Figure 6 provides an exam-
ple of the data export functionality: all annotations,
comments and discussion threads created by the
readers can be directly exported as an easy-to-use
JSON. Note that the information presented in the
export is also the information available to NLP
assistance models to make their predictions.

Behavioral data Figure 7 provides examples of
behavioral data that is captured within CARE and
exported as JSON objects. Each action is associ-
ated with a unique type, meta-data, user informa-
tion and a timestamp. The captured user interac-
tions include the creation of inline commentary,
editing of the same, page scrolling, clicks on im-
portant buttons and navigation within the tool.

B User Study Details

This section provides extensive details on the user
study setup and results. To recap, the participants
were instructed to use CARE for leaving inline
commentaries on a manuscript with the purpose
of assessing the manuscript’s quality and scientific
merit, similar to the critical reading process that
takes place during scholarly peer review. Partic-
ipants were split into two groups that reviewed
one manuscript each. Participants subsequently

exchanged the reviewed manuscripts and used the
provided inline annotations to decide whether a
manuscript should be accepted or rejected, similar
to traditional peer review, and surveyed. Figure
8 summarizes the study design. The papers con-
sidered were "Academia’s Big Five" (Peels et al.,
2019) (P1) and "The Unhappy Postdoc" (Grinstein
and Treister, 2017) (P2), both in their first version
submitted to F1000 Research.

User Study Context The user study was imple-
mented as a workshop on 25 August 2022 within
the Center for Advanced Internet Studies (CAIS)21.
CAIS is an interdisciplinary research institute in
Bochum, Germany, that focuses on the social op-
portunities and challenges of the digital transforma-
tion. Research is conducted in longer-term research
programs, as well as by fellows and working groups
who are invited to the institute to pursue their own
projects. The scientific focus lies on the interface
between social sciences, humanities and computer
sciences.

B.1 Participant Pool

The participant pool for the user study consisted of
11 CAIS members attending the workshop either
virtually (2 participants) or in person (9 partici-
pants). No selection criterion was applied to the
voluntary participant pool. To ensure the privacy
of the participants, we report accumulated frequen-
cies for appropriate value intervals in the following
paragraphs.

Demographics Of this participant pool five
(45%) identified as women, five (45%) as men and
one preferred not to share this information. Around
30% of participants report an age below 40, while
the majority of participants lie in the 40−49 (45%)
age range. The rest of the participants (25%) either
lie in the age group above 50 or did not report their
age. The majority of participants lived and worked
in Germany (80%). We deem the given sample as
sufficiently diverse for the purpose of this study,
as it covers various age groups and shows nearly
balanced genders. However, the age group below
forty is under-represented, which might have an in-
fluence on the study results, as this particular group
might show higher digital affinity. Follow-up stud-
ies are required to confirm our findings, where a
focus on lower age groups and more diverse nation-
alities should be considered to account for cultural

21https://www.cais-research.de
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[

{"text": "BERT is designed to pre-train
deep bidirectional representations...",

    "id": 11,

    "documentId": 1,

    "userId": "guest",

    "tag": "Strength",

    "comment": {

      "id": 20,

      "text": "This is a crucial
contribution, although for some
tasks...",
      "documentId": 1,

      "userId": "guest",

      "tags": {"0": "method"},

      "parentCommentId": null,

    }
  },...

]


Figure 6: Data export example from highlights to annotations in the sidebar, to export JSON.

differences of the partially subjective peer review
assessment process.

Academic Background At the moment of the
study, more than 60% of the participants were at a
post-doctoral or professorial level in their careers,
ensuring an adequate level of expertise and experi-
ence in scholarly text work. The participants came
from diverse academic backgrounds including so-
cial studies, philosophy, law, natural language pro-
cessing and literary studies. The vast majority of
participants (90%) had no computer science back-
ground.

Reviewing Expertise In an independent pre-
study survey among the CAIS members, we con-
firmed that English language papers and reviews
are the predominant form of scientific communica-
tion in their respective fields, suggesting adequate
language proficiency of the participants during the
study.

Roughly 64% of the participants personally re-
viewed more than one paper in the past year; only
two participants reviewed no papers during their
career so-far (zero reviews in the past five years).
On average the participants reviewed roughly three
papers per year. Apart from the prevalent high aca-
demic seniority, these numbers generally suggest
deep expertise in the task of peer review, while at
the same time the study includes participants with
little to no reviewing experience.

B.2 Post-study Survey
The participants were asked to fill out the post-
study questionnaire directly after the user study.
Each participant responded to the web form indi-
vidually and privately. We ensured the right of
erasure under GDPR regulations22 and hosted the
questionnaire and resulting data exclusively on EU
servers. The questionnaire contained in total 35
items structured into the sections demographics
and experience and usability.

Quantitative Results The usability section con-
sists of five general usability questions answered
on a seven-point scale ranging from "Strongly dis-
agree" (1) to "Strongly agree" (7), as well as free
form questions about missing features and feed-
back about specific design choices. Figure 4 shows
the answer distribution on the usability question-
naire. We asked participants to rate the overall
experience using CARE, the speed of usage, the
ease of finding information, the comprehensiveness
of features and the utility of the sidebar.

Qualitative Results Further on, we asked the
participants whether they would prefer different
orderings of the comments in the sidebar, where
the default during the study was an ordering by text
position. While this default is perceived as useful
(36%), the option for changing the comment order
or other grouping strategies are of interest to the
users – especially in the decision making phase
based on the inline comments of a reviewer. Subse-
quently, we asked users to highlight which features

22https://gdpr-info.eu/art-17-gdpr
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clicks

commentary
creation

commentary
editing

navigation

{    "action": "routeStep",

    "data": "{\"from\":\"/\",\"to\":\"/dashboard\"}",

    "userId": 1,

    "timestamp": "2023-02-23T15:57:08.693Z" }

{   "action": "hideModal",
    "userId": 1}

{   "action": "pdfPageVisibilityChange",
    "data": "{\"visibility\":{\"pageNumber\":1,\"isVisible\":true,
              \"offset\":17.5},\"studySessionId\":null}",
    "userId": 1,
    "timestamp": "2023-02-23T15:57:49.854Z" }

{   "action": "clickSidebarButton",
    "data": "{\"title\":\"Save\",\"icon\":\"save-fill\",
              \"props\":{\"documentId\":5,\"commentId\":1}}",
    "userId": 1,
    "timestamp": "2023-02-24T06:53:18.985Z" }

{   "action": "onTextSelect",
    "data": "{\"documentId\":5,\"studySessionId\":null,
              \"eventClientX\":892,\"eventClientY\":594}",
    "userId": 1,
    "timestamp": "2023-02-24T06:53:16.233Z"  }

Figure 7: Behavioral user data examples captured and exported as JSON objects.

Tutorial

Reviewing Decision

Survey

P2

P1

P1

P2

Figure 8: User study setup: Split into two groups after a
brief tutorial, the participants review a paper, exchange
reviews and make an acceptance decision for the other
paper, and participate in the survey.

they missed or could think of to streamline their
inline peer review. Most requests were directed
towards performing a full peer review based off the
inline commentary, e.g. providing notes to editors,
providing ratings, having the reviewing guidelines
integrated in the interface, etc. Further suggested
features that were more focused on the actual high-
lighting and commenting aspects rather than in-
line peer review, comprised of more extensive PDF
viewer features, like zooming, and improved high-
lighting features, e.g. sentence-boundary aware
highlighting, figure selection, and cross-linking of
commentary.

B.3 Behavioral Data

In this section we report on the detailed results of
the behavioral data tracking during the user study.

Besides showcasing the behavioral data tracking
capabilities of CARE, we intend to collect insights
into usage patterns of the tool, as well as estab-
lishing a deeper understanding of the use-case of
assisting reviewers during reading.

Task Timing We consider several timing metrics
to measure the ease of usage, as well as the task
difficulty.

First, we measure the time-to-completion, start-
ing with the users accessing the document and end-
ing with them submitting their inline review. The
median time-to-completion amounts to 37.82min
(just below the provided time limit), with a high
standard deviation of roughly 13min. Except for
two outliers requiring below 15min, this suggests
most people did use and require the full time inter-
val to perform their inline peer review.

Second, we measure the time passed before
the interaction with a feature of CARE was reg-
istered. This includes text selections for highlights,
scrolling to a new page, or creating a comment in
the sidebar. We employ this metric as an indicator
for the bandwidth of the perceived user interface
complexity. In fact, we see that on median 1.28min
pass before the first interaction, while again show-
ing high standard deviation of 50s. The high vari-
ance and relatively long median time before the
first interaction suggest that some participants were
still familiarising with the study instructions while
already having accessed the document. This shows
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Figure 9: Histogram of the distribution of annotations
across time relative to the user’s task timing. We accu-
mulate across users.

one limitation of the behavioral tracking imple-
mented in CARE so-far: while the behavioral data
logging is non-obstructive to the user experience,
unlike e.g. eye-tracking devices in laboratory sce-
narios, off-screen activities such as breaks cannot
be detected reliably.

Reading and Inline Commentary We consider
two metrics to analyze the participants’ focus of
attention during the reading process. As the first
metric, we consider the time of inline commentary
creation relative to the total task time, to quantify
whether participants create annotations throughout
the reading process or detached before or after read-
ing. For an inline commentary x created at tc we
define the reltime relative to the user’s time of en-
tering the document te and the time of leaving the
document tl as:

reltime(x) =
tc(x)− te
tl − te

Figure 9 shows the distribution of relative inline
commentary timings across participants. Appar-
ently the participants create annotations through-
out the whole annotation process, with a light dip
at 50%, i.e. after half of the time to completion.
These measurements do not suggest that making
inline commentary is decoupled from the actual
reading process, instead CARE seems to support
regular highlighting and note-taking habits while
reading.

Turning to the second metric, we compute the
time elapsed while viewing a page during the study.
We compute the relative reading time per partici-
pant and page, considering the two papers in isola-
tion. To estimate the relative time spent per page,

we measure the time deltas between two subse-
quent page view events, indicating that a PDF page
has been rendered on the participants screen, and
normalize by the total task time. While this met-
ric is a sufficient approximation for the purpose
of assessing the overall reading coverage through-
out the document, the measurements on page level
instead of scrolling positions limit fine-grained
claims about the reading position of a user.

Figure 10 shows the median reading times per
page of the users for the two papers in isolation.
For both papers, the reading times have a similar
"M" shape, where the least amount of time is spent
on the very first page, the middle part of the paper
and the final pages. For P2 we observe a consistent
peak on page two containing the main part of the
introduction and, with high variance, page six in-
cluding the discussion and a central figure of the
article. For P1 individual page reading times are
less pronounced, but we see peaks on page three
(including a large table) and the pages five and six
consisting of a long body of text explaining the
core contribution (a taxonomy) of the paper.

In the given user study setting, the page viewing
times may reveal the parts of the paper that received
most scrutiny during reading and commenting, as
well as an estimate of the coverage of all paper as-
pects by the participants. For instance, we see that
the bibliography has not been analyzed in detail by
any of the participants. In general scenarios, the
page viewing times may reveal places of interest in
a document or indicate passage that require more
effort to process during reading.
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Figure 10: Relative reading time per page for papers P1
(top) and P2 (bottom)
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Abstract

ROOTS is a 1.6TB multilingual text corpus de-
veloped for the training of BLOOM, currently
the largest language model explicitly accompa-
nied by commensurate data governance efforts.
In continuation of these efforts, we present the
ROOTS Search Tool: a search engine over the
entire ROOTS corpus offering both fuzzy and
exact search capabilities. ROOTS is the largest
corpus to date that can be investigated this way.
The ROOTS Search Tool is open-sourced and
available on Hugging Face Spaces. We describe
our implementation and the possible use cases
of our tool.

1 Introduction

Large language models (LLMs) are ubiquitous in
modern NLP, used directly to generate text and as
building blocks in downstream applications. The
ever-increasing size of the latest models inflates the
demand for massive volumes of training data (Hoff-
mann et al., 2022), in practice sourced mainly from
the Web. This raises questions concerning the qual-
ity of the data, the feasibility of curating and in-
specting it, as well as documenting it in terms of
what kinds of speech and speakers it represents
(Jo and Gebru, 2020; Bender et al., 2021; Akiki
et al., 2022). Without that level of characteriza-
tion, we cannot tell for what varieties of language
the resulting models can be expected to work well,
whether the data was ethically sourced, how to
interpret evaluation metrics, and to what degree
a particular output was memorized directly from
the training data. In an encouraging new trend,
we see researchers exploring ways to quantitatively
describe large datasets (Mitchell et al., 2022). How-
ever, user-friendly tools for an extensive qualitative
analysis are still predominantly missing. In our
current work, we aim to fill that gap for a specific,
web-scale, textual corpus.

Building on the efforts of the BigScience work-

Figure 1: ROOTS search tool: user interface

shop,1 we present the ROOTS Search Tool2—
a search engine for the the 1.6TB multilingual
ROOTS corpus (Laurençon et al., 2022). The
ROOTS corpus was created to pre-train BLOOM
(Scao et al., 2022)—the first LLM of its scale de-
signed with commensurate efforts in responsible li-
censing3 and data governance (Jernite et al., 2022).
We hope that our tool will facilitate qualitative anal-
ysis of the web-scale ROOTS corpus, and establish
the qualitative analysis of training data—critical for
the model understanding and governance work—as
an essential step in the development of LLMs.

2 Related Work

Corpus linguistics. The core methodology for
studying large volumes of text was developed in
corpus linguistics (McEnery and Hardie, 2013),
an area of research responsible for curating large
text collections carefully designed to represent spe-
cific varieties of language. For example, the 100M

1bigscience.huggingface.co
2hf.co/spaces/bigscience-data/roots-search
3bigscience.huggingface.co/blog/

the-bigscience-rail-license
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word British National Corpus (Leech, 1992) was
created to represent the spoken and written British
English of the late 20th century, with each text
handpicked by experts, who also procured appropri-
ate copyright exemptions. Similar national corpora
were later created for many other languages, e.g.
Japanese (Maekawa, 2008). The texts were often
accompanied by multiple layers of annotations—
syntactic, morphological, semantic, genre, source
etc. This enabled valuable empirical research on
the variants of represented languages, finding use
in early distributional semantic models. Corpus
linguistics developed sophisticated methodologies
including concordances, word sketches and vari-
ous word association measures (Stefanowitsch and
Gries, 2003; Baker, 2004; Kilgarriff, 2014, among
others). However, this methodology did not adapt
well to Web-scale corpora due to the lack of tools
and resources that could support such scale.

Web-scale corpora for LLM pre-training. As
LLMs grew, so did the need for massive pre-
training datasets. To date, there were several efforts
to collect and clean large English and multilingual
corpora (Raffel et al., 2020; Xue et al., 2021; Gao
et al., 2020; Ortiz Suárez et al., 2020; Bañón et al.,
2020; El-Kishky et al., 2020). Non-English, mono-
lingual corpora of this scale have also started to
emerge (Gutiérrez-Fandiño et al., 2022; Kummer-
vold et al., 2022) However, the sheer scale of such
datasets renders them hard to properly curate: we
now know that the data used for training LLMs
may contain synthetic data (Dodge et al., 2021),
privacy-infringing data (Carlini et al., 2020; Huang
et al., 2022), incorrect language codes or and trans-
lations (Kreutzer et al., 2022), as well as the ubiqui-
tous issues with social biases (Blodgett et al., 2020;
Field et al., 2021; Stanczak and Augenstein, 2021,
among others). Another issue pertains to the per-
missions to use the data, which, perhaps the most
famously, surfaced in relation to the BookCorpus
(Zhu et al., 2015), used, among others, to train
BERT (Devlin et al., 2019), but collected without
author permissions and eventually taken down by
the authors (Bandy and Vincent, 2021).

These issues are a consequence of the fact that
the current web-scale corpora are opportunistic
samples of publicly available text, rather than arti-
facts curated to provide a representative snapshot
of a specific language variety, as in the corpus lin-
guistics work (Rogers, 2021). This highlights the
general problem with the lack of documentation in

NLP datasets of all sizes (Bender and Friedman,
2018; Gebru et al., 2020), and the fact that data
work has generally not been a priority in NLP re-
cently (Sambasivan et al., 2021).

Information Retrieval for massive text corpora.
Inspecting large data collection is a central topic
of study in another Machine Learning domain,
namely Information Retrieval. Even though multi-
ple techniques for analysing large document collec-
tions have been developed over the years, there has
been little interest so far in applying them specif-
ically to study LLM training data. The closest
to our work is that of Dodge et al. (2021) who
analyze the C4 dataset (Raffel et al., 2022) and
also provide a searchable index.4 Similar tools
emerge for smaller, more specialised corpora, e.g.
COVID-related datasets (Zhang et al., 2020), news
quotes (Vuković et al., 2022) and medical litera-
ture (Niezni et al., 2022). Razeghi et al. (2022)
provide an interface to pre-computed term frequen-
cies from the Pile, but it does not provide full-text
corpus search. In the Computer Vision community,
related efforts5 target large text and image datasets
such as LAION (Schuhmann et al., 2022, 2021).

We believe our work to be the first to provide
both fuzzy and exact search access to the training
corpus of an existing large language model.

3 The ROOTS corpus

The ROOTS corpus (Laurençon et al., 2022) is a
high-quality, heterogeneous, multilingual text cor-
pus collected as part of the BigScience project
to train the BLOOM LLM (Scao et al., 2022).
ROOTS consists of 1.6TB of data in 46 natural
and 13 programming languages. The full ROOTS
dataset is open to the members of the BigScience
Data organization on the Hugging Face hub, which
the interested researchers can still apply to join6.

3.1 Data Governance

The development of the BLOOM model within the
BigScience project was backed by significant work
on data governance, as it is was identified early on
as one of the highest-impact levers of action to en-
able better accountability and data subject agency
in modern ML technology7. Participants started
by designing a new governance framework to meet

4https://c4-search.apps.allenai.org/
5https://haveibeentrained.com/
6Sign-up link is available here
7Data governance and representation in BigScience.
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the unique needs of distributed data governance for
web-scale data in terms of respecting data subject
rights (Jernite et al., 2022). A partial implementa-
tion of this framework was used for the ROOTS
data as described by Laurençon et al. (2022), fo-
cusing on explicit agreements with data custodians,
extensive documentation of the data sources, tech-
nical tools for privacy-enhancing data handling,
and purpose-specific access to subsets of the data.

The present tool goes one step further in im-
plementing the proposed data governance feed-
back by enabling examination and feedback for
the data sources from any interested parties; while
still maintaining the controlled access necessary to
the proposed governance. The tool only provides
128-word snippets of indexed documents, akin to
regular web search engines, and hence provides no
practical way to reconstruct the full corpus. The
snippets are traceable to their origin in the full
ROOTS corpus, and we additionally link to origi-
nal source documents whenever possible.8 Finally,
users of the tool are able to flag specific search re-
sults and provide an explanation outlining possible
infringements of data subjects’ privacy or intellec-
tual property rights. At this stage, the information
collected from the flagging process is primarily in-
tended to serve as a basis for future research on
collaborative data governance processes. We pro-
vide more examples of use cases to support data
examination and governance in Section 5.

3.2 Data Pre-processing

Documents vs snippets. ROOTS consists of doc-
uments of varying lengths, with outliers as long as
282,571 words. For fuzzy search, we split docu-
ments into short snippets of at most 128 words and
index snippets rather than the original documents.
This helps us follow the controlled access princi-
ple discussed in the previous section and makes
indexed snippets more comparable in the context
of fuzzy search. In exact search, we look for the
exact occurrences of the input query within doc-
uments and construct snippets ad hoc, including
words on both sides of the detected occurrence.

Unique Result IDs. In order to be able to trace
search results back to their source, we construct re-
sult IDs, adopting the following convention: (a) we
include the dataset name as defined on the Hug-
ging Face Hub, followed by (b) the ID of the docu-

8The metadata in ROOTS is inconsistent and we only have
access to URLs in the pseudocrawl datasets.

Figure 2: PII leakage: example result for the query
gmail.com. We indicate the redacted PII with green
and pink treatment.

ment from which the given snippet came, (c) and a
question mark. We then include parameters which
differ depending on the search strategy used. In
fuzzy search we introduce two parameters: the
seg parameter describing the segmentation strategy
applied during the pre-processing stage, and the
seg_id parameter indicating the rank of the given
snippet under the specified segmentation strategy.
For exact search, we include a single id parame-
ter indicating the the rank of the occurrence of the
query in the current document.

PII redaction. During preliminary experiments
on the ROOTS corpus, OSCAR (Ortiz Suárez et al.,
2019) has been identified as a source of a large
amount of documents containing personally iden-
tifiable information (PII). A regular-expression-
based PII redaction script9 has been applied to
OSCAR prior to BLOOM training. However, the
dataset itself still contains unredacted text. In order
to avoid leaking PII through our search tool, we
apply an improved variant of the BigScience PII
redaction script on the backend side and display
results with PII redacted in a visible way - this
way one can inspect the data and observe the prob-
lem, but personal information are predominantly
removed. An example is shown in Figure 2.

4 Implementation

Fuzzy Search Backend. The ROOTS corpus is
organized in 498 datasets, each annotated with a
language identifier. There are two types of iden-
tifiers: those indicating an individual language
(e.g. pt for Portuguese), and those indicating a lan-
guage within a language group (e.g. indic-mr for
Marathi, as part of the Indic language group). All
programming languages are collected under a com-
mon code tag. We build 13 sparse, BM25 (Robert-
son, 2009) indices: one per language group for the

9The BigScience PII redaction script is available here
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ROOTS language tag # documents Data size (GB) # snippets Index size (GB) Analyzer

zh, zhs, zht 88,814,841 259.01 111,284,681 682 zh
indic 84,982,982 70.45 100,810,124 714.08 whitespace

en 77,010,827 470.47 695,521,432 766.14 en
es 67,005,817 172.40 267,542,136 264.35 es
fr 58,847,091 204.03 299,938,546 305.29 fr
vi 34,110,375 42.83 76,164,552 72.89 whitespace
pt 31,969,891 77.59 122,221,863 119.98 pt

code 26,176,998 173.16 365,424,222 206.96 whitespace
ar 15,234,080 73.75 68,509,441 93.71 ar
id 12,514,253 19.63 29,531,873 27.16 id
ca 6,142,390 17.42 26,844,600 29.65 es
eu 5,149,797 2.36 6,219,039 4.56 whitespace

nigercongo 1,162,568 0.48 1,462,238 0.89 whitespace

total 597,936,751 1583.59 2,171,474,747 2518.99

Table 1: Each row represents a single BM25 index we build.

indic and nigercongo groups, one for code, and
one for each of the remaining languages (except
Chinese, where we combine the tags zh, zht, and
zhs into a single index). Table 1 presents the basic
information per index. We index respective subsets
of the corpus using Pyserini (Lin et al., 2021), a
leading toolkit for reproducible IR research. Tok-
enization is performed with native Lucene10 analyz-
ers available via Pyserini API (see Table 1 to check
which analyzers were used for specific indices).

Exact Search Backend. We leverage a suffix ar-
ray implementation11 proposed by Lee et al. (2022).
We build the suffix array for the whole ROOTS cor-
pus, this time without the split into languages or
language groups. We host both the BM25 indices
and the suffix array on Hugging Face-provisioned
machines. The server code is open-sourced12.

Frontend and User Experience. The ROOTS
Search Tool user interface is built with Gra-
dio (Abid et al., 2019) and served via Hugging
Face Spaces.13. By default, searches are performed
in fuzzy mode, in order to move to the exact search
one can enclose the query in double quotes. Fuzzy
searches can be performed in a user-specified lan-
guage, or in all languages (in that case results are
surfaced separately for each language). We also
provide an option to auto-detect the language of
the query with a FastText classifier (Joulin et al.,
2017). Results are displayed in the order of de-
creasing relevance; users can control the maximum

10https://lucene.apache.org/
11https://github.com/google-research/

deduplicate-text-datasets
12https://github.com/huggingface/

roots-search-tool
13https://huggingface.co/docs/hub/spaces

number of results they want to see using a slider.
In exact search mode, the backend returns all docu-
ments matching a given query exactly irrespective
of the language, and they are displayed over multi-
ple pages in a random order, with the max results
parameter controlling the size of a single page. The
total number of matched results is displayed at the
top of the results page. PII redaction is applied to
all results on the backend side. The tool also allows
users to filter out all results from a specific dataset
appearing on a given page.

5 Use cases

Detecting PII issues to improve obfuscation.
BLOOM was trained with efforts to detect and
obfuscate personally identifiable information, or
PII (e.g. email and personal addresses, age, phone
numbers or government-issued identifiers such as
license plates) in the original ROOTS documents.
As described in section 3.2, we build on that effort
when obfuscating PII in search results. However,
it is still possible that some such data was not de-
tected. The tool allows searching for the specific
PII by concerned individuals, which is the first step
for requesting removal of their data. One could
also simply search for their name to see if they are
represented in the corpus, and how.

Detecting undesired content. Text from Web
crawls contains all kinds of undesired content (Luc-
cioni and Viviano, 2021). Examples of possible
classes of problems include hate speech, pornog-
raphy, synthetic text (e.g. machine-translated text,
AI-generated text), word lists that are not meaning-
ful and are meant to trick search engines (Hamilton,
2013), factually incorrect text such as fake news
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or conspiracy theories, among others. For exam-
ple, we found at least 5 snippets from the OSCAR
source incorrectly arguing that Barack Obama was
born in Kenya. While the creators of ROOTS em-
ployed filtering strategies targeted specifically at
spam and machine-generated content (Laurençon
et al., 2022), developing filters for such content is a
never-ending arms race with its producers, and the
only way to keep improving them is to look at the
data—which our tool enables.

Studying representation of dialects and social
groups. When LLM-based systems are deployed,
the implicit assumption is often that they are
general-purpose and can serve all of its potential
users equally well. But there is no such thing as
a “neutral”, one-size-fits-all corpus (Rogers, 2021).
An obvious issue is dialects, and in case of mul-
tilingual models like BLOOM another obvious
problem is language imbalance. Besides that, the
training data may not equally represent the topics
and sources associated with different demographic
groups, and hence the LLM would likely not cater
to them equally well. Bender et al. (2021) cite the
example of GPT-2: the filter for its sources was that
they were shared on Reddit, which overrepresents
the interests of the typical Reddit user (of whom
in the US 67% are men, and 64% are 18-29 years
old).

Training data that is then likely to reinforce so-
cial stereotypes harmful to marginalized popula-
tions. For example, GPT-3 has been shown to
over-associate Muslims with violence (Abid et al.,
2021). In particular, prompting the model to con-
tinue “Two Muslims walked into...” tends to lead to
mentions of terrorism or assault. BLOOM is not
free from these biases: we sampled 10 completions
and found 4 that mentioned guns or death (com-
pared to 66% reported for GPT-3). Exact search
for “Two Muslims Walked into...” returned exam-
ples of papers studying this very phenomenon, but
a search for just “Two Muslims” shows that many
passages in OSCAR mention violence or terrorism,
whereas mentions in Semantic Scholar, pseudo-
crawled websites, and Wikipedia are more varied.

Detecting the presence of specific information.
Where the suitability of a model to a given ap-
plication depends on it being up-to-date with the
latest events, or knowledge about a given fact, a
tool like ours can help to quickly find out if the
model even theoretically could “learn” a given fact.

For instance, ROOTS contains 231 references to
the death of Queen Elizabeth, but they refer to the
death Elizabeth I in 1603 and not to the recent
passing of Elizabeth II in 2022.

Detecting plagiarism/memorization. Genera-
tive LLMs can memorize part of their training sets
and repeat it verbatim in their outputs. We can
probe an LLM to elicit candidates for data mem-
orization (Carlini et al., 2020), and the ROOTS
Search Tool can help in different ways:

• By conditioning model probing on actual
training data, so that we can more easily check
whether such data has been memorized;

• By providing the ground truth to verify that
model output was part of the training data;

• By providing the ground truth to verify that
model did have a chance to memorize some-
thing that it should have memorized;

• By providing match counts to identify which
data was more likely to be memorized (since
the number of copies in the training data influ-
ences memorization (Kandpal et al., 2022)).

For example, BLOOM correctly completes Prince
Hamlet’s To be or not to be soliloquy—both using
greedy decoding and nucleus sampling—but not
the less popular Shakespeare quote I am in this
earthly world, where to do harm... is often laudable,
to do good sometime accounted dangerous folly.
With our tool we verified that BLOOM had access
to at least 7 sources for the Macbeth quote (vs at
least 47 for Hamlet), but did not “learn” it.

Verifying originality. An important question
about generative AI models is to what extent their
output – that is not a verbatim copy of training data
– can be considered original. Consider the above
quote from Macbeth, which BLOOM completed
for us as follows: “I am in this earthly world, where
to do harm... is to do good, and to do good is to
do harm.” With our tool, we could easily verify
that the suggested completion does not exist in the
corpus verbatim. However, there are dozens of con-
texts where the concepts of “good” and “harm” are
mentioned close to each other (esp. in the phrase
“do more harm than good”), so they were the likely
indirect sources for this completion. To what de-
gree that completion can be considered new, origi-
nal text is a key question for the current discussions
on plagiarism in AI writing assistants and the legal
status of their output.
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Non-existing facts. When the same associative
mechanism generates factoid text, the model may
“hallucinate” events that never occurred—or at least,
there was no evidence on which the model could
draw. This, too, becomes easy to verify with our
tool. BLOOM completed the prompt “When was
the Golden Gate Bridge transported for the sec-
ond time across Egypt?” (Hofstadter, 2022) with
“The first time was in the late 19th century, when
the bridge was transported from San Francisco to
Cairo”. Of course, this “fact” is untrue, and was not
mentioned in the corpus. But we could not even
find mentions of anything else transported from
San Francisco to Cairo. How exactly LLMs come
up with such generations is an interesting research
problem, for which tools like ours could be useful.

Enabling data removal requests. The authors
of texts that were included in web crawls could
use such a tool to identify that fact and request the
removal of their texts. For ROOTS, the data gov-
ernance structure set up for Big Science workshop
operated only for its duration, but should there be
any future work relying on the same data hosts and
agreements, the flagged data collected through our
tool can be used to honor the removal requests.

Benchmark data contamination. To interpret
benchmark results, we need to know whether they
reflect training data memorization or generalization.
One approach is for the model authors to specifi-
cally plan for the evaluation benchmarks prior to
training, and try to exclude the benchmark data
(Brown et al., 2020), but this limits the options
for external evaluation. Our tool enables sampled
checks of benchmark data, and was already suc-
cessfully used to find14 that BLOOM should not be
evaluated on XNLI (Conneau et al., 2018).

Language contamination. According to Lau-
rençon et al. (2022), ROOTS contains data in 46
languages. But this is clearly not the full story. For
example, neither Danish nor Ukrainian are listed,
but we found examples in these languages (stackex-
change, OSCAR, parsed academic pdf data). The
tool can thus be useful for investigating the transfer
to “unseen” languages in multilingual evaluation.

Word sense disambiguation. Since the ROOTS
Search Tool provides context paragraphs, it can be
used to check in what sense a word was used in

14https://twitter.com/WilliamBarrHeld/status/
1586090252946448384

the training data. For example, the acronym LLM
in ROOTS is used as “large language model” in
the parsed academic article data, but in OSCAR it
means predominantly “limited liability company”
or “Legum Magister”. If future work extends our
approach to providing search results through API,
then quantitative research would also be possible
with techniques like context clustering and classifi-
cation.

Pre-processing issues. By searching for phrases
occurring in different parts of the same document, it
is possible to verify that the entire document made
it through the pre-processing pipeline – which is
useful for improving it. For example, we found a
news article in OSCAR, the initial paragraphs of
which are missing from ROOTS.

6 Limitations and Future Work

A major limitation of this work is that to mitigate
possible issues on the data governance side, we can
only provide short snippets of the indexed texts,
as is typical of web search engines. We strive to
provide links to the original text sources, but this
metadata is not consistently available in ROOTS.

Implementation-wise, the current version of ex-
act search is exact down to capitalization and punc-
tuation, and fuzzy search can be noticeably slower.
These issues will be addressed in future versions.

The current tool is heavily influenced by the UX
of search engines, and its core functionality is sim-
ilar. In future we intend to review classic corpus
analysis tools for ideas of different presentation
modes, such as concordance and word sketches.
We would like to add more quantitative information,
e.g. term frequency information, number of hits,
and co-occurrence statistics. Community feedback
and suggestions are welcome in the Community tab
of the demo. We are also pursuing a spin-off collab-
oration with Pyserini to make large scale indexing
and hosting of textual data even more seamless.
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8 Impact Statement

Our tool aims to improve the current state of docu-
mentation search for large corpora of web-scraped
text, starting with the ROOTS corpus. However,
it also comes withe ethical considerations: for in-
stance, it can also inadvertently display sensitive in-
formation such as PII and harmful content, and help
malicious actors find information about a given
topic from multiple sources (which is more diffi-
cult given only the raw text of the corpus). We
are aware of these limitations, and have taken pre-
cautions to compensate for them, such as the PII
redaction measures we present in Figure 2. We also
present only a snippet of the raw text, which means
that for accessing the full documents, users much
sign up to be a part of the Big Science organization
on the Hugging Face Hub, which also reduces the
amount of information that potentially malicious
anonymous users can access.
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abeth Salesky, Sabrina J. Mielke, Wilson Y. Lee,
Abheesht Sharma, Andrea Santilli, Antoine Chaffin,
Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla,
Gunjan Chhablani, Han Wang, Harshit Pandey, Hen-
drik Strobelt, Jason Alan Fries, Jos Rozen, Leo
Gao, Lintang Sutawika, M. Saiful Bari, Maged S.
Al-shaibani, Matteo Manica, Nihal Nayak, Ryan
Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-
David, Stephen H. Bach, Taewoon Kim, Tali Bers,
Thibault Fevry, Trishala Neeraj, Urmish Thakker,
Vikas Raunak, Xiangru Tang, Zheng-Xin Yong,
Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar
Tojarieh, Adam Roberts, Hyung Won Chung, Jae-
sung Tae, Jason Phang, Ofir Press, Conglong Li,
Deepak Narayanan, Hatim Bourfoune, Jared Casper,

Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia
Zhang, Mohammad Shoeybi, Myriam Peyrounette,
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre François
Lavallée, Rémi Lacroix, Samyam Rajbhandari, San-
chit Gandhi, Shaden Smith, Stéphane Requena, Suraj
Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet
Singh, Anastasia Cheveleva, Anne-Laure Ligozat,
Arjun Subramonian, Aurélie Névéol, Charles Lover-
ing, Dan Garrette, Deepak Tunuguntla, Ehud Reiter,
Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bog-
danov, Genta Indra Winata, Hailey Schoelkopf, Jan-
Christoph Kalo, Jekaterina Novikova, Jessica Zosa
Forde, Jordan Clive, Jungo Kasai, Ken Kawamura,
Liam Hazan, Marine Carpuat, Miruna Clinciu, Na-
joung Kim, Newton Cheng, Oleg Serikov, Omer
Antverg, Oskar van der Wal, Rui Zhang, Ruochen
Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani
Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun,
Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov,
Vladislav Mikhailov, Yada Pruksachatkun, Yonatan
Belinkov, Zachary Bamberger, Zdeněk Kasner, Al-
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Abstract
The OPUS-MT dashboard is a web-based plat-
form that provides a comprehensive overview
of open translation models. We focus on a sys-
tematic collection of benchmark results with
verifiable translation performance and large
coverage in terms of languages and domains.
We provide results for in-house OPUS-MT
and Tatoeba models as well as external mod-
els from the Huggingface repository and user-
contributed translations. The functionalities
of the evaluation tool include summaries of
benchmarks for over 2,300 models covering
4,560 language directions and 294 languages,
as well as the inspection of predicted transla-
tions against their human reference. We fo-
cus on centralization, reproducibility and cov-
erage of MT evaluation combined with scala-
bility. The dashboard can be accessed live at
https://opus.nlpl.eu/dashboard/.

1 Introduction

The main motivation behind the OPUS-MT dash-
board is to provide a comprehensive overview of
open translation models. We focus on a system-
atic collection of benchmark results with verifi-
able translation performance and large coverage in
terms of languages and domains. The landscape of
Machine Translation (MT) is increasingly blurry
and incomprehensible due to the growing volume
of shared tasks and models published within the
community. Even with established events such as
the Conference on Machine Translation (WMT), a
complete picture of translation performance is hard
to obtain. In addition, large multilingual language
and translation models push the language coverage
making it difficult to keep an eye on the state of the
art for particular language pairs.

One additional problem is that most results re-
ported in scientific and non-scientific channels
come from selected benchmarks and model perfor-
mance and are not explicitly verified by a careful
replication study. In various cases, new models

Figure 1: Difference between two models in terms of
COMET scores across 21 benchmarks for English-to-
French translation.

come with their own benchmarks and do not con-
sider a wider evaluation across domains. Training
data is complicated to control and the danger of
over-fitting to specific scenarios is apparent. Fig-
ure 1 illustrates the substantial differences one can
observe across benchmarks when comparing two
competing models.

Our dashboard is an attempt to carefully provide
a summary of results using an extendable collection
of benchmarks with the largest language coverage
possible accommodated with procedures to trans-
late and evaluate in a standardized and consistent
setup. The focus is clearly set on publicly available
translation models as we want to emphasize trans-
lation results that we can replicate and verify from
our own experience. The system is designed with
the following requirements in mind:

• comprehensive and scalable collection
• lean and responsive interface
• open and transparent implementation

The implementation and all data files are avail-
able on GitHub in public repositories and details
about the components and implementations are
given below. We start by a brief description of
the background before discussing the collection of
benchmarks and translation evaluations. The main
features of the web interface are listed thereafter
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and we finish up with links to related work and an
outlook into future developments.

2 Background and Motivation

The main motivation of the dashboard is related to
our own initiative on building open translation mod-
els under the umbrella of OPUS-MT. The devel-
opment of MT accelerated in recent years making
it difficult to obtain a clear view on performance
for individual language pairs. In contrast to related
work, the dashboard is not intended to serve as a
new MT evaluation service but rather as a central
point of comparison between OPUS-MT and other
publicly available models. User-provided transla-
tions are also supported as another point of refer-
ence but the focus is set on verifiable translation
results produced by the system itself.

OPUS-MT is based on OPUS (Tiedemann,
2012), the major hub of public parallel data, the
main ingredient for training modern translation
models. It refers to an initiative to systemati-
cally train translation models on open data sets
using the efficient NMT framework provided by
Marian-NMT (Junczys-Dowmunt et al., 2018). The
project includes both bilingual and multilingual
transformer models of different sizes with stream-
lined procedures to scale up language coverage
and availability (Tiedemann and Thottingal, 2020).
OPUS-MT models are released with permissive li-
censes and can easily be integrated in existing work-
flows (Tiedemann et al., 2022; Nieminen, 2021;
Tiedemann et al., 2023). Currently, there are over
2,300 public models – release information is part
of the dashboard.1 The models cover over 290 lan-
guages and provide translations for 2,549 language
pairs and 4,560 language directions. The sheer vol-
ume of OPUS-MT releases call for a systematic
evaluation to monitor progress and support model
selection in practical applications.

3 Collecting MT Benchmarks

MT benchmarks are developed for various tasks
and domains and their distribution differs depend-
ing on the preferences of the original provider. In
order to make it easier to systematically compare
MT across available benchmarks, we collect known
testsets in a unified and consistent format in a pub-
lic repository2 (OPUS-MT-testsets).

1https://opus.nlpl.eu/dashboard/releases.php
2https://github.com/Helsinki-NLP/

OPUS-MT-testsets/
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Figure 2: Distribution of languages covered in public
benchmarks bucketed by the number of available test
sets per language. The solid line shows the number of
languages in each bucket.

The current collection covers benchmarks from
translation tasks at WMT (Kocmi et al., 2022),
TICO19 (Anastasopoulos et al., 2020), the Tatoeba
translation challenge (Tiedemann, 2020), Flores
v1.0 (Guzmán et al., 2019), Flores-101 (Goyal
et al., 2022) and Flores-200 (NLLB Team et al.,
2022a) and multi30k (Elliott et al., 2016). Each
benchmark may be comprised of several testsets
(different years or dev and test sets). Altogether we
cover over 44,000 language directions with an aver-
age length of 1,945 sentences per testset. One im-
portant thing to note is that the multilingual bench-
marks are typically English-centric in a sense that
the original text has been translated from English
to other languages. Figure 2 illustrates the skewed
distribution and we encourage suggestions3 and
developments of additional sources to change that
picture.

We sort benchmarks by language pair using ISO-
639-3 language codes and use a simple plain text
format with UTF-8 encoded data. Translated seg-
ments (typically sentences) appear on the same line
in separate files for the input text in the source lan-
guage and reference translations in the target lan-
guage. The file name corresponds to the benchmark
name and the file extension specifies the language
by its ISO code. Additional files may provide ad-
ditional metadata such as domain labels or source
information. We also add extensions about the writ-
ing script if necessary. Here are a few examples
from the collection:

eng-deu/newstest2020.deu
eng-deu/newstest2020.eng

3Suggestions can be proposed by adding issues to our
GitHub repository.
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srp_Cyrl-fin/flores200-devtest.fin
srp_Cyrl-fin/flores200-devtest.srp_Cyrl

Currently, we do not support multi-reference
benchmarks. Instead, additional reference transla-
tions are stored as separate benchmarks. Document
boundaries may be specified by empty lines. Other
formatting information is not supported.

We will extend the repository with additional test
sets including NTREX (Federmann et al., 2022),
Samanantar (Ramesh et al., 2021), IWSLT (An-
tonios et al., 2022) and data from the Masakhane
project (Orife et al., 2020).

4 Systematic Evaluation of Public Models

We store the results of our systematic evaluation
in three different public git repositories, depending
on the type of model: (i) Opus-MT models4, (ii)
external models5, and (iii) user-contributed transla-
tions6.

We emphasize a lean design avoiding the has-
sles of setting up and maintaining databases and
additional services. Each leaderboard repository
follows the same structure and is divided into two
main parts: (i) leaderboards for each benchmark
and language pair and (ii) the scores for each in-
dividual model. File structures are organized ac-
cordingly and the setup makes it possible to easily
scale the collection to a large number of models,
benchmarks and language pairs. The inclusion of
new evaluation benchmarks is also straightforward
as we have separate files for each of them. The
main file structure looks like this:
scores/<src>-<trg>/<test>/<metric>-scores.txt
models/<org>/<model>/<test>.<metric>-scores.txt

Source and target language IDs (<src>, <trg>)
and the name of the benchmark (<test>) corre-
spond to the naming conventions used in OPUS-
MT-testsets. Supported metrics are currently
COMET (Rei et al., 2020),7 BLEU (Papineni et al.,
2002) and chrF (Popović, 2015) with the two vari-
ants chrF++ (Popović, 2017) and sentence-piece-
based subword BLEU (Goyal et al., 2022). We
use sacrebleu (Post, 2018) and unbabel-comet8 to
compute the results. We add the readily available

4https://github.com/Helsinki-NLP/
OPUS-MT-leaderboard/

5https://github.com/Helsinki-NLP/
External-MT-leaderboard/

6https://github.com/Helsinki-NLP/
Contributed-MT-leaderboard/

7COMET model: Unbabel/wmt20-comet-da
8https://pypi.org/project/unbabel-comet

Chinese, Japanese and Korean tokenization fea-
tures in sacrebleu and the Flores-200 sentence piece
model for subword splitting. Models are sorted by
provider (<org>); and the model name (<model>)
may be split into sub-directories specifying addi-
tional properties of the model. For example, OPUS-
MT models are grouped by languages they support,
which may be a single language pair or pairs of
language groups.

Besides benchmark-specific score tables,
we also compile aggregated score tables for
each language pair. Those tables list an aver-
age score over several available benchmarks
(avg-<metric>-scores.txt) and the best-
performing model for each available benchmark
(top-<metric>-scores.txt). Automatic make-
file recipes are used to update those tables if
needed. We keep separate tables for the three
categories (OPUS-MT, external models, user-
contributed translations) in each of the respective
repositories.

Furthermore, the repository includes the proce-
dures for translating and evaluating models with
respect to the benchmarks collected as described in
the previous section. The translations are systemat-
ically run with the same hyperparameters. These
can be consulted in Appendix A. The implemen-
tation streamlines the creation of batch jobs and
enables a scalable approach that allows a straight-
forward update of leaderboards with new models
and benchmarks. Additional evaluation metrics
can also be integrated by implementing appropriate
recipes.

The general workflow for evaluating models and
updating score tables is divided into three steps: (i)
translating and evaluating all benchmarks for all
language pairs supported by a model, (ii) register-
ing new scores to be added to existing leaderboards,
and (iii) updating all affected leaderboards and sort-
ing by score. GNU makefile recipes are used to
properly handle dependencies. Using revision con-
trol as the backend storage makes it possible to
recover from errors and mistakes.

We distinguish between internal and external
models but the basic workflow is the same. We
anticipate that the publication of this paper will at-
tract some interest allowing us to harvest additional
user-contributed translations. We report statistics
in Table 1. The relatively small amount of exter-
nal models and the high number of translations is
due to the fact that some of the external models
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OPUS-MT Tatoeba External

Providers - - 34
Models 693 1,633 78
Bilingual 634 779 73
Multilingual 59 854 5
Lang pairs/model 1.93 11.00 36.42
Translations 5,483 80,295 11,723
Testsets 49 66 49
Language directions 650 4,306 786
Language pairs 372 2,388 504
Language coverage 99 276 219

Table 1: Statistics on OPUS-MT, Tatoeba and external
models.

are highly multilingual, in comparison, OPUS-MT
models are mostly bilingual. Some additional de-
tails are given below.

4.1 OPUS-MT Models

OPUS-MT models are released as self-contained
Marian-NMT models. They come in two flavors:
Models trained on different selections from OPUS
(Tiedemann and Thottingal, 2020)9 and models
trained on OPUS data released as part of the
Tatoeba translation challenge (Tiedemann, 2020).10

Release information is available from GitHub and
feeds directly into the evaluation workflow. An
update to the collection triggers new evaluation
jobs. Missing benchmark scores can also be added
using the dependency chains implemented in the
leaderboard workflow. The actual jobs still need
to be started manually as we have to control com-
pute time allocations on the infrastructure that we
employ. Translations and evaluations are typically
done on some high-performance cluster (scheduled
using SLURM (Yoo et al., 2003)) and we integrated
the OPUS-MT leaderboard in the environment pro-
vided by CSC, the center for scientific computing in
Finland.11 However, all jobs should execute in any
environment where all prerequisites are properly
installed (mainly MarianNMT, sacrebleu, comet-
scorer, and SentencePiece).

4.2 External Models

Comparing OPUS-MT to other public models is im-
portant to monitor their performance in relation to
the state of the art. The extension of the OPUS-MT
dashboard to external models is currently supported

9https://github.com/Helsinki-NLP/Opus-MT/
10https://github.com/Helsinki-NLP/

Tatoeba-Challenge/
11https://www.csc.fi/

Models %

(1) Text2TextGeneration/Translation 11,662 100.00
(2) Helsinki-NLP 1,439 12.34

Potential candidates 10,223 87.66
(3) With no language metadata 7,643 65.54

With only one language tag 2,166 18.57
With at least two language tags 414 3.55

(4) Identifiable language direction 144 1.23

Table 2: Statistics of available models on the Hugging-
face repository with metadata on the targeted tasks.

by the model hub from Hugingface.12 Metadata
tags allow us to search the hub efficiently by filter-
ing by task and language.

We proceed as follows. (1) First, we search
the hub to select models that are tagged for tasks
Translation or Text2TextGeneration. (2) Then, we
discard Helsinki-NLP models which are already
included in the dashboard and (3) keep those mod-
els that have at least two language tags. Since the
platform does not provide source and target tags,
(4) we try to infer the language direction from the
model’s name by using regular expressions, a naive
but effective solution. (5) Finally, we only keep
the models that can be used with the translation
pipeline straight out of the box. During this pro-
cess, we encountered several issues such as the
need for non-standard language parameters (e.g
en_XX instead of en) or the need for batch size
optimization.

We report statistics on the models encountered
at each of the steps in Table 2. Surprisingly, only
3.55% of the models have at least two language
tags and thus, are potential candidates for our pur-
pose. Although we acknowledge that this is a small
subset when compared to the extensive range of
available models, the scalability of the method is
granted as long as there is sufficient metadata. The
lack of documentation on the hub is an issue far
beyond our reach. However, we advocate for de-
velopers to document models to the fullest extent
possible.

Furthermore, apart from the models obtained
with the process mentioned above, we specially
target large multilingual models to cover as many
languages as possible. We added the three fol-
lowing models in various sizes: M2M-100 (Fan
et al., 2020), No Language Left Behind (NLLB)
(NLLB Team et al., 2022b) and MBART (Tang
et al., 2020).

12https://huggingface.co/models
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4.3 User-Contributed Translations

In addition to incorporating internal and external
models with our own evaluations, the dashboard
also provides an opportunity for the community
to contribute their collected translations. Transla-
tions for a specific benchmark can be easily added
following a makefile recipe.

In this context, we have envisioned mainly two
scenarios. This feature is highly beneficial to re-
port results for very large MT models that en-
tail high computational costs, such as NLLB’s
largest variant with 54.5 B parameters. We have
collected its scores from https://tinyurl.com/
nllbflorestranslations and they can be con-
sulted from the dashboard. Secondly, this feature
offers flexibility and is especially suitable when
researchers aim to include their own models in the
dashboard, even if we do not internally run those
models. In both cases, scores of user-contributed
translations are displayed separately, as their relia-
bility is lower since we did not produce the transla-
tions ourselves.

5 MT Performance Dashboard

For the dashboard web-interface, we emphasize
a lightweight implementation. In our system, we
want to avoid a complex backend and heavy fron-
tends and rather focus on lean and responsive func-
tionalities. The interface has minimal requirements
and basically runs with a standard PHP-enabled
web server. Data is automatically fetched from the
OPUS-MT storage, GitHub or the local file sys-
tem. Deployment requires no further installation
or database setups. The frontend uses cookies and
session variables to speed up the process but can
also run without them. Server-side caching is used
to enable fast response time and no heavy graphics
or animations are used that would slow down data
transfer and client-side website rendering.

5.1 Benchmark Summaries

The main functionality of the dashboard is to pro-
vide summaries of translation performance com-
ing from automatic evaluation. It automatically
connects with the relevant repositories described
above making their content immediately visible in
the interface. Three basic benchmark views are
implemented: (i) A summary over best-performing
models for a selected language pair over all avail-
able benchmarks, (ii) an overview of translation
models evaluated on a specific benchmark, and (iii)

Figure 3: A heatmap of BLEU scores for a multilingual
OPUS-MT model covering Germanic languages. Target
languages refer to columns in the table.

a comparison of two selected models on available
benchmarks (see Figure 1). All views come with
simple bar charts and tables linked to relevant in-
formation and downloads (see screenshots in the
appendix). For multilingual translation models we
also added a matrix view in terms of a heatmap il-
lustrating scores across all evaluated language pairs
(see Figure 3).

In all modes, the evaluation metric can be se-
lected and other views are linked to quickly jump
between them. We provide download links for in-
ternal models and links to models’ websites when
available for metadata regarding each model’s char-
acteristics. All system translations and evaluation
log files are also available for download to make
the process as transparent as possible.

5.2 Inspecting Translations
Another important feature is the possibility to
browse through the actual translations produced
by each model. We provide all of the translations
together with reference translations from the orig-
inal benchmark in order to study the differences
between proposed and human translations. In ad-
dition, it is also possible to compare the output of
two models on the same benchmark. Highlighting
differences can be enabled using a word-level diff
function (see Figure 4). The interface displays 10
translation instances at a time but the whole dataset
can be downloaded and inspected offline.

6 Related Work

In the current scenario of NLP, which is character-
ized by the increasing number of available mod-
els versus the constant lack of systematic docu-
mentation, von Werra et al. (2022) identify three
challenges: (1) reproducibility, the replicability of
model performance, (2) centralization to avoid the
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Figure 4: Browsing through translation examples, comparing the output of two models and reference translations
for a specific benchmark (Tatoeba English-German).

duplication of workload and one single point of ref-
erence, and (3) coverage, the inclusion of a diverse
set of metrics and languages, as well as pointers
for efficiency, bias and robustness.

One of the most well-known efforts on repro-
ducibility is Papers With Code13 (PWC), an open-
source web-based platform that links papers with
their implementations and includes many features,
such as benchmark evaluations and information on
the use of dataset. The Huggingface repository
also aims at solving the issue of reproducibility
with their Evaluation on the Hub (von Werra
et al., 2022), a user-friendly platform that allows
large-scale evaluation of any of their publicly avail-
able models. This feature holds significant poten-
tial, however, two primary concerns arise. Firstly,
the evaluation is not done systematically, as as-
sessments are performed solely upon user request.
Secondly, although the openness of the hub to all
users is a move towards democratizing ML, it also
results in an absence of metadata for the uploaded
resources that make it difficult to find suitable mod-
els for every dataset. Yet another similar tool is
Dynabench (Kiela et al., 2021), a research platform
for dataset creation and dynamic model benchmark-
ing for a wide range of NLP tasks.

Generic platforms mentioned above are use-
ful but make it difficult to get a comprehensive
overview of one specific task. MT has a long tradi-
tion of shared tasks and several systems have been
developed to visualize and analyze benchmark re-
sults. The WMT matrix14 was a dedicated plat-
form for submitting and archiving submissions to
the translation tasks at WMT. It provided a useful
overview of the state-of-the-art in those tasks, but
the system is down.
MT-CompareEval (Klejch et al., 2015) partially

13https://paperswithcode.com
14http://matrix.statmt.org

replaces that service with its WMT instance.15

The system itself provides a modern tool for the
analysis of MT output with various plots of auto-
matic evaluation metrics and an interface for com-
paring translations with highlighted differences.
The software is open source and can be deployed
with the option to upload additional system trans-
lations, which is also used by the developers to
host their own experimental results.16 In contrast
to the OPUS-MT dashboard, it does not implement
the replication of translations to verify provided
results.

Another open-source tool, compare-mt (Neubig
et al., 2019), has been developed to explore trans-
lation outputs. It supports a deeper analysis and
comparison using detailed statistics of word-level
and sentence-level accuracies, salient n-grams, etc.

On the commercial side, there is Intento, a lan-
guage service provider that publishes a yearly
report with an overview of current MT systems
Savenkov and Lopez (2022) with a focus on com-
mercial models. They provide an end-to-end MT
evaluation service that comes with a cost and the
yearly evaluation is not transparent and open.

7 Conclusions and Future Work

The OPUS-MT dashboard implements a simple yet
comprehensive interface for a systematic evalua-
tion of public translation models. The main pur-
pose is to provide an overview of OPUS-MT mod-
els and to relate their performance to other openly
available models. The focus is on verifiable per-
formance and a centralized evaluation procedure.
The workflow and collection stress transparency
and replicability and can easily be extended with
new models and benchmarks.

The current implementation is fully functional
15http://wmt.ufal.cz/
16http://mt-compareval.ufal.cz/
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Provider Model Parameter Size Batch size Benchmarks / hour

facebook m2m100_418M 418M 16 17.47
facebook m2m100_418M 418M 16 14.14
facebook m2m100_418M 418M 16 15.25
facebook m2m100_1.2B 1.2B 8 8.97
facebook m2m100_1.2B 1.2B 8 8.14
facebook m2m100_1.2B 1.2B 8 10.47
facebook nllb3.3B 3.3B 16 11.03
facebook nllb3.3B 3.3B 16 11.78
facebook nllb3.3B 3.3B 16 12.03
facebook nllb3.3B 3.3B 2 4.18
facebook nllb3.3B 3.3B 2 3.94
facebook nllb3.3B 3.3B 2 3.19

Table 3: Approximate inference statistics (number of translated benchmarks per GPU hour) on three large multilin-
gual models with different sizes and different runs on a single NVIDIA Ampere A100 GPU.

but we already work on several extensions. First
of all, we would like to integrate more informa-
tion about the model properties in the dashboard.
Important features are model size, inference time
and computational costs that can be related to trans-
lation performance. Additionally, we want to tag
other important characteristics such as multilingual
versus bilingual models. Heatmaps for comparing
multilingual model scores are also on our to-do list
as well as better overviews of top-scores in mul-
tilingual benchmarks. We also want to integrate
our geolocated visualization of language coverage
implemented in OPUS-MT map.17

Finally, we are continuously working on the
integration of new benchmarks and the system-
atic evaluation of available models. We look into
other released models and their use for replicat-
ing benchmark results. We also continue to col-
lect benchmarks and will integrate sentence-level
scores while browsing through translation out-
put. We may also connect to other systems like
MT-CompareEval for more detailed analyses.

Limitations

In this paper, we have introduced OPUS-MT dash-
board, our system for MT evaluation with a focus
on centralization and reproducibility. One of the
limitations of the presented approach is that the
current coverage is based solely on automatic MT
metrics. Nevertheless, as mentioned above, we are
working towards adding pointers for model size,
inference time and computational costs. A large
scale manual assessment is beyond our capabili-
ties. However, we consider the option to enable
community-driven feedback that could help to add

17https://github.com/Helsinki-NLP/OPUS-MT-map

human judgments to the system outputs. Further-
more, at the moment we are not aware of how we
can add information regarding bias and fairness,
but we will look into additional points of informa-
tion that can be added to the collection.

Another limitation of our method is that for the
multilingual external models, currently we only
provide English-centric translations (en-xx, xx-en),
due to the high computational costs of running in-
ference on large language and translation models as
shown in Table 3. We will incrementally close the
gaps and maintain a systematic approach to update
the dashboard. We also hope that the dashboard
will trigger more models to become available and
that metadata for their re-use will be improved.

Finally, the current implementation is limited
to single-reference benchmarks and the pipelines
assume sentence-level translation. However, multi-
reference test sets are extremely rare but we will
still consider a support of such data sets in the fu-
ture. Document-level translation will be important
in the near future and for that we will need to adjust
our workflow.

Broader Impacts

The OPUS-MT dashboard has the potential to sig-
nificantly impact the field of MT research by pro-
viding a centralized tool for visualizing and evaluat-
ing the quality of MT output in a systematic manner.
We hope for it to become a point of reference where
everyone (1) can consult which model suits best
their use case by answering "Which model should
I use for language pair X and domain Y?" and (2)
can obtain proper baselines during paper writing
without the need to run again the same experiments,
saving time and, more importantly, computational
costs. We provide selected rough figures of in-
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ference speed in terms of translated benchmarks
per GPU hour in Table 3 to illustrate the carbon
footprint generated by running the models.

Furthermore, we hope that the overall picture
that the OPUS-MT dashboard offers on MT for
specific language pairs will encourage the develop-
ment of resources for low-resource language pairs
making it possible to see where there are gaps or
where multilingual models fail to deliver.
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A Evaluation Hyperparameters

Hyperparameter Value

beam-size 4
max-length 500
max-length-crop True
maxi-batch 512
maxi-batch-sort src
mini-batch 256

Table 4: Marian hyperparameters for decoding internal
models.

Hyperparameter Value

batch_size 64
do_sample False
max_length 500
num_beams 1
top_k 50

Table 5: Hyperparameters for decoding external models
with HuggingFace’s translation pipeline.

B OPUS-MT Map

The OPUS-MT map is yet another visualization
of the availability of machine translation models
focusing on the language coverage in some geo-
graphic distribution. The main purpose is to illus-
trate the concentration of work on specific regions
without making strong claims about the location of
specific languages and language speakers. Geolo-
cations are taken from Glottolog and the interactive
map supports the visualization of translation for
language pairs in both directions using a number
of selected benchmarks like the Tatoeba translation
challenge and the Flores benchmark. A screenshot
of the map is shown in Figure 5.

C Dashboard Screenshots

This appendix shows a number of screenshots from
the live dashboard at https://opus.nlpl.eu/
dashboard. We include different variants of per-
formance plots and show only BLEU-score-based
evaluations in the examples shown below. The
dashboard makes it possible to show the best per-
forming models for a specific language pair across
all benchmarks (see Figure 7), the performance
of all models evaluated for a specific benchmark
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Figure 5: A geographic visualization of the language coverage in public OPUS-MT models. The map plots models
according to Tatoeba translation challenge results indicating performance based on color (green is good and red is
low performance in BLEU). Smaller circles indicate smaller test sets and are, therefore, less reliable.

(Figure 8), an overview of benchmark results for
a selected model including multilingual models
(Figure 9) and a comparison of benchmark results
for two selected models (Figure 10). An example
of the translation inspection feature is shown in
Figure 6.

D Video Demonstration

A video demonstration of the system can be ac-
cessed at https://youtu.be/K2cKoAt3AIY.

325

https://youtu.be/K2cKoAt3AIY


Figure 6: Browsing through benchmark translations with highlighting differences between reference and system
translation. Here a sample from the Flores200 devtest set for Ukrainian to French translated by an OPUS-MT model
for East Slavic languages to French.

Figure 7: Best performing OPUS-MT models on English-German benchmarks.

Figure 8: List of models that support translating from English to Ukrainian. Blue bars refer to OPUS-MT models,
green bars are compact student models and grey bars refer to external models.
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Figure 9: Benchmark results for a multilingual model translating English to East Slavic languages.

Figure 10: Comparison of benchmark results between an OPUS-MT model for English to East Slavic languages
and the distilled NLLB model with 1.3B parameters.
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Abstract

This work introduces the D-WISE Tool Suite
(DWTS), a novel working environment for dig-
ital qualitative discourse analysis in the Digital
Humanities (DH). The DWTS addresses lim-
itations of current DH tools induced by the
ever-increasing amount of heterogeneous, un-
structured, and multi-modal data in which the
discourses of contemporary societies are en-
coded. To provide meaningful insights from
such data, our system leverages and combines
state-of-the-art machine learning technologies
from Natural Language Processing and Com-
puter Vision. Further, the DWTS is conceived
and developed by an interdisciplinary team of
cultural anthropologists and computer scien-
tists to ensure the tool’s usability for modern
DH research. Central features of the DWTS are:
a) import of multi-modal data like text, image,
audio, and video b) preprocessing pipelines for
automatic annotations c) lexical and semantic
search of documents d) manual span, bounding
box, time-span, and frame annotations e) docu-
mentation of the research process.

1 Introduction

In today’s digital era, ever-increasing amounts of
heterogeneous, unstructured, and multi-modal data
are ubiquitous. Within this data, discourses of con-
temporary societies are included in various forms,
such as news articles or videos, social media post-
ings, forum threads, memes, podcasts, or TV shows.
This induces an issue for Digital Humanities (DH)
researchers when conducting digital qualitative dis-
course analysis (Keller, 2011) with such data to
examine complex sociological patterns and discus-
sions: It becomes infeasible for a researcher or an
average research group to investigate the data man-
ually so they rely on computer assisted qualitative
data analysis software (CAQDAS). Although there
are many such tools (Eckart de Castilho et al., 2016;
Gius et al., 2022; Shnarch et al., 2022; Schnei-
der et al., 2023), they often lack support for such

(amounts of) data or are proprietary software.
With the D-WISE Tool Suite (DWTS) intro-

duced in this work, we provide a novel working
environment to support and enhance digital qual-
itative discourse analysis. The tool is conceived
and developed within the D-WISE1 project in close
co-creation by an interdisciplinary team of cultural
anthropologists and computer scientists to ensure
the tool’s usability for modern DH research.

Our system relies on recent advances in Natu-
ral Language Processing and Computer Vision and
their combination to address the challenges of large
amounts of heterogeneous and multi-modal data.
Specifically, we employ state-of-the-art text (De-
vlin et al., 2019; Reimers and Gurevych, 2019), vi-
sion (Zhu et al., 2021; Li et al., 2023), speech (Rad-
ford et al., 2022), video (Ni et al., 2022; Tong
et al., 2022), and visio-linguistic models (Rad-
ford et al., 2021) in our multi-modal preprocessing
pipeline for tasks like named entity recognition,
multi-modal similarity search, object detection, im-
age captioning, automatic speech recognition (tran-
scription), and video understanding tasks. Other
essential functionalities for digital discourse anal-
ysis like lexical search or manual annotations, are
also supported by the DWTS.

In this paper, we describe the system architecture
and central features of the DWTS: (a) import of
text, image, audio, and video documents; (b) pre-
processing pipelines for automatic annotations and
indexing; (c) lexical and semantic similarity search,
(c) manual annotations; (d) automatic and manual
documentation of the research process. The DWTS
is designed as an extensible and scaleable open-
source software system and is publicly available on
GitHub2. Links to a demonstration instance3 and a
video4 are provided.

1 https://www.dwise.uni-hamburg.de
2 github.com/uhh-lt/dwts
3 acl-dwts.ltdemos.informatik.uni-hamburg.de
4 https://youtu.be/NEmq4AMXVss
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2 Related Work

In the following, we discuss the features and limita-
tions of popular open-source CAQDAS and general
purpose annotation tools concerning qualitative
discourse analysis on large heterogenous, multi-
modal, and multi-lingual document collections.

WebAnno (Eckart de Castilho et al., 2016),
CodeAnno(Schneider et al., 2023), INCeP-
TION (Klie et al., 2018) are a family of web-based
collaborative platforms for linguistic annotations
based on the UIMA framework. While they sup-
port a wide range of annotation-related features
for text documents, they do not support image, au-
dio, or video material. Although there exists a
WebAnno extension (Remus et al., 2019) for multi-
modal document annotations, the tool’s objective
is annotating relatively small corpora. Further, the
platforms do not include any deep learning technol-
ogy or preprocessing steps for automatic annota-
tions. Moreover, all platforms lack an overview of
the document collection and general search func-
tionality, making it challenging to apply for dis-
course analysis projects. Another popular tool is
CATMA (Gius et al., 2022). Although the web-
based platform is designed for qualitative and quan-
titative research, including annotation, analysis,
and visualization functionalities, it only supports
text documents. Other CAQDAS systems involving
deep learning techniques for automatic annotations
are LabelSleuth (Shnarch et al., 2022) and TextAn-
notator (Abrami et al., 2020). However, both tools
only support textual documents. Recogito2 (Simon
et al., 2017) is an open-source tool that can be used
for collaborative research projects, is applicable
for discourse analysis, and supports text and image
annotations. However, the tool does not implement
preprocessing pipelines and is designed for small
document collections. The widely used CAQDAS
tools MAXQDA and Atlas.ti fulfill almost all con-
sidered criteria but are proprietary closed-source
software, and require expensive licenses, what of-
ten poses a hurdle of academic research groups.
Further, the tools do not support advanced deep
learning features like similarity search, object de-
tection, or automatic audio and video transcrip-
tions.

3 System Demonstration

The D-WISE Tool Suite is a web-based working en-
vironment for digital qualitative discourse analysis.
It is designed to handle multi-lingual, multi-modal

material of large corpora, achieved by a scaleable
architecture built upon a unified data model and
state-of-the-art machine learning technology. The
application is developed for research groups fea-
turing collaborative projects with multiple users
and role management. Further, the system is easily
deployable using Docker, not requiring the installa-
tion of additional third-party software. Generated
data can be exported in common formats for further
analysis or processing with other tools.

3.1 Typical Workflow

The D-WISE Tool Suite has a variety of functions
that can be used in many diverse ways. For illustra-
tive purposes, we demonstrate the key features with
a typical workflow. Imagine Alice, a researcher
who examines the discourse on electronic health
apps. She accesses DWTS using her web browser
and is greeted by a login screen. After registering
and logging in, she creates a new project for herself
and her project partners.

Data Import To kick off the project, she uploads
her material as single files and in a ZIP archive. The
data comes in various formats and languages: She
saved relevant websites as HTML comprising text
and images, related PDF and DOCX documents,
and articles in raw text files. Further, she found rele-
vant videos and podcasts on the matter. The DWTS
can handle most data formats for text, image, audio,
and video documents. Additionally, DWTS offers
an external crawler implemented with Scrapy and
Beautifulsoup to scrape websites in case additional
material is required.

Data Preprocessing When a document is up-
loaded, it is automatically pre-processed by the
DWTS pipeline. It comprises ML-powered steps
to extract metadata and enrich the material with
additional information like annotations for named
entities or objects in images and videos. It handles
vast quantities of multi-modal, multi-lingual data
as explained in detail in Section 4.1. While the im-
port operation runs in the background, Alice enjoys
a coffee until all data has been processed.

Data Exploration Once the process has finished,
Alice starts her research by exploring the data (see
Figure 1). The DWTS offers traditional search
methods such as full text and keyword search 1).
Documents can be further filtered by manually and
automatically created annotations, codes and tags
2). During the exploration, Alice can overview the

329

https://maxqda.com
https://atlasti.com
https://scrapy.org/
https://beautiful-soup-4.readthedocs.io/en/latest/


Figure 1: Components of the DWTS search interface: 1) Search bar for lexical search and filter options; 2) Currently
applied filters; 3) Multi-modal search results; 4) Search results statistics; 5) Document viewer with tags, metadata,
and annotations; 6) Tag editor popup. The screenshot has been optimized for demonstration purposes.

current search results 3) by referring to the statis-
tics panel 4) that lists the most frequent keywords,
tags, and entities in these documents. Clicking on
one of the documents opens a reader view on the
right panel 5), which can display text, image, au-
dio, video, or mixed documents. Here, both manual
and automatic annotations, e.g., text passages or
objects in images or videos, are highlighted. Meta-
data associated with the document can be viewed
and edited as well. This view also allows for multi-
modal semantic search by right-clicking on images,
videos, or sentences. As documents of all modali-
ties are represented in the same embedding space,
the semantic search can be utilized to retrieve sim-
ilar documents of the same or different modality.
Using these functionalities, Alice found several
relevant documents related to her research ques-
tions. She creates and applies a tag 6) to mark the
documents and save them in a collection.

Annotation / Coding Having found relevant doc-
uments, Alice decides to read them in detail 1) and
opens the annotator (see Figure 2). Using the pre-
viously applied tag, she can easily access and jump
between those relevant documents with the docu-
ment explorer 2). While reading, Alice annotates
interesting passages in text, audio, and video doc-
uments or regions of interest in image documents
on the fly 3). During this process, she constructs a

taxonomy by introducing various codes. The code
explorer 4) visualizes her team’s collaborative hier-
archical code tree and allows to rename, delete, and
merge codes if required. Codes and annotations
from other users and the system can be enabled
and disabled 5), which fosters collaboration and
discussion. This way, the D-WISE Tool Suite re-
alizes the three coding phases of Grounded The-
ory (Strauss and Corbin, 1990; Strauss et al., 1996):
Open coding by creating new codes on-the-fly and
axial and selective coding by providing means to
update codes. At any time, Alice can export the
automatically and manually created annotations,
the created taxonomy, and the raw documents in
common formats for further analysis.

Documentation and Reflection While search-
ing and going through documents, Alice learned
about new concepts, identified several issues, and
developed new ideas and insights on her research
topic. The memo feature of the DWTS allows her
to attach notes to all objects of interest: documents,
annotations, codes, and tags. This reflection pro-
cess is essential for qualitative discourse analysis to
elaborate patterns and phenomena effectively. Fin-
ishing her work for today, Alice wants to recap the
session. She opens the documentation view, a filter-
able and searchable overview of her memos. Fur-
ther, the system automatically logs her interaction
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Figure 2: Components of the DWTS annotation interface: 1) The opened document with annotations of the current
user and automatic annotations from the SYSTEM; 2) Document explorer with tag selection; 3) Annotation editor
popup for code selection; 4) Code explorer with hierarchical codes; 5) Annotation selection; 6) Annotation export
button. The screenshot has been optimized for demonstration purposes.

with the tool showing exactly when and where she
created codes, tags, or annotations. Alice uses the
integrated logbook to summarise today’s findings.
To share her findings with external researchers, she
downloads the logbook and sends it via email.

4 System Architecture

The DWTS is a client-server application with a
Python backend and a React frontend. A REST API
encapsulates core functionalities to enable commu-
nication between frontend and backend.

4.1 Backend Architecture
An essential requirement for the DWTS is scalabil-
ity, i.e., the system’s ability to operate with large
and growing amounts of data and many simultane-
ous users. This was considered and implemented
from the beginning by utilizing only scalable soft-
ware frameworks and libraries and deploying and
orchestrating the system using modern platform-
independent technologies. Further, the backend
was designed and implemented following common
software patterns and idioms to ensure high-quality
software fulfilling essential criteria such as extensi-
bility, availability, scalability, and maintainability.
Moreover, the system is required to be open-source,
i.e., we require third-party software to be open-
source licensed, too.

The backend is divided into several components
responsible for different functionalities grouped
into data storage and retrieval, data preprocessing,
communication, and deployment components.

4.1.1 Data Storage and Retrieval
Arguably the most crucial component of the DWTS
is its underlying data model. This data model
connects the elements of the business logic, e.g.,
projects, users, memos, or annotations, with the het-
erogeneous and multi-modal documents in differ-
ent representations. Business logic data is modeled
as SQL tables using the Python ORM framework
SQLAlchemy and stored in a PostgreSQL database.

Text-, image-, audio-, video-, or mixed-modality
documents are represented and stored in several
ways. The raw files are stored on disk and can be
downloaded by users as described in Section 4.1.3.
Semantic vector embeddings of documents or seg-
ments are stored in FAISS (Johnson et al., 2019)
indices. To retrieve the best matching documents
for a given query, we apply common information
retrieval techniques described in more detail in Sec-
tion 4.1.2. Textual information is stored in inverted
indices using ElasticSearch (Gormley and Tong,
2015)5 (ES) and is retrieved via ES Query DSL
executed utilizing the Python ElasticSearch client
5 We use v7.16.1 which is open-source licensed
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library. A Redis database caches intermediate re-
sults from costly operations and stores bug reports
and feedback.

4.1.2 Document Preprocessing Pipeline
The document preprocessing pipeline is a central
part of the DWTS and responsible for many of
its unique selling point features. A schematic
overview of the pipeline is shown in Figure 3. In
the following, we briefly describe the workflows
and essential steps of the pipeline, which is realized
as a distributed system using the Celery framework.

Whenever a document is uploaded to the DWTS,
a series of actions, referred to as flow, is applied
to it depending on its modality. Each flow is ex-
ecuted in an isolated celery worker process that
can be run on one or different machines. This de-
sign allows for easy scaling of the system if more
computing resources are required. Currently, our
system supports text, image, audio, and video doc-
uments resulting in four different flows, described
in more detail in the following.

Text Document Flow Text documents such as
HTML, PDF, Word, or TXT files are processed in
the text flow of the pipeline. After the document
is stored on disk and registered in the database,
the textual content gets extracted. For PDF and
Word documents, we use Apache Tika. For HTML
files, we use Readability.JS, to retain only a web-
site’s content. Image, video, or audio files in an
HTML page are extracted beforehand and run sep-
arately through the respective flows. Next, meta-
data like the language of the text is detected using
langdetect to load the language-specific pretrained
language model (PLM). Currently, we support En-
glish, German, and Italian using the respective
transformer models (Vaswani et al., 2017; Devlin
et al., 2019) within the spaCy framework (Honni-
bal et al., 2020), which we also use in the subse-
quent steps to do tokenization, sentence segmen-
tation, and Named Entity Recognition. Sentence
embeddings are computed using a pretrained mul-
tilingual CLIP (Radford et al., 2021; Reimers and
Gurevych, 2020) model from the SentenceTrans-
formers framework (Reimers and Gurevych, 2019).
CLIP is a state-of-the-art visiolinguistic model with
strong zero-shot performance in many downstream
tasks, including text-to-image and image-to-text re-
trieval. The embeddings are stored in FAISS (John-
son et al., 2019) indices. Finally, the textual content
is stored in an ElasticSearch index.

Image Document Flow First, the image is stored
on disk and in the database with its extracted meta-
data like the image dimensions. Then, we detect
objects in the image using a pretrained DETR (Zhu
et al., 2021) model, an efficient and effective object
detection model available within the huggingface
transformers framework (Wolf et al., 2020). Next,
a global semantic image embedding is computed
using the same CLIP model as in the text flow and
stored in a FAISS index. This enables multi-modal
similarity search of images and texts. Finally an
image caption is generated utilizing a pretrained
BLIP-2 (Li et al., 2023) model. This caption is
passed through the text flow to enable lexical and
semantic search.

Audio Document Flow In this flow, audio doc-
uments in standard formats, such as MP3 or WAV,
are processed. The file is stored on disk and
in the database along with its extracted meta-
data like the length of the recording. Then the
audio file gets chunked in about 5s segments,
which result in about 16.5 words with an average
words-per-minute rate of 198 (Wang, 2021), which
is in the range of the average English sentence
lengths (Moore, 2011). These chunks are then for-
warded through a Whisper (Radford et al., 2022)
model to compute semantic embeddings stored in
a FAISS index to enable audio-to-audio similarity
search.6 In the final step, we generate a textual
transcription of the audio using a Whisper model.
We treat the audio transcription as a text document
and run it through the text flow to support lexical
and semantic textual search.

Video Document Flow Documents in standard
video formats, such as MP4 or MOV, are pro-
cessed in the video flow. Again, first, the file
is stored on disk and in the database along with
its extracted metadata, like the duration or dimen-
sions. Afterwards, following the motivation for
audio files, the video gets chunked into about 5s
clips. These chunks are then forwarded through
a VideoMAE (Tong et al., 2022) or X-CLIP (Ni
et al., 2022) model to compute rich semantic em-
beddings, which are stored in a FAISS index to
enable video-to-video similarity search.7

Finally, we extract the audio stream from the
video and process it in the audio flow.
6 The similarity search for raw audio and video documents
or chunks is work-in-progress and has yet to be released in
our system demonstration DWTS instance. 7 This is still
undergoing research and is not yet available in the DWTS
demonstration instance.
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Figure 3: Illustration of the multi-modal preprocessing pipeline in the DWTS. Each flow for a specific modality is
executed in a separate Celery worker process. Steps involving deep learning models are highlighted.

4.1.3 Client-Server Communication
A REST API implemented using FastAPI encapsu-
lates all functionality of the DWTS. Using FastAPI,
an OpenAPIv3 schema and a SwaggerUI are auto-
matically generated, drastically easing the develop-
ment of UIs or other external applications consum-
ing DWTS functionality. To simplify communica-
tion between clients and the server, the parameters
and return types of all the API endpoints are de-
fined as data-transfer-objects (DTO) using Pydantic
models. These DTOs are also widely used within
the backend to decouple entities from database ses-
sions, for communication between different system
components, and to transmit data between the Cel-
ery workers of the preprocessing pipeline.

Further, we employ lighttpd as a file server for
raw text, image, audio, and video files.

4.2 Frontend Architecture
The frontend is an interactive web application build
with React and TypeScript. It communicates with
the backend by consuming its RESTful API to re-
alize most features. Since the backend exposes
its functionality with an API defined by an Ope-
nAPIv3 schema, we use a code generator to auto-
matically generate a client that fully supports all
functionality, including TypeScript interfaces or
classes for all parameter and return types. Data
fetching, caching, and synchronization are handled
with React-Query making the app faster and more
responsive while saving bandwidth and increasing
performance. The client state is managed by Re-
dux, which enables powerful functionalities like
undo/redo and state persistence. The interface and
interaction follow the recognized Material Design
System, which utilizes material-like surfaces for
the components. We use ready-made components
from the MUI library, as well as custom-tailored
components to implement the user interface.

4.3 System Deployment

The DWTS is deployed using modern containeriza-
tion technology. Every system component, i.e., the
databases and indices, API, Celery workers, and
the frontend, is deployed in a separate Docker con-
tainer. All containers are orchestrated in a Docker
Compose file that makes up the DWTS system.
This approach has several advantages: First, the
software is platform-independent and can be conve-
niently deployed on any modern system or infras-
tructure with minimal adaptation and configuration
efforts. Thus, the system can be deployed on lo-
cal servers for projects with confidential or privacy
constrained data. Second, the components can be
deployed on different machines, e.g., computation-
ally intensive components like the Celery workers
can run on a GPU server, while memory-intensive
components like indices and databases can run on
a storage server. Third, the system can be easily
scaled using Docker Swarm or similar technology.

5 Conclusion

This paper presented the D-WISE Tool Suite
(DWTS), a web-based open-source application to
support and enhance digital discourse analysis for
Digital Humanities by being able to operate on
large amounts of heterogeneous and multi-modal
data. We discussed the motivation and need for
our system by pointing out the limitations of exist-
ing DH tools for extensive multi-modal document
collections. Further, we demonstrated central func-
tionalities of the DWTS by describing a typical
workflow illustrated by screenshots, and provide
technical details about the system architecture in
a separate section. Currently work-in-process but
released in future work are video and audio anno-
tations and 4-way multi-modal similarity search
between text, image, audio, and video documents.
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Limitations & Ethics Statement

The DWTS makes state-of-the-art machine learn-
ing (ML) models accessible to researchers that
could previously not benefit from these advances.
Our tool targets Digital Humanities researchers and
is intended to assist with qualitative discourse anal-
ysis. As with most digital tools, though, it could
be misused for other work. We strongly believe
that including and enabling more researchers to
benefit from modern ML technology outweighs the
potential for misuse.

When using ML models, it is important to un-
derstand their limitations and critically reflect on
their predictions. ML models often include cer-
tain biases that can manifest in various types and
forms and are not without error. We try to mitigate
this by visualizing confidence scores where appli-
cable and additionally provide traditional methods
as ML-free alternatives. In particular, we offer a
multi-modal semantic similarity search and high-
light the confidences, but also provide a standard
lexical search to cross-check the results. Still, er-
rors in preprocessing steps, like removing relevant
content during data cleanup or the entity recognizer
model missing a certain entity of interest, may lead
to biased search and analysis results.

Naturally, we also introduce a bias with our sys-
tem design and envisioned workflow. While we
tried our best to model the process of digital dis-
course analysis as closely as possible, we might
still restrict a user in their workflow by our design
decisions.

Regarding privacy and security, we identified
and mitigated two limitations. The DWTS requires
users to upload their potentially sensitive data to
the system. To alleviate this, we ensured the tool
is easily deployable and can be self-hosted even by
non-experts allowing users to stay in full control
of their data. In particular, it is even possible to
install DWTS locally on private devices. Further,
the DWTS includes a feature that automatically
logs user actions and populates a logbook in order
to improve the documentation and reflection of re-
search processes. By making this an opt-in feature,
we guarantee that users are in control of their usage
data.

We are aware of the limitations of our system
and the technology therein and are committed to
actively participating in discussions with domain
experts regarding ML, privacy, and bias to identify
and iron out further constraints.
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Abstract

There are a growing number of table pre-
training methods proposed for reasoning over
tabular data (e.g., question answering, fact
checking, and faithful text generation). How-
ever, most existing methods are benchmarked
solely on a limited number of datasets, vary-
ing in configuration, which leads to a lack
of unified, standardized, fair, and comprehen-
sive comparison between methods. This paper
presents OPENRT, the first open-source frame-
work for reasoning over tabular data, to repro-
duce existing table pre-training models for per-
formance comparison and develop new models
quickly. We implemented and compared six
table pre-training models on four question an-
swering, one fact checking, and one faithful
text generation datasets. Moreover, to enable
the community to easily construct new table
reasoning datasets, we developed TARAT, an
annotation tool which supports multi-person
collaborative annotations for various kinds of
table reasoning tasks. The researchers are
able to deploy the newly-constructed dataset to
OPENRT and compare the performances of dif-
ferent baseline systems. The library OPENRT,
along with the annotation tool TARAT, is pub-
licly available at https://github.com/
yilunzhao/OpenRT.

1 Introduction

With the increasing amount of structured data avail-
able, there is a growing interest in developing NLP
systems for reasoning over tabular data to per-
form tasks such as question answering (Pasupat
and Liang, 2015; Zhong et al., 2017; Iyyer et al.,
2017), fact checking (Chen et al., 2020c; Gupta
et al., 2020), and faithful text generation (Chen
et al., 2020b; Parikh et al., 2020). Table pre-training
has emerged as a promising approach for develop-
ing large language models (LLMs) that can per-
form various kinds of downstream table reasoning

∗Equal Contributions.

tasks with high accuracy after fine-tuning (Herzig
et al., 2020; Liu et al., 2022b; Jiang et al., 2022;
Yang et al., 2022; Zhao et al., 2022b; Liu et al.,
2022a). However, existing table pre-training meth-
ods have been benchmarked on different datasets
with varying configurations (Table 2), resulting in
a lack of standardization for comprehensive evalua-
tion between methods. Moreover, existing models
are developed under individual systems and have a
lack of compatibility. Therefore, it is difficult and
time-consuming to re-implement them for result
comparison in future studies. As the above issues
seriously hinder the development of table reasoning
models, it is imperative to develop a unified and
extensible open-source framework for reasoning
over tabular data.

In this paper, we present OPENRT, the first
OPEN-source framework for Reasoning over
Tabular data, which has the following three char-
acteristics: (1) Modularization: we developed
OPENRT with highly reusable modules and in-
tegrated them in a unified framework, which en-
ables researchers to study different table reasoning
models at a conceptual level; (2) Standardization:
OPENRT includes popular table reasoning datasets
and models. The evaluation of different models
is standardized under the same experimental con-
figuration; (3) Extensibility: OPENRT enables re-
searchers to easily develop their own models or add
new datasets by extending corresponding modules
with their proposed ones.

Moreover, in order to facilitate the construc-
tion of new table reasoning datasets by other re-
searchers, we developed TARAT, the first TAble
Reasoning Annotation Tool that supports the col-
laborative construction of various dataset types (i.e.,
question answering, fact checking, text generation).
User-created datasets can be easily integrated into
OPENRT for performance evaluation.

The main structure of the paper is organized
as follows: Section 2 describes each table reason-
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Dataset # Examples # Tables Input Output Evaluation Metrics

Question Answering

WIKISQL (Zhong et al., 2017) 80,654 24,241 question short-form answer Acc
WTQ (Pasupat and Liang, 2015) 22,033 2,108 question short-form answer Acc
SQA (Iyyer et al., 2017) 17,553 982 sequential question sequential answers Acc
FETAQA (Nan et al., 2022a) 10,330 10,330 question long-form answer B, R, BS, PARENT, NLI-Acc

Fact Checking

TABFACT (Chen et al., 2020c) 118,275 16,573 statement entailment label Acc

Faithful Table-to-Text Generation

LOGICNLG (Chen et al., 2020a) 37,015 7,392 highlighted columns statement B, R, BS, PARENT, SP/NLI-Acc

Table 1: Table reasoning tasks in OPENRT. B denotes BLEU, R denotes ROUGE, and BS denotes BERTScore. The
details of each evaluation metric are introduced in Appendix A.

WIKISQL WTQ SQA FeTaQA TABFACT LOGICNLG

TAPAS (Herzig et al., 2020) ✓ ✓ ✓ ✓

UnifiedSKG (Xie et al., 2022) ✓ ✓ ✓ ✓ ✓ ✓

TAPEX (Liu et al., 2022b) ✓ ✓ ✓ ✓ ✓ ✓

REASTAP (Zhao et al., 2022b) ✓ ✓ ✓ ✓ ✓ ✓

OmniTab (Jiang et al., 2022) ✓ ✓ ✓ ✓ ✓ ✓

PLOG (Liu et al., 2022a) ✓ ✓ ✓ ✓ ✓ ✓

Table 2: The list of table reasoning datasets used in different table pre-training works. It demonstrates the lack of
standardized and comprehensive benchmarks for evaluating existing table pre-training methods.

ing task included in OPENRT; Section 3 describes
each module and its implementation of OPENRT
framework; Section 4 compares the performance
of different table pre-training methods on included
datasets, and provides insights into how to choose
appropriate table pre-training methods for specific
needs; Section 5 introduces the functions and im-
plementation of TARAT; finally, Section 6 intro-
duces the related work about table reasoning and
annotation tools.

2 OPENRT Tasks

OPENRT covers three kinds of table reasoning
tasks: question answering, fact checking, and faith-
ful text generation. The goal of OPENRT is to
push the development of table pre-training meth-
ods that can be applied and achieved competitive
performance on various kinds of table reasoning
tasks. We describe the details of each dataset in the
following subsections and Table 2.

2.1 Table Question Answering
WIKISQL The WIKISQL-WEAK dataset
(Zhong et al., 2017) requires models to perform
filtering and, optionally, aggregation on table cell
values to obtain an answer to the given question.

WTQ The WikiTableQuestions dataset (Pasupat
and Liang, 2015) contains 22,033 complex ques-

tions on Wikipedia tables. Compared to WIKISQL,
it requires more complicated reasoning capabilities,
thus is more challenging.

SQA The SequentialQA dataset (Iyyer et al.,
2017) was built by decomposing the questions from
WTQ dataset and organizing them into a conver-
sational context. It requires models to answer se-
quences of simple but interrelated questions.

FETAQA Different from above-mentioned three
short-form Table QA datasets, the Free-form Table
Question Answering dataset (Nan et al., 2022b)
requires models to generate free-form text answers
after retrieval, inference, and integration of multi-
ple supporting facts from the source table.

2.2 Table Fact Checking

TABFACT The TABFACT dataset (Chen et al.,
2020c) requires the models to perform both soft
linguistic reasoning and hard symbolic reasoning
to determine whether a given statement is entailed
or refuted by the corresponding tabular data.

2.3 Faithful Table-to-Text Generation

LOGICNLG The LOGICNLG dataset (Chen
et al., 2020a) requires models to generate multiple
statements that perform logical reasoning based on
the information in the source table. Each statement
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Figure 1: The overall framework of OPENRT.

should be factually correct with the table content.

3 OPENRT Framework

As shown in Figure 1, OPENRT consists of four
main modules: configuration, data, modeling, and
evaluation. The users are able to fine-tune or test
the existing table pre-training models on the in-
cluded dataset. They are also allowed to add their
own models or datasets into OPENRT by extending
corresponding modules with their proposed ones.

3.1 Configuration Module

Users and developers define all experiment configu-
rations in the configuration module, which includes
command lines, external configuration, and inter-
nal configuration. Users are expected to modify the
major experiment settings through command lines
or by modifying external configuration files, while
keeping the internal configuration unchanged for
replicating existing models. This ensure a unified
and standardized performance comparison between
different table reasoning models.

3.2 Data Module

As discussed in Section 2, OPENRT includes pop-
ular datasets for table reasoning, which cover var-
ious types of tasks. Any raw dataset undergoes
processing using the following data flow: raw data
→ Preprocessor→ Dataset→ Dataloader→ pro-
cessed data. The data flow converts raw datasets
in various formats into a unified format that can be
used as input for the modeling module.

The Preprocessor tokenizes textual and tabular
data input using the corresponding tokenizer of the
model. It applies the same strategy as Liu et al.
(2022b) to truncate a long table into a shorter ver-
sion to satisfy the model’s input length limit. The
Dataset component prepares input data, while the
DataLoader component selects features from the
processed data to form tensor data for model input.
For both components, we have implemented par-
ent classes TRDataset and TRDataLoader to
include shared attributes and functions. Users can
add a new dataset by creating classes that inherit
from these parent classes with a few modifications.

3.3 Modeling Module
We have organized and unified the implementations
of each table reasoning model within the modeling
module by creating an interface parent class called
TRModel. The design of TRModel simplifies
the process for users who want to deploy or add
a new model to OPENRT. They can simply create
and modify a corresponding child class by inherit
TRModel. The following table reasoning models
have been implemented in OPENRT:

• TAPAS (Herzig et al., 2020) adopts the BERT
encoder with an additional positional embedding
for encoding table structure. It also adds two clas-
sification layers for cell selection and aggregation
operator predictions.

• UnifiedSKG (Xie et al., 2022) unifies each task
into a text-to-text format, and adopts a sequence-
to-sequence T5 model for multi-task learning
over multiple table reasoning datasets.

• TAPEX (Liu et al., 2022b) pre-trains LLMs by
learning as a neural SQL executor to predict the
execution results of synthetic SQL queries.

• REASTAP (Zhao et al., 2022b) injects various
kinds of table reasoning skills (e.g., conjunction,
counting) into LLMs by synthesizing Table QA
examples as the pre-training corpus.

• OmniTab (Jiang et al., 2022) retrieves table-
sentence pairs from Wikipedia for mask-based
pre-training and synthesizes Table QA examples
for pre-training with a QA loss.

• PLOG (Liu et al., 2022a) is pre-trained on a syn-
thetic corpus of table-to-logic-form generation to
learn table-relevant logical inference knowledge.

While it is possible to train a single model for
each task without using the "pre-train, then fine-
tune" paradigm (Zhou et al., 2022; Ou and Liu,
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FETAQA LOGICNLG

B-4 ROUGE-1/2/L BS NLI BLEU-1/2/3 ROUGE-1/2/L BS PA SP NLI

UnifiedSKG 31.5 63.5/41.8/54.1 83.6 78.0 51.8/32.5/18.8 42.8/20.9/36.5 75.1 32.9 46.2 87.0
TAPEX 30.2 62.0/39.9/50.7 82.3 79.2 52.2/32.1/18.3 44.0/21.5/36.8 72.5 31.9 50.1 87.4
REASTAP 30.4 62.5/40.3/51.1 82.7 80.4 52.5/32.5/18.9 44.2/21.5/37.3 78.2 32.2 54.8 89.2
OmniTab 30.7 62.9/40.6/52.1 84.1 81.5 53.0/32.9/19.1 44.5/21.7/37.4 77.6 31.7 55.1 89.0
PLOG 31.8 64.7/42.5/54.9 86.2 80.2 54.9/35.0/21.0 46.1/23.8/39.0 80.1 32.8 50.5 88.9

Table 3: Automated Evaluation of table pre-training models on the test set of FETAQA and LOGICNLG datasets.
BS denotes BERTScore, PA denotes PARENT, SP denotes SP-Acc, and NLI denotes NLI-Acc.

Short-form QA Fact Checking

WIKISQL WTQ SQA TABFACT

PLOG 85.9 43.7 60.3 82.0
UnifiedSKG 85.6 48.3 61.5 83.5
TAPAS 84.0 50.4 67.1 81.0
TAPEX 89.2 57.2 74.5 84.0
REASTAP 90.4 58.6 74.7 84.7
OmniTab 88.7 62.8 75.9 85.2

Table 4: Accuracies of existing table pre-training mod-
els on the test set of short-form table QA and table fact
checking datasets. Bold numbers indicate the highest
accuracy, and underscores denote the second best.

2022; Zhao et al., 2023a), we included only table
pre-training models in OPENRT. This is because
we focus on pushing forward the development of
more generalizable table pre-training methods that
can be applied to various table reasoning tasks and
achieve competitive performance.

3.4 Evaluation Module

To evaluate and compare the performance of table
reasoning models supported by a certain dataset,
OPENRT includes all the evaluation metrics used in
the official implementation. These metrics can be
used off-the-shelf with a one-line call. The details
of each metric are introduced in Appendix A.

3.5 Execution

We implemented Evaluation and Fine-tuning
paradigms for execution in OPENRT. For Evalua-
tion, users are able to replicate experimental results
of existing models on the supported table reasoning
dataset by using provided model checkpoints1. For
Fine-tuning, they can train existing models on new
datasets or fine-tune their self-implemented mod-
els on the included datasets. OPENRT supports

1We provide checkpoints of each supported
model fine-tuned on each included dataset at
https://huggingface.co/OpenTR

hyper-parameter search to improve fine-tuning per-
formance. We also implemented strategies such as
multi-GPU training and half-precision training for
efficient model training.

4 Experiments

4.1 Implementation Details

We conducted experiments to evaluate and compare
the fine-tuning performance of supported table pre-
training models on the included table reasoning
datasets. In our experiments, if a model had been
fine-tuned on a certain dataset in its original pa-
per and its corresponding checkpoint was publicly
available, we evaluated the model’s performance
directly using the provided checkpoint. Otherwise,
we fine-tuned the model first and then evaluated its
performance. For each fine-tuning experiment, we
ran 40 epochs with a batch size of 128, and the best
fine-tuning checkpoints were selected based on the
validation loss.

4.2 Experimental Results

As shown in Table 3, PLOG achieves higher per-
formance for most surface-level evaluations (i.e.,
BLEU, ROUGE, BERTScore, and PARENT) on
faithful table-to-text generation and free-form Ta-
ble QA tasks. This is reasonable because PLOG
is pre-trained to generate logical forms given the
tabular data, which improves the model’s capabil-
ity for content selection and logical inference in
text generation. OmniTab achieves the best per-
formance on faithfulness-level evaluation (i.e., SP-
Acc and NLI-Acc). It also achieves the best perfor-
mance on most fact checking and short-form QA
tasks (Table 4), demonstrating the effectiveness
of pre-training models over natural and synthetic
Table QA examples to improve the model’s reason-
ing capability. Our aim is that such performance
comparison, using a standardized benchmark, will
provide researchers with valuable insights on how
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Figure 2: The overall workflow of TARAT.

    Quick Deployment

● Customized templates for each 
types of table reasoning tasks

● Detailed documentation

Better Quality Control

● Role isolation for annotator, 
reviewer, and administrator

● Progress tracker
● Qualification test

    High Productivity 

● Fit for crowdsourcing
● Grammar checking and correction
● Easy table evidence annotation

    Free Accessibility 

● Fully open-sourcing
● Free access for everyone

Figure 3: The four design principles of TARAT: quick
deployment, better quality control, high productivity,
and free accessibility. Each principle comes with a
series of feature designs that can make data annotation
for table reasoning tasks more efficient and reliable.

to develop more powerful and effective table pre-
training methods that can be applied to and achieve
competitive performance on various types of table
reasoning tasks.

5 TARAT Annotation Tools

In order to facilitate the construction of new ta-
ble reasoning datasets for other researchers, we
developed TARAT, the first open-source table rea-
soning annotation tool that supports the collabo-
rative construction of various dataset types (i.e.,
question answering, fact checking, text generation).
TARAT was designed, developed, and tested with
the four design principles shown in Figure 3. As
depicted in Figure 2, a typical annotation process
using TARAT consists of the following five steps:

5.1 Annotation Project Creation

The administrator begins by accessing the admin
interface of TARAT (Figure 4 in Appendix) to
specify and set up an annotation project. Specifi-
cally, they need to select one of the annotation task
templates provided by us as a starting point. These

templates are customizable, so the administrator
is allowed to adjust elements (e.g., annotator in-
put type, display style of tabular data) to finalize a
tailored annotation task specification.

5.2 Annotation Batch Assignment

The administrator can create multiple batches for
an annotation project, with each batch containing
multiple annotation tasks (i.e., we count annotat-
ing an example as one task). The division of the
annotation project into multiple batches helps the
administrators better organize and monitor the an-
notation progress. To initialize each batch, the
administrators need to prepare raw annotation data
in a csv file, with each line corresponding to an
annotation task (Figure 5 in Appendix). Then the
administrator can assign each batch to a specific
group of annotators (Figure 6 in Appendix).

5.3 Annotation

Once the annotation batches are assigned, the
annotators can begin working. In our prelimi-
nary study, we found that annotators and review-
ers would spend a significant amount of time on
typo/grammar correction and table evidence anno-
tation (i.e, write down the row and column indices
of relevant table cells). To improve annotation ef-
ficiency and quality, we accordingly implemented
the following two features:

Grammar Checking We integrated the Gram-
marly Text Editor Plugin2 into the TARAT annota-
tion interface to help annotators detect and elimi-
nate grammar and spelling mistakes. The annota-
tors can view the editing suggestions by clicking
the underlined text. They can then apply the sug-

2https://developer.grammarly.com/docs/
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gested change by clicking “Accept”, or ignore it by
clicking “Dismiss” (Figure 9 in Appendix).

Efficient Supporting Fact Annotation Previous
work (Chen et al., 2020a, 2021) required annota-
tors to manually write down the column and row
indices of all relevant table cells (i.e., supporting
fact), which is time-consuming and might intro-
duce typos. To enable a more efficient support-
ing fact annotation, we implemented cell highlight,
which allows the annotators to select (i.e., high-
light) multiple relevant cells on the table as sup-
porting facts (Figure 10 in Appendix). The indices
of highlighted cells will be automatically recorded.

5.4 Annotation Review
Once an annotation batch is finished, the admin-
istrator can convert it to a reviewing batch at the
TARAT admin interface, and assign the reviewing
batch to a group of reviewers. The reviewers are
expected to correct examples with annotation er-
rors. The system will update the passing rate of
each annotator, which the administrator can use to
identify unqualified annotators and filter them out.

5.5 Annotation Result Export
After the review process, the annotated data can
be exported by the administrator to a result file in
CSV format (Figure 8 in Appendix). The adminis-
trator is also able to output the annotation statistics
(e.g., passing rate, spent time on each example) for
each annotator or reviewer, which can be used to
determine annotation payment.

6 Related Work

Reasoning over Tabular Data The tasks related
to reasoning over tables involves question answer-
ing (Pasupat and Liang, 2015; Zhong et al., 2017;
Iyyer et al., 2017; Zhao et al., 2022a), fact check-
ing (Chen et al., 2020c; Gupta et al., 2020), and
faithful text generation (Chen et al., 2020b; Parikh
et al., 2020; Zhao et al., 2023b) based on the in-
formation contained in the tables. Previous work
mainly investigated how to develop a task-specific
model that can work on one or two table reason-
ing datasets. More recently, inspired by the huge
success of pre-trained language models (Devlin
et al., 2019; Raffel et al., 2020), researchers have
attempted to adopt the "pre-training, then fine-
tuning" paradigm to develop models that can han-
dle different kinds of table reasoning tasks with
high performance (Herzig et al., 2020; Liu et al.,

2022b; Jiang et al., 2022; Yang et al., 2022; Xie
et al., 2022; Liu et al., 2022a). However, exist-
ing table pre-training methods have been evalu-
ated on different datasets with varying configu-
rations and developed as individual systems, re-
sulting in difficulties in re-implementing them for
performance comparison in future studies. The de-
velopment of open-source libraries such as Trans-
formers (Wolf et al., 2020) alleviate these issues to
some extent, but they only cover a narrow range of
table pre-training models and datasets. OPENRT
implements existing table pre-training models in
a unified and highly modularized framework, and
provides standardized and comprehensive evalua-
tion benchmarks for performance comparison.

Annotation Tools for Table Reasoning Tasks
Existing annotation tools usually focus on the an-
notation with only textual input (Nakayama et al.,
2018; Perry, 2021; Lin et al., 2022; Friedrich et al.,
2022; Pei et al., 2022; Stodden and Kallmeyer,
2022). The development of table-relevant anno-
tation tools is more complex as it requires the
system to handle annotations on both textual and
tabular input in a user-friendly manner. The cur-
rent open-source table reasoning annotation tool,
TABPERT (Jain et al., 2021), allows a user to up-
date the table contents and associated hypotheses to
generate counterfactual NLI examples. Compared
to TABPERT, TARAT supports more types of table
reasoning tasks, and can be hosted on a central-
ized server for large-scale distribution with a multi-
person collaborative process. Furthermore, each
component of TARAT is highly modularized and
can be customized to meet the individual needs.

7 Conclusion

This work presents OPENRT, the first open-source
framework for reasoning over tabular data, to re-
produce existing table pre-training models for a
standardized and fair performance comparison.
OPENRT also enables users to quickly deploy their
own models and datasets. Moreover, we developed
TARAT to facilitate the construction of new table
reasoning datasets by other researchers.

In the future, we will continue to add more ta-
ble reasoning datasets and the latest released table
pre-training models to OPENRT as part of regular
updates. We welcome researchers and engineers to
join us in developing, maintaining, and improving
OPENRT and TARAT, in order to push forward the
development of research on table reasoning.
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A Appendix

OPENRT includes following evaluation metrics for
performance evaluation and comparison:

• Accuracy is scored as the number of correct pre-
dictions divided by total number of predictions.

• BLEU (Papineni et al., 2002) uses a precision-
based approach, measuring the n-gram matches
between the generated and reference statements.

• ROUGE (Lin, 2004) uses a recall-based ap-
proach, and measures the percentage of overlap-
ping words and phrases between the generated
output and reference one.

• NLI-Acc (Chen et al., 2020b) applies a natural
language inference (NLI) model fine-tuned on
TABFACT (Chen et al., 2020c) to predict whether
the generated sentence is entailed by source table.

• SP-Acc (Chen et al., 2020b) extracts the meaning
representations from the generated sentence and
executes them against the source table to verify
the logical fidelity of the generated text.

• BERTScore (Zhang et al., 2020) computes the
similarity between the generated sentence and
reference ones using contextual word embed-
dings from BERT. For LOGICNLG, which has
multiple references for a source table, we com-
pute the score by measuring the candidate with
each reference and returning the highest score.

• PARENT (Dhingra et al., 2019) aligns n-grams
from the reference and generated statements to
the tabular data before computing their precision
and recall. It achieves higher correlation with
human judgement.
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Home › Turkle › Projects › Add Project

Name:

HTML template text:

HTML template file: Choose File

Assignments per Task:

Allotted Assignment
Time (hours):

SAVE

Table QA template

HTML Template

You can edit the template text directly, Drag-and-Drop a template file onto this window, or use the
"Choose File" button below. Maximum size is 64 KB.

Status
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Deactivating a Project effectively deactivates all associated Batches. Workers can only access a Batch if both the Batch itself and the
associated Project are Active.

Default Task Assignment Settings for new Batches

1

Changing this parameter DOES NOT change the number of Assignments per Task for already
published Batches of Tasks.

24

If a user abandons a Task, this determines how long it takes until their assignment is deleted and
someone else can work on the Task. Changing this parameter DOES NOT change the Allotted
Assignment Time for already published Batches of Tasks.

Default Permissions for new Batches
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Restrict access to specific Groups and/or Users

Save and add another  Save and continue editing

Add Project

Turkle version 2.8.0-dev

AUTHENTICATION AND AUTHORIZATION

Groups Add

Users Add

TURKLE

Active projects

Active users

Batches Add

Projects Add

Task Assignments

«

Figure 4: “Project Creation” in the administrator interface of TARAT. To set up a new annotation project, the
administrator needs to choose, modify, and upload the HTML template for initializing the annotation interface.

Figure 5: An example of raw data stored in the csv file.
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Status
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Figure 6: “Annotation Batch Creation” in the administrator interface of TARAT. The administrator can create an
annotation batch by importing the raw data stored in a csv file, and assign the batch to a specific group of annotators.
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Project: Table QA template / Batch: batch1 Auto-accept next Task Return Task Skip Task Expires in 23:58

Wilco

Year Award Work/Artist Result

1999 Grammy Award for Best Contemporary Folk Album Mermaid Avenue Nominated

2005 Grammy Award for Best Alternative Music Album A Ghost Is Born Won

2005
Grammy Award for Best Recording Package (awarded to
the art director)

A Ghost Is Born Won

2008 Grammy Award for Best Rock Album Sky Blue Sky Nominated

2010 Grammy Award for Best Americana Album
Wilco (The
Album)

Nominated

2012 Grammy Award for Best Rock Album The Whole Love Nominated

Annotate following:
Question

Answer

Selected areas

Submit

Figure 7: The annotation interface for Table QA task using provided HTML template.

Administration WELCOME, MBY. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home › Turkle › Projects

  Search

Action: ---------  Go  0 of 3 selected

NAME FILENAME UPDATED AT ACTIVE STATS PUBLISH TASKS EXPORT RESULTS
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Table Fact Checking Template fact_checking_template.html Feb. 25, 2023, 4:57 a.m. Stats Publish Tasks Export Results

3 Projects

FILTER

By creator

By active

All

Yes

No

Select Project to change

Turkle version 2.8.0-dev

ADD PROJECT
AUTHENTICATION AND AUTHORIZATION

Groups Add

Users Add

TURKLE

Active projects

Active users

Batches Add

Projects Add

Task Assignments

«

Figure 8: “Annotation Result Export” in the administrator interface of TARAT. The administrator can output the
annotated data as well as the annotation statistics in CSV formats.

Figure 9: An example of grammar checking in TARAT. The annotation interface automatically detects the spelling
errors and shows the editing suggestions to the annotator.
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Project: Table QA template / Batch: batch1 Auto-accept next Task Return Task Skip Task Expires in 23:56

Hoot Kloot

№ Title Directed by: Released:

1 "Kloot's Kounty" Hawley Pratt 1973

2 "Apache on the County Seat" Hawley Pratt 1973

3 "The Shoe Must Go On" Gerry Chiniquy 1973

4 "A Self Winding Sidewinder" Roy Morita 1973

5 "Pay Your Buffalo Bill" Gerry Chiniquy 1973

6 "Stirrups and Hiccups" Gerry Chiniquy 1973

7 "Ten Miles to the Gallop" Arthur Leonardi 1973

8 "Phony Express" Gerry Chiniquy 1974

9 "Giddy Up Woe" Sid Marcus 1974

10 "Gold Struck" Roy Morita 1974

11 "As the Tumbleweeds Turn" Gerry Chiniquy 1974

12 "The Badge and the Beautiful" Bob Balsar 1974

13 "Big Beef at O.K. Corral" Bob Balsar 1974

14 "By Hoot or By Crook" Bob Balsar 1974

15 "Strange on the Range" Durward Bonaye 1974

16 "Mesa Trouble" Sid Marcus 1974

17 "Saddle Soap Opera" Gerry Chiniquy 1974

Annotate following:
Question

How many movies directed by Gerry Chiniquy were

released in the year of 1973?

Answer

3

Selected areas

3:3.2:3;5:6.2:3

Submit

Figure 10: An example of cell highlight in TARAT. To annotate supporting facts, the annotators can directly select
(i.e. highlight) the relevant table cells on the table. The indices of highlighted cells will be automatically recorded.
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Abstract
This paper introduces the Unified Interactive
Natural Understanding of the Italian Language
(UINAUIL), a benchmark of six tasks for Ital-
ian Natural Language Understanding. We
present a description of the tasks and software
library that collects the data from the Euro-
pean Language Grid, harmonizes the data for-
mat, and exposes functionalities to facilitates
data manipulation and the evaluation of custom
models. We also present the results of tests con-
ducted with available Italian and multilingual
language models on UINAUIL, providing an
updated picture of the current state of the art in
Italian NLU.
Video: https://www.youtube.com/watch?
v=rZWKl9cPTbk

1 Introduction

Large Language Models (LLM) have revolution-
ized the field of Natural Language Processing. In
the span of a few years, the common practice
for most NLP tasks shifted from building ad-hoc
models trained on task-specific data to fine-tuning
general-purpose language models trained in a self-
supervised fashion. The focus of the evaluation
practices shifted accordingly, from measuring the
impact of different features and neural architec-
tures on the prediction performance, to assessing
the predictive power of LLMs applied to a variety
of NLP tasks. This has been possible, at least in
part, due to the standardization proposed in De-
vlin et al. (2019), where four general task formats
are claimed to represent the structure of most NLP
tasks: text classification, sentence pair classifica-
tion, sequence labeling, and question answering.

In this scenario, benchmarks have emerged that
collect a number of tasks falling into the four men-
tioned categories, with the purpose of evaluating
LLMs in a fair and reproducible environment. Per-
haps the best known of such benchmarks is GLUE
(Wang et al., 2018, Language Understanding Eval-
uation), a set of nine sentence classification and

sentence pair classification Natural Language Un-
derstanding tasks. SuperGLUE (Wang et al., 2019)
was presented not long after GLUE with the goal
of proposing a harder set of NLU tasks, given the
high performance reached by LLMs on GLUE not
long after its release.

While English is covered by benchmarks such as
GLUE and SuperGLUE, the situation differs sen-
sibly when we turn to other languages, with only
a few NLU benchmarks available for non-English
languages (Shavrina et al., 2020; Kakwani et al.,
2020; Xu et al., 2020; Wilie et al., 2020; Adesam
et al., 2020). These are useful resources for the
international NLP community, and a great example
of language equality (Rehm et al., 2021). How-
ever, these benchmarks are mostly static collec-
tion of datasets with no additional tool to facilitate
data gathering and management, evaluation, and au-
tomation in general (except for leaderboards, which
are usually maintained by the respective authors).

In this paper, we present UINAUIL (Unified In-
teractive Natural Understanding of the Italian Lan-
guage), an integrated benchmark for Italian NLU,
with three main goals:

G1 Filling the gap in Italian NLU evaluation in
the era of LLMs by proposing one integrated
benchmark as opposed to a myriad of individ-
ual shared task datasets.

G2 Raising the bar on the automation level of
NLU benchmarks, in order to create more ac-
cessible and user-friendly benchmarks.

G3 Set the example via a use case to encour-
age scholars and NLP practitioners to pub-
lish modern, integrated benchmarks for under-
represented languages.

2 A Unified Benchmark for Italian NLP

UINAUIL is a set of six tasks originally proposed
as shared tasks for evaluation of Italian NLP. In this
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section, we describe the background of the tasks
and how they are integrated into UINAUIL.

2.1 EVALITA

In order to select a set of NLU tasks to include into
UINAUIL, we analysed the archives of EVALITA.
Started in 2007, the “Evaluation campaign for Lan-
guage Technology in Italian” has been organized
every two or three years, with the latest edition
currently ongoing in 20231. EVALITA provides a
common framework of shared tasks, where partici-
pating systems are evaluated on a wide variety of
NLP tasks. The number of tasks of EVALITA has
grown over time, from 5 tasks in the first edition
in 2007, to the 14 tasks of the 2020 edition (Pas-
saro et al., 2020). At the same time, the nature
of the proposed tasks has evolved, progressively
including a larger variety of exercises oriented to
semantics and pragmatics, but without neglecting
more classical tasks like part-of-speech tagging
and parsing. Since the 2016 edition, EVALITA
registered an increased focus on social media data,
especially Twitter, and the use of shared data across
tasks (Basile et al., 2017).

2.2 EVALITA4ELG

The European Language Grid (ELG) is an Euro-
pean project2 whose aim is to establish a platform
and marketplace for the European industrial and
academic research community around language
Technologies (Rehm et al., 2020). ELG is an evolu-
tion of META-NET3 and its sistem projects T4ME,
CESAR, METANET4U, and META-NORD. Ac-
cording to the META-NET Strategic Research
Agenda for Multilingual Europe 2020 (Rehm and
Uszkoreit, 2013), ELG will represent the “Euro-
pean Service Platform for Language Technologies”.
At the time of this writing, ELG counts 7,200 cor-
pora, 3,707 tools and services, plus a large num-
ber of other language resources such as lexicons,
models, and grammars,4 for both EU official and
EU candidate languages, as well as a number of
non-EU languages, such as languages spoken by
EU immigrants or languages of political and trade
partners. The platform has an interactive web user
interface and APIs. Crucially for the benchmark
presented in this paper, a Python library is main-

1http://www.evalita.it/
2https://cordis.europa.eu/project/id/825627
3http://www.meta-net.eu/
4https://live.european-language-grid.eu/

tained by ELG, which greatly facilitates the pro-
grammatic acces to its resources.

In 2020, the project EVALITA4ELG “Italian
EVALITA Benchmark Linguistic Resources, NLP
Services and Tools for the ELG platform”5 started,
with the aim of collecting all the language re-
sources developed during the several past editions
of EVALITA, and integrate them into the ELG. The
project succeeded to collect, harmonize and upload
43 corpora and 1 lexical/conceptual resource from
all editions of EVALITA from 2007 to 2020 (Basile
et al., 2022), among which are found the ones we
selected for UINAUIL, described in the next sec-
tion.

2.3 Tasks

For the first version of UINAUIL, we selected six
tasks from EVALITA. We aimed at selecting a rep-
resentative sample of tasks in terms of their level of
language analysis and target phenomenon. More-
over, we selected tasks with different formats, and
proposed at different editions of EVALITA. Table 1
summarized the six tasks of UINAUIL, described
in detail in the rest of this section.

2.3.1 Textual Entailment
In the textual entailment task of EVALITA
2009 (Bos et al., 2009), participants are asked to
submit systems that classify ordered pairs of sen-
tences according to the logical relation holding
between them. In particular, a text (T), with re-
spect to an hypothesis (H), can be labeled as either
ENTAILED or NOT ENTAILED.

2.3.2 EVENTI
EVENTI, from EVALITA 2014 (Tommaso et al.,
2014) is a shared task on Temporal Process-
ing for Italian. The task is built around Ita-
TimeBank (Caselli et al., 2011), a large manually
annotated dataset of events and temporal expres-
sions. The dataset follows the TimeML tagging
standard, where events and time expressions are
labeled as spans of single or multiple tokens, and
they may be associated with attributes. The shared
task is articulated into four subtasks related to the
prediction of the extent of events and timex, their
classification, and the relations insisting between
event/event or event/timex pairs.

In UINAUIL, we include the subtask B, which in-
volves the tagging of events and their classification

5http://evalita4elg.di.unito.it/
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Acronym Full name Task type Size
(training/test)

Textual Entailment Textual Entailment Sentence pair classification 400/400
EVENTI Event detection & classification Sequence labeling 5,889/917
FactA Factuality classification Sequence labeling 2,723/1,816
SENTIPOLC Sentiment Polarity Classification Sentence classification 7,410/2,000
IronITA Irony Detection Sentence classification 3,777/872
HaSpeeDe Hate Speech Detection Sentence classification 6,839/1,263

Table 1: Summary of the tasks included in UINAUIL.

according to one of the following classes: ASPEC-
TUAL (phase or aspect in the description of another
event); I_ACTION (intensional action); I_STATE

(event that denotes stative situations which intro-
duce another event); PERCEPTION (event involving
the physical perception of another event); REPORT-
ING (action of declaring something, narrating an
event, informing about an event); STATE (circum-
stance in which something obtains or holds true);
OCCURRENCE (other type of event describing situ-
ations that happen or occur in the world).

The task is a sequence labeling problem, there-
fore the classes are associated at the token level,
prefixed with a B (beginning of a labelled span)
or a I (inside a labelled span), while O (outside)
denotes the tokens that do not belong to any event.

2.3.3 FactA
The Event Factuality Annotation (FactA) task was
part of EVALITA 2016 (Minard et al., 2016). In
this task, the participant systems are challenged to
profile the factuality of events in the text by means
of three attributes, namely: certainty, time, and po-
larity. In UINAUIL, we included the first subtask
of FactA, that is, the labeling of certainty, whereas
spans of tokens from the input text associated with
an event are labeled with one of three classes: CER-
TAIN (the source is certain about the mentioned
event); NON_CERTAIN (the source is not certain
about the mentioned event); UNDERSPECIFIED (the
certainty about the mentioned event is not speci-
fied). Like EVENTI, FactA is a sequence labeling
task and therefore the annotation is at the token
level following the BIO standard.

2.3.4 SENTIPOLC
The SENTIment POLarity Classification (SEN-
TIPOLC) shared task was proposed for the first
time at EVALITA 2014 (Basile et al., 2014) and
then re-run in 2016 (Basile et al., 2014). SEN-
TIPOLC is divided into three subtasks, two of

which are binary classification tasks where systems
are challenged to predict subjectivity and irony in
Italian tweets. The other task is polarity prediction,
where systems have to predict two independent bi-
nary labels for positivity and negativity, with all
four possible combinations of values allowed. The
polarity prediction task is included in UINAUIL,
with a slight change of format: instead of two in-
dependent binary labels, the task in UINAUIL is
cast as a four-value multiclass classification task
with labels POSITIVE, NEGATIVE, NEUTRAL, and
MIXED.

2.3.5 IronITA
The shared task on Irony Detection in Italian
Tweets (Cignarella et al., 2018, IronITA) is a shared
task focused on the automatic detection of irony
in Italian tweets, from EVALITA 2018. The task
comprises two subtasks with differing by their level
of granularity. The first subtask is a binary classi-
fication of tweets into ironic vs. non-ironic. The
second task adds the level of sarcasm to the clas-
sification, conditioned on the presence of irony in
the tweets. In UINAUIL, we included the first task,
as a sentence-level binary classification task with
the labels IRONIC and NOT IRONIC.

2.3.6 HaSpeeDe
Hate Speech Detection (HaSpeeDe) from
EVALITA is a classification task from EVALITA
2020 (Sanguinetti et al., 2020), updated re-run of
the same task from EVALITA 2018 (Bosco et al.,
2018). The task invites participants to classify
social media data from Twitter and Facebook as
hateful, aggressive, and offensive. The complete
shared task comprises binary classification (HATE

vs. NOT HATE), a cross-domain subtask, stereotype
detection and the identification of nominal
utterances linked to hateful content. In UINAUIL,
we included the training and test data for the main
classification task only.
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3 The UINAUIL library

In addition to defining the benchmark, we created
a software library to access the data and function-
alities of UINAUIL. We developed a Python mod-
ule for downloading the task data and metadata,
represented in a structurally consistent way. Fur-
thermore, the library provides an implementation
of evaluation metrics. The UINAUIL package is
available on pip / PyPI, and can be installed with
the command:

1 $ pip install uinauil

Listing 1: How to install the UINAUIL package.

The package depends only on two non-standard
packages: elg, the library maintained by the
ELG project for accessing to the resources of
the European platform 6 (see Section 2.2), and
scikit-learn, a well known library for Machine
Learning and Data Analysis 7. Otherwise, since the
UINAUIL library is fully contained into a single
file, developers can directly download the source
file and save it in the working folder.

Once installed, the library can be used to down-
load the resources of the tasks described in Sec-
tion 2.3, and to evaluate the predictions of a per-
sonal model through standard performance metrics
selected by us for each task. The data are contained
in Python standard structures (lists and dictionaries)
and are divided into training and test sets, accord-
ing to the original split for each task represented in
the ELG repository. The list of available tasks is
stored into a proper attribute:

1 >>> import uinauil as ul
2 >>> ul.tasks
3

4 {
5 'haspeede ': {
6 'id': 7498,
7 'task': 'classification '
8 },
9 'textualentailment ': {

10 'id': 8121,
11 'task': 'pairs '
12 },
13 'eventi ': {
14 'id': 7376,
15 'task': 'sequence '
16 },
17 'sentipolc ': {
18 'id': 7479,
19 'task': 'classification '
20 },
21 'facta ': {
22 'id': 8045,

6https://pypi.org/project/elg/
7scikit-learn.org/

23 'task': 'sequence '
24 },
25 'ironita ': {
26 'id': 7372,
27 'task': 'classification '}
28 }

Listing 2: List of available tasks.

The tasks variable contains information in a
dictionary format, where each key is the name of
a task (used to acces the task data in UINAUIL),
while the value contains its identifier on the ELG
platform and the type of task. An example of usage
of the library for a learning and evaluation pipeline
is the following:

1 import uinauil as ul
2

3 # load a task , for example 'facta '
4 task = ul.Task('facta ')
5

6 # get training and test set of the task
7 train = task.data.training_set # train
8 test = task.data.test_set # test
9

10 # train the model on the training set
and make prediction on test set

11 ...
12 pred = <make predictions on test set >
13

14 # evaluate model on standard metrics
15 scores = task.evaluate(pred)
16 print(scores)

Listing 3: Quickstart for UINAUIL package.

Line 1 imports the UINAUIL library, while Line
4 downloads the resources of a task, in the exam-
ple the FactA task described in Section 2.3.3. The
authentication on ELG is handled by the elg library
and is equipped with a caching mechanism in order
to minimize the requests for logins on the plat-
form. The UINAUIL library also checks whether
the data was previously downloaded before con-
necting to ELG. Lines 7 and 8 store the training and
test sets in local variables. These are represented
as lists of instances for classification tasks, or lists
of lists of tokens for sequence labeling tasks. In
turn, instances and tokens are dictionaries pairing
text and labels. At this point of the code exam-
ple, a model can be trained on the training data, or
the labels can be predicted otherwise, depending
on the implemented approach — the library is ag-
nostic to specific classification models. On Line
15 the predictions are used to evaluate the model
with the evaluate method of UINAUIL, that calcu-
lates several standard performance metrics chosen
specifically for each task as follows:

• For sequence labeling tasks, the performance
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is evaluated only with accuracy, calculated as
the ratio of hits over all the tokens.

• For all the remaining tasks, the performance
metrics are accuracy on all classes, then pre-
cision, recall and F1 for each single class and
their macro average.

In addition to these core functionalities, the UIN-
AUIL library contains several metadata that helps
programmers to understand the resources of each
task, including the list of key names of features
and target, a brief description of the meaning of
each feature, the list of possible values of the target
and their meaning, and others. The complete list
of variables and methods of UINAUIL library is
available on the Github repository of the project 8.
Also present on the repository are several examples
of use of the library on several common Machine
Learning models in form of Python notebooks, and
the complete leaderboards by task.

4 Evaluation

In order to test the library, and to offer the commu-
nity a first set of results on Italian NLU tasks, we
conducted a series of experiments with the aim of
setting a baseline for all the tasks of the benchmark.
The experiments consist in fine-tuning pre-trained
language models for Italian (plus a multilingual
one) on the training data of each task, and testing
their prediction against the corresponding test data,
computing the appropriate evaluation metrics.

4.1 Experimental setting

We implemented this series of experiments with
simpletransformers9, a Python library that facil-
itates LLM fine-tuning and prediction. Simple-
transformers automatically downloads pre-trained
models from the Huggingface repository10, and
provides functions for training and classification.
We built scripts that collect data through the UIN-
AUIL library, fine-tune LLMs, produce the pre-
dictions with simpletransformers, and finally use
UINAUIL again to compute the relevant evaluation
metrics. We kept the hyperparameter optimization
at a minimum, on purpose, since the goal of these
experiments is not that of achieving a high perfor-
mance, as much as producing a fair (while still
high) baseline, and a comparison between models

8https://github.com/valeriobasile/uinauil
9https://simpletransformers.ai/

10https://huggingface.co/models

across tasks. All models are fine-tuned for exactly
2 epochs, with a fixed learning rate of 10−4. All
experimental results are averages of five runs.

4.2 Models
Here we briefly describe the LLMs used in the
baseline experiments. The string in brackets is the
identifier of the model in Huggingface.

• ALBERTO

(m-polignano-uniba/bert_uncased_L-12_H-
768_A-12_italian_alb3rt0) is the first LLM
that has been proposed for the Italian
language (Polignano et al., 2019). This model
is based on BERT and it is trained on a
collection of 200 million posts from Twitter
from TWITA (Basile et al., 2018).

• ITALIAN BERT
(dbmdz/bert-base-italian-uncased,
dbmdz/bert-base-italian-xxl-uncased) is
a LLM maintained by the MDZ Digital
Library at Bavarian State, based on ELEC-
TRA (Clark et al., 2020) and trained on a
Wikipedia dump, the OPUS corpora collec-
tion (Tiedemann and Nygaard, 2004), and
the Italian part of the OSCAR corpus (Abadji
et al., 2021) for a total of about 13 million
tokens. The model comes in two variants, the
regular one and a larger one (XXL).

• MULTILINGUAL BERT
(bert-base-multilingual-uncased) is one of the
first models released together with the BERT
architecture itself (Devlin et al., 2019). It
is trained on text in 102 languages from
Wikipedia with a masked language model
goal. Although it has been surpassed in per-
formance for many NLP tasks, Multilingual
BERT has been widely adopted, also because
pre-trained language models for languages
other than English are often unavailable or
smaller than their English counterparts.

4.3 Results
Table 2 shows the results of the baseline systems
on the UINAUIL tasks. Focusing on the sequence
labeling tasks EVENTI and FactA, we notice how
the model does not make substantial difference
for the latter (factuality classification), while there
is a 0.02 point difference in performance for the
former (event classification). The larger model
(Italian BERT XXL) is the one obtaining the best

352

https://github.com/valeriobasile/uinauil
https://simpletransformers.ai/
https://huggingface.co/models


Textual Entailment SENTIPOLC EVENTI
Model P R F1 Acc. P R F1 Acc. Acc.

ITALIAN BERT .441 .497 .404 .538 .741 .721 .716 .646 .916
ITALIAN BERT XXL .391 .495 .379 .541 .764 .741 .740 .675 .936
ALBERTO .427 .500 .391 .529 .727 .688 .691 .621 .925
MULTILINGUAL BERT .445 .524 .430 .544 .660 .653 .645 .559 .925

IronITA HaSpeeDe FactA
Model P R F1 Acc. P R F1 Acc. Acc.

ITALIAN BERT .737 .736 .735 .736 .786 .785 .785 .785 .907
ITALIAN BERT XXL .769 .765 .764 .765 .792 .791 .791 .791 .908
ALBERTO .744 .743 .742 .742 .744 .742 .741 .741 .909
MULTILINGUAL BERT .710 .709 .709 .709 .743 .740 .739 .739 .909

Table 2: Baseline results on all task of UINAUIL project: Textual Entailment, SENTIPOLC, IronITA and HaSpeeDe
in terms of macro-averaged precision (P), recall (R), and F1-score (F1), and accuracy; EVENTI and FactA in terms
of token-level accuracy.

performance on EVENTI, as well as on all the sen-
tence classification tasks SENTIPOLC, IronITA,
and HaSpeeDe.

Interestingly, for Textual Entailment, Multilin-
gual BERT is the best model. This is also the only
sentence pair classification task of the benchmark,
indicating how the pre-training strategy of LLMs
(e.g., stronger emphasis on single text vs. sentence
pair) has an impact on its performance on different
tasks.

In absolute terms, the performances of all base-
lines on Textual Entailment are quite poor, with an
accuracy slightly higher than 0.5 and a very low F1
score, around 0.4. This shows how even if this task
has been published over a decade ago, there is still
ample room for improvement.

The performance on the baselines on the classi-
fication tasks are all in line with the reported state
of the art, validating the standardization proposed
with our benchmark.

5 Conclusions

In this paper we presented UINAUIL (Unified In-
teractive Natural Understanding of the Italian Lan-
guage), an integrated benchmark for Italian NLU.
Its purposes are manifold: to fill the gap in Italian
NLU evaluation by proposing one integrated bench-
mark; to create more accessible and user-friendly
benchmarks for Italian NLU; to encourage schol-
ars to publish modern, integrated benchmarks for
under-represented languages.

UINAUIL is implemented in Python library, pub-
licly available via pip/PyPI, that permits to easily

download resources in Italian Language for six
different NLU tasks, that can be used by program-
mers and researchers to train and evaluate their
NLP models. UINAUIL is built with automation
as principle, with the main goal of minimizing the
overhead for a user who wants to evaluate a NLU
model for Italian. In effect, only a few lines of code
are sufficient before and after the main logic of a
model, in order to retrieve the data and evaluate the
model.

In this paper, we presented in details each task in-
cluded into UINAUIL and the main features of the
Python library, including a sample quickstart code
for its most common functionalities. Furthermore,
we evaluated the performances of several common
NLP models for Italian Language on each task of
UINAUIL. The results show that current models
represent a high-performing baseline, especially
for sentence classification tasks, while there is still
room for improvement for Italian NLU, as shown
by the performance on the textual entailment task.
However, it should be noted that the goal of this pa-
per is mainly to present the UINAUIL benchmark.
A thorough analysis of the results of all available
models, while out of our present scope, is a natural
next development of this work.

As further developments, we plan to add other
tasks to the project, accordingly to the future devel-
opments in the field of NLP for Italian Language.
We also plan to implement the leaderboard as a
service in ELG, besides the Github repository, so
that users can submit their results autonomously,
leveraging the provided authentication.

353



6 Ethical and legal statement

This work uses data that have been previously re-
viewed and published. As such, we find no partic-
ular ethical issue to be discussed beyond what is
already discussed by the original articles presenting
the datasets. One particular dataset, however, con-
tains sensitive data: the HaSpeeDe shared task data
made of tweets annotated for hate speech. While
the user mentions in these tweets were anonymized
by the authors of the dataset to protect the men-
tioned people’s privacy, the texts still contain ex-
plicit and implicit expressions of hatred that may
result hurtful to some readers.

The download of the datasets is managed
through the European Language Grid. As part
of the procedure, the user is informed about the
terms and conditions of each individual dataset and
must accept the licence before downloading the
data. Furthermore, the ELG platform tracks the
data exchange in order to comply with the Euro-
pean General Data Protection Regulation (GDPR).

7 Limitations

In this paper, in addition to a benchmark for Ital-
ian NLU and a Python library implementing it, we
presented the results of pre-trained language mod-
els fine-tuned for the six tasks in the benchmark.
The models we selected are widely used for the
Italian language, but they are not the only avail-
able ones. Moreover, the scenario moves fast, with
newer and larger language models being published
regularly. The evaluation conducted in this paper,
therefore, can only be a partial snapshot of the cur-
rent panorama, while the UINAUIL library stands
as an easy tool to evaluate new models as they are
published with minimal overhead.
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Abstract

The Zero-Shot Learning (ZSL) task pertains to
the identification of entities or relations in texts
that were not seen during training. ZSL has
emerged as a critical research area due to the
scarcity of labeled data in specific domains, and
its applications have grown significantly in re-
cent years. With the advent of large pretrained
language models, several novel methods have
been proposed, resulting in substantial improve-
ments in ZSL performance. There is a grow-
ing demand, both in the research community
and industry, for a comprehensive ZSL frame-
work that facilitates the development and acces-
sibility of the latest methods and pretrained
models. In this study, we propose a novel
ZSL framework called Zshot that aims to ad-
dress the aforementioned challenges. Our pri-
mary objective is to provide a platform that
allows researchers to compare different state-
of-the-art ZSL methods with standard bench-
mark datasets. Additionally, we have designed
our framework to support the industry with
readily available APIs for production under the
standard SpaCy NLP pipeline. Our API is ex-
tendible and evaluable, moreover, we include
numerous enhancements such as boosting the
accuracy with pipeline ensembling and visual-
ization utilities available as a SpaCy extension.
https://youtu.be/Mhc1zJXKEJQ

1 Introduction

Zero-Shot Learning (ZSL) is a machine learning
field focused on the study of models able to clas-
sify objects or perform tasks that they have not
experienced during training. This is achieved by
leveraging additional information about the output
classes, such as their attributes or descriptions.

ZSL has a wide range of potential applications,
since it allows a model to generalize and adapt to
new situations without requiring retraining or large
amounts of labeled data. This can be particularly
useful in real world applications where new classes
or categories may be constantly emerging and it

would be infeasible to retrain the model every time.
ZSL can also be used to classify and predict rare
or minority classes that may not have a significant
amount of labeled data available for training.

If we consider Named Entity Recognition (NER)
– including classification and linking (NEL) – and
Relation Extraction (RE) problems, recent ZSL
methods Aly et al. (2021); Wu et al. (2020); Chen
and Li (2021) leverage textual descriptions of en-
tities or relations as additional information to per-
form their tasks. This additional input allows mod-
els to recognize previously unseen entities (or rela-
tions) in text, based on the provided descriptions.
Wu et al. (2020) and Aly et al. (2021) provide ex-
amples of the effectiveness of descriptions in the
zero-shot NER task. The same mechanism can
also be applied to the RE task (Chen and Li, 2021)
by providing descriptions of the relation between
entity pairs. Figure 1 shows the input and output
of a zero-shot NER and classification model such
as SMXM (Aly et al., 2021). Leveraging entity
descriptions, the model is able to disambiguate be-
tween mentions of the term "apple" – which could
indicate a mention of the homonymous company,
or the fruit – despite having been trained only on
OntoNotes (Weischedel et al., 2017) classes. By
projecting each token in the latent space of a pre-
trained Language Model (LM), the semantic dis-
tance between the label/description of a class and
each token in a sentence can be used as a method
assign tokens to a certain entity.

There are several variations to ZSL approaches,
both for NER and RE. For example, De Cao et al.
(2021) show how it is possible to frame the zero-
shot NER task as an end-to-end autoregressive
generation problem that exploits the probability
distribution learned by the LM, while Wu et al.
(2020) uses a combination of a bi-encoder and a
cross-encoder for entity linking. In addition to the
different configurations of NER and RE models
– i.e. model architectures, training strategies and
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Figure 1: An example of a zero-shot NER prediction. Using textual descriptions, the model is able to differentiate
between the two unseen classes.

datasets – these components often depend on other
NLP tools to process texts and on each other, e.g.
RE models often are not end-to-end and require
entity spans in a text as part of their input.

2 Motivations and Contributions

The hidden complexity in running NER or RE ex-
periments in the ZSL context and the lack of a
shared framework and API to describe the inputs
and outputs of such models hampers the repro-
ducibility of many approaches, as well as the ability
of the research community to evaluate new models
against strong baselines under the same experimen-
tal conditions. More specifically, we identified the
following major shortcomings for what concerns
the ability to evaluate existing NER and RE ap-
proaches under the same experimental conditions.

Different assumptions about the task. Some
NER and Entity Linking methods assume that the
mentions to link to are given, while others are end-
to-end. Similar considerations apply also to RE,
where some approaches tackle the task as an end-
to-end problem and others as a classification one.
Furthermore, some approaches may be limited in
terms of performance or scalability and might there-
fore provide an evaluation only on a restricted sub-
set of a dataset or on a simplified version of their
task. For example, entity linking models are of-
ten unable to link entities to a dataset the size of
Wikipedia or Wikidata in the same way as many
RE approaches cannot scale to hundreds of rela-
tion classes. These differences in the input-output
configuration of NER and RE models impact the
ability of researchers to evaluate new approaches
against existing ones, either for the lack of clar-
ity when describing their evaluation strategy or for
the investment required to make the appropriate
changes to the models configurations, in order to
make them comparable under the same experimen-
tal conditions.

Lack of standard datasets. As the performance
of ZSL approaches increases, better and more spe-
cific datasets are developed to help researchers
evaluate increasingly challenging problems. The
release of the FewRel and FewRel 2.0 datasets is
an example of this refinement process (Gao et al.,
2019). In the first version of FewRel, a RE model
was expected to assign to each entity pair in a sen-
tence a relation from a list. In other words, there
was always a correct class for the model to pick to
describe the relation between an entity pair. How-
ever, the most frequently occurring scenario in the
real world is when two entities are not related or
when the correct relation between the entities is
missing among the options given by the model.
This prompted the release of an updated version of
the dataset, which includes the no relation class as
an option for RE models to choose from. Similar
considerations can be made for the evaluation of
NER models and domain-specific ones. Another
aspect which is often overlooked in many research
papers is the lack of a shared implementation of a
training, validation and test split for a dataset. This
is especially important in the ZSL setting where
entities or relation classes should not overlap be-
tween training/validation and test dataset splits. Of-
ten, zero-shot datasets are obtained from a random
split of existing datasets, which were not originally
designed to be used for the evaluation of zero-shot
approaches and contain overlapping output classes
in the respective training/validation and test set. In
the process of transforming these datasets the exact
split of classes is often not reported and this ham-
pers the reproducibility of the evaluation results
presented in a research work.

Different evaluation metrics. To compare a
group of models under the same experimental con-
ditions, different researchers will have to agree on a
set of evaluation metrics to employ. This often hap-
pens when a new NLP task is introduced, together
with a reference dataset and baselines. For NER
and RE, the reference metric is often the Macro
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F1 Score, but there might be models which have
a better precision/recall balance depending on the
task or that have been evaluated on different, more
domain-specific metrics when first described to the
research community. These differences make it
harder for researchers to benchmark models across
different datasets or domains and to evaluate the ac-
tual improvements of newly proposed approaches.

To tackle the above-described problems concern-
ing the evaluation and benchmarking of zero-shot
NER and RE models, we present Zshot. Zshot is
an open-source, easy-to-use, and extensible frame-
work for ZSL in NLP.

The main contributions of the Zshot framework
are the following:

• Standardization and modularization: Zshot
standardizes and modularizes the NER and
RE tasks providing an easy to use and cus-
tomize API for these models.

• Unification of NER and RE: these tasks are
often considered separately in existing litera-
ture, however this is not the case in real world
scenarios where the models are strongly inter-
connected. In Zshot, users can define unified
pipelines for both tasks.

• Compatible with SpaCy (Honnibal and Mon-
tani, 2017) and the HuggingFace library (Wolf
et al., 2019): users define pipelines following
SpaCy style NLP pipelines and models are
hosted by HuggingFace.

• Evaluation: provides an easy to use and
extend evaluation framework for different
models and pipelines on standard benchmark
datasets for NER and RE.

• Visualization: Zshot builds on displaCy capa-
bilities as a visualization tool to display results
of NER annotations and RE models.

• Ensemble pipeline: Zshot provides simple
API for ensembling of NER or RE pipelines
using different entity or relation descriptions
or models, yielding more accurate results than
standalone systems.

• Open source: the open source community can
customise and extend Zshot adding new mod-
els, evaluation metrics and datasets.

1 nlp_config = PipelineConfig(
2 entities =[
3 Entity(
4 name="Company",
5 description="Names of

company or
organisation"

6 ),
7 Entity(
8 name="Fruits",
9 description="Names of

fruits such as pear ,
banana and orange"

10 ),
11 ],
12 linker=LinkerSMXM (),
13 )

Listing 1: Python example of a Zshot pipeline
configuration.

The Zshot library implements a pipeline defined
by 3 components i.e., Mention Detection, Entity
Linking and Relation Extraction and is compat-
ible with SpaCy (Honnibal and Montani, 2017).
It extends the popular displaCy tool for zero-shot
entity and relation visualization, and defines an
evaluation pipeline that validates the performance
of all components, making it compatible with the
popular HuggingFace library (Wolf et al., 2019).
Zshot aims to provide an easy-to-use solution that
can be integrated in production pipelines, while at
the same time providing researchers with a frame-
work to easily contribute, validate and compare
new state-of-the-art approaches. We open source
all the code, models, metrics and datasets used. 1

3 Design and Implementation

Figure 2 shows a high-level overview of the Zshot
pipeline composed by three main modules i.e.,
Mention Detection, Entity Linking and Relation
Extraction. The pipeline accepts a configuration
object that allows to select the output classes of
mentions, entities and relationships of interest and
the models to use to perform each task (see List-
ing 1). Then, each of the library modules adds
annotations that can be used at a later stage, ex-
tending a SpaCy NLP pipeline. Components like
the Entity Linker and the Relation Extractor can
also be end-to-end, in which case the pipeline au-
tomatically skips the unnecessary previous steps.
Zshot also automatically manages batching, par-
allelization and the device on which to perform
the computation. All options are configurable and
modules are customizable.

1Zshot: https://github.com/IBM/zshot
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Figure 2: High-level architecture of Zshot. The Entity Linker and the Relation Extractor can use the predictions of
previous components. For end-to-end models, the pipeline will skip the previous steps.

Listing 1 contains a sample pipeline configura-
tion for NER, the same used to produce the exam-
ple shown in Figure 1. The configuration defines
the two entity classes to be identified, providing a
title and a textual description for each of them. It is
also specified to use the SMXM end-to-end linker
(see Section 3.2 for more details).

In the remainder of this section, we will dive
deeper into the details of each of the building
blocks of Zshot.

3.1 Mention Detection

Mention detection is the task that consists in iden-
tifying spans of text that may contain entities in a
defined set of classes of interest. In our framework,
mention detection is used as a pre-processing step
for entity linkers (see 3.2) that require mentions as
input, such as (Wu et al., 2020) and (Cao, 2021).

Zshot currently supports six mentions extractors.
Four reuse existing generic annotators (i.e., Flair
(Akbik et al., 2019) and SpaCy) while the other two
are sensitive to the defined mentions/entities classes
(i.e., TARS (Halder et al., 2020) and SMXMs).

3.2 Entity Linking and Classification

Entity classification is the process of identifying
the type of a given mention in the text. For example,
if a text mentions "Barack Obama", entity classifi-
cation would determine that this refers to a person,
but would not specify which person. Entity link-
ing, also known as named entity disambiguation,
is the process of identifying and disambiguating
mentions of entities in a text, linking them to their
corresponding entries in a knowledge base or a
dictionary. For example, given "Barack Obama",
entity linking would determine that this refers to
the specific person with that name (one of the presi-
dents of the United States) and not any other person

or concept with the same name. In Zshot we intro-
duce the Linkers. Linkers can perform both entity
classification and entity linking, depending on the
entities being used. For simplicity, we use entity
linking as the name of the task, but this comprises
both entity classification and entity linking. Entity
linking can be useful for a variety of natural lan-
guage processing tasks, such as information extrac-
tion, question answering, and text summarization.
It helps to provide context and background informa-
tion about the entities mentioned in the text, which
can facilitate a deeper understanding of the content.
There are several techniques that can be used for
entity linking, including dictionary-based methods,
rule-based methods, and machine learning-based
methods.

Zshot currently supports four Entity linking and
classification methods (Linkers): Blink (Wu et al.,
2020), GENRE (De Cao et al., 2021), TARS and
SMXM (Aly et al., 2021).

3.3 Wikification

Two of the entity linkers, Blink and GENRE, can
scale to very large knowledge bases and in Zshot
they can be used to perform Wikification out-of-the-
box. Wikification is the process of adding wikilinks
to a piece of text, which allows readers to easily
navigate to related articles or pages within a wiki
or other online encyclopedia. A wikilink is a hy-
perlink that is used within Wikipedia – or another
online encyclopedia – to link to other pages within
the same resource. Wikification is often used to pro-
vide context and background information about the
concepts and entities mentioned in a piece of text.
It can also be used to create a network of intercon-
nected articles within Wikipedia or another online
encyclopedia, which makes it easier for readers to
explore related topics and gain a deeper understand-
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ing of the content.

3.4 Relation Extraction
Relaction extraction (or classification) is the task in-
ferring the relation between an entity pair within a
portion of text. This task is often framed as a classi-
fication problem where a text with entity mentions
are given in input to a classifier which is trained to
recognize the correct relation type connecting the
entities. In the literature, we can also find variants
of this approach such as (Ni et al., 2022) which
operate in an end-to-end fashion, without requir-
ing entity mentions. ZSL approaches for RE often
receive in input a set of candidate of relation de-
scriptions and match them with each entity pair in
a text.

Currently, Zshot supports one relation classifi-
cation model i.e., ZS-BERT (Chen and Li, 2021).
This model performs relation classification by first
embedding relation descriptions using a sentence
embedding model and then comparing it with an
entity pair embedding computed with a LM fine-
tuned for this task. Entity pairs are finally associ-
ated to the closest relation class in the embedding
space in terms of cosine similarity.

3.5 Ensembling
There are different pretrained linkers and mention
extractors. These models are pretrained with dif-
ferent data, using different training methods and
neural architectures. We provide an easy way to
combine the predictions from these models so that
we can achieve a more robust result by leveraging
the strengths of the diverse set of models.

Besides the ensembling of linkers, we also sup-
port an API for making an ensemble of pipelines
with different entity/relation descriptions. We dis-
covered that the accuracy of ZSL models is very
sensitive to provided entity/relation descriptions.
Combining prediction from pipelines with differ-
ent descriptions potentially provides significant im-
provement. An example of the API to make an
ensemble of linkers, and mention extractors with
various descriptions is demonstrated in the listing
5 in the Appendix.

3.6 Customization
One of the most important parts of a framework
is to allow the community to create and share new
components, which results in improving the mod-
els’ performance and the appearance of new ones.
Zshot allows users to create new components easily,

by extending one of the abstract classes (depend-
ing on the type of component: mentions extractor,
linker or relation extractor). The user just has to im-
plement the predict method to create a new compo-
nent, and Zshot will take care of the rest, including
adding the result to the SpaCy document or adding
it to the pipeline. Listing 3 shows a simple example
of how to implement a custom mentions extractor
that will extract as mentions all the words that con-
tain the letter s. The predict method takes as input
a list of SpaCy documents and return, for each doc-
ument, a list of Zshot Span, with the boundaries
of the mention in the text. We encourage the users
to develop new components, models, and datasets
and share them with the community.

4 Visualization

NER and RE models are broadly used in multi-
ple and diverse NLP pipelines, from Knowledge
Graph generation and population to Information
Extraction systems. However, for development or
research, NER and RE models are sometimes the
final output of the process. For these reasons, an
appealing visualization of the entities and relations
extracted by a model is important. Visualization
helps users to rapidly assess what entities and rela-
tions have been extracted, and allows them make
changes to improve their models. In Zshot, we
extend displaCy, a SpaCy tool for visualization.
When using displaCy for NER with custom enti-
ties, the visualization shows the entities, but all of
them have the same color, so it’s not easy for the
user to see the entities detected. We expanded the
capabilities of the library to support distinct colors
for different entities (see Figure 3).

Figure 3: Visualization using Zshot version of displaCy.

At the time of writing, we could not find a vi-
sualization tool for RE in displaCy, 2 as RE is not
supported in SpaCy. In Zshot, we extend displaCy
to support the visualization of edges between entity
pairs in a sentence as shown in Figure 4.

5 Evaluation

Evaluation is key to improve the performance of a
system. To assess the performance of NER and RE
models, Zshot provides an evaluation module. This

2https://spacy.io/usage/visualizers
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Figure 4: An example of RE visualization in Zshot.

module includes an interface to different datasets
i.e., OntoNotesZS (Pradhan et al., 2013), Med-
MentionsZS (Mohan and Li, 2019) for NER and
FewRel (Han et al., 2018) for RE. All the datasets
included have been preprocessed to assure that they
can be used in the ZSL setting i.e., the entities/re-
lations in the training or validation splits of these
datasets are not overlapping with each other and
are not included in the respective test sets to ensure
a correct evaluation. These datasets are managed
using the Huggingface datasets library, 3 which
makes it easier to add new datasets using the Hug-
gingface Hub 4. In Zshot, we use the evaluate
package 5, implementing evaluators for the Men-
tions Extraction, Entity Linking and RE tasks. On
top of the evaluators, we added a function that re-
ceives a SpaCy NLP model with a Zshot configura-
tion and the splits of the predefined datasets, and it
evaluates the model on all datasets configurations.
This function returns the evaluation results both
as a table with the results as a string object or as
a Python dictionary. As a default option, we use
the SeqEval package (Nakayama, 2018) to com-
pute the evaluation metrics, including Accuracy,
Precision, Recall, F1-Score Macro and F1-Score
Micro. However, using the evaluate package, it is
also easy to define and use custom metrics extend-
ing the same package. Table 1 shows an example
of the evaluation results format for the OntoNotes
validation set, as it is returned by Zshot.

6 Conclusion and Future Work

In this paper, we described Zshot, a framework for
zero-shot NER and RE in NLP. ZSL is a growing
area of research in NLP. The increasing number
of research works published every year and the
difficulties associated to the lack of standardization

3https://github.com/huggingface/datasets
4https://huggingface.co/datasets
5https://github.com/huggingface/evaluate

Metric ontonotes-test
overall_precision_macro 20.96%
overall_recall_macro 48.15%
overall_f1_macro 29.12%

Table 1: Example of result in Zshot for SMXM linker
over the validation set of OntoNotesZS. These are only
some metrics reported for one model, to see the whole
result please check Table 2 in the Appendix, with a
comparison between two different linkers.

motivated us to develop this framework.
Our work aims at standardizing experimental

zero-shot pipelines to improve the reproducibility
of existing approaches and facilitate the compar-
ison with new ones. We defined a customizable
interface based on the popular SpaCy library. This
allows developers and researchers already famil-
iar with this popular Python library to quickly try
out zero-shot NLP approaches, while more expe-
rienced users can extend it to include new models.
We also provide an evaluation package to aid the
evaluation and comparison of NER and RE models
on different datasets through standard evaluation
metrics, which can be further customized and ex-
panded by users. Finally, we extended the displaCy
library to support visualizations of recognized en-
tities and the relations between them as edges be-
tween entity spans. We open source all our code,
models, metrics and datasets.

In the future, we plan to increase the number
of supported models and datasets for NER and
RE. We also aim to increase the efficiency of these
models so that they could be employed by NLP
practitioners in real world applications.

Limitations

Zshot is a SpaCy extension for ZSL. It currently
supports models for Mention Detection, Entity
Linking and Relation Extraction allowing users
to evaluate the supported models and to visualize
their outputs. The limitations of our framework
are strongly dependent on these models trained on
limited amounts of data (in English) for research
purposes. Therefore, their results might not be re-
liable on certain domain-specific scenarios which
were not included in the training data and may con-
tain biases. Some models are also more scalable
and efficient than others. The efficiency of a model
will depend on its implementation. We focus on
providing a standard an API and an efficient frame-
work based on SpaCy to run these models. The
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pretrained models are required to fine-tuned with
in-domain training classes, even non-overlapping
with testing classes, generalization of these models
in new domains is considered as future work.

Ethics Statement

Zshot is an opensource, easy-to-use, and extensi-
ble framework for ZSL. These models may contain
bias and cause ethical concerns, as it can be seen
in Figure 5 (see Appendix), where one of the mod-
els supported in Zshot assigns an entity label in a
biased way, being based on the gender of the name.
Bias in NLP models is a common issue (Stanczak
and Augenstein, 2021), and a lot of efforts focus on
mitigating this problem, (Sun et al., 2019). Zshot
is a framework that aims at standardizing and facil-
itating the use zero-shot NLP models, and it does
not increase nor decrease their bias. We encour-
age users to assess the bias of NLP models prior
to employing them in any downstream task and
to validate their results depending on the applica-
tion scenario to eliminate any potentially negative
impact.
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A Appendix: Code Examples

We report below some examples of use of the Zshot framework:

• Listing 2 shows an example of how to use Zshot to compute both entities and relations and to
visualize RE, as shown in Figure 4.

• Listing 3 shows an example of how to create a custom mentions extractor in Zshot.

• Figure 5 reports an example of possible biases contained in NLP models for relation classification.

• Listing 5 shows an example of how to use Zshot to make an ensembles of existing pretrained
linkers and descriptions. In this specific example, two linkers are used together with two different
descriptions of the entity fruits.

• Listing 4 shows an example of how to use Zshot to annotate a sentence with entities and relations.
Figure 6 shows the result.

1 # Import SpaCy
2 import spacy
3

4 # Import PipelineConfig for Zshot configuration and displacy for visualization
5 from zshot import PipelineConfig , displacy
6 # Import Entity and Relation data models
7 from zshot.utils.data_models import Entity , Relation
8 # Import LinkerSMXM for end2end NER
9 from zshot.linker import LinkerSMXM

10 # Import ZSRC for RE
11 from zshot.relation_extractor import RelationsExtractorZSRC
12

13 # Create/Load an NLP model
14 nlp = spacy.load("en_core_web_sm")
15 # Create a Zshot configuration with SMXM , ZSRC and some entities and relations
16 nlp_config = PipelineConfig(
17 linker=LinkerSMXM (),
18 relations_extractor=RelationsExtractorZSRC(thr =0.1) ,
19 entities =[
20 Entity(name="company", description="The name of a company"),
21 Entity(name="location", description="A physical location"),
22 ],
23 relations =[
24 Relation(name='located in', description="If something like a person , a

building , or a company is located in a particular place , like a city , country
of any other physical location , it is present or has been built there")

25 ]
26 )
27 # Add Zshot to SpaCy pipeline
28 nlp.add_pipe("zshot", config=nlp_config , last=True)
29

30 # Run the pipeline over a text
31 text = "IBM headquarters are located in Armonk."
32 doc = nlp(text)
33 # Visualize the result
34 displacy.render(doc , style='rel')

Listing 2: Python example of using Zshot displacy.
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1 # Import SpaCy
2 import spacy
3 # Import types needed for typing
4 from typing import Iterable
5 from spacy.tokens import Doc
6 # Import Zshot PipelineConfig
7 from zshot import PipelineConfig
8 # Import Zshot Span to save the results
9 from zshot.utils.data_models import Span

10 # Import abstract class
11 from zshot.mentions_extractor import MentionsExtractor
12

13 # Extend MentionsExtractor
14 class SimpleMentionExtractor(MentionsExtractor):
15 # Implement predict function
16 def predict(self ,
17 docs: Iterable[Doc],
18 batch_size=None) -> Iterable[Iterable[Span ]]:
19 spans = [[Span(tok.idx , tok.idx + len(tok))
20 for tok in doc if "s" in tok.text] for doc in docs]
21 return spans
22

23 # Create spacy pipeline
24 nlp = spacy.load("en_core_web_sm")
25 # Create config with the new custom
26 config = PipelineConfig(
27 mentions_extractor=SimpleMentionExtractor ()
28 )
29 # Add zshot with custom component to the spacy pipeline
30 nlp.add_pipe("zshot", config=config , last=True)
31

32 text_acetamide = "CH2O2 is a chemical compound similar to Acetamide used in
International Business Machines Corporation (IBM)."

33 # Run the pipeline and print the result
34 doc = nlp(text_acetamide)
35 print([doc.text[mention.start:mention.end] for mention in doc._.mentions ])
36 # -> ['is', 'similar ', 'used ', 'Business ', 'Machines ']

Listing 3: Example of creating a custom mentions extractor in Zshot.

Figure 5: Example of bias of the SMXM linker model integrated in Zshot.
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1 from zshot.utils.data_models import Entity
2 from zshot.linker import LinkerSMXM
3 from zshot import PipelineConfig , displacy
4 import spacy
5

6 nlp = spacy.blank('en')
7 config = PipelineConfig(
8 entities =[
9 Entity(name="company", description="The name of a company"),

10 Entity(name="location", description="A physical location"),
11 Entity(name="chemical compound", description="any substance composed of

identical molecules consisting of atoms of two or more chemical elements."),
12 ],
13 linker=LinkerSMXM ()
14 )
15 nlp.add_pipe("zshot", config=config , last=True)
16

17 text_acetamide = "CH2O2 is a chemical compound similar to Acetamide used in
International Business " \

18 "Machines Corporation (IBM)"
19

20 doc = nlp(text_acetamide)
21 displacy.render(doc , style="ent")

Listing 4: Example of annotating a sentence in ZShot.

Figure 6: Example of sentence annotation with Zshot. Code of Listing 4 was used to generate this example.

Metric SMXM ontonotes-test TARS ontonotes-test
overall_precision_micro 22.12% 34.87%
overall_recall_micro 50.47% 48.22%
overall_f1_micro 30.76% 40.47%
overall_precision_macro 20.96% 28.31%
overall_recall_macro 48.15% 33.64%
overall_f1_macro 28.12% 28.29%
overall_accuracy 86.36% 90.87%
total_time_in_seconds 1811.5927 613.5401
samples_per_second 0.2352 0.6943
latency_in_seconds 4.2526 1.4402

Table 2: Full result of ZShot for evaluation. This experiment was performed on a MacBook Pro with an Intel-i7,
64Gb of RAM and no GPU. Results and comparison are only for illustration, as models have not been trained over
the same data.
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1 # import necessary libraries and define a spacy pipeline
2 import spacy
3 from zshot import PipelineConfig
4 from zshot.linker import LinkerSMXM , LinkerTARS
5 from zshot.linker.linker_ensemble import LinkerEnsemble
6 from zshot.utils.data_models import Entity
7 from zshot import displacy
8 nlp = spacy.blank("en")
9

10 # a list of two different descriptions of the entity "fruits"
11 enhanced_descriptions = [[ Entity(name="fruits", description="The sweet and

fleshy product of a tree or other plant.")],
12 [Entity(name="fruits", description="Names of fruits such

as banana , oranges")]]
13

14 # a list of two different pretrained linkers
15 linkers = [LinkerSMXM (), LinkerTARS ()]
16

17 # Define an ensemble linker with the given enhanced descriptions and pretrained
linker models.

18 # The provided threshold =0.25 means that at least 1 pipeline out of 4 votes for
an output span.

19 # We have overall 4 pipelines in the ensemble (2 enhanced descriptions times 2
linkers).

20 ensemble=LinkerEnsemble(enhance_entities=enhanced_descriptions , linkers=linkers ,
threshold =0.25)

21

22 # add the ensemble to the spacy NLP pipeline
23 nlp.add_pipe("zshot", config=PipelineConfig(linker=ensemble), last=True)
24

25 # annotate a piece of text
26 doc = nlp('Apples or oranges have a lot of vitamin C.')
27

28 # Visualize the result
29 displacy.render(doc)

Listing 5: Python example of making an ensemble of pipelines with two linkers and two different descriptions of
the entity fruits.
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Abstract

In our globalized world, a growing number
of situations arise where people are required
to communicate in one or several foreign lan-
guages. In the case of written communica-
tion, users with a good command of a foreign
language may find assistance from computer-
aided translation (CAT) technologies. These
technologies often allow users to access exter-
nal resources, such as dictionaries, terminolo-
gies or bilingual concordancers, thereby inter-
rupting and considerably hindering the writ-
ing process. In addition, CAT systems assume
that the source sentence is fixed and also re-
strict the possible changes on the target side.
In order to make the writing process smoother,
we present BiSync, a bilingual writing assis-
tant that allows users to freely compose text
in two languages, while maintaining the two
monolingual texts synchronized. We also in-
clude additional functionalities, such as the
display of alternative prefix translations and
paraphrases, which are intended to facilitate
the authoring of texts. We detail the model
architecture used for synchronization and eval-
uate the resulting tool, showing that high ac-
curacy can be attained with limited computa-
tional resources. The interface and models are
publicly available at https://github.com/
jmcrego/BiSync and a demonstration video
can be watched on YouTube.

1 Introduction

In today’s globalized world, there is an ever-
growing demand for multilingual communication.
To give just a few examples, researchers from dif-
ferent countries often write articles in English, in-
ternational companies with foreign subsidies need
to produce documents in multiple languages, re-
search institutions communicate in both English
and the local language, etc. However, for many
people, writing in a foreign language (L2) other
than their native language (L1) is not an easy task.

With the significant advances in machine trans-
lation (MT) in the recent years, in particular due
to the tangible progress in neural machine transla-
tion (NMT, Bahdanau et al., 2015; Vaswani et al.,
2017), MT systems are delivering usable transla-
tions in an increasing number of situations. How-
ever, it is not yet realistic to rely on NMT technolo-
gies to produce high quality documents, as current
state-of-the-art systems have not reached the level
where they could produce error-free translations.
Also, fully automatic translation does not enable
users to precisely control the output translations
(e.g. with respect to style, formality, or term use).
Therefore, users with a good command of L2, but
not at a professional level, can find help from ex-
isting computer-assisted language learning tools
or computer-assisted translation (CAT) systems.
These tools typically provide access to external
resources such as dictionaries, terminologies, or
bilingual concordancers (Bourdaillet et al., 2011)
to help with writing. However, consulting exter-
nal resources causes an interruption in the writing
process due to the initiation of another cognitive
activity, even when writing in L1 (Leijten et al.,
2014). Furthermore, L2 users tend to rely on L1
(Wolfersberger, 2003) to prevent a breakdown in
the writing process (Cumming, 1989). To this end,
several studies have focused on developing MT sys-
tems that ease the writing of texts in L2 (Koehn,
2010; Huang et al., 2012; Venkatapathy and Mirkin,
2012; Chen et al., 2012; Liu et al., 2016).

However, existing studies often assume that
users can decide whether the provided L2 texts pre-
cisely convey what they want to express. Yet, for
users who are not at a professional level, the evalu-
ation of L2 texts may not be so easy. To mitigate
this issue, researchers have also explored round-trip
translation (RTT), which translates the MT output
in L2 back to L1 in order to evaluate the quality of
L2 translation (Moon et al., 2020). Such studies
suggest that it is then helpful to augment L2 writing
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Figure 1: User interface of our online bilingual editing system. Users can freely choose the language in which they
compose and alternate between text entry boxes. The system automatically keeps the other box in sync.

with the display of the corresponding synchronized
version of the L1 text, in order to help users ver-
ify their composition. In such settings, users can
obtain synchronized texts in two languages, while
only making an effort to only compose in one.

A bilingual writing assistant system should allow
users to write freely in both languages and always
provide synchronized monolingual texts in the two
languages. However, existing systems do not sup-
port both functionalities simultaneously. The sys-
tem proposed by Chen et al. (2012) enables free
composition in two languages, but only displays
the final texts in L2. Commercial MT systems like
Google,1 DeepL2 and SYSTRAN3 always display
texts in both languages, but users can only modify
the source side, while the target side is predicted
by the system and is either locked or can only be
modified with alternative translations proposed by
the system. CAT tools, on the contrary, assume the
source sentence is fixed and only allow edits on the
target side.

In this paper, we present BiSync, a bilingual
writing assistant aiming to extend commercial MT
systems by letting users freely alternate between
two languages, changing the input text box at their
will, with the goal of authoring two equally good
and semantically equivalent versions of the text.

2 BiSync Text Editor

In this work, we are interested in a writing sce-
nario that broadens the existing commercial online
translation systems. We assume that the user wants
to edit or revise a text simultaneously in two lan-
guages. See Figure 1 for a snapshot of our BiSync
assistant. Once the text is initially edited in one lan-
guage, the other language is automatically synchro-
nized so that the two entry boxes always contain
mutual translations. In an iterative process, and un-
til the user is fully satisfied with the content, texts
are revised in either language, triggering automatic
synchronizations to ensure that both texts remain

1https://translate.google.com/
2https://www.deepl.com/translator
3https://www.systran.net/en/translate/

mutual translations. The next paragraphs detail the
most important features of our online BiSync text
editor.

Bidirectional Translations The editor allows
users to edit both text boxes at their will. This
means that the underlying synchronization model
has to perform translations in both directions, as
the role of the source and target texts are not fixed
and can change over time.

Synchronization This is the most important fea-
ture of the editor. It ensures that the two texts
are always translations of each other. As soon as
one text box is modified, BiSync synchronizes the
other box. To enhance the user experience, the
system waits a few seconds (delay) before the syn-
chronization takes place. When a text box is modi-
fied, the system prevents the second box from be-
ing edited until the synchronization has been com-
pleted. Users can also disable the synchronization

process, using the "freeze" button ( ). In this
case, the frozen text will not be synchronized (mod-
ified). Changes are only allowed in the unfrozen
text box. This is the standard modus operandi of
most commercial translation systems that consider
the input text as frozen, allowing only a limited
number of edits in the translation box.

Prefix Alternatives The editor can also provide
several translation alternatives for a given sentence
prefix. When users click just before a word w in
a synchronized sentence pair, the system displays
the most likely alternatives that can complete the
translation starting from the word w in a drop-down
menu. Figure 2 (bottom) illustrates this function-
ality, where translation alternatives are displayed
after the prefix "Je rentre", in the context of the
English sentence "I’m going home because I’m
tired". In the example in Figure 2 (bottom), the
user clicked right before the French word "à".

Paraphrase Alternatives Another important
feature of our BiSync editor is the ability to pro-
pose edits for sequences of words at arbitrary posi-
tions in both text boxes. Figure 2 (top) illustrates
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Figure 2: BiSync editor displaying paraphrases (top) and translation alternatives for a given prefix (bottom).

this scenario, where paraphrases for the English
segment "going home" are displayed in the context
"I’m ... because I’m tired" and given the French
sentence "Je rentre à la maison parce que je suis
fatigué". Such alternatives are triggered through
the selection of word sequences in either text box.

Other Features Like most online translation sys-
tems, BiSync has a "listen" button that uses a text-
to-speech synthesizer to read the content in the text
box, a "copy" button that copies the content to the
clipboard. It also displays the number of characters
written in each text box. Figures 1 and 2 illustrate
these features.

Settings The "gear" button ( ) pops up sev-
eral system parameters that can be configured by
users: The "IP" and "Port" fields identify the ad-
dress where the BiSync model is launched and
waits for translation requests. The "Languages"
field indicates the pair of languages that the model
understands and is able to translate. "Alternatives"
denotes the number of hypotheses that the model
generates and that are displayed by the system. "De-
lay" sets the number of seconds the system waits
after an edit takes place before starting the syn-
chronization. The countdown is reset each time a
revision is made. Figure 3 displays BiSync settings
with default parameters.

Figure 3: Default BiSync settings.

3 Under the Hood: the BiSync Model

Given the features that we would like to offer in
the BiSync text editor, we are interested in an end-
to-end model producing: (a) translations in both
directions; (b) translations from scratch, with only
one text box filled in; (c) updates of existing transla-
tions, so that small changes in one text box result in
small updates in the other text box; (d) paraphrases
and alternatives in context.

We consider a pair of parallel sentences (f , e)
and a sentence f ′ as an update of f . The objective
is to generate the sentence e′ that is parallel to f ′

while remaining as close as possible to e. Three
types of update are distinguished. Figure 4 displays
an example for each update type:

• Insertion: adding one or more consecutive
words at any position in f ;

• Deletion: removing one or more consecutive
words at any position in f ;

• Substitution: replacing one or more consecu-
tive words at any position in f by one or more
consecutive words.

Note that in practice, training such models requires
triplets (f ′, e, e′), as sentences f are not used by
the models studied in this work.

Inspired by Xiao et al. (2022), we integrate sev-
eral control tokens into the source-side of training
examples of a standard NMT model to obtain the
desired results. This approach is straightforward
and does not require to modify NMT architectures
or decoding algorithms. Therefore, our integration
of control tokens is model-agnostic and can be ap-
plied to any NMT architecture. Several tokens are
used to indicate the target language (<en>, <fr>)
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Update f f ′ e e′

Ins The cat The white cat Le chat Le chat blanc
Del The cat is white The white cat Le chat est blanc Le chat blanc
Sub The black cat The white cat Le chat noir Le chat blanc

Figure 4: Source sentences f when updated (f ′) by means of insertion (Ins), deletion (Del) and substitution (Sub)
and their corresponding translations (e and e′). Source sentences f are not employed by the models of this work.

and the update type (<ins>, <del>, <sub>). A spe-
cial token <gap> indicates a sequence of masked
tokens used to generate paraphrases.

Training examples are build following the next
three patterns:

f ′ <lang> e′

The first pattern refers to a regular translation
task (TRN), and is used when translating from
scratch, without any initial sentence pair (f , e), as
in the following example:

The white cat <fr> Le chat blanc

where only the target language tag is appended to
the end of the source sentence.

f ′ <lang> e <update> e′

The second pattern corresponds to an update task
(INS, DEL or SUB) to be used for resynchronizing
an initial sentence pair (f , e) after changing f into
f ′, as shown in the following examples:

The white cat <fr> Le chat <ins> Le chat blanc
The white cat <fr> Le chat est blanc <del> Le chat blanc
The white cat <fr> Le chat noir <sub> Le chat blanc

where the edited source sentence f ′ = [The white
cat] is followed by the target language tag <fr>,
the initial target sentence e, and a tag indicating the
edit type that updates the initial source sentence f .

f <lang> eg eG

The third pattern corresponds to a bilingual text
infilling task (BTI, Xiao et al., 2022). The model
is trained to predict the tokens masked in a target
sentence eg in the context of the source sentence f :

The white cat <fr> Le <gap> blanc chat

where eg = [Le <gap> blanc] is the target sentence
with missing tokens to be predicted. The model
only generates the masked tokens eG = [chat].

3.1 Synthetic Data Generation
While large amounts of parallel bilingual data
(f ′, e′) exist for many language pairs, the triplets re-
quired to train our model are hardly available. We

therefore study ways to generate synthetic triplets
of example (f ′, e, e′) from parallel data (f ′, e′) for
each type of task (INS, DEL, SUB and BTI) intro-
duced above.

Insertion We build examples of initial transla-
tions e for INS by randomly dropping a segment
from the updated target e′. The length of the re-
moved segment is also randomly sampled with a
maximum length of 5 tokens. We also impose that
the overall ratio of removed segment does not ex-
ceed 0.5 of the length of e′.

Deletion Simulating deletions requires the initial
translation e to be an extension of the updated tar-
get e′. To obtain extensions, we employ a NMT
model enhanced to fill in gaps (fill-in-gaps).
This model is a regular encoder-decoder Trans-
former model trained with a balanced number of
regular parallel examples (TRN) and paraphrase ex-
amples (BTI) as detailed in the previous section.
We extend training examples (f ′, e′) with a <gap>
token inserted in a random position in e′ and use
fill-in-gaps to decode these training sentences,
as proposed in (Xu et al., 2022). In response, the
model predicts tokens that best fill the gap. For
instance:

The white cat <fr> Le chat <gap> blanc ; est

the target extension is therefore e = [Le chat est
blanc].

Substitution Similar to deletion, substitution ex-
amples are obtained using the same fill-in-gaps
model. A random segment is masked from e′,
which is then filled by the model. In inference, the
model computes an n-best list of substitutions for
the mask, and we select the most likely sequence
that is not identical to the masked segment. For
instance:

The white cat <fr> Le chat <gap> ; [blanc;
bleu; clair; blanche; ...]

the target substitution is e = [Le chat bleu].
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Note that extensions and substitutions generated
by fill-in-gaps may be ungrammatical. For in-
stance, the proposed substitution e = [Le chat
blanche] has a gender agreement error. The correct
adjective should be "blanc" (masculine) instead of
"blanche" (feminine). This way, the model always
learns to produce grammatical e′ sentences parallel
to f ′.

Paraphrase Given sentence pairs (f , e), we gen-
erate eg by masking a random segment from the
initial target sentence e. The length of the masked
segment is also randomly sampled with a maxi-
mum length of 5 tokens. The target side of these
examples (eG) only contains the masked token(s).

4 Experiments

4.1 Datasets

To train our English-French (En-Fr) models we
use the official WMT14 En-Fr corpora4 as well as
the OpenSubtitles corpus5 (Lison and Tiedemann,
2016). A very light preprocessing step is performed
to normalize punctuation and to discard examples
exceeding a length ratio 1.5 and a limit of [1, 250]
measured in words. Statistics of each corpus is
reported in Table 1.

Corpora #Sentences

Europarl v7 2,007,723
Commoncrawl 3,244,152
UN 12,886,831
News Commentary 183,251
Giga French-English 22,520,376
Open Subtitles v18 57,123,540

Total 97,965,873

Table 1: Statistics of training corpora.

For testing, we used the official newstest2014
En-Fr test set made available for the same WMT14
shared task containing 3,003 sentences. All our
data is tokenized using OpenNMT tokenizer.6 We
learn a joint Byte Pair Encoding (Sennrich et al.,
2016) over English and French training data with
32k merge operations.

The training corpora used for learning our model
consist of well-formed sentences. Most sentences
start with a capital letter and end with a punctuation

4https://www.statmt.org/wmt14
5https://opus.nlpl.eu/OpenSubtitles-v2018.php
6https://github.com/OpenNMT/Tokenizer

mark. However, our BiSync editor expects also in-
complete sentences, when synchronization occurs
before completing the text. To train our model to
handle this type of sentences, we lowercase the first
character of sentences and remove ending punctu-
ation in both source and target examples with a
probability set to 0.05.

4.2 Experimental Settings
Our BiSync model is built using the Transformer
architecture (Vaswani et al., 2017) implemented
in OpenNMT-tf7 (Klein et al., 2017). More pre-
cisely, we use the following set-up: embedding
size: 1,024; number of layers: 6; number of heads:
16; feedforward layer size: 4,096; and dropout rate:
0.1. We share parameters for input and output em-
bedding layers (Press and Wolf, 2017). We train
our models using Noam schedule (Vaswani et al.,
2017) with 4,000 warm-up iterations. Training is
performed over a single V100 GPU during 500k
steps with a batch size of 16,384 tokens per step.
We apply label smoothing to the cross-entropy loss
with a rate of 0.1. Resulting models are built after
averaging the last ten saved checkpoints of the train-
ing process. For inference, we use CTranslate2.8

It implements custom run-time with many perfor-
mance optimization techniques to accelerate decod-
ing execution and reduce memory usage of models
on CPU and GPU. We also evaluate our model
with weight quantization using 8-bit integer (int8)
precision, thus reducing model size and accelerat-
ing execution compared to the default 32-bit float
(float) precision.

5 Evaluation

We evaluate the performance of our synchroniza-
tion model BiSync compared to a baseline trans-
lation model with exactly the same characteristics
but trained only on the TRN task over bidirectional
parallel data (base). We report performance with
BLEU score (Papineni et al., 2002) implemented in
SacreBLEU9 (Post, 2018) over concatenated En-Fr
and Fr-En test sets. For tasks requiring an initial
target e, we synthesize e from (f ′, e′) pairs follow-
ing the same procedures used for generating the
training set (see details in Section 2).

Table 2 reports BLEU scores for our two systems
on all tasks. The base system is only trained to

7https://github.com/OpenNMT/OpenNMT-tf
8https://github.com/OpenNMT/CTranslate2
9https://github.com/mjpost/sacrebleu. Signature:

nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp| version:2.0.0
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perform regular translations (TRN) for which it ob-
tains a BLEU score of 36.0, outperforming BiSync,
which is trained to perform all tasks. This differ-
ence can be explained by the fact that BiSync must
learn a larger number of tasks than base. When
performing INS, DEL and SUB tasks, BiSync vastly
outperforms the results of TRN task as it makes
good use of the initial translation e. When we
use BiSync to generate paraphrases of an initial in-
put (BTI), we obtain a higher BLEU score of 42.6
than the regular translation task (TRN, 34.9). This
demonstrates the positive impact of using target
side context for paraphrasing.

BLEU TRN INS DEL SUB BTI

base 36.0 - - - -
BiSync 34.9 87.9 95.5 78.2 42.6

Table 2: BLEU scores over concatenated En-Fr and Fr-
En test sets for all tasks.

Next, we evaluate the ability of our BiSync
model to remain close to an initial translation when
performing synchronization. Note that for a pleas-
ant editing experience, synchronization should in-
troduce only a minimum number of changes. Oth-
erwise, despite re-establishing synchronization, ad-
ditional changes may result in losing updates pre-
viously performed by the user. To evaluate this
capability of our model, we take an initial transla-
tion (f , e) and introduce a synthetic update (say f ′)
as detailed in Section 3.1. This update leads to a
new synchronization that transforms e into e′. We
would like e′ to remain as close as possible to e.
Table 3 reports TER scores (Snover et al., 2006) be-
tween e and e′ computed by SacreBLEU.10 These
results indicate that BiSync produces synchroniza-
tions significantly closer to initial translations than
those produced by base. This also confirms the
findings of Xu et al. (2022).

TER ↓ INS DEL SUB

base 36.5 43.4 34.9
BiSync 3.3 5.5 5.0

Table 3: TER scores between e and e′ issued from dif-
ferent update types. En-Fr and Fr-En test sets are con-
catenated.

Finally, Table 4 reports inference efficiency for
our BiSync model using CTranslate2. We indi-

10Signature: nrefs:1|case:lc|tok:tercom|norm:no|punct:yes
|asian:no|version:2.0.0

cate differences in model (Size and Speed) for dif-
ferent quantization, device, batch size and number
of threads. Lower memory requirement and higher
inference speed can be obtained by using quanti-
zation set to int-8 for both GPU and CPU devices,
in contrast to float-32. When running on CPUs,
additional speedup is obtained with multithreading.
Comparable BLEU scores are obtained in all con-
figurations. Note that for the tool presented in this
paper, we must retain single batch size and single
thread results (bold figures), since synchronization
requests are produced for isolated sentences. There-
fore, they cannot take advantage of using multiple
threads and large batches.

Quant Dev BS Threads Size Speed

float

GPU 64 1

232M

10,267
GPU 1 1 650
CPU1 64 8× 4 2,007
CPU2 1 1 48

int8

GPU 64 1

59M

12,918
GPU 1 1 738
CPU1 64 8× 4 2,666
CPU2 1 1 118

Table 4: Inference Speed and model Size when decod-
ing test sets with several settings: quantization (Quant),
device (Dev), batch size (BS) and number of Threads.
Decoding beam size is set to 3. Speed is measured in
tokens/second. GPU is a single V100 GPU with 32Gb
memory. CPU1 has 32 cores with 86Gb memory and
CPU2 is an Intel i7-10850H with 32Gb memory.

6 Conclusion and Further Work

In this paper, we presented BiSync, a bilingual writ-
ing assistant system that allows users to freely com-
pose text in two languages while always displaying
the two monolingual texts synchronized with the
goal of authoring two equally good versions of the
text. Whenever users make revisions on either text
box, BiSync takes into account the initial transla-
tion and reduces the number of changes needed in
the other text box as much as possible to restore
parallelism. BiSync also assists in the writing pro-
cess by suggesting alternative reformulations for
word sequences or alternative translations based
on given prefixes. The synchronization process ap-
plies several performance optimization techniques
to accelerate inference and reduce the memory us-
age with no accuracy loss, making BiSync usable
even on machines with limited computing power.

In the future, we plan to equip BiSync with a
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grammatical error prediction model and a better
handling of prior revisions: the aim is to enable
finer-grained distinction between parts that the sys-
tem should modify and parts that have already been
fixed or that should remain unchanged. Last, we
would like to perform user studies to assess the
division of labor between users and BiSync in an
actual bilingual writing scenario.
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Abstract

RIVETER provides a complete easy-to-use
pipeline for analyzing verb connotations asso-
ciated with entities in text corpora. We pre-
populate the package with connotation frames
of sentiment, power, and agency, which have
demonstrated usefulness for capturing social
phenomena, such as gender bias, in a broad
range of corpora. For decades, lexical frame-
works have been foundational tools in compu-
tational social science, digital humanities, and
natural language processing, facilitating multi-
faceted analysis of text corpora. But working
with verb-centric lexica specifically requires
natural language processing skills, reducing
their accessibility to other researchers. By orga-
nizing the language processing pipeline, provid-
ing complete lexicon scores and visualizations
for all entities in a corpus, and providing func-
tionality for users to target specific research
questions, RIVETER greatly improves the ac-
cessibility of verb lexica and can facilitate a
broad range of future research.

1 Introduction

Language is a powerful medium that intricately
encodes social dynamics between people, such as
perspectives, biases, and power differentials (Fiske,
1993). When writing, authors choose how to por-
tray or frame each person in a text, highlighting
certain features (Entman, 1993) to form larger argu-
ments (Fairhurst, 2005). For example, in the screen-
play for the 2009 film Sherlock Holmes, the authors
dramatize a sudden reversal of power by playing on
gender stereotypes. First, they describe how “the
man with the roses beckons Irene forward” (Fig-
ure 1), which portrays the character Irene Adler as
being lured by the man. After she is trapped, “she
slices upward with a razor-sharp knife,” reversing
the power dynamic. Here, specific word choices
shape and then challenge the viewers’ expectations
about how the interaction is presumed to unfold.

The man with the roses beckons Irene forward.

 agency 

Another man steps in behind her, trapping her...

She slices upwards with a razor-sharp knife...
The move ends with Irene's finger over her own mouth...

He obeys, eyes bulging.

agency

agency

agency 

 power

+
power

+

+

power

—

power

Figure 1: Figure from Sap et al. (2017) illustrating
power and agency connotation frames extracted on an
excerpt from the Sherlock Holmes (2009) film screen-
play. Each connotation frame pertains to a verb predi-
cate and its agent and theme.

More broadly, an author’s word choices can not
only communicate important details about a char-
acter or narrative but can also reveal larger social
attitudes and biases (Blackstone, 2003; Cikara and
Fiske, 2009), shape readers’ opinions and beliefs
about social groups (Behm-Morawitz and Mastro,
2008), as well as act as powerful mechanisms to
persuade or to induce empathy (Smith and Petty,
1996; Keller et al., 2003). Studying these word
choices across large datasets can illuminate domain-
specific patterns of interest to scholars in the hu-
manities and social sciences.

Examining verbs—who does what to whom?—is
one established approach for measuring the textual
portrayal of people and groups of people. Each
verb carries connotations that can indicate the so-
cial dynamics at play between the subject and ob-
ject of the verb. Connotation frames (Rashkin et al.,
2016; Sap et al., 2017) capture these dynamics by
coding verbs with directional scores. For exam-
ple, these frames might label verbs with who holds
power and who lacks power, or who is portrayed
with positive or negative sentiment. In the Sherlock
Holmes scene description, “Another man steps in
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behind her, trapping her,” the verb to trap implies
that “the man” has more power over “her” (Figure
1; Sap et al., 2017). These verb lexica have been
used successfully to study portrayals in many di-
verse contexts including films (Sap et al., 2017),
online forums (Antoniak et al., 2019), text books
(Lucy et al., 2020), Wikipedia (Park et al., 2021),
and news articles (Field et al., 2019).

Lexica in general are extremely popular among
social science and digital humanities scholars.
They are interpretable and intuitive (Grimmer and
Stewart, 2013), especially when compared with
black-box classification models, and continue to
be a go-to resource (e.g., LIWC; Pennebaker et al.,
2015). However, verb-based lexica pose specific
technical hurdles for those less experienced in soft-
ware engineering and natural language processing
(NLP). These lexica require core NLP skills such
as traversing parse trees, identifying named entities
and references, and lemmatizing verbs to identify
matches. At the same time, the larger research ques-
tions motivating their usage require deep domain
expertise from the social sciences and humanities.

To meet this need, we introduce RIVETER ,1

which includes tools to use, evaluate, and visual-
ize verb lexica, enabling researchers to measure
power and other social dynamics between entities
in text. This package includes a pipeline system
for importing a lexicon, parsing a dataset, iden-
tifying people or entities, resolving coreferences,
and measuring patterns across those entities. It
also includes evaluation and visualization methods
to promote grounded analyses within a targeted
dataset. We release RIVETER as a Python package,
along with Jupyter notebook demonstrations and
extensive documentation aimed at social science
and humanities researchers.

To showcase the usefulness of this package,
we describe two case studies: (1) power differen-
tials and biases in GPT-3 generated stories and (2)
gender-based patterns in the novel Pride and Prej-
udice. The first study provides a proof-of-concept;
dyads with predetermined power differentials are
used to generate stories, and we are able to detect
these distribution shifts using RIVETER. The sec-
ond study zooms in on a particular author, text,

1The name Riveter is inspired by “Rosie the Riveter,” the
allegorical figure who came to represent American women
working in factories and at other industrial jobs during World
War II. Rosie the Riveter has become an iconic symbol of
power and shifting gender roles—subjects that the Riveter
package aims to help users measure and explore by combining
(or riveting) components into a pipeline.
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Agent Theme

Effect(A) Effect(T)

State(A) State(T)

Value(A) Value(T)

Verb

Agency(A)

Persp(A↔T)

Power(A↔T)

WrtPersp(A)
WrtPersp(T)

RdrPersp(A)
RdrPersp(T)

Figure 2: A verb predicate can connote various senti-
ment, power, and agency levels for its agent and theme;
connotation frames distill these into six relation types
(§2.3; each type is colored in a different hue).

and social setting, examining how a 19th century
novelist both portrayed and subverted gender roles.
These case studies highlight the diverse contexts
and research questions for which this package can
be used across human and machine-generated text,
and across the social sciences and the humanities.

2 Background: Verb Lexica &
Connotation Frames

2.1 Verb Predicates & Frame Semantics

Understanding the events and states described in
sentences, i.e., who does what to whom, has been
a central question of linguistics since first concep-
tualized by Indian grammarian Pān. ini between the
4th and 6th century BCE. Today, verb predicates
and their relation to other words in a sentence are
still a key focus of linguistic analyses, e.g., depen-
dency parsing (Tesnière, 2015; Nivre, 2010) and
semantic role labeling (Gildea and Jurafsky, 2000).

To model how one understands and interprets the
events in a sentence, Fillmore (1976) introduced
frame semantics, arguing that understanding a sen-
tence involves knowledge that is evoked by the
concepts in the sentence. This theory inspired the
task of semantic role labeling (Gildea and Jurafsky,
2000), which categorizes how words in a sentence
relate to the main verb predicate via frame seman-
tics. This task defines thematic roles with respect
to an EVENT (i.e., the verb predicate): the AGENT

that causes the EVENT (loosely, the subject of the
verb), and the THEME that is most directly affected
by the EVENT (loosely, the object of the verb).
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Work Usage

Rashkin et al. (2016) Analyzing political leaning and bias in news articles.
Sap et al. (2017) Analyzing gender bias in portrayal of characters in movie scripts.
Rashkin et al. (2017) Analyzing public sentiment (and multilingual extension of Rashkin et al. (2016))
Volkova and Jang (2018) Improving the detection of fake news & propaganda.
Ding and Riloff (2018) Detecting affective events in personal stories.
Field et al. (2019) Analyzing power dynamics of news portrayals in #MeToo stories.
Antoniak et al. (2019) Analyzing the power dynamics in birthing stories online.
Lucy et al. (2020) Analyzing the portrayal of minority groups in textbooks.
Mendelsohn et al. (2020) Analyzing the portrayal of LGBTQ people in the New York Times.
Ma et al. (2020) Text rewriting for mitigating agency gender bias in movies.
Park et al. (2021) Comparing affect in multilingual Wikipedia pages about LGBT people
Lucy and Bamman (2021) Analyzing gender biases in GPT3-generated stories.
Gong et al. (2022) Quantifying gender biases and power differentials in Japanese light novels
Saxena et al. (2022) Examining latent power structures in child welfare case notes
Borchers et al. (2022) Measuring biases in job advertisements and mitigating them with GPT-3
Stahl et al. (2022) Joint power-and-agency rewriting to debias sentences.
Wiegand et al. (2022) Identifying implied prejudice and social biases about minority groups
Giorgi et al. (2023) Examining the portrayal of narrators in moral and social dilemmas

Table 1: Examples of usages of connotation frames in NLP and CSS literature.

2.2 Connotation Frames of Sentiment, Power,
and Agency

While frame semantics was originally meant to
capture broad meaning that arises from interpret-
ing words in the context of what is known (Fill-
more, 1976), many linguistic theories have focused
solely on denotational meaning (Baker et al., 1998;
Palmer et al., 2005), i.e., examining only what is
present in the sentence. In contrast, the implied
or connoted meaning has received less attention,
despite being crucial to interpreting sentences.

Connotation frames, introduced by Rashkin et al.
(2016), were the first to model the connotations
of verb predicates with respect to an AGENT and
THEME’s value, sentiment, and effects (henceforth,
sentiment connotation frames). Shortly thereafter,
Sap et al. (2017) introduced the power and agency
connotation frames (Figure 2), which model the
power differential between the AGENT and the
THEME, as well as the general agency that is at-
tributed to the AGENT of the verb predicate.2

For both sets of connotation frames, the authors
released a lexicon of verbs with their scores. Verbs
were selected based on their high usage in corpora
of choice: frequently occurring verbs from a cor-
pus of New York Times articles (Sandhaus, 2008)
for sentiment connotation frames, and frequently
occurring verbs in a movie script corpus (Gorin-
ski and Lapata, 2015) for the power and agency
frames. Each verb was annotated for each dimen-

2While the value, sentiment, effects, and power relations
require a verb to be transitive, the agency dimension is present
with intransitive verbs as well.

sion by crowdworkers with AGENT and THEME

placeholders (“X implored Y”).
Since their release, connotation frames have

been of increasing interest to researchers work-
ing in disciplines like cultural analytics and digital
humanities communities. They have given these re-
searchers a flexible and interpretable way to exam-
ine the framing of interpersonal dynamics across
a wide range of datasets and research questions
(Table 1). Additionally, the frames have been in-
corporated into the 2023 edition of the textbook
Speech and Language Processing (Jurafsky and
Martin, 2023).

2.3 Connotation Frame Dimensions

Given a predicate verb v describing an EVENT and
its AGENT a and THEME t, connotation frames
capture several implied relations along sentiment,
power, and agency dimensions. Each of these rela-
tions has either a positive⃝+ , neutral⃝= , or negative
⃝− polarity. We describe here a set of six example
relations included in RIVETER; for a fuller discus-
sion of each of these relations and their definitions,
see Rashkin et al. (2016) and Sap et al. (2017).

Effect denotes whether the event described by
v has a positive or negative effect on the agent a
or the theme t. For example, in Figure 1, another
man “trapping” Irene has a negative effect on her
(Effect(t) =⃝− ).

Value indicates whether the agent or theme are
presupposed to be of value by the predicate v.
For example, when someone “guards” an object,

379



this presupposes that the object has high value
(Value(t) =⃝+ ).

State captures whether the likely mental state of
the AGENT or THEME as a result of the EVENT.
For example, someone “suffering” likely indicates
a negative mental state (State(a) =⃝− ).

Perspective is a set of relations that describe
the sentiment of the AGENT towards the THEME

and vice versa (Persp(a ↔ t)). It also describes
how the writer perceives the AGENT and THEME

(WrtPersp(a), WrtPersp(t)), as well as how the
reader likely feels towards them (RdrPersp(a), Rdr-
Persp(t)).

Power distills the power differential between the
AGENT and THEME of the EVENT (denoted as
Power(a↔ t) for shorthand). For example, when
a man “traps” Irene, he has power over Irene
(Power(a) =⃝+ and Power(t) =⃝− ). In the im-
plementation of RIVETER, we convert the positive
⃝+ , neutral⃝= , or negative⃝− polarities into cate-
gorical scores ({−1, 0,+1}), as described in §3.2,
to facilitate aggregation over entities.

Agency denotes whether the AGENT of the
EVENT has agency, i.e., is decisive and can act
upon their environment. For example, Irene
“slicing” connotes high agency (Agency(a) =⃝+ ),
whereas the man “obeying” connotes low agency
(Agency(a) =⃝− ). We convert these categories to
numbers as described for Power above.

3 RIVETER Design & Implementation

3.1 Challenges Addressed

Unlike lexica that require only string matching,
verb lexica indicating relations between the AGENT

and THEME also require parsing, lemmatization,
named entity recognition, and coreference resolu-
tion. These are standard pieces of NLP pipelines,
but each piece requires background knowledge in
linguistics, NLP, and algorithms that inform library
choices and merging of outputs; this can pose a
challenge for researchers without extensive NLP
knowledge or training. RIVETER substantially low-
ers the implementation burden and text-processing
knowledge required for using verb lexica by ad-
dressing the following three challenges.

Familiarity with Using NLP Tools The increas-
ing availability of NLP packages has resulted in
numerous existing packages for core NLP pipelines.

We reviewed the performance (considering ac-
curacy, speed, and ease of installation) of avail-
able tools and pre-selected optimal text processing
pipelines for RIVETER, eliminating the need for
users to be familiar with and decide between avail-
able text processing tools. We also provide docu-
mentation on incorporated packages and extensive
demonstrations.

Interfacing between NLP Tools Even if one is
familiar with individual tools, like parsers or entity
recognizers, connecting outputs from one tool to
another tool requires an additional engineering skill
set. Traversing a parse tree to find semantic triples
and then matching these triples to clusters from a
coreference resolution engine is not a straightfor-
ward process for a researcher with less expertise in
programming and software engineering. To address
this challenge, we (a) provide a system that con-
nects these pipeline pieces for the user while also
(b) providing functionality to explore the outputs
of each individual system.

Interpreting Results Lexical methods can offer
flexibility and interpretability not found in other
NLP methods, but even so, validating and explor-
ing lexical results can be challenging. Proper val-
idation is not consistent even in NLP research us-
ing lexicon-based methods (Antoniak and Mimno,
2021). To address this challenge, we provide meth-
ods to explore the results numerically and visually,
enabling users to quickly produce plots, calculate
aggregate scores, identify contributing verbs and
documents, and measure their results’ stability.

3.2 System Description

Illustrated in Figure 3, RIVETER takes in a set of
documents as input, and returns a set of scores for
each entity appearing as an AGENT or THEME in
the target dataset. Under the hood, RIVETER parses
the documents, resolves coreference clusters, finds
entity mentions, extracts AGENT-EVENT-THEME

triples, and computes lexicon scores. We verify
our implementation through hand-constructed unit
tests and testing of large and small corpora. We
describe each of these components below.

Named Entity Recognition and Coreference Res-
olution Our package first parses a given docu-
ment to find clusters of mentions that relate to
entities. We extract general coreference clusters,
which we cross-reference with mentions of entities
labeled by a named entity recognition (NER) sys-
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Riveter

Document 
parsing

People & entity 
clustering

(NER, coreference resolution)

Agent-Verb-Theme 
triple extraction

(dependency parsing)

Lexicon 
matching

Text 
documents

(sampling & curation)

Connotation frames 
lexicon

(Sentiment, power, agency)

scores = {"doctor":

{"agency": 0.5},

"patient":

{"agency": -0.3}}

Outputs & 
visualization

Figure 3: A visualization of the RIVETER pipeline components and their connections.

tem, as well as a list of general people referents
(containing pronouns, professions, etc). Corefer-
ence cluster mentions that overlap with a mention
of an entity are then passed to the verb and relation
identification module.

In our implementation, we currently use spaCy
for NER, and the spaCy add-on neuralcoref 3 li-
brary for coreference resolution. These libraries
are well-supported, have fast run-times relative to
similar systems, and do not require GPU access,
which are not accessible to many researchers, espe-
cially outside of computing disciplines.

Lexicon Loading We include two lexica by de-
fault: connotation frames from Rashkin et al.
(2016) and frames of power and agency from Sap
et al. (2017). These lexica come included in the
package, and the user can select between the lexica
and their dimensions (see §2.3 for dimension de-
scriptions), as well as use their own custom lexica.

For the verb lexicon from Rashkin et al. (2016)
and for custom lexicons, each verb has a numerical
score (ranging from −1 to 1) for each of AGENT

and THEME. If a lexicon only has scores for
AGENT or THEME, the other scores are set to 0.
For the verb lexicon from Sap et al. (2017), we
convert the categorical labels to numerical scores,
so that each verb has a score of +1, 0, or −1 for
each of the AGENT and THEME.

For example, in the verb lexicon from Sap et al.
(2017), the verb “amuse” is labeled as having pos-
itive agency (Agency(a) =⃝+ ) and power for the
THEME (Power(a) =⃝− , Power(t) =⃝+ ). In this
lexicon, agency was coded only for the AGENT, so
we convert the categorical label to a score of +1 for
the AGENT and 0 for the THEME. For power, we
convert the categorical label to −1 for the AGENT

and +1 for the THEME.
RIVETER also allows the use of custom lexica.

We include a loading function for any verb lexi-
3https://github.com/huggingface/neuralcoref

con formatted in the style of Rashkin et al. (2016).
This requires a file listing verbs and their agent and
theme scores, which should be positive and nega-
tive numbers. This functionality is especially im-
portant when using previous lexica on new datasets,
as this allows users to customize those lexica for
new contexts, simply by updating or adding to the
included lexicon files.

Verb Identification and Entity Relation We ex-
tract the lemmas of all verbs and match these to the
lexicon verbs. After identifying semantic triples
(the AGENT or subject (nsubj) and THEME or di-
rect object (dobj) of each verb) using the spaCy
dependency parser, we search for matches to the
NER spans identified in §3.2. We track the fre-
quencies of these for the canonical entity, using the
converted scores.

Exploration and Visualization We provide func-
tionality for users to easily view lexicon scores for
entities in their input text. To maximize utility, we
focus on facilitating analyses established in prior
work (e.g., Table 1). This functionality includes:

• retrieving the overall verb lexicon scores for
all entities identified in the entire input cor-
pora (get_score_totals),

• retrieving the overall verb lexicon scores for
all entities identified in a specific document
(get_scores_for_doc),

• generating bar plots of scores for entities in
the dataset (e.g., filtering for the top-scored
entities) (plot_scores) or in a specific docu-
ment (plot_scores_for_doc).

We additionally provide functionality to reduce
the opacity of lexicon scores and allow users to
examine specific findings in more depth or conduct
error checking. These functions include:
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Figure 4: Number of roles with corresponding power
scores color coded by assignment of higher and lower
power roles over 85 short stories sampled from GPT-3.5.

• generating heat map plots for the verbs most
frequently used with a user-specified entity
(plot_verbs_for_persona),

• retrieving all mentions associated with a
specified entity, after co-reference resolution
(get_persona_cluster),

• retrieving various additional counts, including
number of lexicon verbs in a document, all
entity-verb pairs in a document, number of
identified entities, etc.

• retrieving all documents that matched an en-
tity or verb (get_documents_for_verb),

• bootstrapping the dataset to examine stability
across samples (plot_verbs_for_persona).

4 Case Studies Across Cultural Settings

4.1 Machine Stories with Power Dyads
As our first case study, we examine lexicon-based
power differentials in machine-generated stories
about two characters with a predetermined power
asymmetry, as in [“doctor”, “patient”], [“teacher”,
“student”], and [“boss”, “employee”]. By generat-
ing stories about entities with predetermined power
asymmetries, this serves as a proof-of-concept for
RIVETER; we expect to measure power scores in
the predetermined directions.

Given a set of 32 pairs of roles, we obtain 85
short stories from GPT-3.5 (Ouyang et al., 2022)
(see Appendix A for details). We then scored
each of the characters with assigned roles using
RIVETER and aggregated the scores for higher
power roles and lower power roles using their
names given by GPT-3.5.

Figure 5: Number of stories with correspond-
ing power score differences calculated by taking
Power(e+)−Power(e−) in each generated story where
e+ and e− are pairs of entities predetermined to have
high and low power roles (e.g., [“doctor”−“patient”]).

Results As seen in Figure 4, higher power roles
have a distribution shifted toward greater power
scores than lower power roles. The mean score
of the higher power roles was 0.265 and that of
lower power roles was 0.0364. A t-test also shows
statistical significance (p < 0.05). From these re-
sults we can conclude that the stories generated by
GPT-3.5 reflect the power dynamics in the relations
given in the prompt, and our framework captures
this expected phenomena.

The differences in power scores show similar
results in Figure 5. These differences were calcu-
lated only for the stories where both higher and
lower power figures had been scored. The mean
and median were both positive, 0.26 and 0.24.

Analyzing the stories with both positive and
negative score differences (see Table 3 in the Ap-
pendix) further confirms the results of our frame-
work. For example, the third story of the table
shows negative score difference between higher
powered agent and lower powered agent. However,
looking at it more closely we can see that despite
the assigned role as an interviewee, Emily shows
greater power. In the sentence “Paul thanked Emily
for her time and wished her luck,” both thank and
wish from our lexicon give Emily greater power
than Paul. Thus we can analyze the power dynam-
ics between characters more accurately, taking into
account more context than just assigned roles.

4.2 Gender Differences in Pride and Prejudice

Jane Austen’s 1813 novel Pride and Prejudice is
famous for its depiction of gender and class rela-
tions in 19th century England. Using the entity

382



miss
 lu

ca
s

mr. g
ard

ine
r

mrs.
 hu

rst

mrs.
 co

llin
s

mrs.
 lo

ng

miss
 bi

ng
ley

his
 fri

en
d

my b
rot

he
r

yo
ur 

sis
ter sir

persona

0.00

0.25

0.50
sc

or
e

Personas by Score

eli
za

be
th

mr. b
ing

ley

the
 ho

us
ek

ee
pe

r

mrs.
 be

nn
et

mary

he
r m

oth
er

co
lon

el 
for

ste
r

bin
gle

y

my a
un

t

he
r e

ye
s

persona

1.0

0.5

0.0

sc
or

e

Personas by Score

Figure 6: Means and standard deviations of power
scores across 20 bootstrapped samples of Pride and
Prejudice, using RIVETER’s sampling and visualization
functions. Results are shown for three custom pronoun
groups captured using RIVETER’s entity discovery and
coreference resolution capabilities.

recognition and coreference resolution capabilties
of RIVETER, we can identify which characters are
framed as having or lacking power, and by exam-
ining the power relations between classes of third
person pronouns, we can trace how gender hierar-
chies are enacted and subverted by Austen, through
the actions of her characters.

Results Figure 6 shows the entities identified by
RIVETER that have the highest and lowest power
scores, using the lexicon from Sap et al. (2017).
Characters like Miss Lucas have higher power
scores, while characters like Elizabeth have lower
power scores. By using RIVETER’s functionality to
pull out the documents contributing to an entity’s
score, we find that a mistaken entity, “her eyes,”
indeed often occurs in low power roles, as in “Miss
Bingley fixed her eyes on face,” providing an intu-
itive validation of the results. This plot also shows
the standard deviation across bootstrapped samples
of the novel, indicating the overlapping instability
of many of the power scores for this single novel.

Figure 7 shows the lexicon verbs contributing
most frequently to each pronoun group’s power
score. For example, we see that feminine pronouns
are frequently used as subjects of the verb “hear”—
emphasizing women’s low-power role of waiting
to hear news. We also observe that while feminine
pronouns are often placed in high-power positions
at rates similar to masculine pronouns, they have
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Figure 7: Verb counts for pronoun groups in Pride
and Prejudice, using RIVETER’s visualization functions.
Green cells indicate verbs where the pronoun group has
power, while pink cells indicate verbs where the pro-
noun group lacks power. Labels include both the verb
and the position (nsubj or dobj) of the pronoun group,
and the pronoun groups were captured via RIVETER’s
customizable entity discovery function.

higher frequencies for low-power positions. In
other words, in Austen’s world, masculine and fem-
inine entities both engage in high-power actions,
but feminine entities engage in more low-power
actions. Arguably, though, some of the low-power
positions are used by the feminine entities to obtain
power, e.g., by “hearing” news or eavesdropping on
others, the feminine entities can learn information
that informs their future decisions and strategies.

5 Ethics and Broader Impact

RIVETER comes with some risks and limitations.
This package is targeted only at English-language
texts; we have not included non-English lexica in
the tool nor do we expect the parsing, named entity
recognition, and coreference resolution to directly
translate to other languages. While related lexica
exist for non-English languages (e.g., Klenner et al.
(2017) (German), Rashkin et al. (2017) (extension
to 10 European languages)), the generalizability of
RIVETER is limited to English-language settings.

The results of RIVETER are only as reliable as
the corpora and lexica used as input (and their re-
lationships to one another). We have emphasized
interpretability in designing this package, encourag-
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ing users to examine their results at different levels
of granularity. However, there are still dangers of
biases “baked-in” to the data, via its sampling and
curation, or to the lexica, in the choice of terms
and their annotations by human workers. Lexica
that are useful in one setting are not always useful
in other settings, and we encourage researchers to
validate their lexica on their target corpora.

Drawing from a framework describing the roles
for computational tools in social change (Abebe
et al., 2020), we believe that RIVETER can fill mul-
tiple important roles. First, it can act as a diagnos-
tic, measuring social biases and hierarchies across
large corpora, as in Mendelsohn et al. (2020) where
dehumanization of LGBTQ+ people was measured
across news datasets and time. RIVETER can also
act as a formalizer, allowing researchers to exam-
ine the specific words used by authors, adding con-
crete and fine-grained evidence to the constructions
of broader patterns, as in Antoniak et al. (2019)
where the supporting words were used to charac-
terize healthcare roles during childbirth. Finally,
RIVETER can act as a synecdoche by bringing new
attention and perspectives to long-recognized prob-
lems, as in Sap et al. (2017) where renewed atten-
tion was given to gender biases in film.
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A Appendix: GPT-3.5 Generation Setup

Here we further detail our steps to evaluate our
framework as discussed in Section 4.1. To gener-
ate characters with clear roles, names, and power
differences, we used 32 dyadic relation pairs with
explicit power asymmetry in our prompt. The full
list of relations are shown in Table 2. The follow-
ing is an example of the prompt used to generate
such stories:

Tell me a short story about a doctor and
a patient, and give them names.

doctor’s name:

Using text-davinci-003 model, we generated 3 sto-
ries per pair with temperature set to 0.7 and max
tokens set to 256. After cleaning ill-formatted re-
sults, we analyzed a total of 85 stories. A few
examples of the generated stories along with the
power scores of the characters are shown in Table 3.

(doctor, patient) (teacher, student)
(interviewer, interviewee) (parent, child)
(employer, employee) (boss, subordinate)
(manager, worker) (landlord, tenant)
(judge, defendant) (supervisor, intern)
(therapist, client) (owner, customer)
(mentor, mentee) (politician, voter)
(rich, poor) (elder, younger)
(artist, critic) (host, guest)
(preacher, parishioner) (expert, novice)
(counselor, advisee) (coach, athlete)
(lender, borrower) (king, subject)
(seller, buyer) (umpire, player)
(printer, writer) (sponsor, sponsored)
(producer, actor) (legislator, citizen)
(commander, soldier) (executor, beneficiary)

Table 2: Full list of dyadic roles
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GPT3.5 Generated Story
Dyadic Roles Power Scores Power Score Difference

Alan was a successful CEO of a large company. He had a sharp eye for detail and was known
for his strict yet fair leadership style. One day, Alan noticed that one of his subordinates,
Zara, was not performing up to the standards he expected. He called her into his office and
asked her why her work wasn’t up to par. Zara admitted that she was feeling overwhelmed
with her workload and was having trouble keeping up. She asked Alan if he could help her
prioritize her tasks and provide her with additional resources to help her complete her work.
Alan was impressed by Zara’s initiative and agreed to help her. He rearranged her tasks and
assigned her additional help from other staff members. He also gave her some helpful tips
on how to manage her workload more effectively. Zara was grateful for Alan’s help and
was able to complete her work on time and to a high standard. Alan was pleased with her
performance and decided to reward her with a promotion. From then on, Zara and Alan had
an excellent working relationship. Zara’s hard work and resilience was an example to her
colleagues, and Alan’s willingness to help her out was a
(boss, subordinate) Alan: 0.4, Zara: -0.07 0.47
Mr. Jones was a landlord who owned an apartment building in a small town. He had been
a landlord for many years, and he was known for his strict rules and no-nonsense attitude.
Ms. Lopez was a single mother who had recently moved into the building. She was looking
for a safe place to raise her young daughter, and Mr. Jones’ building seemed to fit the bill.
She was a bit intimidated by his strict rules, but she was willing to abide by them if it meant
living in a safe and secure place. At first, things went smoothly between Mr. Jones and Ms.
Lopez. He made sure the building was well maintained, and she was a model tenant, paying
her rent on time every month. However, one day Ms. Lopez noticed that her hot water heater
had stopped working. She immediately contacted Mr. Jones to let him know, but he refused
to repair it. She was frustrated and angry, but she didn’t want to risk getting evicted, so she
kept quiet. After a few weeks, the hot water heater finally broke down completely and Ms.
Lopez had no choice but to contact Mr. Jones again.
(landlord, tenant) Mr. Jones: 0.42, Ms. Lopez: 0.09 0.33
Paul was an experienced interviewer, but Emily was his most challenging interviewee yet.
He had seen her resume online and was impressed with her qualifications. He had high hopes
for her. When Emily arrived for the interview, Paul immediately noticed her confidence.
She was wearing a suit and had a bright smile on her face. She was clearly prepared and
ready for the interview. Paul asked Emily several questions about her past experience and
qualifications. She answered each one with poise and detail. She was articulate and could
back up her answers with examples. Paul was very impressed with Emily’s performance. He
could tell she was a strong candidate and he was confident she would do well in the job. At
the end of the interview, Paul thanked Emily for her time and wished her luck. He was sure
she would be a great addition to the company. Emily left the interview feeling pleased with
how it went. She was confident she had done her best and was sure she had impressed Paul.
The next day, Paul gave Emily an offer for the job. She happily accepted and started a few
weeks later. Paul and Emily had a successful working
(interviewer, interviewee) Paul: 0.07, Emily: 0.25 -0.17

Table 3: Examples of GPT3.5 generated stories and the power scores of the characters
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Abstract

The goal of whitespace correction is to fix
space errors in arbitrary given text. For ex-
ample, given the text whi te space correc-
tio nwithTransf or mers, produce whitespace
correction with Transformers. We compare
two Transformer-based models, a character-
level encoder-decoder model and a byte-level
encoder-only model. We find that the encoder-
only model is both faster and achieves higher
quality. We provide an easy-to-use tool that is
over 900 times faster than the previous best tool,
with the same high quality. Our tool repairs
text at a rate of over 200 kB/s on GPU, with
a sequence-averaged F1-score ranging from
87.5% for hard-to-correct text up to 99% for
text without any spaces.

1 Introduction

Most natural language processing applications as-
sume a segmentation of the text into words. In
English (and many other languages), this segmen-
tation is typically achieved by splitting the text at
space characters (and a few additional rules). How-
ever, many texts contain a significant amount of
space errors, that is, spurious spaces or missing
spaces. These can be due to OCR errors, imperfect
extraction from PDF files, or typing errors. See
Bast et al. (2021) for a more thorough discussion
of the sources of such errors.

We consider the following whitespace correc-
tion problem: given a text in natural language, with
an arbitrary amount of missing or spurious spaces,
compute a variant of the text with correct spac-
ing. The text may contain spelling errors, which
make the task more difficult, but it’s not part of the
problem to correct them. However, as shown in
Bast et al. (2021), with spaces repaired, spelling-
correction algorithms do a much better job.

The best previous methods for whitespace cor-
rection achieve high F1-scores, however, at the

∗ Author contributions are stated in the end.

price of very slow processing speeds; see Section
2. This is a major obstacle for the practical use of
such systems for large amounts of text. Our goal in
this work is to provide a practical tool with a much
higher speed, without sacrificing the high quality.

1.1 Contributions

We consider these as our main contributions:
• We provide a practical method for whitespace
correction that is over 900 times faster than the
best previous method, with the same high quality
across a wide selection of benchmarks. On an A100
GPU, our tool repairs text at over 200 kB/s with a
sequence-averaged F1-score ranging from 87.5%
(for hard-to-correct text) to 99% (for text without
any spaces).

• We compare two Transformer-based models: a
character-level encoder-decoder model (that out-
puts the repaired sequence), and a byte-level
encoder-only model (that predicts for each gap be-
tween two characters whether there should be a
space or not). Both models take existing spaces in
the input into account. The encoder-only model is
both faster and better.

• We provide our whitespace correction mod-
els as a Python package with an easy-to-use
command-line tool and as a web application; see
Figure 1 and https://whitespace-correction.cs.uni-
freiburg.de. The website provides links to public
GitHub repositories with all our code, data, bench-
marks, trained models, and a Docker setup. It also
includes features to easily replicate our benchmark
results and visualize model predictions on bench-
marks.

2 Related Work

Recent work on spelling correction (Sakaguchi
et al., 2017; Li et al., 2018; Pruthi et al., 2019;
Jayanthi et al., 2020) and OCR postcorrection
(Hämäläinen and Hengchen, 2019) predicts one
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Legend: Clear input, Paste clipboard into input, Upload a text file, Choose an example input, Load a benchmark
(see Section 4.1), Insert whitespaces between all characters, Delete whitespaces between all characters, Copy output to
clipboard, Download output as text file, Run model on input, Live as-you-type whitespace correction1

Figure 1: Our web interface for whitespace correction. The user can run any of our EO and ED models (panel for
model selection not shown) on arbitrary text input. In the web app, there are tooltips instead of a legend.

word for every input token, without addressing
space errors. To use these systems for text with a
combination of spelling or OCR errors and whites-
pace errors, it is necessary to correct the spaces first.
Other OCR postprocessing systems also try to cor-
rect space errors, but with limited success (Kissos
and Dershowitz, 2016; D’hondt et al., 2017; Schulz
and Kuhn, 2017; Nguyen et al., 2020). Bast et al.
(2021) showed that space errors can be corrected
separately with models that are robust against OCR
and spelling errors.

Previous work on whitespace correction uses au-
toregressive models to determine the most likely
segmentation of a given text into words. The used
models are n-gram models, character-level recur-
rent neural network language models or character-
level neural machine translation (NMT) models.
Mikša et al. (2010) use a beam search with an n-
gram language model to split unknown tokens in
OCR’ed Croatian text into multiple words. Nastase
and Hitschler (2018) use a character-level GRU
NMT model to segment texts from the ACL an-
thology corpus. Soni et al. (2019) use n-gram
statistics to split tokens in digitized historic En-
glish newspapers. Doval and Gómez-Rodríguez
(2019) use a beam search with a character LSTM
language model or n-gram language model for En-
glish word segmentation. Bast et al. (2021) use a
beam search with a combination of a unidirectional
character LSTM language model and a bidirec-
tional LSTM whitespace classification model and
introduce penalty terms to make use of existing
spaces in the input text.

In contrast to previous work, our best approach
does not use an autoregressive model, but instead
addresses the task with a sequence-labeling classi-
fication model. We make use of the Transformer
architecture, which improved the state of the art
in many NLP tasks, including machine translation
(Vaswani et al., 2017), language modeling (Radford
et al., 2019), language understanding (Devlin et al.,
2019), and Chinese word segmentation (Huang
et al., 2020). We compare our approach with the
previous best results from Bast et al. (2021) and
other baselines.

3 Approach

We compare two approaches for the whitespace
correction problem: A character-level encoder-
decoder (ED) model and a byte-level encoder-only
model (EO). Both models respect existing whites-
pace information in the input text. We pre-process
the input text by removing duplicate, leading, and
trailing whitespaces, and applying NFKC normal-
ization2.

3.1 Encoder-only (EO)
The EO approach treats the whitespace correction
problem as a sequence-labeling task where we pre-
dict one of three repair tokensR = {K, I,D} for
each character xi in the input sequence

1For live as-you-type whitespace correction we limit the
input size to 512 characters, because we simply correct the
full input after every keystroke. Non-live correction supports
larger inputs such as text files in the order of several MB.

2This is a form of Unicode normalization. It is only rele-
vant for our EO models with byte input, see Section 3.1
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K → Keep the character
I → Insert a space before the character
D → Delete the character

and use them afterwards to change the whitespac-
ing in the input sequence accordingly.

For the EO approach, we directly input and em-
bed UTF-8 encoded bytes instead of characters. We
found the performance of using bytes directly to
be on par with using characters, while introducing
only a negligible runtime overhead. It also enables
us to process any text without a character vocabu-
lary or a special token for unknown characters. We
also add sinusoidal positional encodings as defined
by Vaswani et al. (2017) to the byte embeddings.
To keep inference speeds high we aggregate all
byte embeddings belonging to a character3 into a
single embedding before processing them further4:
Within a grapheme cluster we first average the byte
embeddings belonging to individual code points,
then average the code point embeddings to get the
final character embedding.

To process the character embeddings, we employ
a standard Transformer encoder (Vaswani et al.,
2017) with a linear output layer on top, which al-
lows us to predict a probability distribution over the
repair tokensR for each character in parallel. Dur-
ing inference we simply take the repair token with
the highest probability for each character as output.
However, we only allow the model to predict I
between two non-space characters or D for space
characters, otherwise we ignore the prediction and
fall back to K:

yi = argmaxr∈R p(r | x, i) with 1 ≤ i ≤ n,

yi ←





K if yi = D and xi ̸= ’ ’
K if yi = I and (xi = ’ ’ or xi−1 = ’ ’)
yi else.

3.2 Encoder-decoder (ED)
For the ED approach, we tokenize the in-
put text into a sequence of characters x =
(x1, . . . , xn) with xi ∈ C. C is a character vocab-
ulary containing all uppercase and lowercase let-
ters of the English alphabet, common punctuation
marks, and special tokens, e.g., for unknown char-
acters.

3In accordance with the Unicode standard, we deter-
mine all characters in a UTF-8 encoded byte sequence using
grapheme cluster boundaries.

4For languages using non-Latin alphabets, e.g. Russian,
where characters are usually encoded into multiple bytes in
UTF-8 this can make a large difference.

The ED approach uses an encoder-decoder
Transformer model (Vaswani et al., 2017) with a
linear output layer trained to translate sequences of
characters with space errors into sequences with-
out space errors by outputting characters one by
one. At each output step t, we use the ED de-
coder to predict a probability distribution over C
given the input sequence and the previous outputs
y<t = (y1, . . . , yt−1). To ensure that the ED model
only changes the whitespaces of a sequence during
inference, we limit the set of possible outputs at
each step to the space character or the next charac-
ter to copy from the input sequence xj :

yt = argmaxc∈{’ ’,xj} p(c | x, y<t).

Sliding window Both the EO and ED ap-
proaches are trained with and limited to input se-
quences containing up to 512 tokens. Since real-
world paragraphs often exceed this length bound,
we use a sliding window approach during infer-
ence: We split input sequences into windows of
384 tokens and add the 64 tokens to the left and
right of the window as additional context.5 For
a given sequence we run our model on each in-
dividual window separately and recombine the
whitespace correction results of all windows af-
terwards. For example, a 950 byte long sequence
would be split into three consecutive windows
w1 = (0, 448, 64), w2 = (64, 384, 64), and w3 =
(64, 118, 0), specifying the sizes of the left context,
the window itself, and the right context respec-
tively. Note that at the beginning and end of the
sequence, the left and right context sizes are 0, each
window contains a maximum of 512 bytes, and all
non-context sizes add up to 950.

We train a medium-sized and large model for
each of the two approaches. All models use a hid-
den dimensionality of 512 and only differ in the
number of encoder or decoder layers. See Table 1
for an overview over all models.

3.3 Training

We train our models on the publicly available train-
ing dataset from Bast et al. (2021).6 This dataset
consists of 108,068,848 paragraphs extracted from

5We experimented with 16, 32, 64, and 128 as context size,
but found it to have very little effect on correction quality. To
be on the safe side we finally chose 64 as context size leaving
us with 384 tokens for the actual window. Also, because of
missing left and right context, the windows can contain more
than 384 tokens at the beginning and end of sequences.

6At https://whitespace-correction.cs.uni-freiburg.de
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Model #Parameters #Layers

EDmedium 22.2 M 3 encoder, 3 decoder
EDlarge 44.2 M 6 encoder, 6 decoder
EOmedium 19.0 M 6 encoder
EOlarge 38.0 M 12 encoder

Table 1: We choose the number of layers such that the
corresponding ED and EO models have comparable
numbers of parameters.

arXiv and Wikipedia articles. To generate pairs
of correctly and misspelled sequences, the authors
inject OCR and spelling errors artificially into the
paragraphs using error models derived from text
corpora, typo collections, and random character
transformations. Additionally, we inject space er-
rors into the paragraphs:
• In 10% of the paragraphs we remove all spaces.
• In 10% of the paragraphs we have a space be-
tween each pair of adjacent characters.
• In the remaining 80% of the paragraphs we insert
a space between two adjacent non-space characters
with probability 10% and delete an existing space
with probability 20%.

The EO approach naturally suffers from an un-
balanced class distribution, causing our models
to reach a plateau during early stages of training
where they predict K for all characters. To counter-
act that, we use a focal loss (Lin et al., 2017) with
γ = 2. This causes our models to overcome the
plateau by decreasing the influence of the dominant
and (mostly) easy-to-predict K class. We also tried
using a regular cross-entropy loss and weighing
classes I and D higher, but found it to perform
worse while also having one more hyperparameter.
For the full training details see Appendix A.

4 Experiments

4.1 Benchmarks
We evaluate on a total of eight benchmarks (see
Table 2 for an overview), with the first six coming
from Bast et al. (2021):
• Three benchmarks with text from Wikipedia, one

with whitespace errors only, one with whitespace
and spelling errors, and one without spaces but
with spelling errors. These benchmarks are called
Wiki, Wiki+, and Wiki+ no respectively.
• Two benchmarks based on text from arXiv with
OCR errors and errors from PDF extraction, called
arXiv OCR and arXiv pdftotext.

Benchmark #Sequences File size

Wiki 10,000 916 kB
Wiki+ 10,000 916 kB
Wiki+no 10,000 778 kB
arXiv OCR 10,000 1.4 MB
arXiv pdftotext 10,000 1.4 MB
ACL 500 83 kB
Doval 1000 82 kB
Runtime 3,500 396 kB

Table 2: A benchmark simply consists of two text files.
The first file contains the corrupted input text where
each line corresponds to a sequence with whitespace
and spelling errors. Its size is shown in the file size col-
umn. The second text file then specifies the groundtruth
sequences without whitespace errors accordingly.

• One benchmark based on sequences from the
ACL anthology dataset containing OCR errors.
This benchmark is called ACL.
• The word segmentation benchmark Doval from
Doval and Gómez-Rodríguez (2019), with 1,000
sequences without any whitespace.
• A Runtime benchmark for measuring the infer-
ence runtimes of our models and baselines, built
by randomly sampling 500 sequences from each of
the seven benchmarks above.

4.2 Baselines
We reuse the following four baselines and their
predictions from Bast et al. (2021):
• Do nothing This baseline keeps the input se-
quence unchanged. It is an interesting reference
point for benchmarks with very few errors, like
arXiv pdftotext.
• Google The authors copied erroneous se-
quences into a Google document7 and applied all
suggested space edits.
• Wordsegment Wordsegment is a Python
package for word segmentation.8 Before apply-
ing it to the text, all whitespaces are removed.
• BID+ The best whitespace correction pro-
cedure from Bast et al. (2021), with the overall
best hyperparameters (called The One in that pa-
per). They perform a beam search with a combi-
nation of a unidirectional character-level LSTM
language model and a bidirectional LSTM classi-
fication model to score whitespace insertions or
deletions.

7At https://docs.google.com
8At https://github.com/grantjenks/python-wordsegment
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In addition, we introduce an EO-like baseline
called ByT5. Xue et al. (2022) released ByT5,
a family of encoder-decoder Transformer models
that input and output sequences of bytes and were
pretrained on a masked token prediction task. We
take the encoder of their smallest model (~217M
parameters), add our byte-to-character aggregation
scheme (see Section 3.1) and a linear output layer,
and finetune it on 50M sequences from our training
data for one epoch.

To our knowledge, the ByT5 models by Xue
et al. (2022) are currently the only publicly avail-
able general purpose language models that work
on character or byte level. Other openly accessible
pretrained Transformer language models like the
BERT (Devlin et al., 2019), T5 (Raffel et al., 2020),
or OPT (Zhang et al., 2022) families are unsuitable
for whitespace correction, because they all work
with subword tokenization. Also, some of these
are simply too large to permit a reasonable runtime
and memory consumption.

4.3 Metric
Given two strings a and b that only differ in whites-
paces, we define a function correction-ops(a, b)
that gives us the set of correction operations that
we need to apply to turn a into b. A correction
operation is a tuple ⟨r, i⟩ consisting of an insert or
delete operation r ∈ {I,D} and the character posi-
tion i, 1 ≤ i ≤ |a| at which the operation has to be
applied. Given a benchmark sample ⟨s, g, p⟩ as a
tuple of an input sequence s, ground truth sequence
g, and predicted sequence p, we define a F1-score
as follows:

G = correction-ops(s, g)

P = correction-ops(s, p)

TP = |G ∩ P|
FP = |P \ G|
FN = |G \ P|

F1 =

{
1 if |G| = |P| = 0

2·TP
2·TP+FP+FN else

For our evaluation metric we calculate the average
F1-score over all benchmark samples. With this
metric the Do nothing baseline gives the percentage
of benchmark samples without space errors.

4.4 Results
Quality Table 3 shows the sequence-averaged
F1-scores achieved by the baselines and our mod-

els on the 7 whitespace correction benchmarks.9

Compared to the neural models, Google and Word-
segment perform poorly, sometimes even worse
than the Do nothing baseline.10 Our best mod-
els, EDlarge and EOlarge, perform on par with the
best-so-far model BID+. In general, all four of
our models achieve a high quality both in absolute
terms as well as compared to the other baselines.
We note, that EOlarge performs slightly better than
EDlarge on 6 out of 7 benchmarks. A similar picture
holds for the medium-sized variants. Comparing
BID+ and EOlarge, we see that the differences in
F1-score between them are rather small (≤ 0.6%)
across all benchmarks. ByT5 achieves good qual-
ity overall, but falls behind both of our large and
on some benchmarks even medium-sized models.
We hypothesize that this is mainly due to it being
pretrained on text without spelling and whitespace
errors, which makes it hard to transfer its language
modeling capabilities to this vastly different input
distribution. Increasing the model size consistently
leads to F1-score improvements across all bench-
marks, both for the EO and the ED approach. See
Appendix C for a showcase of some of the pre-
dictions and failure cases of our models on the
benchmarks, and Appendix D for a visualization of
attention maps.

Runtimes Table 4 shows runtime and GPU mem-
ory consumption on our Runtime benchmark (see
Section 4.1). Wordsegment and BID+ use a batch
size of 1 and cannot be easily modified to support
larger batch sizes11. We also show the performance
of all other models for batch size 1. That way, we
can see which improvements come from the ap-
proach, and which from an increased batch size.
Appendix B provides results for more batch sizes
for ByT5, ED, and EO.

As expected, the encoder-only models EO and
ByT5 outperform BID+ and ED by a large margin,

9We additionally evaluated ChatGPT (gpt-3.5-turbo, avail-
able at https://chat.openai.com) on 100 random sequences
from our benchmarks via the OpenAI API. ChatGPT usually
changed more about the sequence than just the whitespace
errors. Apart from that, we found the corrections to be of high
quality, but the runtime to be very slow. ChatGPT took 668
seconds to correct the 100 sequences, which equals a through-
put of 0.015 kB/s and is over 1,000 times slower than EOlarge
with batch size 1.

10For example, arXiv pdftotext contains only few errors,
and it is hard to make few fixes at the right places and not
introduce new errors.

11In particular, BID+’s complicated decoding scheme in-
cluding beam search caused its authors to implement inference
only in an unbatched fashion.
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Model ACL
Wiki+

no
Wiki+ Wiki

arXiv
OCR

arXiv
pdftotext

Doval

Do nothing 62.0 4.1 86.9 35.0 62.0 64.3 0.8
Google 75.6 16.7 91.9 76.0 83.9 86.1 -
Wordsegment 47.4 85.9 35.9 63.8 66.8 62.5 -
ByT5 87.1 98.7 95.7 98.2 96.5 94.8 99.4
BID+ 87.8 99.0 98.0 98.8 97.6 95.5 99.9

EDmedium 86.0 98.9 96.5 98.5 96.7 95.4 99.5
EDlarge 87.8 99.1 97.2 98.9 97.1 95.9 99.8
EOmedium 86.6 99.2 96.9 98.8 97.2 95.8 99.7
EOlarge 87.5 99.3 97.6 99.0 97.3 96.1 99.9

Table 3: Sequence-averaged F1-scores for our models and baselines on the whitespace correction benchmarks from
Section 4.1. We show the best result for each benchmark in bold.

due to being able to correct each character in the
input text simultaneously instead of one after an-
other. They are even significantly faster than the
(non-neural) Wordsegment baseline. Even with a
batch size of 1, EOlarge is over 75 times faster than
the previous best model BID+. With a batch size of
128, EOlarge achieves 213 kB/s, which is over 900
times faster than BID+.

Memory All of our models require relatively
little memory and can easily be run on a stan-
dard GPU with reasonable batch sizes. We carried
out additional tests with our EOlarge model on a
NVIDIA GeForce GTX 1080 Ti GPU, where we
reached batch sizes of 305 and 399 for full preci-
sion and mixed precision inference, respectively,
before getting OOM errors. We also determine a
rough estimate of the amount of GPU memory re-
quired per sequence/batch element in Table 4. One
can use these values to approximate the amount of
GPU memory required for running a model with a
certain batch size.

To investigate how performance scales with model
size, we additionally trained another EO model
called EOlarger, which has 18 layers and ~3.3 times
more parameters than EOlarge. EOlarger improves
upon EOlarge on every benchmark, but only by
small margins with an average gain of 0.15 percent-
age points in sequence-averaged F1-score. Com-
pared with EOlarge, it also requires about three
times more memory and runs only at 60% of its
speed. Here, the tradeoff between quality improve-
ment, speed loss, and increase in memory consump-
tion seems less favorable than the one between
EOlarge and EOmedium. We leave it for future work

to investigate how much performance can improve
further by using even larger models.

5 Demo

We provide open access to all of the EO and ED
models in form of a Python package which can be
installed via pip12 or from source. The package
comes with a command line tool and a Python API
both of which enable the user to correct whitespace
errors in arbitrary text. Additionally, the command
line tool provides an option for running a whites-
pace correction JSON API and thereby enables
access to our models not only from Python code
but also from other programming and development
environments.

In addition to the Python package, we also
provide a web interface at https://whitespace-
correction.cs.uni-freiburg.de that allows users to
correct whitespaces in arbitrary text; see Figure 1.
In particular, the web app allows to evaluate the
output against an error-free ground truth and pro-
vides quick access to all of the used benchmarks.
Therefore, the easiest way to reproduce the results
of our models on all benchmarks as presented in
this paper is through the web interface.

For more information visit our GitHub reposito-
ries at https://github.com/ad-freiburg/whitespace-
correction and https://github.com/ad-freiburg/text-
correction-benchmarks.

6 Conclusion

We have shown that carefully trained encoder-only
Transformers perform whitespace correction with

12At https://pypi.org/project/whitespace-correction
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Model Batch
size

Runtime
seconds

Throughput
sequences / sec

Throughput
kB / sec

GPU memory
MiB

GPU memory
MiB / sequence

Wordsegment 1 246.1 14.22 1.6 - -
ByT5 1 31.9 109.6 12.7 974 ~51
BID+ 1 1,725 2.0 0.2 - -

EDmedium 1 1,402 2.5 0.3 144 ~36
EDlarge 1 2,432 1.4 0.2 234 ~36
EOmedium 1 13.8 253.9 29.4 118 ~28
EOlarge 1 22.5 155.4 18.0 184 ~28

ByT5 128 4.2 833.6 96.4 7,402 ~51
EDlarge 128 151.8 23.1 2.7 4,832 ~36
EOlarge 128 1.9 1,842 213.0 3,704 ~28

Table 4: Inference runtimes on our Runtime benchmark (see Section 4.1) on a NVIDIA A100 GPU and an Intel
Xeon Platinum 8358 CPU with mixed precision enabled. Wordsegment and BID+ only support a batch size of 1.
Results for more batch sizes for ByT5, ED, and EO can be found in Appendix B.

the same high quality as the best previous work, but
over 900 times faster. A classical encoder-decoder
Transformer can achieve the same quality, but with
little to no gains in runtime speed. Our software is
open source and accessible as a Python package as
well as via a dedicated website.

A logical next step in this line of work is to
combine whitespace correction with spelling cor-
rection. Recent large language models like GPT-3
(Brown et al., 2020) can solve both tasks at once
with high quality, but they are slow and expensive
to run due to their size and autoregressive decoder
architecture. By separating the tasks, as advocated
by Bast et al. (2021), each can be solved efficiently
with specialized models, like our EO models for
whitespace correction. It remains an interesting
open question whether a single model can achieve
both high quality and reasonably cheap inference.

Due to working directly with bytes, our EO mod-
els could be trained and applied across multiple
languages. However, because datasets and bench-
marks for whitespace correction in non-English
languages are yet to be created, we leave the devel-
opment of multilingual models for future work.
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A Training setup

We train all our medium and large sized models for three epochs over the full training data with a maximum
sequence length of 512 and up to 65,536 tokens per batch. This amounts to about 1.2M training steps. We
warmup the learning rate linearly to 10−4 over the first percent of training steps and decay it afterwards
towards zero using a cosine schedule. We use AdamW (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.999, a weight decay of 0.01, and clip gradients to a norm of 1. We also use a dropout rate of 0.1
throughout our models. Finally, we keep the model checkpoint corresponding to the lowest validation loss
as our final model. Training takes about 4-5 days for all of our models on a single NVIDIA V100/A100
GPU.

B Batched runtimes

Model Batch
size

Runtime
seconds

Throughput
sequences / sec

Throughput
kB / sec

GPU memory
MiB

GPU memory
MiB / sequence

ByT5
16

128
5.0
4.2

696.2
833.6

80.5
96.4

1,732
7,402

~51

EDmedium
16

128
174.4
106.9

20.1
32.7

2.3
3.8

686
4,744

~36

EDlarge
16

128
264.03
151.8

13.2
23.1

1.5
2.7

774
4,832

~36

EOmedium
16

128
2.2
1.6

1,596
2,143

184.5
247.7

550
3,618

~28

EOlarge
16

128
2.7
1.9

1,277
1,842

147.7
213.0

620
3,704

~28

The table above shows runtimes using batched inference on our Runtime benchmark (see Section 4.1) on
a NVIDIA A100 GPU and an Intel Xeon Platinum 8358 CPU with mixed precision enabled. For each
model we report both batch size 16 and 128. We only show the models from Table 4 that support batched
inference in their implementation. The EO models reach a throughput of well over 200 kB/s with a batch
size of 128 while requiring less than 4GB of GPU memory. We consider them to be fast and memory
efficient enough to be used in practical applications, even on less powerful end-user devices like laptops.
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C Sample predictions and failure cases

We present some predictions and failure cases of our EOlarge model on selected benchmark sequences in
the following. In accordance with our website at https://whitespace-correction.cs.uni-freiburg.de we mark
correct changes (true positives) in the input text with green, incorrect changes (false positives) with red,
and missing changes (false negatives) orange. See our website if you want to evaluate and visualize our
models’ predictions on your own texts. Marked whitespaces are shown as # for visualization purposes.

Input Prediction Comment

UnlikeinCanada,theAmericanStatesareresp
onsiblfortheorganisationoffederalelectio
nsintheUnitedStates.

Unlike#in#Canada,#the#American#States#
are#responsible#for#the#organisation#of#
federal#elections#in#the#United#States.

For sentences that contain no spelling
errors and no exotic words, our
model is almost always able to
perfectly correct the sequence, even
if it contains no whitespaces at all.

The Exit Players have trained with men-
bers of Improvised Shakespeare, Paralel-
logramophonograph, andi Baby Wants
Candy, os well as instructors from the
Groundlings, the PIT, iO, and Coldtowne
Theater.

The Exit Players have trained with men-
bers of Improvised Shakespeare, Paralel-
logramo#phonograph, andi Baby Wants
Candy, os well as instructors from the
Groundlings, the PIT, iO, and Coldtowne
Theater.

Complex composite words or proper
names are sometimes split or merged
by our model. To correctly iden-
tify them one requires either domain
knowledge or very good language un-
derstanding.

He has also played league chess in the Chess
Bundesliga, for Porz an Werder Bremen.

He has also played league chess in the Chess
Bundesliga, for Porzan Werder Bremen.

Similar to the sample above. Our
model predicts that Porzan Werder
Bremen is what the chess club is
called, but actually this should have
been Porz and Werder Bremen, where
Porz is a German city near Cologne.

Brian Catling (born 1948 in London) is an
English sculptor, poet, novelist, film maker
and perofmrance artist.

Brian Catling (born 1948 in London) is an
English sculptor, poet, novelist, filmmaker
and perofmrance artist.

Here our model merges the words film
and maker, which according to the
Cambridge dictionary is also a valid
English word. A reminder that not all
benchmark ground truths are unam-
biguous.

X stems from Y X eases Y *Y results in X Y
is related to X *X is result of Y X is linked
to Y

X stems from Y X eases Y *Y results in X Y
is related to X *X is result of Y X is linked
to Y

Here we would expect our model to
either insert a whitespace before both
Y and X, or remove the whitespace
before * in both cases. Instead it
keeps the sequence unchanged.

Ju ly 1 ducat ion Programs Beginning after J
a n ~ a r y 1, 1976 Roger R o s e ~ b l a t t ,
Divi-sion Director -202-382-5891 Procjrhm
grants for c r i t i c a l re-examination of
t h e content, o r g a h i z a t i o n , and
method of presenta t ion of a group of related
courses or an ordered program of study in
the humanities. The central topic can be a
region, culture, era, etc.; o r a program can
be defined by a cur r -i cu la r level. L i m i t ,
$ 1 8 0 , 0 0 0 i n three years.

July 1 ducation Programs Beginning
after Ja#n#~#a#ry 1, 1976 Roger
Rose#~#b#l#a#t#t, Divi-sion Director -
202-382-5891 Procjrhm grants for critical
re-examination of the content, orgahization,
and method of presentation of a group of
related courses or an ordered program of
study in the humanities. The central topic
can be a region, culture, era, etc.; or a
program can be defined by a curr-icular level.
Limit, $180,000 in three years.

Exotic characters within words which
are not often seen during training can
cause or model to not be able to cor-
rectly merge the full word. Here the
model missed to correctly predict the
words Jan~ary and Rose~blatt.
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D Attention visualization

We look at the self-attention maps produced during the forward pass of our EO models. In earlier layers
we mostly find local or character-specific attention patterns, while in the middle and later layers our
models ultimately seem to learn to identify word boundaries.
All of the following self-attention maps are normalized row-wise, meaning each row displays the attention
distribution for the input character on its left over all input characters, which we call context in the figures.

(a) Attention head in layer 2/12 looking at the following non-
whitespace character.
Input text is Whe re tosp li t?.

(b) Attention head in layer 2/12 looking at the previous non-
whitespace character.
Input text is Whe re tosp li t?.

(c) Attention head in layer 7/12 identifying the individual
words in the input text (indicated by the vertical bars).
Input text is Wheretosplit?.

(d) Attention head in layer 12/12 marking where whitespaces
should be inserted into the input text.
Input text is Wheretosplit?.

Exemplary attention maps of selected heads produced in early, middle, and late layers while running our EOlarge
model. Input texts are deliberately chosen make the attention patterns as clear as possible.
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Abstract

ESPnet-ST-v2 is a revamp of the open-source
ESPnet-ST toolkit necessitated by the broad-
ening interests of the spoken language trans-
lation community. ESPnet-ST-v2 supports 1)
offline speech-to-text translation (ST), 2) simul-
taneous speech-to-text translation (SST), and
3) offline speech-to-speech translation (S2ST)
– each task is supported with a wide variety
of approaches, differentiating ESPnet-ST-v2
from other open source spoken language trans-
lation toolkits. This toolkit offers state-of-
the-art architectures such as transducers, hy-
brid CTC/attention, multi-decoders with search-
able intermediates, time-synchronous block-
wise CTC/attention, Translatotron models, and
direct discrete unit models. In this paper, we
describe the overall design, example models for
each task, and performance benchmarking be-
hind ESPnet-ST-v2, which is publicly available
at https://github.com/espnet/espnet.1

1 Introduction

The objective of this project is to contribute to
the diversity of the open-source spoken language
translation ecosystem. Toward this, we launched
this ESPnet-ST-v2 update in collaboration with re-
searchers working on Fairseq (Ott et al., 2019) and
TorchAudio (Yang et al., 2021b). This project fo-
cuses on: offline speech-to-text (ST), simultaneous
speech-to-text (SST), and offline speech-to-speech
(S2ST). These three spoken language translation
tasks have drawn significant interest, as evidenced
by rising IWSLT2 shared task participation.

The ST task can be considered a base form of
spoken language translation. Early approaches to
ST stemmed from coupling statistical automatic
speech recognition (ASR) (Huang et al., 2014) and
text-to-text translation (MT) (Al-Onaizan et al.,
1999), and this type of cascaded approach is still

1Please see our documentation for ST/SST and S2ST to
get started. Example models and tutorials are provided.

2International Workshop on Spoken Language Translation

common in the neural network era (Bentivogli et al.,
2021; Zhang et al., 2022). End-to-end differen-
tiable (E2E) approaches have recently emerged as
an alternative offering greater simplicity and su-
perior performance in some cases (Inaguma et al.,
2021b); however, E2E approaches still benefit from
techniques originating from ASR and MT (Gaido
et al., 2021; Inaguma et al., 2021a).

SST modifies ST by imposing an additional
streaming requirement, where systems are expected
to produce textual outputs while incrementally in-
gesting speech input. Both the aforementioned cas-
caded and end-to-end approaches to ST have been
adapted for SST (Ma et al., 2020b; Iranzo-Sánchez
et al., 2021; Chen et al., 2021), although the more
direct nature of the latter may be advantageous for
latency-sensitive applications. On the other hand,
S2ST extends ST by producing target speech rather
than target text. Again, cascaded approaches of
ST followed by text-to-speech (TTS) came first
(Waibel et al., 1991; Black et al., 2002) and E2E
approaches followed (Jia et al., 2019; Lee et al.,
2022a; Jia et al., 2022a; Inaguma et al., 2022), with
the latter offering smaller footprints and greater
potential to retain source speech characteristics.

Given the recent swell in E2E ST, SST, and S2ST
research, we have revamped ESPnet-ST (Inaguma
et al., 2020) which previously only supported E2E
ST. In particular, this work:

• Implements ST, SST, and S2ST using common
Pytorch-based modules, including encoders, de-
coders, loss functions, search algorithms, and
self-supervised representations.

• Builds a variety of example E2E models:
attentional encoder-decoders, CTC/attention,
multi-decoders with searchable intermediates,
and transducers for ST. Blockwise attentional
encoder-decoders, time-synchronous blockwise
CTC/attention and blockwise transducers for
SST. Spectral models (i.e. Translatotron) and
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discrete unit based models for S2ST.

• Benchmarks the ST, SST, and S2ST performance
of ESPnet-ST-v2 against top IWSLT shared task
systems and other prior works.

With this major update, ESPnet-ST-v2 keeps pace
with the interests of the community and offers a va-
riety of unique features, making it a valuable com-
plement to Fairseq (Wang et al., 2020), NeurST
(Zhao et al., 2021), and other spoken language
translation toolkits.

2 Related Works

ESPnet-ST-v2 follows a long line of open-source
speech processing toolkits which can support spo-
ken language translation (Zenkel et al., 2018; Shen
et al., 2019; Kuchaiev et al., 2019; Hayashi et al.,
2020; Wang et al., 2020; Zhao et al., 2021).

In Table 1 we compare ESPnet-ST-v2 to Fairseq
(Wang et al., 2020) and NeurST (Zhao et al., 2021),
two toolkits which also cover multiple types of spo-
ken language translation. Fairseq and NeurST offer
cascaded and E2E approaches to ST and SST (some
of which are not offered by ESPnet-ST-v2). Mean-
while, ESPnet-ST-v2 focuses on E2E approaches
and offers multiple unique core architectures not
covered by the other toolkits. For S2ST, Fairseq
and ESPnet-ST-v2 both offer a range of approaches.
All told, ESPnet-ST-v2 offers the greatest variety
across ST, SST, and S2ST – however, we view these
toolkits as complementary. The following section
elaborates on the unique features of ESPnet-ST-v2.

3 ESPnet-ST-v2

In this section, we first describe the overall design
and then introduce a few key features.

3.1 Modular Design
Figure 1 illustrates the software architecture of
ESPnet-ST-v2. This modular design is an improve-
ment over the ESPnet-ST-v1 where monolithic
model and task definitions made it more difficult
to extend and modify the toolkit. We also designed
ESPnet-ST-v2 such that modules developed for ad-
jacent tasks (e.g. ASR, TTS, MT) can also be
readily used for spoken language translation.

In ESPnet-ST-v2 major neural network mod-
ules, such as frontends, encoders, decoders, search,
and loss functions, inherit from common abstract
classes making them easy to interchange. These
modules, which are detailed further in the next

FEATURES ESPNET-S
T-V

2

ESPNET-S
T-V

1

FAIR
SEQ-S

2T

NEURST

Offline ST ✓ ✓ ✓ ✓

End-to-End Architecture(s) ✓ ✓ ✓ ✓

Attentional Enc-Dec ✓ ✓ ✓ ✓

CTC/Attention ✓ - - -
Transducer ✓ - - -
Hierarchical Encoders ✓ - - -
Multi-Decoder ✓ - - -

Cascaded Architectures ✓ ✓ ✓ ✓

Speech SSL Representations ✓1 - ✓ -
Speech & Text Pre-training ✓ ✓ ✓ ✓

Joint Speech/Text Pre-training - - ✓ -

Simultaneous ST ✓ - ✓ ✓3

End-to-End Architecture(s) ✓ - ✓ -
Contextual Block Encoders ✓ - - -
Blockwise Attn Enc-Dec ✓ - - -
Blockwise CTC/Attention ✓ - - -
Blockwise Transducer ✓ - - -
Wait-K Attn Enc-Dec - - ✓ -
Monotonic Attn Enc-Dec - - ✓ -

Cascaded Architectures - - ✓ ✓3

Offline S2ST ✓ - ✓ -
End-to-End Architecture(s) ✓ - ✓ -

Spec Enc-Dec (Translatotron) ✓ - ✓ -
Spec Multi-Dec (Translatotron 2) ✓ - ✓ -
Discrete Enc-Dec (Speech-to-Unit) ✓ - ✓ -
Discrete Multi-Decoder (UnitY) ✓ - ✓ -

Speech SSL Representations ✓1 - ✓ -
Neural Vocoder Support ✓2 ✓ ✓ -

Table 1: Key features of ESPnet-ST-v2 compared to
ESPnet-ST-v1 (Inaguma et al., 2020), Fairseq (Wang
et al., 2020), and NeurST (Zhao et al., 2021). Com-
parison intends to highlight unique features of ESPnet-
ST-v2 and not to comprehensively review all toolkits.
1Supports S3PRL (Yang et al., 2021a). 2Supports both
spectral and discrete. 3Only supports text-to-text.

subsection, are used as building blocks in wrapper
classes which are used to construct model architec-
tures. Then the fully constructed models are fed to
task wrappers which prepare data loaders, initialize
models, and handle training/validation. For infer-
ence, pythonic APIs invoke search algorithms over
the trained models and direct outputs to scoring
scripts. For instance, the third-party SimulEval tool
for evaluating SST latency (Ma et al., 2020a) is in-
tegrated via this API layer. We are also integrating
with TorchAudio (Yang et al., 2021b) in the same
manner. Finally, recipe scripts define experimental
pipelines from data preparation to evaluation.

3.2 Key Features

Each of the following modeling components fea-
ture a variety of interchangeable approaches.
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Figure 1: Software architecture of ESPnet-ST-v2.

Frontends & Targets Spectral features (e.g.
FBANK) and features extracted from speech self-
supervised learning (SSL) representations are sup-
ported, as well as fusions over multiple features
(Berrebbi et al., 2022). For speech SSL features,
ESPnet-ST-v2 integrates with the S3PRL toolkit
(Yang et al., 2021a). These speech SSL representa-
tions are also used to generate discrete targets for
S2ST (Lee et al., 2022a).

Encoder Architectures Conformer (Gulati et al.,
2020; Guo et al., 2021), Branchformer (Peng et al.,
2022), EBranchformer (Kim et al., 2023), and
Transformer (Vaswani et al., 2017; Karita et al.,
2019) encoder architectures are supported for ST
and S2ST. For SST, a blockwise scheme is adopted
following (Tsunoo et al., 2021; Deng et al., 2022) to
form contextual block Conformer and Transformer
encoders. Intermediate CTC (Lee and Watanabe,
2021) and Hierachical CTC (Sanabria and Metze,
2018) encoding are also supported; these tech-
niques have been shown to stabilize deep encoder
optimization (Lee and Watanabe, 2021) and im-
prove representations for sequence tasks involving
source-to-target re-ordering (Yan et al., 2023).

Decoder Architectures Attentional Transformer
and recurrent neural network decoders are sup-
ported (Karita et al., 2019). Multi-decoder schemes
which allow for E2E differentiable decoder cas-
cades via searchable hidden intermediates (Dalmia
et al., 2021), are also supported; this technique

has been shown to improve sequence modeling for
tasks which naturally decompose into sub-tasks. Fi-
nally, large language model decoders (e.g. mBART
(Liu et al., 2020b)) can be adopted through an inte-
gration with HuggingFace (Wolf et al., 2020).

Loss Functions Cross-entropy (for attentional
decoders), CTC, and Transducer are supported
for ST and SST. Multi-objective training with
CTC/attention and CTC/transducer as well as multi-
tasked training (e.g. ASR/MT/ST) is also sup-
ported. For S2ST, L1 and mean square error losses
are also supported for spectral models.

Search Algorithms For offline attentional de-
coder models, label-synchronous beam search is
supported with optional CTC joint decoding for
multi-objective models (Watanabe et al., 2017).
For offline Transducer models, the original Graves
beam search (Graves, 2012) as well as time-
synchronous and alignment-synchronous beam
search (Saon et al., 2020) beam searches are sup-
ported. For SST, both incremental decoding and
non-incremental (allowing re-translation) decoding
are supported (Liu et al., 2020a). Blockwise at-
tentional decoder models use a label-synchronous
beam search or time-synchronous beam search if
a CTC branch is available. Blockwise transducer
models use time-synchronous beam search.

Synthesis & Post-processing For ST, Minimum
Bayes Risk (MBR) ensembling (Fernandes et al.,
2022) is supported for leveraging quality-metrics
(e.g. BLEU) to compare and rank n-best out-
puts from one or more models. For S2ST, neu-
ral vocoders are supported for both spectral and
discrete inputs (Hayashi et al., 2020, 2021).

4 Example Models

In this section, we introduce example models which
are pre-built in ESPnet-ST-v2 using the neural net-
work components described in the previous sec-
tion. These examples include state-of-the-art core
architectures, as evidenced by prior studies and our
performance benchmarking (presented in §5).

4.1 ST Models
CTC/Attention (CA) Following Yan et al.
(2023), we use Conformer encoders with hierarchi-
cal CTC encoding and Transformer decoders. The
hierachical CTC encoding, which aligns the first
N layers of the encoder towards ASR targets and
the last M layers towards ST targets, regularizes
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Figure 2: Multi-Decoder CTC/Attention for ST.

Figure 3: Time-Sync Blockwise CTC/Attn for SST.

the final encoder representations to be monotonic
with respect to the target. CTC/attention models
are jointly decoded using either label-synchronous
(wherein the attention branch is primary) or time-
synchronous (wherein the CTC branch is primary)
beam search. For offline tasks, label-synchrony has
shown greater performance (Yan et al., 2023).

Multi-Decoder CTC/Attention (MCA) As
shown in Figure 2, the Multi-decoder decomposes
ST into two sub-tasks, logically corresponding to
ASR and MT encoder-decoder models, while main-
taining E2E differentiability (Dalmia et al., 2021).
This Multi-decoder scheme is also combined with
the CTC/attention scheme described in the blurb
above, following Yan et al. (2022). We use Con-
former encoders with hierarchical CTC for encod-
ing speech and Transformer encoders for encoding
intermediate ASR text. We use Transformer de-
coders for both ASR and ST. During inference, the
ASR stage is decoded first and then the final MT/ST
stage is decoded; both stages use label-synchronous
joint CTC/attention beam search.

4.2 SST Models

Time-Synchronous Blockwise CTC/Attention
(TBCA) As shown in Figure 3, we adapt the
aforementioned CTC/attention model for ST (§4.1)
to SST by replacing the Conformer encoder with
a contextual block Conformer (Tsunoo et al.,

Figure 4: Discrete Multi-Decoder (UnitY) for S2ST.

2021). During inference, we initially followed
Deng et al. (2022) and used the label-synchronous
CTC/attention beam search originally proposed
for ASR by Tsunoo et al. (2021). However, we
found that label-synchrony results in overly conser-
vative boundary block detection for SST. Therefore
we opt instead for the time-synchronous variant
which relies on CTC’s more robust end-detection
(Yan et al., 2023) to control boundary block de-
tection; this change reduces latency without sacri-
ficing quality. To perform incremental decoding
without re-translation (as expected by SimulEval),
hypotheses are pruned after processing all of the
time steps for each encoder block.

Blockwise Transducer (BT) As demonstrated
by Xue et al. (2022), Transducers can be effec-
tively applied to SST despite the monotonic na-
ture of their underlying alignment model. We
build Transducers for SST using contextual block
Conformer encoders and unidirectional LSTM de-
coders. We found that the aforementioned hier-
archical CTC encoding (§4.1) improves training
stability and convergence rate. During inference,
we found that the time-synchronous algorithm de-
scribed by Saon et al. (2020) outperformed the
original Graves decoding (Graves, 2012) and the
later proposed alignment-synchronous algorithms
(Saon et al., 2020). We also found that length nor-
malization is required to avoid overly short outputs.
Incremental decoding is applied in the same man-
ner as for TBCA.

4.3 S2ST Models

Spectral Multi-Decoder (Translatotron 2) Sim-
ilar to the MCA model for ST (§4.1), the spec-
tral Multi-decoder (Jia et al., 2022a) decomposes
S2ST into ST and TTS sub-tasks. The ST sub-
task is modeled with an encoder-decoder network
while the TTS sub-task is modeled with an auto-
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TOOLKIT MODEL TYPE DE ES FR avg

OFFLINE SPEECH TRANSLATION (ST) BLEU ↑
NeurST (Zhao et al., 2021) Attentional Enc-Dec (AED) 22.8 27.4 33.3 27.8
Fairseq (Wang et al., 2020) Attentional Enc-Dec (AED) 22.7 27.2 32.9 27.6
ESPnet-ST-v1 (Inaguma et al., 2020) Attentional Enc-Dec (AED) 22.9 28.0 32.8 27.9
ESPnet-ST-v2 (this work) Multi-Decoder CTC/Attn (MCA) 27.9 32.1 38.5 32.8

SIMULTANEOUS SPEECH TRANSLATION (SST) BLEU ↑ / AL ↓
Fairseq (Wang et al., 2020) Wait-K Attentional Enc-Dec (WAED) 18.6 / 6.8 22.9 / 6.9 28.5 / 6.7 23.3 / 6.8
ESPnet-ST-v2 (this work) Time-Sync Blockwise CTC/Attn (TBCA) 23.5 / 2.3 29.2 / 2.4 32.7 / 2.3 28.5 / 2.3

OFFLINE SPEECH-TO-SPEECH TRANSLATION (S2ST) ASR-BLEU ↑
Fairseq (Inaguma et al., 2022) Discrete Multi-Decoder (UnitY) 25.5 32.3 30.9 29.6
ESPnet-ST-v2 (this work) Discrete Multi-Decoder (UnitY) 23.7 32.0 33.1 29.6

Table 2: Overview of ESPnet-ST-v2’s ST, SST, and S2ST performances compared to other open-source toolkits.
Results are presented on MuST-C-v1 (English-to-X) for ST/SST and on CVSS-C (X-to-English) for S2ST.

regressive synthesizer. The synthesizer attends over
both the ST-encoder and ST-decoder hidden states.
We use Transformers for the ST encoder-decoder
and a Tacotron-style (Wang et al., 2017) decoder
as the synthesizer. During inference, we first use
beam search for the ST sub-task and then auto-
regressively generate Mel-spectrograms. The final
waveform speech is generated with a HiFi-GAN
vocoder (Kong et al., 2020).

Discrete Multi-Decoder (UnitY) The UnitY
model (Inaguma et al., 2022) is similar to Trans-
latotron 2, but critically predicts discrete units of
speech SSL representations rather than spectral
information in the final stage. In other words,
UnitY is Multi-decoder consisting of a ST sub-
task followed by a text-to-unit (T2U) sub-task (see
Figure 4). We use Transformer-based encoder-
decoders for both sub-tasks. During inference,
the ST stage is first decoded and then followed by
the T2U stage. Both stages use label synchronous
beam search. The final speech is generated with a
unit HiFi-GAN vocoder with Fastspeech-like du-
ration prediction (Polyak et al., 2021; Lee et al.,
2022a), which is separately trained in the Parallel-
WaveGAN toolkit (Hayashi et al., 2020, 2021).

5 Performance Benchmarking

In this section, we 1) compare open-source toolkits
2) compare our different example models and 3)
compare our models with top IWSLT shared task
systems and state-of-the-art prior works.

5.1 Experimental Setup

Please refer to §A.1 for reproducibility details. The
following is only a summary of our setup.

MODEL HIERENC BLEU↑
Attn Enc-Dec (AED) - 25.7
Multi-Decoder Attn Enc-Dec (MAED) - 27.6
CTC/Attention (CA) ✓ 28.6
Multi-Decoder CTC/Attn (MCA) ✓ 28.8
Transducer (T) ✓ 27.6

Table 3: Example ST models – results on MuST-C-v2
En-De tst-COMMON. HierEnc=Hierarchical Encoder.

Data We use MuST-C-v1 or MuST-C-v2
(Di Gangi et al., 2019) for ST/SST and CVSS-C
for S2ST (Jia et al., 2022b). For IWSLT compar-
isons, we combine MuST-C-v1, MuST-C-v2, and
ST-TED (Niehues et al., 2018) for ST/SST.

Models Unless otherwise indicated, we use a
"base" setting for our models. Our base models
have 40-80M trainable parameters across all tasks
and are trained on a ∼400h of single language pair
data from a single corpus. For ST/SST, we also use
a "large" setting for benchmarking against IWSLT
submissions. Our large models have 150-200M
trainable parameters and are trained on ∼1000h of
single language pair data from multiple corpora.

Scoring For ST/SST, we evaluate detokenized
case-sensitive BLEU (Post, 2018). For SST, we
additionally evaluate Average Lagging (AL) (Ma
et al., 2020a). For S2ST, we evaluate ASR-BLEU
by transcribing the generated speech and then eval-
uating the BLEU of this transcription.

5.2 Results

Toolkit Comparison Table 2 summarizes
ESPnet-ST-v2 performance, showing one best
example model (§4) for each task. ESPnet-ST-v1,
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MODEL KD BT ENS BLEU↑
IWSLT’21 (Top 3 of 6)
1 Volctrans E2E† ✓ - ✓ 24.3
2 OPPO Cascade† ✓ ✓ ✓ 22.6
3 Volctrans Cascade† ✓ ✓ ✓ 22.2

ESPnet-ST-v2
A Base CA - - - 23.2
B Base MCA - - - 23.6
C Large CA - - - 24.3
D Large MCA - - - 25.1

E MBR (A+B+C+D) - - ✓ 25.4

Table 4: Base and large CTC/attention (CA) and Multi-
decoder CTC/attention (MCA) models compared to top
IWSLT 2021 systems for the given segmentation tst2020
En-De test set. KD=Knowledge Distillation, BT=Back-
Translation, Ens=Ensemble. †Uses WMT MT data.

MODEL BSZ BLEU↑/AL↓
Blockwise Attn Enc-Dec (BAED) 40 22.8 / 3.23
Label-Sync Blockwise CTC/Attn (LBCA) 40 24.4 / 3.23
Time-Sync Blockwise CTC/Attn (TBCA) 40 24.6 / 2.34
Blockwise Transducer (BT) 40 22.9 / 2.37

Blockwise Attn Enc-Dec (BAED) 20 21.0 / 2.77
Label-Sync Blockwise CTC/Attn (LBCA) 20 22.9 / 2.77
Time-Sync Blockwise CTC/Attn (TBCA) 20 22.8 / 1.63
Blockwise Transducer (BT) 20 20.9 / 1.71

Table 5: Example SST models – results on MuST-C-v2
En-De tst-COMMON. BSz=Block Size.

Fairseq, and NeurST models are also referenced
for comparison. On ST/SST, ESPnet-ST-v2 is 4-7
BLEU higher with 4.5 sec lower AL.3 On S2ST
ESPnet-ST-v2 is on par with Fairseq.

ST Table 3 shows a variety of approaches,
of which the CTC/attention and Multi-decoder
CTC/attention (MCA) models show the strongest
performances. In Table 4, we scale these two ap-
proaches by training on larger corpora and increas-
ing model capacity – our large MCA model outper-
forms the best IWSLT 2021 offline track submission
on the 2020 test set with given segmentation.

SST Table 5 shows a variety of approaches, of
which the blockwise Transducer (BT) and time-
synchronous blockwise CTC/attention (TBCA)
models have the lowest AL. We choose to scale
the TBCA to compare with IWSLT submissions
due to its superior translation quality, but note that
the BT has lower computational overhead due pri-

3This comparison refers to the originally published results
from the toolkit description papers. Note that subsequent
works using these toolkits have improved the performance.

MODEL SSL LLM KD BLEU↑ / AL↓
IWSLT’22 (Top 3 of 5)
1 CUNI-KIT E2E ✓ ✓ - 31.5 / 1.93
2 UPV Cascade† - - - 27.8 / 1.93
3 FBK E2E† - - ✓ 25.0 / 1.99

ESPnet-ST-v2
A Base TBCA - - - 24.7 / 1.93
B Large TBCA - - - 26.6 / 1.93

Table 6: Base and large time-sync CTC/attention
(TBCA) models compared to top IWSLT 2022 sys-
tems for the medium latency regime. Evaluated on En-
De tst-COMMON-v2. SSL=Speech Self-Supervised
Learning, LLM=Large Pre-trained Language Model,
KD=Knowledge Distillation. †Uses WMT MT data.

MODEL TYPE ASR-BLEU↑
Prior Works
1 Translatotron (Jia et al., 2019) Spectral 14.4
2 Translatotron2 (Jia et al., 2022a) Spectral 30.3
3 Translatotron2+ (Inaguma et al., 2022) Spectral 32.8
4 Speech-to-Unit (Lee et al., 2022a) Discrete 30.8
5 UnitY (Inaguma et al., 2022) Discrete 32.3

ESPnet-ST-v2
A Attn Enc-Dec (Translatotron) Spectral 16.6
B Multi-Decoder (Translatotron2) Spectral 24.3
C Attn Enc-Dec (Speech-to-Unit) Discrete 31.3
D Multi-Decoder (UnitY) Discrete 32.0

Table 7: Example S2ST models – results on CVSS-C
Es-En test set. Prior works shown for comparison.

FRONTEND DISCRETE UNIT ASR-BLEU↑
FBANK HuBERT 14.8
wav2vec2† HuBERT 21.2
HuBERT† HuBERT 21.4
mHuBERT HuBERT 21.5
WavLM† HuBERT 22.8

FBANK WavLM 15.0
wav2vec2† WavLM 21.6
HuBERT† WavLM 22.1
mHuBERT WavLM 22.0
WavLM† WavLM 23.1

Table 8: Ablation on different types of SSL for the
frontend and discrete unit portions of S2ST models.
†Trained with large settings, others with base settings.

marily to the lack of source-target computation;
AL is non-computation aware. In Table 6, we fit
the TBCA to the 2 second AL latency regime by
selecting a blocksize of 32 and scale it with more
data and model capacity – our large TBCA model
would have ranked 3rd out of 6 amongst IWSLT
2022 submissions without using any SSL / LLM
representations or knowledge distillation.
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S2ST Table 7 shows a variety of approaches com-
pared to prior works with comparable architectures
– our S2ST models are generally on par with prior
works which are considered state-of-the-art. In
fact, all of our models slightly outperform their
respective prior works except for Translatotron 2.
Further, in Table 8 we ablate a range of SSL types
for both the frontend and discrete units demonstrat-
ing the flexibility of our toolkit.

6 Conclusion

We presented ESPnet-ST-v2 which now supports
offline speech translation, simultaneous speech
translation, and offline speech-to-speech transla-
tion. ESPnet-ST-v2 will continue to grow to sup-
port the community’s interests. Future updates
may include more new tasks, such as simultane-
ous speech-to-speech translation, and cross-toolkit
integrations via TorchAudio.

Limitations

The first set of limitations to be aware of are data-
related. Although prior works have shown the fea-
sibility of building E2E systems without source lan-
guage transcriptions (Lee et al., 2022b; Chen et al.,
2022; Zhang et al., 2021), in this work we only
investigate cases where triplet data (source speech,
source transcript, target translation) is available for
ST/SST and where quadruplet data (source speech,
source transcript, target translation, target speech)
is available for S2ST.

The second set of limitations to be aware of
are evaluation-related. For SST, we follow prior
works (Ma et al., 2020a; Wang et al., 2020; Anas-
tasopoulos et al., 2022) and evaluate AL which is
a measure of how much the system outputs lags
behind the amount of input read. Notably, this
does not consider the actual computation time and
only the input-to-output ratio. For S2ST, we follow
prior works (Jia et al., 2022a; Inaguma et al., 2022)
and evaluate ASR-BLEU. This evaluation is depen-
dent on an ASR system, which is not standardized
across prior works. And further, our evaluation of
S2ST outputs does not include naturalness. Finally,
in this work we have not conducted any human
evaluation of translation outputs.

Acknowledgements

Brian Yan and Shinji Watanabe are supported
by the Human Language Technology Center of
Excellence. This work also used the Extreme

Science and Engineering Discovery Environment
(XSEDE) (Towns et al., 2014), which is supported
by National Science Foundation grant number ACI-
1548562; specifically, the Bridges system (Nys-
trom et al., 2015), as part of project cis210027p,
which is supported by NSF award number ACI-
1445606, at the Pittsburgh Supercomputing Center.
This work also used GPUs donated by the NVIDIA
Corporation.

References
Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin

Knight, John Lafferty, Dan Melamed, Franz-Josef
Och, David Purdy, Noah A Smith, and David
Yarowsky. 1999. Statistical machine translation. In
Final Report, JHU Summer Workshop, volume 30.

Antonios Anastasopoulos, Loïc Barrault, Luisa Ben-
tivogli, Marcely Zanon Boito, Ondřej Bojar, Roldano
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A Appendix

A.1 Reproducibility
Table 9 shows the hyperparameters for the models
presented in §5. All of our data preparation scripts
are available in ESPnet: https://github.com/
espnet/espnet/tree/master/egs2.
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Model Task Encoder(s) Decoder(s) Frontend Pre-Train Init Multi-Obj Src BPE Tgt BPE # Params

AED (Table 3) ST 12 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec ASR 4k 4k 60M
(ST) 6 lyr, 4 head

MAED (Table 3) ST (ASR) 12 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec ASR 4k 4k 60M
(MT) 2 lyr, 4 head, 256 adim (MT) 6 lyr, 4 head

CA (Table 3) ST 18 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec ASR 4k 4k 70M
(ST) 6 lyr, 4 head

MCA (Table 3) ST (ASR) 18 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec/CTC ASR 4k 4k 70M
(MT) 4 lyr, 4 head, 256 adim (MT) 6 lyr, 4 head

T (Table 3) ST 18 lyr, 4 head, 256 adim 1 lyr, 512 dim, 640 joint FBANK ASR Enc/Dec/CTC ASR 4k 4k 70M
(ASR) 6 lyr, 4 head

Large CA (Table 4) ST 18 lyr, 8 head, 512 adim (ASR) 6 lyr, 4 head HuBERT ASR Enc/Dec/CTC ASR 8k 16k 210M
(ST) 6 lyr, 4 head

Large MCA (Table 4) ST (ASR) 18 lyr, 8 head, 512 adim (ASR) 6 lyr, 8 head HuBERT ASR Enc/Dec/CTC ASR 8k 8k 210M
(MT) 4 lyr, 8 head, 512 adim (MT) 6 lyr, 8 head

BAED (Table 5) SST 18 lyr, 4 head, 256 adim 6 lyr, 4 head FBANK ASR Enc lyr 1-12 - 4k 4k 70M

LBCA (Table 5) SST 18 lyr, 4 head, 256 adim 6 lyr, 4 head FBANK ASR Enc lyr 1-12 - 4k 4k 70M

TBCA (Table 5) SST 18 lyr, 4 head, 256 adim 6 lyr, 4 head FBANK ASR Enc lyr 1-12 - 4k 4k 70M

BT (Table 5) SST 18 lyr, 4 head, 256 adim 1 lyr, 4 head, 640 joint FBANK ASR Enc lyr 1-12 - 4k 4k 40M

Large TBCA (Table 6) SST 18 lyr, 8 head, 512 adim 6 lyr, 8 head FBANK ASR Enc lyr 1-12 - 8k 8k 150M

Translatotron (Table 7) S2ST 12 lyr, 4 head, 256 adim 6 lyr, 1024 dim FBANK - ASR, ST 7k 500 80M

Translatotron2 (Table 7) S2ST 16 lyr, 4 head, 256 adim (ST) 6 lyr, 4 head FBANK - ASR, ST 7k 500 50M
(TTS) 2 lyr, 1024 dim

Speech-to-Unit (Table 7) S2ST 12 lyr, 4 head, 512 adim 6 lyr, 8 head FBANK - ASR, ST 7k 500 40M

UnitY (Table 7) S2ST (ST) 16 lyr, 4 head, 256 adim (ST) 4 lyr, 4 head FBANK - ASR, ST 7k 500 40M
(T2U) 2 lyr, 4 head, 256 adim (T2U) 2 lyr, 8 head

Table 9: ST, SST, and S2ST model hyperparameters. Parameter counts are rounded to the nearest 10 million.
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Abstract
CB2 is a multi-agent platform to study col-
laborative natural language interaction in a
grounded task-oriented scenario. It includes
a 3D game environment, a backend server
designed to serve trained models to human
agents, and various tools and processes to
enable scalable studies. We deploy CB2 at
https://cb2.ai as a system demonstration
with a learned instruction following model.

1 Introduction

Collaborative grounded natural language interac-
tions involve multiple agents, either human or ma-
chine, working together to complete tasks while
coordinating using natural language. A key ob-
stacle in studying such scenarios is building the
research interaction platform, a significant design
and engineering undertaking. This requires build-
ing and designing the interaction environment, the
task the agents collaborate on, an interface for both
machine learning models and human agents, and a
process to onboard human agents. Each aspect dra-
matically influences the interaction and language
elicited, and is critical to get right.

We introduce CB2, a platform for the study of
collaborative grounded natural language interac-
tion, and demonstrate its use through the deploy-
ment of a learned collaborative natural language
agent. CB2 largely instantiates the CEREALBAR

scenario (Suhr et al., 2019),1 but is implemented
from scratch to emphasize research accessibility.
CB2 is a customizable, scalable, and complete re-
search platform, including server and clients for
multi-agent human-machine interactions, tools for
real-time data management, and processes to on-
board crowdsourcing workers.

The CB2 scenario poses learning and reasoning
challenges, as well as opportunities. Comprehend-
ing and producing instructions in CB2 requires

1CB2 introduces several optional modifications to CERE-
ALBAR aimed at richer language and tighter collaboration.

addressing the symbol grounding problem (Harnad,
1990), which is studied extensively in the instruc-
tion following (e.g., Chen and Mooney, 2011; Artzi
and Zettlemoyer, 2013; Misra et al., 2017; Fried
et al., 2018) and generation (e.g., Mei et al., 2016;
Wang et al., 2021) literature. However, the collab-
orative scenario remains relatively understudied.
Collaboration is not simply an added complication,
but dramatically alters both interaction and learn-
ing through joint presence and action. It allows the
instructor to ad-hoc modify the tasks they delegate
based on the follower behavior, potentially recov-
ering from system failures. At the same time, this
adaptation creates constant distribution shift, a sig-
nificant generalization challenge. Learning is also
drastically transformed through collaboration. The
constant engagement of other agents (including
humans), the ability to modify delegation strate-
gies, and the shared task-based incentives bring
about within-interaction signals that can be used
for continual learning, reducing the dependency on
annotated data and enabling model adaptation.

We deploy a demonstration of CB2 with a
learned baseline instruction following agent (Sec-
tion 7). Players can connect to CB2 and collab-
orate with our agent or other human agents at
https://cb2.ai/.2 The CB2 platform is avail-
able at https://github.com/lil-lab/cb2. A
video demonstration of CB2 is available at https:
//youtu.be/tALpX_KKmIw.

2 Related Work

CB2 is a re-implementation and extension of CE-
REALBAR, a scalable platform to study natural lan-
guage instruction collaboration (Suhr et al., 2019).
CEREALBAR was used to study instruction fol-
lowing (Suhr et al., 2019; Suhr and Artzi, 2022),
instruction generation (Kojima et al., 2021), and
linguistic change (Effenberger et al., 2021).

2Our deployment has received IRB exemption. All
recorded data is anonymized.
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CB2 is related to instruction following environ-
ments, such as SAIL (MacMahon et al., 2006),
R2R (Anderson et al., 2018), RxR (Ku et al., 2020),
and ALFRED (Shridhar et al., 2020). In contrast,
CB2 is focused on embodied multi-agent collabo-
rations, including with human agents.

Symbol grounding (Harnad, 1990), a core chal-
lenge in CB2, was studied extensively in the single-
agent context of instruction following (e.g., Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Fried et al., 2018; Blukis et al., 2018) and gen-
eration (e.g., Daniele et al., 2016; Kojima et al.,
2021; Wang et al., 2021). The CB2 scenario em-
phasizes multi-agent collaboration, an aspect that
is significantly less studied with natural language
instruction. The Cards corpus (Djalali et al., 2012;
Potts, 2012) presents a related scenario, which has
been used for linguistic analysis. A related prob-
lem is studied by the emergent communication
literature (Lazaridou et al., 2017; Andreas et al.,
2017; Lazaridou and Baroni, 2020), but with less
focus on collaboration with human agents. Nat-
ural language collaboration between agents with
asymmetric capabilities has also been studied with
Minecraft-based scenarios (Narayan-Chen et al.,
2019; Jayannavar et al., 2020; Kiseleva et al., 2022).
CB2 differs from these in allowing both agents to
effect changes on the environment, enabling ad-hoc
modification and delegation of tasks.

3 Interaction Scenario

CB2 largely implements the interaction scenario
introduced by (Suhr et al., 2019) in the CEREAL-
BAR environment with several modifications. The
interaction takes place in a procedurally generated
spatial environment and includes two agents that
collaborate together to complete card collection
tasks and coordinate using natural language. Fig-
ure 1a shows an instance of the environment.

The environment is a procedurally generated 3D
map made of a grid of hexagons (Figure 1a). It
includes lakes, mountains (Figure 1c), paths, open
spaces, and landmarks. A new environment is gen-
erated for each game. CB2 includes improved visu-
als and generation compared to CEREALBAR. For
example, CB2 map generation includes semantic
biases: houses are generated to cluster together and
form towns (Figure 1b) and paths are generated
to connect between meaningful areas in the map,
such as towns and mountains. Landmark instances
vary visually to elicit richer language. For example,

houses are generated with different roof colors and
number of floors (Figure 1b). The environment also
includes randomly placed cards (Figure 1d). Each
card shows 1–3 copies of one of a few possible
shapes in one of a few possible colors.

The interaction involves two agents, a leader
(Figure 1f) and a follower (Figure 1g), that col-
laborate together to complete tasks, but differ in
their observations of the environments and abil-
ities. Both the leader and the follower move in
the environment, by moving between neighboring
hexagons or by turning in place to change orien-
tation. The agents select and deselect cards by
moving over them (Figure 1e).

The goal of the agents is to select valid sets of
cards. A valid set includes three cards, where each
color, shape, and count are unique (Figure 1i). The
agents select sets together. When the currently se-
lected cards form a valid set, they disappear, the
agents together receive one point, three new ran-
domly selected cards appear in random positions,
and the agents receive additional turns. The number
of turns added diminishes with each set comple-
tion. Asymmetries between the two agents make
collaboration critical for success.

The leader sees a complete overhead view of
the environment (Figure 1a), while the follower
only sees what is ahead from a first-person view
(Figure 1h). CB2 introduces two optional observ-
ability features not present in CEREALBAR. First,
the patterns on unselected cards may be hidden
from the follower, instead displaying a quesiton
mark on all cards. Second, CB2 allows to control
how far the follower sees ahead of them with a
fog that is present only in the follower view. The
observability gap means the leader is in charge of
planning how the agents operate. If the follower
acts independently of the leader plans, the interac-
tion will be suboptimal, because follower actions
are likely to conflict with leader actions and the
partial view of the environment does not allow for
optimal planning of goals and movement.

The agents move in turns, with a limited number
of steps per turn. Each movement (forward, left,
right, or backward) consumes a single step. Turns
are time limited to keep the interaction moving and
avoid long wait periods for the inactive agent. The
exact time budget is customizable, but we gener-
ally provide significantly more time for the leader
turns, so they can plan as needed. Turns alternate
between the follower and leader. The follower has
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(a) An overhead view of a complete environment with the leader user interface.

(b) A cluster of houses. (c) A mountain with ramps. (d) Cards in the environment. (e) The leader selecting a card.

(f) The leader character. (g) The follower character. (h) The follower point of view.

(i) Valid (left) and invalid (right) sets of selected cards.

Figure 1: Images of the game environment and UI. All images are taken from the same environment state.

significantly more steps than the leader per turn.
This means the follower is able to move further in
each turn, and potentially accomplish much more

in each turn. This ability gap makes it critical for
the leader to collaborate with the follower, rather
than ignore the follower and attempt to accomplish
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tasks on their own, a suboptimal strategy.
The agents coordinate via uni-directional natural

language instruction, the only form of coordina-
tion available. During a leader turn, in addition
to moving in the environment, the leader can send
text instructions to the follower. The follower ex-
ecutes the leader instructions and indicates when
an instruction is complete. The leader can queue
multiple instructions, but the follower only sees
past instructions and the one they are currently exe-
cuting. Because the follower does not see future in-
structions, alignment between the actions recorded
and the instruction displayed is guaranteed. The
leader can also cancel the instruction the follower
is executing alongside all future instructions in the
queue during the follower turn. This is intended
to halt very bad executions, and reduce their over-
all cost, for example by having to correct drastic
departures from the leader plan.

Instruction writing and sending by the leader,
and marking them as complete by the follower do
not consume steps. Leaders may write as many in-
structions as they wish during a single turn, and fol-
lowers are not taxed if the tasks are given in multi-
ple instructions that they need to mark as complete.
Exempting the language channel from the budget of
actions per turn aims to reduce the influence of the
turn systems on the language produced. The com-
bination of collaboration incentives (i.e., because
of the capability differences between the agents)
and the exclusivity of the language channel for
communication makes effective natural language
instruction essential for successful interactions.3

4 Framework Implementation

The CB2 framework has three main components: a
Python server, a Unity client, and a Python head-
less client. The game logic is orchestrated from the
server, allowing to customize the interaction with-
out modifying Unity code. The Python client sim-
plifies the interaction between learning processes
and the system, for example during reinforcement
learning. Figure 2 visualizes the architecture.

CB2’s design emphasizes customizability, as
much as possible, without modifying Unity code, a
skill that is less common among researchers. This
motivates placing the game logic on the Python

3Depending on the environment configuration, it is possi-
ble for one of the agents to operate alone if the cards forming
a set are really close and the other agents does not move.
This can allow 1–2 set completions. A higher score without
collaboration via language coordination is extremely unlikely.

server, a decision that dictates the client-server
communication design. However, modifications
that require updating the client user interface, such
as adding bi-directional communication or translat-
ing the UI to other languages, do require modifying
Unity coding.

4.1 Server

The server architecture is split into modules by
logical function. We use asynchronous coroutines
to reduce latency efficiently and keep the compute
needs small. The platform is parameterized via a
configuration file that is loaded by the server.

Map Generation Map generation is relatively ex-
pensive compared to other processes on the server,
mainly because we may use multiple search itera-
tions for routing paths between landmarks and to
prevent the leader or follower from spawning in
closed-off regions. We mitigate potential lag be-
cause of server load by preparing a pool of maps
in advance, which we refill during idle periods.

Player Lobbies The server supports multiple lob-
bies concurrently. Separate lobbies provide differ-
ent player pairing strategies, such as for human-
human and human-model games. Players wait in
a lobby until they are paired for a game. Each
lobby maintains multiple queues for pairing play-
ers and assigning roles according to their experi-
ence or other information. For example, by default,
we distinguish between expert and novice play-
ers, and prioritize pairing experts as leaders with
novices as followers. Each lobby maintains active
game rooms of different types, such as for stan-
dard games, tutorials, game replays, and custom
scenarios. Each game room contains a game state
machine and websocket connections to the clients.

Data Storage Game events are recorded into an
sqlite3 database, which allows for efficient inter-
action with game data. Each game is represented
as a linear list of events, which can be replayed to
recreate game state at a particular moment in time.

Data Portal The data portal provides an interface
to view game records and statistics. The web data
browser shows game-specific recordings, including
turns, instructions, and individual player actions.
Each game record also includes a link to launch a
game replay using the web client. There is also a
web page with live statistics, such as the mean and
median scores, and a page to download an archive
of all server data. The data portal also provides an
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Figure 2: The CB2 system architecture.

HTTP API for programmatic data access.

Map and Scenario Editor Maps are generated
procedurally by default. CB2 also provides a map
editor for researchers to place users in controlled
scenarios. A real-time API allows attaching to an
interaction and update the map in response to the
game state, enabling dynamic interactions.

4.2 Web Client

The web client is developed using the Unity game
engine, and is packaged as a WebAssembly binary.
The client receives game states, actions, and in-
structions from the server. We design the client to
be thin, putting as much of the game logic and con-
figuration on the server as possible, so that changes
to game logic can be made purely in Python. We
designed the gameplay user interface (UI) to be
accessible and easy to learn by incorporating feed-
back from players. All UI elements are clustered
together, and have keyboard shortcuts. Figure 1a
shows the leader interface during a leader turn.

Beyond gameplay, the web client provides a tu-
torial to onboard players to the game by stepping
them through a game interaction accompanied by
prompts and tooltips. The tutorial flow is specified
on the server, and can be modified easily. For ex-
ample, rephrasing the tutorial instructions or trans-
lating them to other languages is relatively simple
and can be achieved by updating the specifications
in the server code. The web client also provides
game replay, which is activated by adding URL
parameters when the HTML page is loaded. The
parameters are added automatically to links in the
web data browser (Section 4.1).

def PlayGameAsFollower(game):

game_state = game.initial_state()

# The game starts with the leader's turn.

# Wait for follower's turn by executing a noop.

game_state = game.step(Action.NoopAction())

while not game.over():

action = get_action(game_state)

game_state = game.step(action)

(_, _, turn_state, _, _, _) = game_state

print(f"Game over. Score: {turn_state.score}")

Figure 3: Example code using the Python API.

4.3 Python Client

The programmatic Python client API supports fast
lightweight interaction with the game. It is de-
signed for machine learning processes that require
interacting with the game environment, such as
reinforcement learning (Sutton and Barto, 1998),
and can be used to deploy agents interacting with
human players or agent-agent interactions. Inter-
action through this API are similar to interactions
with the Unity client, except that recording is op-
tional to reduce overhead. When recorded, they can
be replayed using the Unity client. We also provide
an OpenAI Gym-style wrapper for the Python API.
Figure 3 shows example code.

5 Example Task Formulations

CB2 is well suited to study a variety of tasks, with
emphasis on learning and evaluation in collabora-
tive interactions with human agents, such as:

Instruction Following The task of instruction
following is to map a start state observation from
the follower perspective and a leader instruction
to a sequence of actions. After each action, the
agent receives a new observation. Suhr et al. (2019)
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studied this problem with CEREALBAR by learn-
ing from recorded human-human interactions, and
Suhr and Artzi (2022) studied it within a contin-
ual learning from human feedback scenario. Both
approaches were evaluated by deploying follower
agents to interact with human leaders.

Instruction Generation The task of instruction
generation is to generate a leader instruction for
the follower to execute given an observation of the
world state from the leader perspective. This re-
quires planning the cards the two agents should
select, divide the tasks, plan trajectories, and ex-
press the intended follower trajectory in a natural
language instruction. Kojima et al. (2021) focused
on the problem of mapping deterministically gen-
erated plans to natural language instructions, and
proposed a continual learning approach for learning
by observing human follower behavior.

Emergent Communication CB2 is particularly
well suited to study emergent communication in
multi-agent systems (Lazaridou and Baroni, 2020).
The goal is to jointly learn separate models for
the leader and follower. The two models generate
actions to move in the world. The leader model
additionally generates instructions, which the fol-
lower model is conditioned on. The learning can
be driven by performance in the game. CB2 easily
allows to integrate human agents into the learning
and evaluation processes, bringing natural human
language into the process. Alternating between
interaction between agent-agent and agent-human
interactions has the potential to address the lan-
guage drift problem (Lee et al., 2019).

6 Crowdsourcing Process

CB2 poses several relatively demanding crowd-
sourcing tasks. Human-human interactions require
pairing two workers for real-time play over ex-
tended time. We design a process to collect CB2
interactions via crowdsourcing, either for games
where both roles are controlled by human play-
ers, or where one of the sides is controlled by a
learned model. The task-focused design of CB2
naturally allows an effective incentive structure by
tying game performance with compensation.

The key to our process is gradual training of
workers. A new worker first starts with a tutorial
and a qualifier quiz that covers the relatively sim-
ple role of the follower. The follower role requires
following the leader instructions by controlling the
character in the game. The worker is then qualified

to the follower role only, and is paired by joining a
dedicated follower-only queue in the lobby. Focus-
ing on the follower role only simplifies the learning
curve, and much of the learning required for the
leader role takes place on the job, as the worker
collaborates with more experienced leaders.

Once the worker displays sufficient level of per-
formance for several games, they are invited to
qualify as a leader by taking a leader tutorial and a
quiz. The second tutorial is both longer and more
complex than the follower tutorial, and includes
both planning and instruction writing. Once the
worker completes the tutorial and passes the quiz,
they are qualified to the leader role, and can then
participate in tasks as both leader or follower.

We design the lobby to pair workers based on
experience. Because the leader role is significantly
more critical to the effectiveness of the interac-
tion and the quality of language data, we priori-
tize workers with better performance for it. We
measure worker performance, keeping track of the
mean game score in the most recent games. If two
leader-qualified players are waiting in the lobby
for matching, we will assign the leader role to the
higher performing of the two.

The pay structure includes a base pay for con-
necting to the game, and an increasing bonus for
each point. Both workers, the leader and follower,
get the base pay and the additional bonus per point,
tightly connecting compensation to their collabora-
tive performance. Because the leader role is more
complex, we provide an additional relative bonus
to the worker in the leader role.

7 CB2 Demonstration Deployment

We demonstrate the functionality and potential of
CB2 via deployment, including collecting a corpus
of human-human interaction that we release, train-
ing a follower baseline model, and evaluating it in
interaction with human leaders.

Human Games Data We follow the crowdsourc-
ing process outlined in Section 6 to collect games
between human leaders and followers. We collect
185 games containing 3,439 instructions. Table 1
provides data statistics.

Model and Learning We train an instruction fol-
lowing model with a behavior cloning objective
using the collected human-human data. We fil-
ter out poor games to improve training data qual-
ity, applying heuristics such as removing games
where over 20% of instructions are cancelled. Our
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Dataset # Games # Instructions Mean Score Vocabulary Mean Instruction Length

Training Data 185 3,439 6.42 ± 4.88 714 10.95 ± 5.29
Human-Human Deployment 187 3,404 6.69 ± 4.51 728 11.73 ± 6.09
Human-Model Deployment 188 2,869 3.15 ± 3.29 542 9.62 ± 5.28

Table 1: Data and interaction statistics for the human-human training data, and the two side-by-side deployments.

model architecture is based on the Decision Trans-
former (Chen et al., 2021; Putterman et al., 2022).
Follower observations are embedded using HEX-
ACONV (Hoogeboom et al., 2018) because of the
hexagonal structure of the map. The observations
are centered on the follower’s position and rotated
such that the follower is always facing the same
direction. This baseline model conditions only on
the current instruction for simplicity, similar to the
model in Suhr et al. (2019). In contrast though, it
does not assume full observability.

Results We deploy our baseline model as a sys-
tem demonstration on Amazon Mechanical Turk.
We evaluate it with 188 human-model interactions,
conducted side-by-side in a randomized experiment
with 187 human-human interactions. Human lead-
ers are told that they can be matched with a human
or a bot follower in the task description, but are
not made aware of who they are interacting with
in a specific interaction. Table 1 shows data and
interaction statistics for our training data and fi-
nal deployments. Overall, our models enable ef-
fective human-model collaboration in CB2, but at
significantly lower performance than observed in
human-human games. This is similar to the results
of Suhr et al. (2019), although the numbers are not
comparable because of the different environment.

Human leaders were able to infer relatively con-
sistently the type of their partner in each interac-
tion. This is indicated by differences in the human
leader behavior when comparing human-human
and human-model interactions. For instance, the
vocabulary human leaders use in interactions with
the model is smaller compared to when interact-
ing with human followers and the instructions are
shorter. Qualitatively, we observe that instructions
in human-human interactions more often use ex-
clamations (e.g., “oh,” “shoot,” and “oops”) and
informal speech, with abbreviations such as “btw”
and “lol” or words such as “chill” and “kay.” We
also found that human leaders in human-human
games tend to praise their partners, with words such
as “awesome,” “wonderful,” “perfect” or “great”
appearing uniquely in instructions from human-
human games. The difference is also seen in game

statistics. For instance, 16.54% and 12.70% of
the times followers and leaders selected a card in
human-model games, it was to deselect an already
selected card, compared to 8.68% and 8.78% for
human-human games. Our results illustrate the
challenge posed by CB2, and the importance of the
kind of deployment CB2 enables.

8 Conclusion

CB2 is a multi-agent research platform to study
natural language instruction in collaborative, em-
bodied environments. A core objective of CB2 is
to enable scaleable studies where human agents
interact with learned models, potentially over long
periods of time. CB2 is designed to be easy to use
and customize, with emphasis on accessibility for
researchers with limited game development experi-
ence. It is designed from the ground up for machine
learning, and includes a headless fast Python client
API to support learning processes and to deploy
learned models to interact with human users.
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be used to study such adversarial usage scenarios
in a relatively safe way.
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Abstract

Past work in natural language processing in-
terpretability focused mainly on popular clas-
sification tasks while largely overlooking gen-
eration settings, partly due to a lack of dedi-
cated tools. In this work, we introduce Inseq1,
a Python library to democratize access to in-
terpretability analyses of sequence generation
models. Inseq enables intuitive and optimized
extraction of models’ internal information and
feature importance scores for popular decoder-
only and encoder-decoder Transformers archi-
tectures. We showcase its potential by adopting
it to highlight gender biases in machine trans-
lation models and locate factual knowledge in-
side GPT-2. Thanks to its extensible interface
supporting cutting-edge techniques such as con-
trastive feature attribution, Inseq can drive fu-
ture advances in explainable natural language
generation, centralizing good practices and en-
abling fair and reproducible model evaluations.

1 Introduction

Recent years saw an increase in studies and tools
aimed at improving our behavioral or mechanis-
tic understanding of neural language models (Be-
linkov and Glass, 2019). In particular, feature attri-
bution methods became widely adopted to quantify
the importance of input tokens in relation to mod-
els’ inner processing and final predictions (Madsen
et al., 2022b). Many studies applied such tech-
niques to modern deep learning architectures, in-
cluding Transformers (Vaswani et al., 2017), lever-
aging gradients (Baehrens et al., 2010; Sundarara-
jan et al., 2017), attention patterns (Xu et al., 2015;
Clark et al., 2019) and input perturbations (Zeiler
and Fergus, 2014; Feng et al., 2018) to quantify
input importance, often leading to controversial
outcomes in terms of faithfulness, plausibility and
overall usefulness of such explanations (Adebayo

1Library: https://github.com/inseq-team/inseq
Documentation: https://inseq.readthedocs.io
This paper describes the Inseq v0.4.0 release on PyPI.
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Figure 1: Feature importance and next-step probability
extraction and visualization using Inseq with a Trans-
formers causal language model.

et al., 2018; Jain and Wallace, 2019; Jacovi and
Goldberg, 2020; Zafar et al., 2021). However, fea-
ture attribution techniques have mainly been ap-
plied to classification settings (Atanasova et al.,
2020; Wallace et al., 2020; Madsen et al., 2022a;
Chrysostomou and Aletras, 2022), with relatively
little interest in the more convoluted mechanisms
underlying generation. Classification attribution is
a single-step process resulting in one importance
score per input token, often allowing for intuitive
interpretations in relation to the predicted class.
Sequential attribution2 instead involves a compu-
tationally expensive multi-step iteration producing
a matrix Aij representing the importance of ev-
ery input i in the prediction of every generation
outcome j (Figure 1). Moreover, since previous

2We use sequence generation to refer to all iterative tasks
including (but not limited to) natural language generation.
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generation steps causally influence following pre-
dictions, they must be dynamically incorporated
into the set of attributed inputs throughout the pro-
cess. Lastly, while classification usually involves a
limited set of classes and simple output selection
(e.g. argmax after softmax), generation routinely
works with large vocabularies and non-trivial de-
coding strategies (Eikema and Aziz, 2020). These
differences limited the use of feature attribution
methods for generation settings, with relatively few
works improving attribution efficiency (Vafa et al.,
2021; Ferrando et al., 2022) and explanations’ in-
formativeness (Yin and Neubig, 2022).

In this work, we introduce Inseq, a Python li-
brary to democratize access to interpretability anal-
yses of generative language models. Inseq central-
izes access to a broad set of feature attribution meth-
ods, sourced in part from the Captum (Kokhlikyan
et al., 2020) framework, enabling a fair compar-
ison of different techniques for all sequence-to-
sequence and decoder-only models in the popu-
lar Transformers library (Wolf et al., 2020).
Thanks to its intuitive interface, users can easily in-
tegrate interpretability analyses into sequence gen-
eration experiments with just 3 lines of code (Fig-
ure 2). Nevertheless, Inseq is also highly flexible,
including cutting-edge attribution methods with
built-in post-processing features (§ 4.1), support-
ing customizable attribution targets and enabling
constrained decoding of arbitrary sequences (§ 4.2).
In terms of usability, Inseq greatly simplifies access
to local and global explanations with built-in sup-
port for a command line interface (CLI), optimized
batching enabling dataset-wide attribution, and var-
ious methods to visualize, serialize and reload attri-
bution outcomes and generated sequences (§ 4.3).
Ultimately, Inseq’s aims to make sequence models
first-class citizens in interpretability research and
drive future advances in interpretability for genera-
tive applications.

2 Related Work

Feature Attribution for Sequence Generation
Work on feature attribution for sequence gener-
ation has mainly focused on machine translation
(MT). Bahdanau et al. (2015) showed how attention
weights of neural MT models encode interpretable
alignment patterns. Alvarez-Melis and Jaakkola
(2017) adopted a perturbation-based framework
to highlight biases in MT systems. Ding et al.
(2019); He et al. (2019); Voita et al. (2021a,b) inter

import inseq

# Load HF Hub model and attribution method
model = inseq.load_model(

"google/flan-t5-base",
"integrated_gradients"

)
# Answer and attribute generation steps
attr_out = model.attribute(

"Does 3 + 3 equal 6?",
attribute_target=True

)
# Visualize the generated attribution,
# applying default token-level aggregation
attr_out.show()

Figure 2: Computing and visualizing source and target-
side attributions using Flan-T5 (Chung et al., 2022).

alia conducted analyses on MT word alignments,
coreference resolution and training dynamics with
various gradient-based attribution methods. Vafa
et al. (2021); Ferrando et al. (2022) developed ap-
proaches to efficiently compute sequential feature
attributions without sacrificing accuracy. Yin and
Neubig (2022) introduced contrastive feature attri-
bution to disentangle factors influencing generation
in language models. Attribution scores obtained
from MT models were also used to detect hallucina-
tory behavior (Dale et al., 2022; Tang et al., 2022;
Xu et al., 2023), providing a compelling practical
use case for such explanations.

Tools for NLP Interpretability Although many
post-hoc interpretability libraries were released re-
cently, only a few support sequential feature at-
tribution. Notably, LIT (Tenney et al., 2020), a
structured framework for analyzing models across
modalities, and Ecco (Alammar, 2021), a library
specialized in interactive visualizations of model
internals. LIT is an all-in-one GUI-based tool to an-
alyze model behaviors on entire datasets. However,
the library does not provide out-of-the-box support
for Transformers models, requiring the defini-
tion of custom wrappers to ensure compatibility.
Moreover, it has a steep learning curve due to its
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advanced UI, which might be inconvenient when
working on a small amount of examples. All these
factors limit LIT usability for researchers working
with custom models, needing access to extracted
scores, or being less familiar with interpretabil-
ity research. On the other hand, Ecco is closer
to our work, being based on Transformers and
having started to support encoder-decoder models
concurrently with Inseq development. Despite a
marginal overlap in their functionalities, the two li-
braries provide orthogonal benefits: Inseq’s flexible
interface makes it especially suitable for method-
ical quantitative analyses involving repeated eval-
uations, while Ecco excels in qualitative analyses
aimed at visualizing model internals. Other popu-
lar tools such as ERASER (DeYoung et al., 2020),
Thermostat (Feldhus et al., 2021), transformers-
interpret (Pierse, 2021) and ferret (Attanasio et al.,
2022) do not support sequence models.

3 Design

Inseq combines sequence models sourced from
Transformers (Wolf et al., 2020) and attribution

methods mainly sourced from Captum (Kokhlikyan
et al., 2020). While only text-based tasks are cur-
rently supported, the library’s modular design3

would enable the inclusion of other modeling
frameworks (e.g. fairseq (Ott et al., 2019)) and
modalities (e.g. speech) without requiring sub-
stantial redesign. Optional dependencies include

Datasets (Lhoest et al., 2021) and Rich4.

3.1 Guiding Principles

Research and Generation-oriented Inseq
should support interpretability analyses of a
broad set of sequence generation models without
focusing narrowly on specific architectures or
tasks. Moreover, the inclusion of new, cutting-edge
methods should be prioritized to enable fair
comparisons with well-established ones.

Scalable The library should provide an opti-
mized interface to a wide range of use cases, mod-
els and setups, ranging from interactive attributions
of individual examples using toy models to compil-
ing statistics of large language models’ predictions
for entire datasets.

Beginner-friendly Inseq should provide built-in
access to popular frameworks for sequence genera-

3More details are available in Appendix B.
4https://github.com/Textualize/rich

Method Source f(l)

G

(Input ×) Gradient Simonyan et al. ✓
DeepLIFT Shrikumar et al. ✓
GradientSHAP Lundberg and Lee ✗
Integrated Gradients Sundararajan et al. ✓
Discretized IG Sanyal and Ren ✗

I Attention Weights Bahdanau et al. ✓

P
Occlusion (Blank-out) Zeiler and Fergus ✗
LIME Ribeiro et al. ✗

S

(Log) Probability -
Softmax Entropy -
Target Cross-entropy -
Perplexity -
Contrastive Prob. ∆ Yin and Neubig
µ MC Dropout Prob. Gal and Ghahramani

Table 1: Overview of gradient-based (G), internals-
based (I) and perturbation-based (P) attribution methods
and built-in step functions (S) available in Inseq. f(l)
marks methods allowing for attribution of arbitrary in-
termediate layers.

tion modeling and be fully usable by non-experts
at a high level of abstraction, providing sensible
defaults for supported attribution methods.

Extensible Inseq should support a high degree of
customization for experienced users, with out-of-
the-box support for user-defined solutions to enable
future investigations into models’ behaviors.

4 Modules and Functionalities

4.1 Feature Attribution and Post-processing

At its core, Inseq provides a simple interface
to apply feature attribution techniques for se-
quence generation tasks. We categorize methods in
three groups, gradient-based, internals-based and
perturbation-based, depending on their underlying
approach to importance quantification.5 Table 1
presents the full list of supported methods. Aside
from popular model-agnostic methods, Inseq no-
tably provides built-in support for attention weight
attribution and the cutting-edge Discretized Inte-
grated Gradients method (Sanyal and Ren, 2021).
Moreover, multiple methods allow for the impor-
tance attribution of custom intermediate model lay-
ers, simplifying studies on representational struc-
tures and information mixing in sequential models,
such as our case study of Section 5.2.

Source and target-side attribution When using
encoder-decoder architectures, users can set the

5We distinguish between gradient- and internals-based
methods to account for their difference in scores’ granularity.
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attribute_target parameter to include or exclude
the generated prefix in the attributed inputs. In
most cases, this should be desirable to account for
recently generated tokens when explaining model
behaviors, such as when to terminate the genera-
tion (e.g. relying on the presence _yes in the tar-
get prefix to predict </s> in Figure 2, bottom-right
matrix). However, attributing the source side sep-
arately could prove useful, for example, to derive
word alignments from importance scores.

Post-processing of attribution outputs Aggre-
gation is a fundamental but often overlooked step
in attribution-based analyses since most methods
produce neuron-level or subword-level importance
scores that would otherwise be difficult to interpret.
Inseq includes several Aggregator classes to per-
form attribution aggregation across various dimen-
sions. For example, the input word “Explanation”
could be tokenized in two subword tokens “Expl”
and “anation”, and each token would receive N
importance scores, with N being the model em-
bedding dimension. In this case, aggregators could
first merge subword-level scores into word-level
scores, and then merge granular embedding-level
scores to obtain a single token-level score that is
easier to interpret. Moreover, aggregation could
prove especially helpful for long-form generation
tasks such as summarization, where word-level im-
portance scores could be aggregated to obtain a
measure of sentence-level relevance. Notably, In-
seq allows chaining multiple aggregators like in the
example above using the AggregatorPipeline class,
and provides a PairAggregator to aggregate differ-
ent attribution maps, simplifying the conduction of
contrastive analyses as in Section 5.1.6

4.2 Customizing generation and attribution

During attribution, Inseq first generates target to-
kens using Transformers and then attributes
them step by step. If a custom target string is
specified alongside model inputs, the generation
step is instead skipped, and the provided text is
attributed by constraining the decoding of its to-
kens7. Constrained attribution can be used, among
other things, for contrastive comparisons of min-
imal pairs and to obtain model justifications for
desired outputs.

6See Appendix C for an example.
7Constrained decoding users should be aware of its limita-

tions in the presence of a high distributional discrepancy with
natural model outputs (Vamvas and Sennrich, 2021).

Custom step functions At every attribution step,
Inseq can use models’ internal information to ex-
tract scores of interest (e.g. probabilities, entropy)
that can be useful, among other things, to quantify
model uncertainty (e.g. how likely the generated
_yes token was given the context in Figure 2). In-
seq provides access to multiple built-in step func-
tions (Table 1, S) enabling the computation of these
scores, and allows users to create and register new
custom ones. Step scores are computed together
with the attribution, returned as separate sequences
in the output, and visualized alongside importance
scores (e.g. the p(yt|y<t) row in Figure 1).

Step functions as attribution targets For meth-
ods relying on model outputs to predict input impor-
tance (gradient and perturbation-based), feature at-
tributions are commonly obtained from the model’s
output logits or class probabilities (Bastings et al.,
2022). However, recent work showed the effec-
tiveness of using targets such as the probability
difference of a contrastive output pair to answer
interesting questions like “What inputs drive the
prediction of y rather than ŷ?” (Yin and Neubig,
2022). In light of these advances, Inseq users can
leverage any built-in or custom-defined step func-
tion as an attribution target, enabling advanced use
cases like contrastive comparisons and uncertainty-
weighted attribution using MC Dropout (Gal and
Ghahramani, 2016).

4.3 Usability Features

Batched and span-focused attributions The li-
brary provides built-in batching capabilities, en-
abling users to go beyond single sentences and at-
tribute even entire datasets in a single function call.
When the attribution of a specific span of interest
is needed, Inseq also allows specifying a start and
end position for the attribution process. This func-
tionality greatly accelerates the attribution process
for studies on localized phenomena (e.g. pronoun
coreference in MT models).

CLI, Serialization and Visualization The Inseq
library offers an API to attribute single examples or
entire Datasets from the command line and save
resulting outputs and visualizations to a file. Attri-
bution outputs can be saved and loaded in JSON
format with their respective metadata to easily iden-
tify the provenance of contents. Attributions can
be visualized in the command line or IPython note-
books and exported as HTML files.
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Quantized Model Attribution Supporting the
attribution of large models is critical given re-
cent scaling tendencies (Kaplan et al., 2020).
All models allowing for quantization using
bitsandbytes (Dettmers et al., 2022) can be loaded
in 8-bit directly from Transformers, and their at-
tributions can be computed normally using Inseq.8

A minimal manual evaluation of 8-bit attribution
outputs for Section 5.2 study shows minimal dis-
crepancies compared to full-precision results.

5 Case Studies

5.1 Gender Bias in Machine Translation

In the first case study, we use Inseq to investigate
gender bias in MT models. Studying social biases
embedded in these models is crucial to understand
and mitigate the representational and allocative
harms they might engender (Blodgett et al., 2020).
Savoldi et al. (2021) note that the study of bias in
MT could benefit from explainability techniques to
identify spurious cues exploited by the model and
the interaction of different features that can lead to
intersectional bias.

Synthetic Setup: Turkish to English The Turk-
ish language uses the gender-neutral pronoun o,
which can be translated into English as either “he”,
“she”, or “it”, making it interesting to study gender
bias in MT when associated with a language such
as English for which models will tend to choose a
gendered pronoun form. Previous works leveraged
translations from gender-neutral languages to show
gender bias present in translation systems (Cho
et al., 2019; Prates et al., 2020; Farkas and Németh,
2022). We repeat this simple setup using a Turkish-
to-English MarianMT model (Tiedemann, 2020)
and compute different metrics to quantify gender
bias using Inseq.

We select 49 Turkish occupation terms verified
by a native speaker (see Appendix E) and use them
to infill the template sentence “O bir ” (He/She
is a(n) ). For each translation, we compute at-
tribution scores for source Turkish pronoun (xpron)
and occupation (xocc) tokens9 when generating the
target English pronoun (ypron) using Integrated Gra-
dients (IG), Gradients (∇), and Input × Gradient
(I×G),10. We also collect target pronoun probabili-

8
bitsandbytes 0.37.0 required for backward method, see

Appendix D for an example.
9For multi-token occupation terms, e.g., bilim insanı (sci-

entist), the attribution score of the first token was used.
10We set approx. steps to ensure convergence ∆ < 0.05

Base →
xpron xocc xpron xocc

p(ypron) 0.01 -0.44∗

∇ -0.16 0.25∗ 0.23∗ -0.00
IG -0.08 0.09 0.11 0.17

I×G -0.11 0.22∗ 0.22∗ -0.01

Table 2: Gender Bias in Turkish-to-English MT:
Kendall’s τ correlation of MT model metrics with U.S.
labor statistics. ∗ = Significant correlation (p < .05).

ties (p(ypron)), rank the 49 occupation terms using
these metrics, and finally compute Kendall’s τ cor-
relation with the percentage of women working
in the respective fields, using U.S. labor statistics
as in previous works (e.g., Caliskan et al., 2017;
Rudinger et al., 2018). Table 2 presents our results.

In the base case, we correlate the different met-
rics with how much the gender distribution deviates
from an equal distribution (50− 50%) for each oc-
cupation (i.e., the gender bias irrespective of the
direction). We observe a strong gender bias, with
“she” being chosen only for 5 out of 49 translations
and gender-neutral variants never being produced
by the MT model. We find a low correlation be-
tween pronoun probability and the degree of gender
stereotype associated with the occupation. More-
over, we note a weaker correlation for IG compared
to the other two methods. For those, attribution
scores for xocc show significant correlations with
labor statistics, supporting the intuition that the MT
model will accord higher importance to source oc-
cupation terms associated to gender-stereotypical
occupations when predicting the gendered target
pronoun.

In the gender-swap case ( → ), we use the
PairAggregator class to contrastively compare at-
tribution scores and probabilities when translating
the pronoun as “She” or “He”.11 We correlate re-
sulting scores with the % of women working in the
respective occupation and find strong correlations
for p(ypron), supporting the validity of contrastive
approaches in uncovering gender bias.

Qualitative Example: English to Dutch We
qualitatively analyze biased MT outputs, showing
how attributions can help develop hypotheses about
models’ behavior. Table 3 (top) shows the I × G
attributions for English-to-Dutch translation using
M2M-100 (418M, Fan et al., 2021). The model

for IG. All methods use the L2 norm to obtain token-level
attributions.

11An example is provided in Appendix C.
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Source De leraar verliest zijn baan

The 0.10 0.08 0.04 0.03 0.02
teacher 0.11 0.20 0.06 0.03 0.05
loses 0.11 0.09 0.25 0.07 0.07
her 0.15 0.09 0.10 0.21 0.07
job 0.10 0.08 0.08 0.10 0.24

Target De leraar verliest zijn baan

De 0.23 0.05 0.06 0.04
leraar 0.17 0.13 0.03
verliest 0.18 0.08
zijn 0.26

p(yt) 0.69 0.28 0.35 0.65 0.29

Source De → ◦ verliest haar baan

The 0.00 -0.02 0.00 0.00 0.00
teacher 0.00 -0.05 -0.01 -0.01 -0.01
loses 0.00 -0.02 -0.01 -0.02 -0.01
her 0.00 -0.01 -0.01 -0.10 0.01
job 0.00 -0.02 -0.01 -0.02 -0.02

Target De → ◦ verliest haar baan

De -0.07 -0.01 0.01 -0.01
→ ◦ 0.09 0.18 0.02

verliest -0.03 0.00
haar 0.00

∆p(yt) 0.00 -0.23 0.13 0.20 0.00

Table 3: Top: Attribution of pronoun gender mistrans-
lation using M2M-100. Bottom: Target attribution
difference when swapping the target noun gender ( →
◦) from leraar (male) to leerkracht (gender-neutral).

mistranslates the pronoun “her” into the masculine
form zijn (his). We find that the wrongly trans-
lated pronoun exhibits high probability but does
not associate substantial importance to the source
occupation term “teacher”. Instead, we find good
relative importance for the preceding word and ler-
aar (male teacher). This suggests a strong prior
bias for masculine variants, shown by the pronoun
zijn and the noun leraar, as a possible cause for
this mistranslation. When considering the con-
trastive example obtained by swapping leraar with
its gender-neutral variant leerkracht (Table 3, bot-
tom), we find increased importance of the target
occupation in determining the correctly-gendered
target pronoun haar (her). Our results highlight
the tendency of MT models to attend inputs se-
quentially rather than relying on context, hinting
at the known benefits of context-aware models for
pronoun translation (Voita et al., 2018).

5.2 Locating Factual Knowledge inside GPT-2
with Contrastive Attribution Tracing

For our second case study, we experiment with
a novel attribution-based technique to locate fac-
tual knowledge encoded in the layers of GPT-2
1.5B (Radford et al., 2019). Specifically, we aim to
reproduce the results of Meng et al. (2022), show-
ing the influence of intermediate layers in mediat-

0.05

0.00

0.10

0.15

AIE

Figure 3: Top: Estimated causal importance of GPT-2
XL layers for predicting factual associations, as reported
by Meng et al. (2022). Bottom: Average GPT-2 XL
Gradient × Layer Activation scores obtained with Inseq
using contrastive factual pairs as attribution targets.

ing the recall of factual statements such as ‘The Eif-
fel Tower is located in the city of → Paris’. Meng
et al. (2022) estimate the effect of network com-
ponents in the prediction of factual statements as
the difference in probability of a correct target (e.g.
Paris), given a corrupted subject embedding (e.g.
for Eiffel Tower), before and after restoring clean
activations for some input tokens at different layers
of the network. Apart from the obvious importance
of final token states in terminal layers, their results
highlight the presence of an early site associated
with the last subject token playing an important
role in recalling the network’s factual knowledge
(Figure 3, top).

To verify such results, we propose a novel knowl-
edge location method, which we name Contrastive
Attribution Tracing (CAT), adopting the contrastive
attribution paradigm of Yin and Neubig (2022) to
locate relevant network components by attribut-
ing minimal pairs of correct and wrong factual
targets (e.g. Paris vs. Rome for the example
above). To perform the contrastive attribution, we
use the Layer Gradient × Activation method, a
layer-specific variant of Input × Gradient, to prop-
agate gradients up to intermediate network activa-
tions instead of reaching input tokens. The result-
ing attribution scores hence answer the question
“How important are layer L activations for prefix
token t in predicting the correct factual target over
a wrong one?”. We compute attribution scores
for 1000 statements taken from the Counterfact
Statement dataset (Meng et al., 2022) and present
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averaged results in Figure 3 (bottom).12 Our results
closely match those of the original authors, provid-
ing further evidence of how attribution methods
can be used to identify salient network components
and guide model editing, as shown by Dai et al.
(2022) and Nanda (2023).

To our best knowledge, the proposed CAT
method is the most efficient knowledge location
technique to date, requiring only a single for-
ward and backward pass of the attributed model.
Patching-based approaches such as causal media-
tion (Meng et al., 2022), on the other hand, pro-
vide causal guarantees of feature importance at
the price of being more computationally intensive.
Despite lacking the causal guarantees of such meth-
ods, CAT can provide an approximation of feature
importance and greatly simplify the study of knowl-
edge encoded in large language model representa-
tions thanks to its efficiency.

6 Conclusion

We introduced Inseq, an easy-to-use but versatile
toolkit for interpreting sequence generation models.
With many libraries focused on the study of clas-
sification models, Inseq is the first tool explicitly
aimed at analyzing systems for tasks such as ma-
chine translation, code synthesis, and dialogue gen-
eration. Researchers can easily add interpretability
evaluations to their studies using our library to iden-
tify unwanted biases and interesting phenomena
in their models’ predictions. We plan to provide
continued support and explore developments for
Inseq,13 to provide simple and centralized access
to a comprehensive set of thoroughly-tested imple-
mentations for the interpretability community. In
conclusion, we believe that Inseq has the poten-
tial to drive real progress in explainable language
generation by accelerating the development of new
analysis techniques, and we encourage members of
this research field to join our development efforts.
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Reliability of Attribution Methods The plausi-
bility and faithfulness of attribution methods sup-
ported by Inseq is an active matter of debate in
the research community, without clear-cut guaran-
tees in identifying specific model behaviors, and
prone to users’ own biases (Jacovi and Goldberg,
2020). We emphasize that explanations produced
with Inseq should not be adopted in high-risk and
user-facing contexts. We encourage Inseq users to
critically approach results obtained from our toolkit
and validate them on a case-by-case basis.

Technical Limitations and Contributions
While Inseq greatly simplifies comparisons across
different attribution methods to ensure their mutual
consistency, it does not provide explicit ways of
evaluating the quality of produced attributions in
terms of faithfulness or plausibility. Moreover,
many recent methods still need to be included
due to the rapid pace of interpretability research
in natural language processing and the small size
of our development team. To foster an open and
inclusive development environment, we encourage
all interested users and new methods’ authors to
contribute to the development of Inseq by adding
their interpretability methods of interest.

Gender Bias Case Study The case study of Sec-
tion 5.1 assumes a simplified concept of binary
gender to allow for a more straightforward evalu-
ation of the results. However, we encourage other
researchers to consider non-binary gender and dif-
ferent marginalized groups in future bias studies.
We acknowledge that measuring bias in language
models is complex and that care must be taken
in its conceptualization and validation (Blodgett
et al., 2020; van der Wal et al., 2022; Bommasani
and Liang, 2022), even more so in multilingual set-
tings (Talat et al., 2022). For this reason, we do not
claim to provide a definite bias analysis of these
MT models – especially in light of the aforemen-
tioned attributions’ faithfulness issues. The study’s
primary purpose is to demonstrate how attribution
methods could be used for exploring social biases
in sequence-to-sequence models and showcase the
related Inseq functionalities.
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A Authors’ Contributions

Authors jointly contributed to the writing and revi-
sion of the paper.

Gabriele Sarti Organized and led the project, de-
veloped the first public release of the Inseq library,
conducted the case study of Section 5.2.

Nils Feldhus Implemented the perturbation-
based methods in Inseq and contributed to the vali-
dation of the case study of Section 5.2.

Ludwig Sickert Implemented the attention-
based attribution method in Inseq.

Oskar van der Wal Conducted the experiments
in the gender bias case study of Section 5.1.

Malvina Nissim and Arianna Bisazza ensured
the soundness of the overall process and provided
valuable inputs for the initial design of the toolkit.

B Additional Design Details

Figure 4 presents the Inseq hierarchy of mod-
els and attribution methods. The model-method
connection enables out-of-the-box attribution us-
ing the selected method. Framework-specific and
architecture-specific classes enable extending Inseq
to new modeling architectures and frameworks.

C Example of Pair Aggregation for
Contrastive MT Comparison

An example of gender translation pair using the
synthetic template of Section 5.1 is show in Fig-
ure 5, highlighting a large drop in probability when
switching the gendered pronoun for highly gender-
stereotypical professions, similar to Table 2 results.

D Example of Quantized Contrastive
Attribution of Factual Knowledge

Figure 6 presents code used in Section 5.2 case
study, with visualized attribution scores for con-
trastive examples in the evaluated dataset.

E Gender Bias in Machine Translation

Table 4 shows the list of occupation terms used
in the gender bias case study (Section 5.1). We
correlate the ranking of occupations based on
the selected attribution metrics and probabilities
with U.S. labor statistics14 (bls_pct_female col-
umn). Table 3 example was taken from the BUG
dataset (Levy et al., 2021).

14https://github.com/rudinger/winogender-schemas

Turkish English Turkish English

teknisyen technician memur officer
muhasebeci accountant patolog pathologist
süpervizör supervisor öğretmen teacher
mühendis engineer avukat lawyer
işçi worker planlamacı planner
eğitimci educator yönetici practitioner
katip clerk tesisatçı plumber
danışman consultant eğitmen instructor
müfettiş inspector cerrah surgeon
tamirci mechanic veteriner veterinarian
müdür manager kimyager chemist
terapist therapist makinist machinist
resepsiyonist receptionist mimar architect
kütüphaneci librarian kuaför hairdresser
ressam painter fırıncı baker
eczacı pharmacist programlamacı programmer
kapıcı janitor itfaiyeci firefighter
psikolog psychologist bilim insanı scientist
doktor physician sevk memuru dispatcher
marangoz carpenter kasiyer cashier
hemşire nurse komisyoncu broker
araştırmacı investigator şef chef
barmen bartender doktor doctor
uzman specialist sekreter secretary
elektrikçi electrician

Table 4: List of the 49 Turkish occupation terms and
their English translations used in the gender bias case
study (Section 5.1).

Method Source

G Guided Integrated Gradients Kapishnikov et al.
LRP Bach et al.

I

Attention Rollout & Flow Abnar and Zuidema
Attention × Vector Norm Kobayashi et al.
Attention × Attn. Block Norm Kobayashi et al.
GlobEnc Modarressi et al.
ALTI+ Ferrando et al.
Attention × Trans. Block Norm Kobayashi et al.
ALTI-Logit Ferrando et al.

P
Information Bottlenecks Jiang et al.
Value Zeroing Mohebbi et al.
Input Reduction Feng et al.
Activation Patching Meng et al.

Table 5: Gradient-based (G), internals-based (I) and
perturbation-based (P) attribution methods for which
we plan to include support in future Inseq releases.

F Planned Developments and Next Steps

We plan to continuously expand the core function-
ality of the library by adding support for a wider
range of attribution methods. Table 5 shows a
subset of methods we consider including in fu-
ture releases. Besides new methods, we also in-
tend to significantly improve result visualization
using an interactive interface backed by Gradio
Blocks (Abid et al., 2019), work on interoperability
features together with ferret developers (Attanasio
et al., 2022) to simplify the evaluation of sequence
attributions, and include sequential instance attri-
bution methods (Lam et al., 2022; Jain et al., 2022)
for training data attribution.
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Figure 4: Inseq models and attribution methods. Concrete classes combine abstract framework and
architecture attribution models classes, and are derived from abstract attribution methods’ categories .

import inseq
from inseq.data.aggregator import AggregatorPipeline, SubwordAggregator,

SequenceAttributionAggregator, PairAggregator

# Load the TR-EN translation model and attach the IG method
model = inseq.load_model("Helsinki-NLP/opus-mt-tr-en", "integrated_gradients")

# Batch attribute with forced decoding. Return probabilities, no target attr.
out = model.attribute(

["O bir teknisyen", "O bir teknisyen"],
["She is a technician.","He is a technician."],
step_scores=["probability"],
# The following attributes are specific to the IG method
internal_batch_size=100,
n_steps=300

)

# Aggregation pipeline composed by two steps:
# 1. Aggregate subword tokens across all dimensions: [l1, l2, dim] -> [l3, l4, dim]
# 2. Aggregate hidden size to produce token-level attributions: [l1, l2, dim] -> [l1, l2]
subw_aggregator = AggregatorPipeline([SubwordAggregator, SequenceAttributionAggregator])

# Aggregate attributions using the pipeline
masculine = out.sequence_attributions[0].aggregate(aggregator=subw_aggregator)
feminine = out.sequence_attributions[1].aggregate(aggregator=subw_aggregator)

# Take the diff of the scores of the two attributions, show it and return the HTML
html = masculine.show(aggregator=PairAggregator, paired_attr=feminine, return_html=True)

Figure 5: Comparing attributions for a synthetic Turkish-to-English translation example with underspecified source
pronoun gender using a MarianMT Turkish-to-English translation model (Tiedemann, 2020). Values in the visualized
attribution matrix show a 46% higher probability of producing the masculine pronoun in the translation and a
relative decrease of 18.4% in the importance of the Turkish occupation term compared to the feminine pronoun case.
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import inseq
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

# The model is loaded in 8-bit on available GPUs
model = AutoModelForCausalLM.from_pretrained("gpt2-xl", load_in_8bit=True, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("gpt2-xl")
# Counterfact datasets used by Meng et al. (2022)
data = load_dataset("NeelNanda/counterfact-tracing")["train"]

# GPT-2 XL is a Transformer model with 48 layers
for layer in range(48):

attrib_model = inseq.load_model(
model,
"layer_gradient_x_activation",
tokenizer="gpt2-xl",
target_layer=model.transformer.h[layer].mlp,

)
for i, ex in data:

# e.g. "The capital of Second Spanish Republic is"
prompt = ex["relation"].format{ex["subject"]}
# e.g. "The capital of Second Spanish Republic is Madrid"
true_answer = prompt + ex["target_true"]
# e.g. "The capital of Second Spanish Republic is Paris"
false_answer = prompt + ex["target_false"]
contrast = attrib_model.encode(false_answer)
# Contrastive attribution of true vs false answer
out = attrib_model.attribute(

prompt,
true_answer,
attributed_fn="contrast_prob_diff",
contrast_ids=contrast.input_ids,
contrast_attention_mask=contrast.attention_mask,
step_scores=["contrast_prob_diff"],
show_progress=False,

)
# Aggregation and plotting omitted for brevity
...

Figure 6: Top: Example code to contrastively attribute factual statements from the Counterfact Tracing dataset,
using Layer Gradient × Activation to compute importance scores until intermediate layers of the GPT2-XL model.
Bottom: Visualization of contrastive attribution scores on a subset of layers (23 to 48) for some selected dataset
examples. Plot labels show the contrastive pairs of false→ true answer used as attribution targets.
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Abstract

Causal reasoning is a core cognitive function
and is central to how people learn and update
their beliefs. Causal information is also cen-
tral to how people represent and use language.
Natural Language Processing algorithms that
detect people’s causal representations can illu-
minate the considerations shaping their beliefs
and reasoning. We present a causal language
analysis pipeline that leverages a Large Lan-
guage Model to identify causal claims in natu-
ral language documents, and aggregates claims
across a corpus to produce a causal claim net-
work. The pipeline then applies a clustering
algorithm that groups causal claims according
to their semantic topics. We demonstrate the
pipeline by modeling causal belief systems sur-
rounding the Covid-19 vaccine from tweets.

1 Introduction

Causal information facilitates learning (Holyoak
and Cheng, 2011; Waldmann, 2007, 2017), and
is crucial to how humans use and represent lan-
guage (Mackie, 1980; Wolff et al., 2005; Lupyan,
2016). Causal relations are also ubiquitous in
higher-level reasoning: they underlie our rich and
flexible categories (Gelman and Legare, 2011),
shape our explanatory preferences (Lombrozo and
Vasilyeva, 2017), and structure our memories of
events (Bower and Morrow, 1990).

Beliefs about causal relations can also have per-
nicious outcomes. For example, beliefs that vac-
cines cause autism are central to antivaccination at-
titudes (Horne et al., 2015; Powell et al., 2022), and
the belief that liberal politicians have causal influ-
ence over the outcome of climate science research
motivates climate change denialism (Cook and
Lewandowsky, 2016). Because misinformation in
online environments can spread rapidly to encour-
age these attitudes (Priniski et al., 2021; Priniski
and Holyoak, 2022), new data science methods are
necessary to combat these trends. However, data

science algorithms generally struggle to advance
a rigorous scientific understanding of psycholog-
ical processes, as they provide correlational evi-
dence that does not isolate cognitive mechanisms.
Methodologists should aim to develop Natural Lan-
guage Processing (NLP) algorithms that produce
cognitively plausible data representations that re-
searchers can utilize to guide explanatory under-
standing and motivate future interventions.

Because causal relations are the backbone of
most higher-level reasoning processes in humans
and are central to how we use language, developing
systems that can isolate people’s causal representa-
tions from language data is a natural place to start.
However, NLP has historically struggled to iden-
tify instances of psychological causality (what a
speaker thinks causes what) (Dunietz et al., 2017).
This is because the variety of ways people commu-
nicate causality is immense (Talmy, 2000, 2011;
Wolff, 2007), with most causal information latent
in language inputs (Khoo et al., 2002; Blanco et al.,
2008). Previously, methods that relied on hand
labeling causal constructions to relate linguistic
features to components of causal relations were
extremely brittle and struggled to generalize to out-
of-sample data (Yang et al., 2022). However, Large
Language Models may help overcome this short-
coming as these models utilize rich semantic repre-
sentations of language and sub-word tokenization
that can help them identify instances of causal lan-
guage not expressed in training (Devlin et al., 2018;
Liu et al., 2019; Dunietz et al., 2017).

In addition to simply identifying instances of
causal language, data representations should ac-
count for the breadth of people’s conceptual sys-
tems in which a causal claim is made. For example,
causal beliefs are not held in isolation; instead,
people have rich interlocking belief systems that
span multiple topics that shape the integration of
evidence (Quine and Ullian, 1978; Priniski and
Holyoak, 2022; Gelman and Legare, 2011). Previ-
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ous methods for producing representations of peo-
ple’s belief systems rely on experiments and are
slow to develop and may not generalize outside the
lab (Powell, 2023; Powell et al., 2022). Because it
is important to understand the full context of peo-
ple’s belief systems to reliably predict how people
will interpret evidence and make decisions, tools
must be designed that can identify the vast web
of beliefs that people use to interpret information
in the wild. NLP tools can take advantage of the
proliferation of social data online to build these
representations (Goldstone and Lupyan, 2016).

To this end, we introduce a pipeline based on
the Large Language Model, RoBERTA-XL (Liu
et al., 2019), that detects causal claims in text docu-
ments, and aggregates claims made across a corpus
to produce a network of interlocking causal claims,
or a causal claim network 1. Causal claim net-
works can be used to approximate the beliefs and
causal relations composing people’s conceptual un-
derstanding of the entities and events discussed in a
corpus. To guide future research, we host a pipeline
that produces interactive visualizations of people’s
causal belief networks. We demonstrate this soft-
ware by building causal belief systems surrounding
Covid-19 vaccines from tweets.

2 How to build causal claim networks
using our pipeline

The pipeline for extracting causal claim networks
follows three main steps (see Figure 1). First, text
documents are fed to a Large Language Model, a
RoBERTa-XL transformer model (Liu et al., 2019),
trained to extract causal claims made in a document
(sentence to a paragraph in length). Second, the
entities that compose causal claims are clustered ac-
cording to their embeddings, clusters proxy causal
topics (Grootendorst, 2022). Third, claims made
across the corpus are coreferenced and strung to-
gether to make a network of cause and effect claims
to be displayed in an interactive visualization.

We will now describe how a user could use our
pipeline to build a causal claim network to visu-
alize the causal claims made in a corpus of text
documents. As shown in Figure 2, this follows two
steps. First, a user uploads a .csv file containing
the documents they wish to analyze. Documents
should be a sentence to a paragraph in length and

1We host the pipeline at the following link:
https://mindsgpu02.isi.edu:5020. The code is available
on GitHub: https://github.com/ishaanverma/causal-claims-
pipeline.

can range from tweets, journal entries, or news
headlines. Next, the user selects which column in
the dataframe contains the texts to be analyzed. A
user can also specify if they want the pipeline to
preprocess the documents and cluster the entities.
It is worth noting that entity clustering works best
when there are an abundance of causal claims about
semantically distinct entities. If a user chooses to
cluster claims and the pipeline does not produce
an output, it does not mean that there are no causal
claims present, but rather that there are no clear
semantic clusters. In these cases, the users should
deselected ‘Cluster entities’ and rerun the pipeline.

As seen in Figure 2, we analyze a data set of
tweets about the Covid-19 vaccine with the file
name covid_tweets.csv, and the column containing
the tweet texts is titled tweets. We provide access
to this dataset on the tool interface, which can be
downloaded to replicate this tutorial.

Once the document file is uploaded and the user
presses submit, the job is queued and causal claims
will be extracted. As shown in Figure 3, a job status
window will be populated and the user will be up-
dated on the degree of completion. As a rough ref-
erence, extracting causal claims from about 6000
tweets takes about a minute to complete once the
job begins.

Once the job is completed, the screen will be
populated with the causal claim network, like the
one in Figure 4. There are a few things worth
highlighting here. First, each edge represents a
single extracted causal claim in the corpus, and
nodes are colored by their causal cluster, or topic
(see Figure 5). Clusters proxy topics in the data set
and can be interpreted as central causal topics in
the data set. In the next section, we describe how
we calculate clusters.

The causal claim network produced by the
pipeline is interactive. A user can click on an edge
to see the document and extracted causal claim that
constitutes that edge (see Figure 6). Furthermore,
as shown in Figure 7, a user can simplify the net-
work by selecting to collapse the edges between
the nodes. The edge thickness is proportional to
the number of documents between those two clus-
ters. To facilitate downstream analysis of causal
claims (e.g., by analyzing sentiment or stance of
causal claims), a user can download the edge list
that produced the network as a .csv file. Columns
in this .csv file include: cause word span, cause
cluster, effect word span, effect cluster, text, and
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"I am getting the 
Covid-19 vaccine 
because I want 

immunity."
…

"The Covid-19 vaccine 
gave my child a skin 

rash."

Fine-tuned 
RoBERTa-XL 

with BIO 
tagging

(Covid-19 Vaccine, Immunity)
…

(Covid-19 Vaccine, Skin rash)

Covid-19 
Vaccine

Immunity Skin rash

Figure 1: High-level schematic describing how text documents become a causal claim network. Raw text documents
are first fed to a RoBERTa-XL transformer fine-tuned on causal language, which follows a BIO tagging scheme
(see Section 3.1) to return a list of tuples encoding the expressed cause and effect relationships. These tuples are
co-referenced across the corpus to produce a causal claim network.

Figure 2: Uploading text data for causal claim analysis
follows two steps. First select the .csv file you wish
to analyze, then select which column in the dataframe
contains the text documents to be analyzed.

Figure 3: Job queue status window.

document id.

The pipeline allows users to specify different
parameters for the model (see Figure 8). While the
pipeline uncovers clusters automatically, users can
specify the number of clusters to uncover in the
corpus (this will equate to the number of nodes in
the causal claim network). Users can also specify
the N_gram range to be used during preprocessing
and can specify the number of top words used to
describe each causal cluster/topic.

3 What’s happening under the hood

In this section, we describe how the pipeline builds
causal claim networks. This follows three steps:
(1) causal claims are extracted using a RoBERTa-
XL transformer model that identifies which words
belong to cause and effect events (Li et al., 2021),
(2) claims are clustered based on their semantic
topics, and (3) a causal claim network is built by
combining the claims stated in the corpus.

Figure 4: A causal claim network built from tweets
about the Covid-19 vaccine. Individual nodes denote
broad causal topics (i.e., clusters of cause and effect
word spans based on their semantic embeddings), and
edges signify a document containing a causal claim
linking entities belonging to those two clusters.

3.1 Step 1: Extracting causal claims

Documents are first fed to a RoBERTa-XL trans-
former network fine-tuned to identify the cause and
effect pairs of nominals in natural language doc-
uments (Hendrickx et al., 2010; Li et al., 2021).
The training set consists of 4, 450 sentences and
contains 1, 570 causal relations, and the test set
consists of 804 sentences with 296 causal relations.
Following the SCITE architecture (Li et al., 2021),
we set up training as a token classification task,
where we utilize the before-inside-outside (BIO)
labeling scheme to identify which words belong to
a cause-span, effect-span, or embedded-causality-
span (tokens belonging to a causal event in the
middle of a causal chain). As seen in Table 1,
RoBERTa-XL has a higher performance than pre-
vious state-of-the-art models on this task (Li et al.,
2021), and performs better than the smaller BERT
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Figure 5: Causal clusters, or causal topics, are shown to
the right of the produced causal claim network. Each
topic consists of a set of keywords that describes the
cluster.

Figure 6: Hovering over an edge in the causal claim
network displays the document and extracted causal
claim that constitutes that edge. The document is shown
at the top of the box, and the extracted cause claim is at
the bottom.

Figure 7: Causal claim network with merged edges,
where edge weights equates to the number of documents
linking two clusters. Merging edges is useful to quickly
assess degree of linkage between causal clusters (nodes)
in the network.

Figure 8: A user can specify parameters when running
the pipeline to engage with exploratory data analysis.
Users can specify the number of clusters, the n-gram
range used during processing, and set the number of
words to describe each topic.

439



Precision Recall F1
SCITE 0.833 0.858 0.845
BERT 0.824 0.858 0.841

RoBERTa-XL 0.883 0.865 0.874

Table 1: Model performance on the causal relation iden-
tification task (Hendrickx et al., 2010). The RoBERTa-
XL model demonstrates increased performance over the
smaller transformer BERT and previously reported state-
of-the-art implementations (Li et al., 2021)

transformer (Devlin et al., 2018). We therefore
used the RoBERTa-XL transformer in our pipeline.

Once the sentences have been tagged using the
causality tagging scheme, we run the tag2triplet
algorithm proposed by Li et al., 2021 to extract the
cause-effect tuples from the tagged sequence. The
algorithm operates by first identifying the in-degree
and out-degree of causality in the tagged sequence.
Here, if the entity is labeled as a “cause”, then the
out-degree is increased by 1; if the entity is labeled
as an “effect” then the in-degree is incremented
by 1; and if the entity is labeled as “embedded
causality” then both the in-degree and out-degree
are incremented by 1. The algorithm then tries to
align the identified entities such that each entity
that has an outgoing edge (i.e., the cause) is joined
with the entity that has an incoming edge (i.e., the
effect) while taking into consideration the distance
between the entities in the document and whether
they contain a coordinating conjunction.

3.2 Step 2: Finding causal topics by clustering
embeddings

Clusters of causes and effects proxy topics in the
causal claim network. We cluster the embeddings
of the nodes by extending the tf-idf measure of the
embeddings (Grootendorst, 2022). This method
was originally developed to cluster BERT repre-
sentations to uncover topics in a corpus, but we
implemented the algorithm to cluster RoBERTa-
XL embeddings. This allows users to assess latent
structure in the causal claims expressed in a corpus
and simplifies the resulting causal claim graph by
mapping semantically similar claims to a common
node.

3.3 Constructing a causal claim network

Extracted cause-effect tuples serve as directed
edges in the causal claim network, which are strung
together throughout the corpus to form a causal
claim network. Nodes are the identified cause and

effect wordspans and the weighted edges encode
the number of instances in the corpus where node
i was said to cause node j. The edge direction en-
codes the direction of the causal relation and can
be supplied with additional semantic content (e.g.,
relational vectors, sentiment).

4 Case study: Building a network of
causal claims about the Covid-19
vaccine from tweets

4.1 Data set of tweets
To test this pipeline, we build a causal claim net-
work using a set of 6000 tweets about the Covid-19
vaccine (Poddar et al., 2022). The original dataset
was curated by subsetting a larger sample of tweets
from before and after the release of the Covid-19
vaccines.

4.2 Pipeline results
The pipeline returns 408 extracted causal claims be-
longing to nine distinct clusters (see Figure 5). The
clusters are, as expected, about the various Covid-
19 vaccines and their anticipated consequences.
By aggregating the keywords for each cluster, we
can define the set of causal topics returned by the
pipeline. More specifically, cluster 0 contains key-
words related to Death; 1: Oxford vaccines, 2:
Covid-19 pandemic; 3: Pfizer vaccine, 4: Side-
effects, 5: Pfizer shot, 6: Immunity and antibodies,
7: Coronavirus, and 8: Covid vaccine. As shown
in Table 2, we see that the clusters are about a
range of topics with varying semantics and valence,
which suggests that the pipeline can help us under-
stand the breadth of considerations guiding Twitter
discussions about the Covid-19 vaccine.

4.3 Secondary analyses of extracted causal
claims

By analyzing the causal claims returned by the
pipeline (which is also available for download as a
.csv file), we can explore how these causal clusters
are linked to one another. For example, as shown
in 2, some of the clusters are more commonly com-
posed of word spans denoting cause events, while
others are more composed of word spans denoting
effect events.

5 Related work

Although our approach is domain-general (doc-
uments do not need to belong to a single issue
or topic for the pipeline to return a set of causal
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Cluster Topic Causes Effects
0 Death 154 299
1 Oxford vaccine 108 15
2 Pandemic 56 16
3 Pfizer vaccine 25 1
4 Side-effects 1 25
5 Pfzier shot 22 2
6 Immunity 4 29
7 Coronavirus 13 8
8 Covid vaccine 17 0

Table 2: Number of identified word spans per each
causal cluster. The topic label is determined by assess-
ing the top keywords in each causal cluster. Each cluster
has a different distribution of cause and effect spans.

claims), we demonstrate the use of our pipeline
modeling causal claims about the Covid-19 vaccine.
Previous work has developed systems specifically
designed to analyze claims about Covid-19. For
example, Li et al. (2022) built a system specifically
designed to monitor claims made about Covid-19.
This system identifies claims and arguments made
in the corpus, and sources additional Wikidata in-
formation to put the claims in a richer content.

Mining causal claim networks requires isolat-
ing causal claims which oftentimes constitute ar-
guments expressed in a text document: a reasoner
makes a causal claim when explaining a mecha-
nism (Lombrozo and Vasilyeva, 2017) or argument.
Claim detection is an active area of research (Palau
and Moens, 2009; Goudas et al., 2014), as is the
detection of the components of arguments in text
(Sardianos et al., 2015). Because causal reasoning
is central to the way people construct arguments
(Abend et al., 2013), understanding how people
posit causal claims can shed light on the types of
arguments people will endorse related to that issue.

Most claim detection algorithms work on the
level of single documents, but approaches such as
those of Levy et al. 2014 propose corpus-wide
claim detection. Our pipeline utilizes a mixing of
the two: claims are detected within a document and
then aggregated across the documents in the corpus
to provide a corpus-level representation.

6 Conclusions and future work

Interactive data visualization is an effective way
for people to make sense of complex data (Janvrin
et al., 2014) and can be an effective tool to guide
scientific thinking (Franconeri et al., 2021). Our

pipeline is designed to help researchers explore
the causal claims expressed in a corpus through
interactive exploration.

There are therefore many applications of this
tool to the study of human reasoning and belief
change, and future work will test the efficacy of
these use cases. For example, researchers in cog-
nitive science have worked on developing meth-
ods to measure people’s rich conceptual systems
about vaccines (Powell, 2023). These methods
often require the development of surveys that mea-
sure people’s attitudes toward a variety of related
issues. Causal claim networks can give researchers
a starting place to know what measures they should
include in these surveys.

In future work, we will work on expanding the
visualization tool to include features that allow for
richer forms of interaction. For example, by allow-
ing users to build subnetworks based on another
data attribute (e.g., stance of the document, ex-
pressed sentiment), to allow for comparisons across
networks. Related to this, future work will also de-
velop quantitative measures of divergence across
networks.
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Abstract

Heterogenity of data-to-text generation datasets
limits the research on data-to-text generation
systems. We present TABGENIE – a toolkit
which enables researchers to explore, prepro-
cess, and analyze a variety of data-to-text gen-
eration datasets through the unified framework
of table-to-text generation. In TABGENIE, all
inputs are represented as tables with associated
metadata. The tables can be explored through
a web interface, which also provides an inter-
active mode for debugging table-to-text gen-
eration, facilitates side-by-side comparison of
generated system outputs, and allows easy ex-
ports for manual analysis. Furthermore, TAB-
GENIE is equipped with command line pro-
cessing tools and Python bindings for unified
dataset loading and processing. We release
TABGENIE as a PyPI package1 and provide its
open-source code and a live demo at https:
//github.com/kasnerz/tabgenie.

1 Introduction

Building and evaluating data-to-text (D2T) gener-
ation systems (Gatt and Krahmer, 2018; Sharma
et al., 2022) requires understanding the data and ob-
serving system behavior. It is, however, not trivial
to interact with the large volume of D2T generation
datasets that have emerged in the last years (see Ta-
ble 1). Although research on D2T generation ben-
efits from platforms providing unified interfaces,
such as HuggingFace Datasets (Lhoest et al., 2021)
or the GEM benchmark (Gehrmann et al., 2021),
these platforms still leave the majority of the data
processing load on the user.

A key component missing from current D2T
tools is the possibility to visualize the input data
and generated outputs. Visualization plays an im-
portant role in examining and evaluating scientific
data (Kehrer and Hauser, 2013) and can help D2T
generation researchers to make more informed de-

1https://pypi.org/project/tabgenie/

JSON CSVXML

table

Python

outputs

programming interface

source datasets

import tabgenie as tg
tg_dataset = tg.load_dataset(
    dataset_name="totto"
)

for DATASET in webnlg totto; do
    tabgenie export \
       --export_format csv \
       --dataset $DATASET; done

CLI

web interface

Figure 1: TABGENIE provides a way to handle vari-
ous data-to-text generation datasets through a unified
web and programming interface. The web interface en-
ables interactive exploration and analysis of datasets
and model outputs, while the programming interface
provides unified data loaders and structures.

sign choices. A suitable interface can also encour-
age researchers to step away from unreliable auto-
matic metrics (Gehrmann et al., 2022) and focus on
manual error analysis (van Miltenburg et al., 2021,
2023).

Along with that, demands for a unified input data
format have recently been raised with multi-task
training for large language models (LLMs) (Sanh
et al., 2022; Scao et al., 2022; Ouyang et al., 2022,
inter alia). Some works have used simple data
linearization techniques for converting structured
data to a textual format, in order to align it with the
format used for other tasks (Xie et al., 2022; Tang
et al., 2022). However, linearizations are using cus-
tom preprocessing code, leading to discrepancies
between individual works.

In this paper, we present TABGENIE – a multi-
purpose toolkit for interacting with D2T generation
datasets and systems designed to fill these gaps.
On a high level, the toolkit consists of (a) an in-
teractive web interface, (b) a set of command-line
processing tools, and (c) a set of Python bindings
(see Figure 1).

The cornerstone of TABGENIE is a unified data
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Dataset Source Data Type Number of examples License
train dev test

CACAPO van der Lee et al. (2020) Key-value 15,290 1,831 3,028 CC BY
DART: Nan et al. (2021) Graph 62,659 2,768 5,097 MIT
E2E: Dusek et al. (2019) Key-value 33,525 1,484 1,847 CC BY-SA
EventNarrative Colas et al. (2021) Graph 179,544 22,442 22,442 CC BY
HiTab Cheng et al. (2022) Table w/hl 7,417 1,671 1,584 C-UDA
Chart-To-Text Kantharaj et al. (2022) Chart 24,368 5,221 5,222 GNU GPL
Logic2Text Chen et al. (2020b) Table w/hl + Logic 8,566 1,095 1,092 MIT
LogicNLG Chen et al. (2020a) Table 28,450 4,260 4,305 MIT
NumericNLG Suadaa et al. (2021) Table 1,084 136 135 CC BY-SA
SciGen Moosavi et al. (2021) Table 13,607 3,452 492 CC BY-NC-SA
SportSett:Basketball: Thomson et al. (2020) Table 3,690 1,230 1,230 MIT
ToTTo: Parikh et al. (2020) Table w/hl 121,153 7,700 7,700 CC BY-SA
WebNLG: Ferreira et al. (2020) Graph 35,425 1,666 1,778 CC BY-NC
WikiBio: Lebret et al. (2016) Key-value 582,659 72,831 72,831 CC BY-SA
WikiSQL: Zhong et al. (2017) Table + SQL 56,355 8,421 15,878 BSD
WikiTableText Bao et al. (2018) Key-value 10,000 1,318 2,000 CC BY

Table 1: The list of datasets included in TABGENIE. Glossary of data types: Key-value: key-value pairs, Graph:
subject-predicate-object triples, Table: tabular data (w/hl: with highlighted cells), Chart: chart data, Logic / SQL:
strings with logical expressions / SQL queries. The datasets marked with : were already present on Huggingface
Datasets. We uploaded the rest of the datasets to our namespace: https://huggingface.co/kasnerz.

.

representation. Each input represented is as a
matrix of m columns and n rows consisting of in-
dividual cells accompanied with metadata (see §2).
Building upon this representation, TABGENIE then
provides multiple features for unified workflows
with table-to-text datasets, including:

1. visualizing individual dataset examples in the
tabular format (§3.1),

2. interacting with table-to-text generation sys-
tems in real-time (§3.2),

3. comparing generated system outputs (§3.2),

4. loading and preprocessing data for down-
stream tasks (§4.1),

5. exporting examples and generating spread-
sheets for manual error analysis (§4.2).

In §6, we present examples of practical use-cases
of TABGENIE in D2T generation research.

2 Data

We currently include 16 datasets listed in Table 1
in TABGENIE, covering many subtasks of D2T
generation. All the datasets are available under a
permissive open-source license.

2.1 Data Format
The inputs in D2T generation datasets may not
consist only of tables, but also of e.g. graphs or
key-value pairs. However, we noticed that in many

cases, converting these formats to tables requires
only minimal changes to the data structure while
allowing a unified data representation and visual-
ization. This conversion narrows down the task of
D2T generation as the task of generating descrip-
tion for a tabular data, i.e. table-to-text generation
(Parikh et al., 2020; Liu et al., 2022; Gong et al.,
2020).

In our definition, a table is a two-dimensional
matrix with m columns and n rows, which together
define a grid of m ˆ n cells. Each cell contains
a (possibly empty) text string. A continuous se-
quence of cells tci, . . . , ci`ku from the same row
or column may be merged, in which case the values
of tci`1, . . . , ci`ku are linked to the value of ci. A
cell may be optionally marked as a heading, which
is represented as an additional property of the cell.2

To better accommodate the format of datasets such
as ToTTo (Parikh et al., 2020) or HiTab (Cheng
et al., 2022), we also allow individual cells to be
highlighted. Highlighted cells are assumed to be
preselected for generating the output description.

The tables may be accompanied with an addi-
tional set of properties (see Figure 2) – an exam-
ple of such a property is a “title” of the table in
WikiBio (Lebret et al., 2016) or a “category” in
WebNLG (Gardent et al., 2017). We represent prop-

2The headings are typically located in the first row or
column, but may also span multiple rows or columns and may
not be adjacent.
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Figure 2: The web interface of TABGENIE. The left panel and the navigation bar contains user controls; the center
panel shows table properties and table content; the right panel contains system outputs.

erties as key-value pairs alongside the table. The
properties may be used for generating the table
description.

2.2 Data Transformation

We aim to present the data as true to the original for-
mat as possible and only make some minor changes
for datasets which do not immediately adhere to
the tabular format:

• For graph-to-text datasets, we format each
triple as a row, using three columns labeled
subject, predicate, and object.

• For key-value datasets, we use two columns
with keys in the first column as row headings.

• For SportSett:Basketball (Thomson et al.,
2020), we merge the box score and line score
tables and add appropriate headings where
necessary.

Moreover, for ToTTo (Parikh et al., 2020), we
also provide our custom, improved header cells
highlighting (details are given in Appendix A).

2.3 Data Loading

To ease the data distribution, we load all the
datasets using the Huggingface datasets package
(Lhoest et al., 2021), which comes equipped with a
data downloader. Out of 16 datasets we are using,
7 were already available in Huggingface datasets,

either through the GEM benchmark (Gehrmann
et al., 2021) or other sources. We publicly added
the 9 remaining datasets (see Table 1).

TABGENIE also supports adding custom data
loaders. Creating a data loader consists of simple
sub-classing the data loader class and overriding
a single method for processing individual entries,
allowing anyone to add their custom dataset.

3 Web Interface

TABGENIE offers a user-friendly way to interact
with table-to-text generation datasets through the
web interface. The interface can be rendered us-
ing a local server (cf. §4.2) and can be viewed in
any modern web browser. The interface features a
simple, single-page layout, which contains a navi-
gation bar and three panels containing user controls,
input data, and system outputs (see Figure 2). Al-
though the interface primarily aims at researchers,
it can be also used by non-expert users.

3.1 Content Exploration

TABGENIE renders input data as HTML tables.
This approach provides superior visualizations to
existing data viewers, especially in the case of large
and hierarchical tables.3

3Compare, e.g., with the ToTTo dataset in Huggingface
Datasets for which the table is provided in a single field called

“table”: https://huggingface.co/datasets/totto
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In the web interface, users can navigate through
individual examples in the dataset sequentially, ac-
cess an example using its index, or go to a random
example. The users can add notes to examples and
mark examples as favorites for accessing them later.
The interface also shows the information about the
dataset (such as its description, version, homepage,
and license) and provides an option to export the
individual examples (see §4.2).

3.2 Interactive Mode

TABGENIE offers an interactive mode for generat-
ing an output for a particular example on-the-fly.
The user can highlight different cells, edit cell con-
tents, and edit parameters of the downstream pro-
cessor. For example, the user can prompt a LLM
for table-to-text generation and observe how it be-
haves while changing the prompt.

The contents of a table are processed by a pro-
cessing pipeline. This pipeline takes table contents
and properties as input, processes them with a se-
quence of modules, and outputs HTML code. The
modules are custom Python programs which may
be re-used across the pipelines.

TABGENIE currently provides two basic
pipelines: (1) calling a generative language model
through an API with a custom prompt, and (2) gen-
erating graph visualizations of RDF triples. We
describe a case-study for the model API pipeline
in §6.2. Users can easily add custom pipelines by
following the instructions in the project repository.

3.3 Pre-generated Outputs

In addition to interactive generation, TABGENIE

allows users to visualize static pre-generated out-
puts. These are loaded in the JSONL4 format from
a specified directory and displayed similarly to
model-generated outputs from the interactive mode.
Multiple outputs can be displayed alongside a spe-
cific example, allowing to compare outputs from
multiple systems.

4 Developer Tools

TABGENIE also provides a developer-friendly in-
terface: Python bindings (§4.1) and a command-
line interface (§4.2). Both of these interfaces aim
to simplify dataset preprocessing in downstream
tasks. The key benefit of using TABGENIE is that it
provides streamlined access to data in a consistent
format, removing the need for dataset-specific code

4https://jsonlines.org

for extracting information such as table properties,
references, or individual cell values.

4.1 Python Bindings

TABGENIE can be integrated in other Python code-
bases to replace custom preprocessing code. With
a single unified interface for all the datasets, the
TABGENIE wrapper class allows to:

• load a dataset from the Huggingface Datasets
or from a local folder,

• access individual table cells and their proper-
ties,

• linearize tables using pre-defined or custom
functions,

• prepare the Huggingface Dataset objects for
downstream processing.

TABGENIE can be installed as a Python pack-
age, making the integration simple and intuitive.
See §6.1 for an example usage of the TABGENIE

Python interface.

4.2 Command-line Tools

TABGENIE supports several basic commands via
command line.

Run The tabgenie run command launches the
local web server, mimicking the behavior of flask
run. Example usage:

tabgenie run --port=8890 --host="0.0.0.0"

Export The tabgenie export command en-
ables batch exporting of the dataset. The supported
formats are xlsx, html, json, txt, and csv. Ex-
cept for csv, table properties can be exported along
with the table content. Example usage:

tabgenie export --dataset "webnlg" \
--split "dev" \
--out_dir "export/datasets/webnlg" \
--export_format "xlsx"

Export can also be done in the web interface.

Spreadsheet For error analysis, it is common
to select N random examples from the dataset
along with the system outputs and manually an-
notate them with error categories (see §6.3). The
tabgenie sheet command generates a suitable
spreadsheet for this procedure. Example usage:
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tabgenie sheet --dataset "webnlg" \
--split "dev" \
--in_file "out-t5-base.jsonl" \
--out_file "analysis_webnlg.xlsx" \
--count 50

5 Implementation

TABGENIE runs with Python >=3.8 and requires
only a few basic packages as dependencies. It
can be installed as a stand-alone Python module
from PyPI (pip install tabgenie) or from the
project repository.

Backend The web server is based on Flask,5 a
popular lightweight Python-based web framework.
The server runs locally and can be configured with
a YAML6 configuration file. On startup, the server
loads the data using the datasets7 package. To
render web pages, the server uses the tinyhtml8

package and the Jinja9 templating language. We
provide details on the computational and memory
requirements in Appendix D.

Frontend The web frontend is built on HTML5,
CSS, Bootstrap,10 JavaScript, and jQuery.11 We
additionally use the D3.js12 library for visualizing
the structure of data in graph-to-text datasets. To
keep the project simple, we do not use any other
major external libraries.

6 Case Studies

In this section, we outline several recipes for us-
ing TABGENIE in D2T generation research. The
instructions and code samples for these tasks are
available in the project repository.

6.1 Table-To-Text Generation

Application Finetuning a sequence-to-sequence
language model for table-to-text generation in Py-
Torch (Paszke et al., 2019) using the Huggingface
Transformers (Wolf et al., 2020) framework.

Process In a typical finetuning procedure using
these frameworks, the user needs to prepare a
Dataset object with tokenized input and output

5https://pypi.org/project/Flask/
6https://yaml.org
7https://pypi.org/project/datasets/
8https://pypi.org/project/tinyhtml/
9https://jinja.palletsprojects.com/

10https://getbootstrap.com/
11https://jquery.com
12https://d3js.org

sequences. Using TABGENIE, preprocessing a spe-
cific dataset is simplified to the following:

from transformers import AutoTokenizer
import tabgenie as tg

# instantiate a tokenizer
tokenizer = AutoTokenizer.from_pretrained(...)

# load the dataset
tg_dataset = tg.load_dataset(

dataset_name="totto"
)

# preprocess the dataset
hf_dataset = tg_dataset.get_hf_dataset(

split="train",
tokenizer=tokenizer

)

The function get_hf_dataset() linearizes the
tables (the users may optionally provide their cus-
tom linearization function) and tokenizes the inputs
and references.

For training a single model on multiple datasets
in a multi-task learning setting (Xie et al., 2022),
the user may preprocess each dataset individually,
prepending a dataset-specific task description to
each example. The datasets may then be combined
using the methods provided by the datasets pack-
age.

Demonstration For running the baselines, we
provide an example script, which can be applied to
any TABGENIE dataset and pre-trained sequence-
to-sequence model from the transformers library.
For multi-task learning, we provide an example of
joint training on several datasets with custom lin-
earization functions. We run the example scripts
for several datasets and display the resulting gen-
erations in the application demo. Details on the
fine-tuned models can be found in Appendix B.

6.2 Interactive Prompting
Application Observing the impact of various in-
puts on the outputs of a LLM prompted for table-
to-text generation.

Process The user customizes the provided
model_api pipeline to communicate with a LLM
through an API. The API can communicate either
with an external model (using e.g. OpenAI API13),
or with a model running locally (using libraries
such as FastAPI14). The user then interacts with the
model through TABGENIE web interface, modify-
ing the prompts, highlighted cells, and table content
(see §3.2).

13https://openai.com/api/
14https://fastapi.tiangolo.com
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Demonstration We provide an interactive access
to the instruction-tuned Tk-Instruct LLM (Wang
et al., 2022) in the project live demo. The user
can use the full range of possibilities included in
the interactive mode, including customizing the
prompt and the input data.15 The interface is shown
in Appendix C.

6.3 Error Analysis

Application Annotating error categories in the
outputs from a table-to-text generation model.

Process The user generates the system outputs
(see §6.1) and saves the outputs for a particular
dataset split in a JSONL format. Through the
command-line interface, the user will then generate
a XLSX file which can be imported in any suitable
office software and distributed to annotators for
performing error analysis.

Demonstration We provide instructions for gen-
erating the spreadsheet in the project documenta-
tion. See Appendix C for a preview of the spread-
sheet format.

7 Related Work

7.1 Data Loading and Processing

As noted throughout the work, Huggingface
Datasets (Lhoest et al., 2021) is a package com-
monly used for data loading and preprocessing.
TABGENIE serves as a wrapper on top of this pack-
age, providing additional abstractions and better
data visualization for D2T generation datasets.

DataLab (Xiao et al., 2022) is another platform
for working with NLP datasets. Similarly to Hug-
gingface Datasets, this platform has much broader
focus than our package. Besides data access, it
offers fine-grained data analysis and data manipu-
lation tools. However, it has limited capabilities of
visualizing the input data or interactive generation
and at present, it does not cover the majority of
datasets available in TABGENIE.

PromptSource (Bach et al., 2022) is a framework
for constructing prompts for generative language
models using the Jinja templating language. It can
be used both for developing new prompts and for
using the prompts in downstream applications.

15Note that using the model for the task of table-to-text gen-
eration is experimental and may not produce optimal outputs.
The model should also not be used outside of demonstration
purposes due to our limited computational resources.

Several tools have been developed for comparing
outputs of language generation systems (notably
for machine translation) such as CompareMT (Neu-
big et al., 2019) or Appraise (Federmann, 2018),
but the tools do not visualize the structured data.

7.2 Interactive D2T Generation

Platforms for interactive D2T generation have been
primarily limited to commercial platforms, such
as Arria,16 Automated Insights,17 or Tableau Soft-
ware18 (formerly Narrative Science). These plat-
forms focus on proprietary solutions for generating
business insights and do not provide an interface
for research datasets. Dou et al. (2018) present
Data2Text Studio, a set of developer tools for build-
ing custom D2T generation systems, but their soft-
ware package currently does not seem to be pub-
licly available.

7.3 Table-To-Text Generation

Although pre-trained sequence-to-sequence models
have been found to be effective for D2T generation
(Kale and Rastogi, 2020; Xie et al., 2022), they
have difficulties with handling the input structure,
generation diversity, and logical reasoning. Multi-
ple works have tried to address these issues. For
a comprehensive review of the field, we point the
interested reader to the recent survey of Sharma
et al. (2022).

8 Conclusion

We presented TABGENIE, a multifunctional soft-
ware package for table-to-text generation. TAB-
GENIE bridges several gaps including visualizing
input data, unified data access, and interactive table-
to-text generation. As such, TABGENIE provides
a comprehensive set of tools poised to accelerate
progress in the field of D2T generation.

Limitations

For some D2T generation inputs, the tabular struc-
ture may be inappropriate. This involves hierarchi-
cal tree-based structures, bag-of-words, or multi-
modal inputs (Balakrishnan et al., 2019; Lin et al.,
2019; Krishna et al., 2017). Due to deployment
issues, TABGENIE also does not include large syn-
thetic datasets (Agarwal et al., 2021; Jin et al.,

16https://www.arria.com
17https://automatedinsights.com
18https://www.tableau.com
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2020). TABGENIE is currently in early develop-
ment stages, which is why it primarily targets the
research community.

Ethical Impact

The table-to-text generation datasets may contain
various biases or factually incorrect outputs, which
may be further reproduced by the table-to-text gen-
eration models. Although our software package
is designed to help to examine and eliminate the
biases and errors, we cannot guarantee the correct-
ness of the processed outputs.

As TABGENIE is an open-source software pack-
age with a permissive license, we do not control
its downstream applications. We advocate using it
for responsible research with the aim of improving
natural language generation systems.
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A ToTTo Header Highlighting

The original ToTTo dataset does not provide ex-
plicit highlighting for the row and column head-
ers of the corresponding cells. The released ta-
ble linearization script includes header linking, but
the header extraction heuristic is prone to errors
in some cases (see, e.g., tables 310 and 838 in
the ToTTo development split). Therefore, we im-
plemented a custom algorithm for incorporating
header highlighting into our dataset version:

1. process raw ToTTo input: restore the rectan-
gular representation of the table including the
merged cells;

2. separate given headers into the column and
row headers;

3. for each highlighted cell, highlight all column
headers above it and all row headers to the
left.

Out of 50 randomly selected tables with high-
lights different from the available ones, our version
was correct and the original version incorrect in 36
cases. Out of the remaining 14 cases, the original
version is correct while ours is not in 5 cases, and
both versions are incorrect in 9 cases. However,

453

https://doi.org/10.48550/arXiv.2206.12131
https://doi.org/10.48550/arXiv.2206.12131
https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.inlg-1.10/
https://aclanthology.org/2020.inlg-1.10/
https://aclanthology.org/2020.inlg-1.10/
https://doi.org/10.3384/nejlt.2000-1533.2023.4529
https://doi.org/10.3384/nejlt.2000-1533.2023.4529
https://aclanthology.org/2021.inlg-1.14
https://aclanthology.org/2021.inlg-1.14
https://aclanthology.org/2021.inlg-1.14
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-demo.18
https://doi.org/10.18653/v1/2022.acl-demo.18
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103


given the complex structure of some tables, our
algorithm can sometimes fail to capture relevant
row headers or mark several extra cells, which we
plan to address in the future.

B Fine-tuned models

For the demo purposes, we have fine-tuned the
following models using our example scripts:

• t5-small for Chart-To-Text, LogicNLG,
ToTTo, WikiTableText;

• t5-base for DART, E2E, WebNLG;

• t5-base in a prefix-based multi-task setup on
E2E and WebNLG, using custom linearization
functions.

All models (individual and multi-task) were fine-
tuned using transformers library. The parame-
ters are the following:

• Epochs: 30 for individual models and 15 for
multi-task,

• Patience: 5 epochs,

• Batch size: 16,

• Optimizer: AdamW,

• Learning rate: 1e-4,

• Weight decay: 0,

• AdamW betas: 0.9, 0.999,

• Maximum input length: 512,

• Maximum output length: 512,

• Generation beam size: 3.

C User Interface

Figure 3 shows the interactive mode in the TABGE-
NIE web interface. Figure 4 shows the spreadsheet
for manual annotations generated using TABGE-
NIE.

D System Requirements

Computational Requirements TABGENIE can
run on a single-threaded CPU, although multiple
threads can speed-up the initial dataset preprocess-
ing.

Memory Requirements After pre-loading all the
currently featured development sets into memory,
TABGENIE consumes around 1 GB RAM.

Disk space Downloading all the datasets requires
around 4 GB of disk space. The directory used
for caching the datasets can be set using the
HF_DATASETS_CACHE environment variable.
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Figure 3: The interactive mode of the web interface in which the user (1) highlighted specific cells (the cells with
the yellow background), (2) edited the input in one of the cells (“Café Sicilia” Ñ “the National Theatre”), (3)
re-generated the model output (see the top right panel). The figure also shows the graph visualization of the input
key-value pairs.

Figure 4: The spreadsheet for manual annotations with a random sample of system outputs exported using
TABGENIE.
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Abstract

Online conversation is a ubiquitous way to
share information and connect everyone but
repetitive idiomatic text typing takes users a
lot of time. This paper demonstrates a simple
yet effective cloud based smart compose sys-
tem to improve human-to-human conversation
efficiency. Heuristics from different perspec-
tives are designed to achieve the best trade-off
between quality and latency. From the mod-
eling side, the decoder-only model exploited
the previous turns of conversational history in
a computation lightweight manner. Besides, a
novel phrase tokenizer is proposed to reduce
latency without losing the composing qual-
ity further. Additionally, the caching mech-
anism is applied to the serving framework.
The demo video of the system is available at
https://youtu.be/U1KXkaqr60g. We open-
sourced our phrase tokenizer in https://
github.com/tensorflow/text.

1 Introduction

Online conversations are happening in every corner
of the world in every second. People relies on dif-
ferent channels like daily chatting apps, e.g. Mes-
sages, WhatsApp, or online customer service to
communicate with friends, families, colleagues and
even acquaintance. Within conversational applica-
tions, efficient and smart assistant functions for
users are long-desired. Smart compose (Chen et al.,
2019) is a well-known smart writing feature that
actively predicts the next couple of words in real-
time to assist human writing. It saves user’s time by
cutting back on repetitive idiomatic writing. In this
paper, we build a smart compose system for chat-
ting applications to improve user’s communication
efficiency and enhance user experience. The out-
look of the demo is shown in Fig 1. We assume two
or multiple users are discussing some random topic
in a chat room. And smart compose is working un-
der the hood to suggest what to type next. The full
demo is in https://youtu.be/U1KXkaqr60g.

Figure 1: Demo of smart compose experiment. We
type in “How” in the input box, the smart compose sys-
tem suggests “can I help” in real time, which is based
on the conversation context.

To the best of our knowledge, although smart
compose is a well-known application, it has not
been well-designed for conversation scenarios.
One basic requirement of smart compose is the
low inference latency. If the next words are not
shown up in less than 100ms, users will likely type
them themselves. And there are two challenges
out of this. The first challenge is the conflict be-
tween latency and long conversation context. Dur-
ing the human-to-human conversation within the
chatting applications, there are multiple turns of
conversation from multiple users, making the con-
versation history informative. Attention over the
whole conversation history would bring too much
latency. However, simply ignoring the conversation
history or using an average embedding of history
to represent previous context (Chen et al., 2019)
is not exploiting the rich information within the
conversational flow between users. Therefore how
to effectively and efficiently extract information
from conversation history is the key consideration
for model designing. The second challenge comes
from the fact that users would prefer a longer sug-
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gestion for conversation but generating a longer
sequence is likely to involve more latency. In the
auto-regressive generative model for example, the
decoding time is linearly growing with the decod-
ing steps. There is no clear solution on how to
avoid the extra latency on the longer suggestion.

In this paper, we proposed a new solution to
address above challenges and built an end-to-end
cloud based smart compose system for human-to-
human chatting applications. Our smart compose
system can achieve high exact match rate with low
latency (less then 100ms) under acceptable sugges-
tion length. Our contributions are three-fold.

• We designed a novel architecture based on
transformer-XL (Dai et al., 2019) 1 to effec-
tively encode history and context information
for composing. Also, it incorporates conversa-
tional features like user id and local position
id to retrain the information effectively.

• We proposed a novel efficient tokenizer called
phrase tokenizer which can increase the sug-
gestion length for composing without sacri-
ficing the quality and latency. This tokenizer
can significantly reduce the latency of the sys-
tem. We open-source our phrase tokenizer
in https://github.com/tensorflow/text
as an extension of the TensorFlow text library.

• We designed the cloud serving mechanism
and addressed the practical issues such as
caching.

2 Related work

One of the most successful applications for smart
compose is Gmail (Chen et al., 2019), where the
title of the email, the previous paragraphs, and the
previous text of the current typing are combined
to predict the next words. Following this success,
similar models have also been used in other appli-
cations like document editing (e.g., Google Docs)
or input method (e.g., Gboard). Although this fea-
ture is not new, previous work mainly focuses on
general writing assist and not is specially designed
for conversation scenarios.

Approach wise, there are two major categories.
The first category is the dual encoder based model
(Gillick et al., 2018; Karpukhin et al., 2020; Yang
et al., 2019) which exploited contrastive learning:

1In practice, we found transformer based system has higher
quality compared to LSTM and thus we build our system with
Transformer.

the predefined whitelist is built in advance, and
the prefix tries to match the most possible one in
the list. This kind of solution is also widely used
in practical retrieval or recommendation systems.
Although the dual encoder is extremely fast, the
predefined whitelist limits the headroom for model
quality from smart compose.

The second category is language modeling, a fun-
damental and indispensable component of many
natural language processing. Recently it is be-
coming even more powerful with a larger model
size (Floridi and Chiriatti, 2020; Thoppilan et al.,
2022; Chowdhery et al., 2022). However, with the
latency requirement, models should be designed
smaller and more light-weighted for the smart com-
pose (Van et al., 2020; Ciurumelea et al., 2020;
Chen et al., 2019). Compared to dual-encoder, it
removes the dependency on the whitelist and could
achieve better matching accuracy. However, as it
is involved with the autoregressive decoding pro-
cess, the latency is generally higher and positive
relative to the number of decoding steps. Although
non-autoregressive based approaches (Zou et al.,
2021) could potentially reduce the latency for text
generation, it has been well-known to suffer from
quality regression.

Our smart compose system is more conversa-
tional oriented and can achieve the best trade-off
between quality and latency. Our model share the
benefit of higher quality with the language model-
ing, but keep the latency low with proposed tech-
niques.

3 Model Design

In this section, we will outline the modeling design.
Firstly, we will first introduce the conversational
inputs for the model and what features we are ex-
tracting from the conversation history. Then we
will go through the model architecture used to take
the conversational input and output the predicted
suggestions. Finally, we will discuss how the loss
is calculated during training and some implementa-
tion details.

3.1 Conversational Inputs

Our smart compose is based on conversational data,
and our data processing strategy is to process the
conversation with the sliding window of fixed size
N, which is the number of conversation turns (in
practice, we choose N equals 10). We tokenize all
N sentences and concatenate the N turns together
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How are ?you I am good

1 1 11 0 0 0

0 1 32 0 1 2

Text:

UserID:

Single-turn 
position id:

Figure 2: Example of conversational features.

to make a single input. Since the conversation
could happen between multiple people, we also
introduce the user id into the model input. The
user id is associated with every token inside each
turn conversation. Besides, we make use of the
single turn position id. Different from the normal
position embedding (Vaswani et al., 2017), which
is calculated for all the input sequences, the single-
turn position id is only for a sub-section of the input
sequence. Furthermore, the N single-turn position
id is concatenated together. The conversational
features are in Fig 2. We found that using the user
id and single-turn position id could achieve lower
perplexity.

3.2 Model Architecture

We use separate embedding matrices to process the
text id, user id, and single-turn position id. Specif-
ically, we have separate embedding matrices for
text-token, user-id, and single-turn position id. We
add embedded vectors together as the final input
embedding.

We feed this input embedding to our transformer
decoder. Our architecture is a decoder-only Trans-
former XL (Dai et al., 2019) model. Note that
the relative position is still in place, although we
have an extra single-turn position id. The overall
architecture is shown in Figure 3.

To reduce the latency, we adopted local attention
(Beltagy et al., 2020) instead of full attention. We
found that even with limited look-back length, the
prediction can be accurate enough. By joint using
Transformer-Xl and local attention, the transformer
architecture is able to perform with lower compu-
tation, and similar to LSTM it can pass the state
during processing the sequence. This helps capture
the context information with little overhead. More
details will be discussed in Section 5.

Text emb User Emb Single-turn 
Position Emb

add

Transformer XL

Predicted Suggestions

Figure 3: Model Architecture used for conversational
smart compose.

3.3 Loss and Training Framework

We right-shift the input as the target and use the
simple cross-entropy loss for the language model
training. To be aligned with our sliding window
data processing, we use a loss mask that only masks
on the "last" turn. This is to ensure we are re-
calculating the cross entropy for each turn. Our
training framework is based on Tensorflow Model
Gardens (Banna et al., 2021).

4 Phrase Tokenizer

Autoregressive decoding is the primary way of gen-
erating text with a Transformer decoder. One draw-
back of this mechanism is the latency issue: with N
output units, the model will forward pass N times
in a sequential manner. In this paper, we design a
token that is beyond a single word (a phrase with n-
gram) and a tokenizer that emits a group of units at
a time, with the fallback mechanism to emit a single
unit so that we can decrease the N (i.e., number of
output tokens) here to reduce the latency. Note that
the basic element of the phrase is a word following
the findings of (Chen et al., 2019) that the word-
based vocabulary can achieve better performance
for smart compose. Nevertheless, our approach can
also be applied to word-piece or sentence-piece
models.

4.1 Ngram phrase Tokens

We build the Ngram dictionary based on the text.
By definition, we treat P1 as the set of unigrams
with higher frequency. Likewise, to build P2 we
collect all word bigrams that occur in the training
set with higher frequency (e.g., greater than a cer-
tain threshold) and augment this set of bigrams
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with the P1. Moreover, we can build P3 and Pk

similarly.

4.2 Random Tokenizing Process

Once we have the Ngram phrase token set ready,
the intuitive solution for tokenization is to tokenize
the input text string from left to right to maximize
the current N in NGram. This greedy method, how-
ever, can not work well in the smart compose ap-
plication. The reason is that a user can stop at any
word. Using the example of the phrase “How are
you", if the model always treats this as a single
token during training, it can never make the right
next word prediction when the user types “How
are". Therefore we should consider both phrase
and individual word simultaneously.

To solve this problem we designed a random
picking process when tokenizing the input text. The
main idea is whenever there is multiple way to tok-
enize a phrase or sentence, we randomly pick one
of them. We still enforce the left-to-right manner
here. To efficiently find all the possible phrase from
certain point, we leverage the Double Array Trie
(Yata et al., 2007), which provides the function of
iteratively finding the prefix match of a given text
string. We introduce the additional parameter prob
as input, which denotes the probability of choos-
ing the current prefix match as opposed to finding
a longer one. This randomness ensures that the
model can see both phrase tokens and single-word
tokens. We summarize our tokenization process in
Algorithm 1.

5 Serving System Design

We will discuss the serving system design and
heuristics in this section. Specifically, we will in-
troduce how we design the inference graph to take
advantage of the caching of conversation history.
Besides, we will illustrate the server-side compo-
nents of the system.

5.1 Inference Heuristics

To alleviate the burden of the server, we move com-
plicated logic into the inference graph and serve
this inside a standard servo. Specifically We put
both the phrase tokenizer and the greedy(beam)
search process inside the inference graph. We also
customized the greedy or beam search process. To
make sure <UNK> will not become the output, we
regard the <UNK> token as a <EOS> token and up-
date the log probability as the previous one when

Algorithm 1 Random-picking tokenization

Require: raw_input
Require: A Double Array Trie that contains all

phrases trie
Require: The prob of emitting the phrase prob
0: tokens = []
0: wordlist = WhiteSpaceTokenizer(raw_input)
0: concat wordlist with space as input
0: len = len(input)
0: while doi < len
0: matches = trie.IteratePrefixMatches(input(i:))
0: for domatch ∈ matches
0: if RandomGen() > prob then
0: i+ = match.length
0: tokens.append(match.id)
0: Break
0: end if
0: end for
0: end while
0: Output tokens =0

stopping at the <UNK>.
Since the conversation for chat is usually multi-

turn and short, we use Transformer XL to encode
the previous turns into model states and provide
two sub-inference graphs to handle the caching
and suggestions. The first sub graph takes in the
previous conversation history and encode the states
as

States = Model(ConversationHistory) (1)

The States is tensors of the intermediate output
for TransformerXL. We will cache this States and
do compose for any current user input as.

Suggestions = Model(CurrentInput,States) (2)

5.2 Serving Flow

The serving infra of smart compose consists of the
API front-end, prediction, and cache layers. The
front-end layer receives conversational data, trun-
cated according to sliding window size N, separated
into the conversation history storing the previous
conversation turns, and the current input storing
the current message being typed. Such data can
then be packed into sequential servo prediction re-
quests sent to the prediction layer for states and
suggestions. Furthermore, by adding the cache
layer, we can further store the value of states keyed
by their conversation history so that when multiple
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smart compose suggestions are requested at various
keystrokes of the same current input message, the
prediction request for a state can be swapped by a
cache retrieval as the conversation history stays the
same, and hereby reduce the latency.

6 Experiments

6.1 Data and Model Setup

Our experimental data is based on conversational
data collected in existing conversational apps. We
use the previous 10 conversation as conversation
history and restrict the max sequence length as 256
tokens. For the model configuration, we used the
the transformer with 8 attention heads. The input
dimension as well as model dimension is set to
256 and the dimension of feed-forward network
is set to 1024. We did not find dropout useful, so
the models are trained without dropout. All the
models for experiments presented in this paper are
trained on 8x8 Dragonfish TPU with a per-core
batch size of 32 (effective batch size of 4096). The
learning rate schedule is ramped up linearly from
0 to 8.0e−4 during the first 10,000 steps, and then
it decays exponentially to zero till 500,000 steps.
We use CPU for serving. The total model size is
around 5MB.

6.2 Results

We mainly use the exact match to measure the ac-
curacy of the model. For latency, the cpu based
servo load-test is used.

6.2.1 XL and Local Attention

We first evaluate how much XL and local atten-
tion could help in the smart compose tasks. In the
composing task, the latency is related to the num-
ber of decoding steps. Meanwhile, for the quality
side, the more decoding steps, the worse the exact
match.

Using local attention can effectively reduce la-
tency because of two reasons. First, it will have a
smaller payload for RPC requests, as the local at-
tention span decides the tensor size of model states.
Secondly, it reduces the model computation, espe-
cially the computation of self-attention. Table 1
compares the latency with different attention spans.
We found that local attention can effectively reduce
the latency by a large ratio. However using the lo-
cal attention does not give much penalty for exact
match. As shown in Table 2.

Server latency (ms) Total latency (ms)

full attn 19.3 23.4
attn=32 14.1 16.6
attn=8 12.6 13.4

Table 1: Comparison of Latency of transformer XL
with location attention to its counterparts. Attn means
the ”length of local attention".

DS=1 DS=2 DS=3 DS=4 DS=5

full attn 88.6 69.1 56.5 49.4 45.9
attn=32 88.5 69.0 56.5 49.4 45.8
attn=8 87.4 68.0 54.6 48.4 44.7

Table 2: Comparison of Exact Match of transformer XL
with location attention to its counterparts. "DS" means
"decoding steps".

6.2.2 Phrase Tokenizer

We evaluate the effectiveness of the proposed
phrase tokenizer in this section. To better illus-
trate the suggestion length, another critical factor
for smart compose, we will look at two more ad-
ditional metrics besides exact match. The first one
is average length, which measures the length of
the phrase (i.e., number of words) in the predic-
tion when it is a correct prediction. The second
one is effective length. This is also considering the
correctness when calculating the prediction length,
i.e., if the prediction is wrong, we will treat it as 0.
Please note that these two metrics only give partial
evidence of the composing quality.

For both the word level and phrase level tokens,
we use the vocabulary of 60,000 tokens. For phrase
level, we combine single words and phrases: we
pick 30,000 single-word tokens and 30,000 phrase
tokens which have 2-5 single words. We found that
combining them can achieve the best quality.

We compare two tokenizers using the same
model architecture, the word-based tokenizer, and
the phrase-based tokenizer. The results are sum-
marized in Table 4. For the word-based compose,
we decode up to 5 steps. While for phrase-based
compose, we only need to decode up to 2 steps.
When the phrase-based model decodes two steps,
and the word-based model decodes 4 or 5 steps,
they achieve similar prediction length and exact
match performance. In other words, with a phrase
tokenizer, decoding two steps has the same quality
effect as decoding 4-5 steps with a word tokenizer.
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Prefix Phrase tokenization Steps Word tokenization Steps

Hi "How are you" 1 "How", "are", "you" 3
I would "like to thank you" 1 "like", "to", "thank", "you" 4
May I "know when you have", "time" 2 "know", "when", "you", "have", "time" 5
Don’t "worry about", "it" 2 "worry", "about", "it" 3
How "can I help you" 1 "can", "I", "help", "you" 4
We "have to", "send it", "to", "him" 4 "have", "to", "send", "it", "to", "him" 6

I’ll be "more than happy to", "help you" 2 "more", "than", "happy", "to", "help", "you" 6
Can you "tell me", "what is", "wrong" 3 "tell", "me", "what", "is", "wrong" 5

Table 3: Case Study of Phrase tokenzier VS Word tokenizer. When using the phrase tokenizer, fewer decoding
steps is required to compose the same length as the word level tokenizer.

Metric Tokenization DS=1 DS=2 DS=3 DS=4 DS=5

Exact Match
Word 87.4 68.0 54.6 48.4 44.7
Phrase 67.2 46.2 - - -

Average Length
Word 1 1.991 2.879 3.692 4.43
Phrase 2.132 4.384 - - -

Effective Length
Word 0.874 1.345 1.572 1.786 1.98
Phrase 1.432 2.027 - - -

Table 4: Performance comparison between phrase tokenizer and word tokenizer. The phrase tokenizer can achieve
a similar composing length and exact matching rate with fewer decoding steps. "DS" refers to "decoding steps".

Latency (ms) / Steps
1 2 3 4 5

3.9 7.5 9.5 12.6 14.8

Table 5: Latency Per steps.

However, decoding only two steps can achieve sig-
nificantly lower latency, as shown in Table 5.

To illustrate how the phrase tokenizer behaves
differently from the word level tokenizer, we show
examples in Table 4. Our phrase tokenizer contains
common phrases for daily conversations, such as
“How are you”, “can I help you”, and “more than
happy to”. With these phrases as tokens, our so-
lution can largely reduce the decoding steps and
the latency. Furthermore, besides common phrases,
phrase tokenizer contains single words as tokens,
for example, “to”, “it”, “him”, “wrong”. These
single-word tokens extend the granularity and di-
versity of tokens and ensure composing quality.

6.3 Demonstration

In this section, we demonstrate how the conversa-
tional smart compose system works. More details
are described in the demo video. The user input

interface is shown in Figure 1. While a user can
type messages in the text box, the smart compose
model will provide real-time suggestions. If the
user is satisfied with the suggested text, the user
can accept this suggestion; if not, the user can con-
tinue typing, and new suggestions will be shown
along with user types. The lower latency comes
from the model architecture, phrase tokenizer, and
caching mechanism during serving.

7 Conclusion

In this paper, we demonstrate a simple and efficient
conversational smart compose system. Our model
is adopted from Transformer XL and effectively
encodes history and context information to be used
during composing. We proposed a novel and effi-
cient tokenizer called phrase tokenizer to reduce
latency for composing applications. Efficient serv-
ing heuristics and caching is also applied. With all
the merit above, our demo achieved long, accurate
and real-time typing suggestions for the conversa-
tion. We open-sourced the phrase tokenizer as a
part of tensorflow text library.
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Abstract

We present a human-in-the-loop dashboard tai-
lored to diagnosing potential spurious features
that NLI models rely on for predictions. The
dashboard enables users to generate diverse and
challenging examples by drawing inspiration
from GPT-3 suggestions. Additionally, users
can receive feedback from a trained NLI model
on how challenging the newly created example
is and make refinements based on the feedback.
Through our investigation, we discover several
categories of spurious correlations that impact
the reasoning of NLI models, which we group
into three categories: Semantic Relevance, Log-
ical Fallacies, and Bias. Based on our findings,
we identify and describe various research op-
portunities, including diversifying training data
and assessing NLI models’ robustness by creat-
ing adversarial test suites.

https://dcc.lingvis.io

1 Introduction

The availability of crowdsourced large-scale
datasets has been influential in the field of natu-
ral language processing. These datasets have em-
powered advancements in a wide range of down-
stream tasks, including the natural language in-
ference (NLI) task (SNLI; Bowman et al., 2015).
While being influential, crowdsourcing frameworks
can introduce artifacts, biases, and spurious correla-
tions that can negatively impact the robustness and
out-of-domain generalization of the models that
are trained on such datasets (Jia and Liang, 2017;
McCoy et al., 2019).

A spurious correlation exists when a feature
correlates with the target label while there is no
causal relationship between the feature and the la-
bel. For example, the fact that a sentence includes
the word “amazing” (as a feature) might correlate
with a positive sentiment but does not cause the
sentiment label to be positive, as one can imagine

crafting a sentence like “the amazing concert was
ruined by the terrible acoustics in the venue”, which
has a negative sentiment. It has been shown that
such spurious correlations exist in crowdsourced
datasets (Gardner et al., 2021), and this will prevent
models that are trained on these datasets from per-
forming on adversarial or out-of-domain test sets
(McCoy et al., 2019).

One approach to prevent a model from relying
on spurious correlations between a feature and the
label is to break such correlations by providing
counterfactuals during training. In this context,
counterfactuals are data points that contain the fea-
ture but have a different label. Following our pre-
vious example, “the amazing concert was ruined
by the terrible acoustics in the venue” is a counter-
factual sentence since it contains the word “amaz-
ing” but has a negative sentiment. Augmenting
datasets with counterfactuals can break the spuri-
ous correlations and help the model to generalize
to out-of-domain examples. However, generating
counterfactuals is challenging; it involves first iden-
tifying noncausal features that correlate with the
label, i.e., spurious correlations, and then generat-
ing the counterfactuals for a given feature.

One simple approach to generate counterfactuals
is through minimal edits. In this approach, the
first step—identifying spurious correlations—is
bypassed. Therefore, counterfactuals are generated
without targeting any specific feature. To generate
a counterfactual, existing data points in the dataset
are edited minimally such that they have a different
label compared to their original one. While such an
approach is scalable and can be effective in certain
scenarios (Khashabi et al., 2020), creating counter-
factuals through minimal edits does not necessarily
improve the generalization of models and might
even hurt the performance (Huang et al., 2020).
Therefore, there is a need for a more nuanced and
innovative approach to counterfactual generation.

In this paper, we propose a data-centric approach
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Figure 1: The three main phases in our interactive dashboard. In the first step, [U1], [U2], the user understands the
main data point and the prediction of the model on that data point. In the second step [D1], [D2], the user diagnoses
the similarities and differences between other data points in the dataset and the main data point. In the last step,
[R1], [R2], the user revises GPT-3 suggestions using the feedback from the model and submits a counterfactual.

to counterfactual generation. First, we identify ex-
isting counterfactuals in datasets, which we term
data-constrained counterfactuals (DCC). Sec-
ond, using our interactive dashboard, we diagnose
features that spuriously correlate with their label
by comparing and contrasting the DCC with other
data points in the dataset. Lastly, we generate a di-
verse set of counterfactual examples with the help
of GPT-3 (davinci-003; Brown et al., 2020).

Overall, our dashboard offers a human-in-
the-loop, or more generally, a mixed-initiative
approach. A user can diagnose spurious corre-
lations and common patterns that result in NLI
models’ inability to predict the labels correctly.
Finding such weak spots can provide ways to
improve the NLI model. Furthermore, after the
user has generated a set of new counterfactuals,
the NLI model can give feedback on how valuable
each counterfactual is by expressing its uncertainty
in predicting the sample’s annotated label. This
can help the user to revise the counterfactual and
improve the usefulness of the generated set.

While our dashboard can be extended to various
tasks in natural language processing, we focus on
the NLI task in this work. Using our dashboard, we
find a variety of features that correlate spuriously
with labels. We categorize these features into three
categories, which we name: Semantic Relevance,
Logical Fallacies, and Biases. We further find a
category of samples that are annotation artifacts.
Based on these findings, and with the help of our
dashboard, one can create novel counterfactuals to
assess the robustness of NLI models or use them to
augment training sets.

2 Preliminaries

Before introducing our approach, we first go
through some preliminaries. We briefly describe
the NLI task and a tool called Data Maps.

Natural Language Inference (NLI). We employ
our dashboard for the NLI task. The task is to
determine whether a premise entails, contradicts,
or is neutral to a hypothesis (Condoravdi et al.,
2003; Dagan et al., 2006; Bowman et al., 2015).
As with many other NLP tasks, neural NLI models
have been shown to rely on spurious correlations
(Gardner et al., 2021). For example, they often
predict contradiction when the hypothesis contains
the word “not”. To obtain some hints on whether a
model is relying on spurious correlations, we use
data maps, which we describe next.

Data Maps. Swayamdipta et al. (2020) propose
a tool called Data Maps to diagnose the character-
istics of datasets with respect to a model’s behavior
during training. They propose two axes to locate
each training data point in two dimensions. First,
the confidence is defined as the average probability
that the model assigns to the true label throughout
training checkpoints, and second, the variability
of its confidence across the checkpoints. They iden-
tify three different regions in data maps: i) a region
consisting of data points where the model has high
confidence with low variability, i.e., easy to learn
data points, ii) a region consisting of data points
where the model’s confidence on the true label fluc-
tuates a lot (high variability), i.e., ambiguous data
points, and iii) a region where the model has low
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confidence on the true label with low variability,
i.e., hard to learn data points.

In this paper, we employ data maps at two stages.
First, in §3 we discuss how to use data maps to
locate DCCs. Second, we incorporate data maps in
our interactive dashboard and further provide esti-
mates of the location of newly created data points
in the data map. Such an estimate gives early feed-
back to the user on how challenging it could be for
the model to predict the label of the generated coun-
terfactual. The user can then act on this feedback
by revising the counterfactual.

3 Data-Constrained Counterfactuals

In this work, we propose to start with finding exist-
ing counterfactuals in datasets. We will later use
these counterfactuals in our dashboard §4 to find
spurious features and generate new data points.

A data-constrained counterfactual is a data point
that shares some features with other data points in
the dataset but has a different label. Further, we
want to make sure that the model is sensitive to
the spurious correlation. Therefore, it should not
be easy for the model to label a DCC correctly.
We provide the following formal definition of data-
constrained counterfactuals.

Definition 1. A data point is a data-constrained
counterfactual (DCC) when it satisfies two condi-
tions: i) there exists other data points in the train-
ing set that are similar to this data point but have a
different label, and ii) it is not easy for the model
to label it correctly, i.e., it falls into either the hard-
to-learn or the ambiguous region in the data map.

This definition relies on a notion of similarity;
thus, to identify DCCs we need to provide a sim-
ilarity metric between data points. Following Liu
et al. (2022), we define the similarity between data
points as the cosine similarity between the [CLS]
embedding of data points given by the underlying
model. This will give us a tractable measure to find
similar data points in large datasets without any
manual inspection of the data.

A caveat to Def. 1 is that many data points in
the hard-to-learn region have been found to be mis-
labeled (Swayamdipta et al., 2020). To filter out
samples that are likely to be mislabeled, we only se-
lect samples that have multiple annotations, where
a large1 majority of annotators agree on the label.

1≥ 75%, as most multiple-annotated SNLI samples have
four label annotations.

4 Visual Interactive Dashboard

In this section, we describe the tasks that users
can perform during the interactive counterfactual
generation process. We categorize these tasks using
the explAIner framework (Spinner et al., 2020).

4.1 Understanding
First, the user is provided with enough informa-
tion and supporting visuals to understand the DCC
that is being selected. This involves two tasks, ex-
plained below.

[U1] Data-Constrained Counterfactuals. The
premise, hypothesis, and label of the DCC are
shown to the user. This ensures that the user can
get an initial understanding of the example and the
annotators’ reasoning.

[U2] Data Map Contextualization. The ground
truth labels of the selected DCCs are inherently
hard for the model to predict (see Def. 1). There-
fore, it is helpful for the user to understand how the
model reasons about the data point, i.e., how likely
it is that the model predicts the correct label (con-
fidence) and how often its prediction varies across
different checkpoints (variance). To this end, we
locate the selected data point in the data map (see
Fig. 1 black data point) and visualize the data map
in our dashboard.

4.2 Diagnosing
Next, we aim to diagnose the reason that the DCC
ends up being a counterfactual. As mentioned ear-
lier, we aim to find features that correlate spuriously
with the label. To find common features between
the DCC and other data points in the sentence, we
visualize similarities and differences between the
DCC and other data points in the dataset. This
involves performing two tasks explained below.

[D1] Nearest Neighbor Similarities. We show
two different sets of sentences in separate boxes
and locate both sets in the data map. First, the set
of sentences that are most similar to the DCC (in
the blue box in Fig. 1). By definition (Def. 1), the
most similar data points will have a different label
compared to the selected data point. By comparing
the DCC with the most similar data points, one
might be able to find structures or patterns that are
shared between the two. Those can be features that
spuriously correlate with the label. Second, we
depict the set of most similar data points with the
same label as the data point (orange box in Fig. 1).
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There might be more than one DCC breaking the
spurious correlation in the dataset, and visualizing
similar data points with the same label can help the
user discover such examples and their similarities
to the DCC. In sum, investigating the similarities
and differences between these two sets will help the
user to diagnose potential spurious features that are
shared between the sets and correlate with the label.

[D2] NLI Label Differences. We are interested
to determine which sentences in the training dataset
may have influenced the DCC being mislabeled.
For very similar samples, the labels of the nearest
[CLS] neighbors are a strong indication of what the
model would predict for the seed sample. There-
fore, we visualize the label of nearest neighbors in
the data map using three distinct shapes.

4.3 Refining

We will assist the user to create counterfactuals
similar to the DCC, by pulling suggestions from
GPT-3. The user can then refine the suggestion
based on the feedback from the model.

[R1] GPT-3 Suggestions. Following (Liu et al.,
2022), we use similar sentences with the same label
to prompt GPT-3 and create suggestions. Ideally,
GPT-3 would find the reasoning pattern and gen-
erate a valid counterfactual sentence. However, as
one can imagine GPT-3 might fail to generate a
valuable sample for several different reasons, e.g.,
it might generate an example that is semantically
close to the DCC but the reasoning is not aligned
with the DCC. Another reason would be to gener-
ate an example that is easy for the model to learn.
Therefore, we ask the user to refine this new exam-
ple before adding it to the dataset.

[R2] Data Map Location Estimation. One of
the common errors with GPT-3 suggestions is that
the suggestion might be easy for the model to learn.
To filter those suggestions, after labeling the exam-
ple, the user can request an estimate of the data map
location. To ensure low latency for estimating the
data map location of new examples, we do not re-
train the model. Instead, we receive the label from
the user and use the saved checkpoints to measure
the confidence of the model on the true label and
its variance across the checkpoints. The user can
then iteratively refine the example if it ends up in
the easy-to-learn region.

Figure 2: Example of GPT-3 few-shot prompting. The
few-shot examples are the nearest neighbors with the
same label as the DCC, ordered in increasing DCC
similarity, and finally, the DCC. The word setting the
premise in context with the hypothesis can be either
Implication, Possibility, or Contradiction, depending
on whether the DCC is labeled entailment, neutral, or
contradiction.

5 Experimental Setup

The components of the dashboard are shown in
Fig. 1. The filtering of potential DCCs described
in section §3 was performed on the SNLI dataset
(Bowman et al., 2015).2 We compute the nearest
neighbors of the DCCs according to the cosine sim-
ilarity between the [CLS] embeddings extracted
from a ROBERTA-large model (Liu et al., 2019)
trained on SNLI. The data map was generated
following (Swayamdipta et al., 2020), where six
end-of-epoch checkpoints of the SNLI ROBERTA-
large model were used to estimate the data map
location.

Suggestions are generated by few-shot prompt-
ing the GPT-3 davinci-003 model (Brown et al.,
2020) using four nearest neighbors to the DCC with
the same label, exactly following (Liu et al., 2022),
as they argue that the model may employ similar
reasoning for such nearest neighbors. An example
of such a prompt is shown and described in Fig. 2.

6 Findings

By interacting with the dashboard ourselves in mul-
tiple sessions, we find interesting patterns and many
DCC instances following those patterns. In this sec-
tion, we provide a categorization of our findings.

2DCC definition relies on having a large set of samples
with multiple annotations, which is available in SNLI dataset.
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We find three high-level features that correlate
spuriously with the label, which we name: Seman-
tic Relevance, Logical Fallacies, and Bias. Further-
more, we discovered another category that surfaces
artifacts in the data collection procedure. Next,
we will go through and explain each category, and
further, provide some examples.

6.1 Semantic Relevance
We find many instances in the dataset where the
hypothesis is the rephrased version of the premise.
Clearly, in those cases, the gold label is entailment,
e.g., (1).

(1) Premise: A man in blue shorts and a t-shirt
is slicing tomatoes on a dining table. entails
Hypothesis: A man prepares tomatoes by
slicing them at the table.

However, if such examples dominate the dataset, a
trained model might associate the entailment label
to any premise and hypothesis that are semantically
relevant to each other. The semantic relevance is a
spurious feature, as one can imagine counterfactual
examples where the premise and hypothesis are
semantically related but the premise does not entail
the hypothesis. One DCC that contains this feature
is (2).

(2) Premise: A large group of people are walk-
ing towards something, and most of them
have backpacks. is neutral to
Hypothesis: A group of people move to-
ward something that requires the use of a
backpack.

In this example, while premise and hypothesis are
semantically related, the word “requires” in the
hypothesis makes the hypothesis to neutral to the
premise, while the NLI model predicts the entail-
ment label.

6.2 Logical Fallacies
Another common pattern we find in the dataset is
hypotheses that become neutral to the premise by
mentioning extra details.

(3) Premise: A woman in a black dress and flat
shoes holds her head as she waits to cross
the street. is neutral to
Hypothesis: The woman is carrying a purse.

For example, in (3) the premise describes the ap-
pearance of a woman but does not mention any-

thing about whether she is carrying a purse. There-
fore, the hypothesis is referring to an extra piece of
information that was not mentioned in the premise
and thus, is neutral to it. If such examples dominate
the dataset, a trained model might associate any ex-
tra information in the hypothesis with a neutral
label. However, in some scenarios, the presence of
logical clues in the premise will result in a different
label. Such a DCC in the data is shown in (4).

(4) Premise: A man wearing only red pants
does a trick on a ladder. contradicts
Hypothesis: The man is wearing a black
shirt.

In this example, while the premise does not directly
talk about whether the man is wearing a black shirt
or not, the word “only” indicates that the hypothesis
is in fact, false. However, the NLI model predicts
the neutral label.

6.3 Biases

As with many other datasets, NLI datasets con-
tain instances of different sorts of biases. Gender
stereotypes in professions are one example.

(5) Premise: A wrestler is jumping off of the
ring to hit his competitor. is neutral to
Hypothesis: Two men are competing in a
wrestling match.

In the above example (5), while there is no mention
of the gender of wrestlers in the premise, the model
predicts that the hypothesis entails the premise.
This could be due to the fact that wrestling is stereo-
typically associated with men.

(6) Premise: A woman, man, and two children.
is neutral to
Hypothesis: A family.

Another example is (6), where we do not know the
woman, man, and two children that the premise is
describing are in fact a family. However, the model
predicts entailment as the label for this example.

6.4 Artifacts

The last category of examples is the existing arti-
facts in the dataset that surfaces in our dashboard.
We find several examples where the hypothesis is
completely irrelevant to the hypothesis, but their
labels are inconsistent and often wrong.
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(7) Premise: A child and woman exchange
glances. contradicts
Hypothesis: a bird was on rocks.

(8) Premise: A little child playing in water with
a hose. entails
Hypothesis: a bird was on rocks.

While both examples (7) and (8) should have a
neutral label, they are labeled as contradiction and
entailment.

7 Discussion

The visual interactive dashboard for diagnosing
spurious correlations and counterfactual generation
can open up research opportunities in the following
domains:

Bi-Directional Explanation of Reasoning Pat-
terns. Our dashboard opens up a possibility for
efficient collaboration between humans and AI. AI
can help humans to find and group similar struc-
tures. As can be seen in our dashboard, similarities
in the representation space of NLI models often
capture similar structures. On the other hand, hu-
mans can explain the reasoning to AI. This can
happen by generating new examples that follow a
particular line of reasoning that is challenging for
the AI model to learn, which can result in improv-
ing AI models.

Diversifying Training Data based on DCC. Re-
ceiving an estimate of model confidence during
refinement ([R2]) enables the user to understand
and pinpoint the patterns that pose a challenge to
the model. Given the user has established such
an understanding, they can produce samples that
target a specific reasoning pattern. Further, GPT-3
suggestions assist the user by providing a diverse
set of examples that follow the desired reasoning
pattern. Therefore, the process allows us to aug-
ment potentially biased training datasets with a
large, diverse set of counterfactuals. Conducting a
thorough investigation, including large-scale expert
annotation, model-retraining, and benchmarking is
still required and will be part of future work.

Towards more Robust NLI Models. The coun-
terfactual samples generated using our dashboard
can be used as adversarial test suites for evaluat-
ing existing models. As a proof-of-concept, we
generate a small set of such samples through our
dashboard to evaluate a model trained on WaNLI

data (Liu et al., 2022),3 which itself was trained to
be more robust and results in state-of-the-art results
on various NLI test suites. The WaNLI model only
achieves an accuracy of around 30% on our gener-
ations. This hints at the potential of our proposed
annotation workflow for generating test suites to
evaluate the robustness of NLI models.

8 Related Work

Other tools have been proposed for counterfactual
generation. For example, POLYJUICE (Wu et al.,
2021) introduces an automated counterfactual gen-
eration based on minimal edits. Counterfactuals
are created using a fixed set of control codes to edit
the existing sentences in the dataset.

Further, systems have been developed for mixed-
initiative adversarial sample generation. ANLI
(Nie et al., 2020) introduces an adversarial sample
generation framework, where annotators are tasked
to write hypotheses that may fool the model for a
given context (i.e., a premise and label). Following
a similar framework, Dynabench (Kiela et al.,
2021) presents a more general-purpose dashboard
for adversarial generation using model predictions
and explanations as feedback to the user.

Compared to the methods described above,
our proposed approach aims to first diagnose
potential spurious correlations through DCCs,
and then generate counterfactuals based on the
found spurious correlations via prompting large
language models. Furthermore, our dashboard
gives feedback to users during the refinement stage
by providing them with data map estimates for
newly generated counterfactuals.

9 Conclusion

We present a dashboard to diagnose spurious corre-
lations and artifacts that an NLI model may have
acquired during training. We first provide a system-
atic approach to find data-constrained counterfactu-
als, i.e., existing counterfactuals in the dataset. We
then feed the DCCs to our dashboard, where we
contextualize them in the data map and also high-
light the most similar data points in the dataset. By
investigating similarities and differences between
the data points, we were able to diagnose several
spurious correlations, which we categorize into
three different groups and a category of artifacts.
Furthermore, we incorporate GPT-3 suggestions to

3We used the roberta-large-wanli model released on
huggingface (Wolf et al., 2020).
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allow for effective and diverse model-in-the-loop
adversarial data generation. Therefore, our dash-
board opens up future work on adversarial test suite
generation and counterfactual augmentation.
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Abstract

We demonstrate an interactive system to help
operations research (OR) practitioners convert
the mathematical formulation of optimization
problems from LaTeX document format into
the solver modeling language. In practice, a
manual translation is cumbersome and time-
consuming. Moreover, it requires an in-depth
understanding of the problem description and
a technical expertise to produce the modeling
code. Thus, our proposed system LATEX-
SOLVER helps partially automate this conver-
sion and help the users build optimization mod-
els more efficiently. In this paper, we describe
its interface and the components of the hier-
archical parsing system. A video demo walk-
through is available online.1

1 Introduction

Operations Research (OR) is a useful yet complex
framework for optimal decision-making. For in-
stance, OR has been used to increase bike-share
ridership and efficiency (Beairsto et al., 2021), or
to optimize wastewater collection and treatment
(Tao et al., 2020) in cities. Despite its impor-
tance in many fields, the OR process is both time-
consuming and knowledge-intensive. First, the
problem specifications provided by domain experts
must be formulated in mathematical form (Carter
and Price, 2017). Then, the formulation needs to
be converted into a model code that optimization
solvers can interpret. Next, data parameters must
be collected and used to instantiate the optimization
model. Finally, a proper solver needs to be selected
to solve the given problem and find an optimal solu-
tion. Traditionally, the domain expert hires an OR
expert to handle these strenuous tasks and build the
right model for the problem of interest.

There are two shortcomings in the above process,
which increases the project cost and duration.

1https://bit.ly/3kuOm3x

1. First, the formulation needs to be written
twice. OR experts typically write the problem
formulation as a LaTeX document contain-
ing both natural language (NL) descriptions
and math formulas. Then, they translate it
into code using a solver-specific modeling lan-
guage. This manual work creates a bottleneck
and a mental overhead for the OR experts.

2. Second, the optimization models are saved
in two different formats namely the LaTeX
document format and the modeling code for-
mat. This makes it difficult to manage, edit or
share the optimization models. Even if soft-
ware versioning systems can be used to track
the document or code changes, they are quite
limited and cumbersome for this purpose.

To address these shortcomings, we introduce LA-
TEXSOLVER, an interactive system that takes as
input the problem description of a model in LaTeX
and partially automates its translation into model-
ing code. To the best of our knowledge, this is the
first modeling tool that accepts an unstructured and
multi-modal LaTeX document as input format.

Moreover, we introduce a unified symbolic
model representation, which decouples the transla-
tion procedure into two stages. First, our system
combines information extraction methods (i.e., text
segmentation, entity recognition, relation extrac-
tion) with grammar-based parsing to extract the
symbolic model. In the second stage, our system
uses the actual data parameters to instantiate the
symbolic model and generate the modeling code.

Finally, our intuitive user interface displays the
symbolic model as a graph of the model elements
as shown in Figure 1. Each node shows the formula
and metadata of an element and allows the user to
review and edit it before it is turned into modeling
code. This added flexibility puts the user in control.
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Figure 1: Screenshot of the LATEXSOLVER interactive application. The system displays the parsed symbolic
model graphically where the user can interact with the cards representing different modeling components. The
right panel empowers the user to revise each component efficiently and with ease.

2 Related Work

Modeling aid tools for operations research.
Past efforts to improve the experience of model
builders has centered around creating better mod-
eling languages. While they can enable rapid pro-
totyping (Koch, 2004), the modeler still needs to
learn these languages and manually convert the
mathematical formulation into an equivalent code.

To alleviate the technical barriers and make
solvers more accessible, alternative input formats
have also been proposed such as Excel spreadsheets
(Lin and Schrage, 2009), web forms (Triantafyllidis
and Papageorgiou, 2018; Esche et al., 2017), and
natural language (IBM, 2022). In comparison, our
system is the first to accept a multi-modal markup
document that contains natural language descrip-
tions as well as mathematical equations.

Information extraction from scientific docu-
ments. Recently, information extraction from sci-
entific documents has received increasing research
interests. In fact, scientific documents are different
from natural language texts due to the syntactic
difference and to the presence of symbols and for-
mulas (Lai et al., 2022). (Beltagy et al., 2019)
proposed SciBERT is an example of a pre-trained
language model on corpora for different scientific
domains. SciBERT was used in Lee and Na (2022)
and Popovic et al. (2022) as the backbone for entity
recognition and relation extraction tasks. Moreover,
Lee and Na (2022) reframed entity recognition and
relation extraction tasks as machine reading com-
prehension to leverage the mathematical knowl-

edge learned by SciBERT. For our system, we also
adopt SciBERT and fine-tune it using our labeled
dataset for the information extraction tasks. In addi-
tion, we use a neural text segmentation and labeling
model as the first step to divide the input markup
document into declaration segments.

Program synthesis and math word problems.
Language models pretrained on source code have
shown some promising performance in generating
or summarizing computer programs (et al., 2021).
These models have also been used to generate pro-
grams that solve math problems (Drori et al., 2022).
Nonetheless, recent studies have shown that even
the largest models such as Codex can still halluci-
nate and produce erroneous code (Xu et al., 2022).
Direct translation from an unstructured markup lan-
guage to code is an under-explored task and current
techniques does not deliver consistently accurate
results. Instead, we divide it into smaller tasks and
simplify the parsing by leveraging grammar-based
parsers.

3 System Overview

Figure 1 showcases the graphical user interface of
our LATEXSOLVER web application built using
the Vue frontend framework (Vue.js, 2014).

This interface enables users to upload an opti-
mization problem description in LaTeX, composed
of both natural language and mathematical formu-
las. After going through the parsing process, the
input LaTeX document will be transformed into
a symbolic model that serves as a united repre-
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Figure 2: System diagram for LATEXSOLVER.

sentation of the input optimization problem. As
an example shown in the main panel of Figure 1,
a symbolic model comprises model elements ex-
tracted from the document and each element is
categorized as one of {Set, Parameter, Objective,
Variable, Constraint, Objective} (listed on top of
the interface). All parameters and variables in the
symbolic model are represented by symbols rather
than actual values. Our user interface is designed
to display the extracted symbolic model as a graph,
in which each node contains the formula and meta-
data of a model element and dynamic links are used
to highlight the relationships between symbolic el-
ements. To enhance user engagement and system
flexibility, we allow users to review and edit the
displayed model elements. Users can click on each
model element card to reveal its detailed properties
in the right-side panel of the interface, where they
can edit the properties as desired. Furthermore,
users have the ability to add or delete elements as
needed. Once the user is satisfied with the updated
symbolic model, our system will guide the user
to upload data values to instantiate the symbolic
model and generate the corresponding model code
instance for the optimization solver to compute for

solutions.

The backend workflow of LATEXSOLVER is
illustrated in Figure 2. The system’s pipeline con-
sists of three major stages, namely hierarchical
declaration extraction, symbolic model parsing and
model code generation. Given a problem descrip-
tion in LaTex as input, the system first segments it
into a set of declarations, each of which describes
a specific model element and includes declaration
entities linked by corresponding relations. This
stage employs three neural models that were ini-
tially introduced for three NLP tasks: text segmen-
tation and labeling, entity recognition, and relation
extraction respectively. In the subsequent stage,
the extracted declarations are transformed into a
symbolic optimization model using a context-free
grammar-based parser, which leverages the meta-
data obtained in the previous stage as supplemen-
tary information. The resulting symbolic model is
then passed into a solver API-specified model code
instance generator, together with user-specified
data values, to generate the model code that is ready
to be processed by optimization solvers.
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Figure 3: The illustration of Hierarchical Declaration Extraction.

4 Hierarchical Declaration Extraction

A declaration in this paper is, by definition, a multi-
modal segment consisting of one or more sentences
written in a mixture of text and math content, as
exemplified in Figure 3. Each declaration typically
describes one particular model element, such as an
objective, constraint, decision variable, parameter
or set. As the first stage of LATEXSOLVER, the
system takes a LaTeX document as input and ex-
tracts declarations from it in a hierarchical manner.
Specifically, the system first performs document-
level declaration identification to extract and label
all the text segments in the document, each asso-
ciated with one declaration (§4.1). Next, our sys-
tem performs entity recognition and entity linking
within each extracted declaration segment (§4.2).

4.1 Document-Level Declaration
Identification

In order to identify all declarations contained in
the document, as well as assign each identified
declaration a label indicating the model element it
contributes to, we propose to re-purpose a neural
model originally proposed in Barrow et al. (2020)
for text segmentation and labeling. In this work,
we employ this model for declaration segmentation
and labeling.

Figure 4 illustrates the high-level architecture of
the neural model we used for declaration segmen-
tation and labeling. In practice, the system accepts
the input document formalized as a sequence of
consecutive sentences2. However, the structure of
a LaTeX document is usually not flat but contains
nested content blocks organized as bullet lists, or
covered in captions of figures and tables. Therefore,

2We applied nltk.sent_tokenize for sentence seg-
mentation.

Figure 4: The model architecture for declaration seg-
mentation and labeling.

we initially carry out a rule-based pre-processing
step to detect and eliminate these structures by con-
verting the content in the nested form to the flat
form before passing them into the model. As the
first layer of the neural model, a sentence encoder
is in place to yield low-level features (embeddings)
for the input sentences. Taking into considera-
tion that (1) documents in LaTex are more likely
in the scientific domain, and (2) sentences within
these documents are likely to have both text and
mathematical content, we choose SciBERT (Belt-
agy et al., 2019) as our sentence encoder, which
is equipped with a rule-based symbol tokenizer
proposed in Lee and Na (2022) to alleviate the
limitation of SciBERT’s tokenizer in detecting the
boundaries of mathematical symbols.

Given the sentence embeddings obtained from
the SciBERT sentence encoder, a document-level
contextualization layer (Bi-LSTM) returns an or-
dered set of sentence hidden states for two objec-
tives: (1) declaration segment boundary prediction
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Figure 5: The model architecture for entity recognition.

and (2) declaration labeling. Concretely, a multi-
layer perceptron (MLP) followed by softmax acti-
vation serves as a binary boundary predictor, where
label "1" means the corresponding sentence is the
end of a segment, and "0" otherwise. After seg-
menting the document, we further apply mean pool-
ing over the sentence hidden states within each pre-
dicted segment to predict the declaration label for
the segment. Another MLP+softmax layer is uti-
lized to classify each declaration segment into one
of the following classes: {Objective, Constraint,
Decision Variable, Parameter, Set, Others}. This
framework is optimized by minimizing the cross-
entropy losses for both objectives of declaration
segmentation and labeling.

4.2 Entity Recognition and Relation
Extraction

Once the underlying declarations have been ex-
tracted from the input LaTeX document, the next
step entails extracting entities within each declara-
tion, as well as the relations linking up these enti-
ties. To achieve this, we leverage the entity recog-
nition and relation extraction models proposed in
Lee and Na (2022), initially devised for machine
reading comprehension on documents containing
mathematical symbols.

The entity recognition model formulates the pro-
cess of extracting entities as a machine reading
comprehension task by providing an entity type as
a question and utilizing SciBERT as the backbone
to extract mentions of this entity type in a declara-
tion segment as answers. As shown in Figure 5, a

given input declaration is deemed as context and
concatenated with each of the three pre-defined en-
tities types (i.e., Metadata Tag, Math Span, Seman-
tic Metadata) in our labeled corpus. Subsequently,
the Question+Context concatenation is passed into
SciBERT, and the output hidden representations of
the tokens covered by the declaration (context) are
used to estimate the probability of each token be-
ing the start or end (i.e., istart or iend) of a mention
(answer) of the concatenated entity type (question).
Next, for any span of (istart, iend), another binary
classifier is applied to predict whether the span is
the answer to extract.

Similar to the entity recognition model described
above, we also leverage SciBERT to perform re-
lation extraction between pairs of entities within
each declaration segment by simply encoding en-
tities and doing relation prediction based on the
concatenation of entity representations (mean of
token embeddings covered in the text span of enti-
ties) obtained from SciBERT (Lee and Na, 2022).
We pre-define four types of relations, namely Meta-
data Tag, Semantic Metadata and Supplementary
Math Content and NIL, where NIL indicates that
no relation exists between the two entities.

For both entity recognition and relation extrac-
tion, we set some heuristic rules to refine models’
predictions by cleaning up the entities which are
unlikely to co-occur within a declaration, as well
as relations with the type unlikely to appear to link
two certain entities.

5 Symbolic Model Parsing and Model
Code Generation

This section describes the process of converting the
detected entities and their relations into a symbolic
model which is eventually generated into modeling
code, as shown in Figure 6. The symbolic model
and concrete data values, such as sets and param-
eter values, are passed to the model instance code
generator which converts them into code based on
the target modeling language or solver API. The
generated code consists of the model components
and their corresponding data values. By decoupling
the symbolic model and data values, we allow the
users to evaluate their model and problem more
efficiently. They can modify the model to evaluate
variants of the model or easily change data values
to examine different scenarios of the problem.
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Figure 6: The illustration of symbolic model parsing and model code generation process.

5.1 Symbolic Model Parsing

As part of LATEXSOLVER, we have implemented a
symbolic model, which is an intermediate represen-
tation of the problem that lies between the natural
language & math problem description and model
code. This symbolic representation of the model
maps the math formulas into a nested structure of
symbolic elements before data instantiation. The
symbolic model parsing is performed by two mod-
ules: (1) a math content parser, and (2) a tree-to-
definition converter. An example of both modules
is shown in Figure 6.

First, the math content parser converts the math
content spans of each model component declara-
tion detected by the declaration extraction stage
into a parse tree. To do so, the LaTeX math for-
mulas are parsed using the grammar-based parser
generator ANTLR4 (Parr, 2013). ANTLR4 detects
the required attributes of modeling components.
Specifically, indexed parameters and variables are
parsed along with the set that the indices are bound
to. The parser also parses constraint math formulas
into the constraint expression, comparison opera-
tor (<, <=, >, >=, ==), and the right-hand-
side equation. Finally, the objective math formula
would contain the objective sense and the objective
function. These math formulas are processed into
a parse tree where the leaves contain the impor-
tant fields required to populate the symbolic model.
Figure 6 shows a graphical representation of the

output parse tree of the grammar-based parser.
Next, the tree-to-definition converter loops

through the parse tree, it processes the detected
model components, and creates a new model com-
ponent in the symbolic model class. As these el-
ements are detected, they populate the attributes
of the corresponding components in the symbolic
model class in a nested manner.

5.2 Model Code Generation

The model instance code generator leverages
Python’s metaprogramming mechanism to gener-
ate the modeling code during runtime. The pipeline
begins with a template code string that imports the
required Python libraries for the solver API. The
model code generator adds to the model based on
the specifications of the API. In our implementa-
tion, we used the Huawei OptVerse solver and its
Grassland API (Li et al., 2021). The model in-
stance code generator reads in the data values from
spreadsheet files using predefined sheet references
and adds the data initialization commands in the
generated code. Then, it will loop through the el-
ements of the symbolic model to translate it into
the solver API code to declare the sets, variables,
objective and constraints.

6 Limitations and Future Works

The LATEXSOLVER system is a useful tool that
partially automates the conversion of a problem
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description into an optimization model, but some
limitations highlight potential areas for improve-
ment. First, it was assumed that each declaration
contains all complete information that needs to
be parsed into a model element. While our pro-
posed system can handle unstructured text at the
declaration-level, it is a more challenging problem
if information about one model component is scat-
tered across declarations. We believe that in most
cases, the input documents would satisfy this as-
sumption. Second, this system requires the LaTeX
document input to be accurate and errors may cause
issues that cascade through the steps of the system
(e.g., an error in segmenting and labeling the dec-
larations may yield errors in the entity recognition
and relation extraction tasks). The interactive ap-
plication addresses this by keeping the human in
the loop allowing the user to interact with the de-
tected components and their relations. Finally, with
the rapid advancements in LLMs (Li et al., 2023;
OpenAI, 2023), domain-specific tools such as LA-
TEXSOLVER could be used in conjunction with
general-purpose language models.

7 Conclusion

In this paper, we introduce LATEXSOLVER, an
interactive system to help operations research prac-
titioners efficiently convert the mathematical for-
mulation of optimization problems from the un-
structured and multi-modal LaTeX document for-
mat into the solver modeling language. The system
follows a two-step process of converting the La-
TeX document to a symbolic model and then to
model code. Users can easily review and edit the
symbolic model automatically extracted from the
LaTeX document with an intuitive interface to en-
sure the system’s reliability.

Ethics Statement

The LATEXSOLVER system presented in this pa-
per aims to partially automate the process of con-
verting problem descriptions in LaTeX to model
codes, thereby helping OR experts build optimiza-
tion models more efficiently. As the system’s input
and output are transparent to users and users can
control the model-building procedure by interact-
ing with the system, the harm to users resulting
from the errors produced by the system is limited.
However, our system may be used in certain cir-
cumstances considered sensitive or critical, such as
power grid or flights scheduling. In such cases, the

system should be used with caution and the mod-
eling process should be investigated by domain
experts. Additionally, given the historic applica-
tion of operations research in tactical military op-
erations, it is critical to understand the potential
negative impact of misapplying this technology to
society. Therefore, users of our system must be
aware of any ethical concern come with military
applications of this technology.
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Abstract
Alfred is the first system for programmatic
weak supervision (PWS) that creates training
data for machine learning by prompting. In
contrast to typical PWS systems where weak
supervision sources are programs coded by
experts, Alfred enables users to encode their
subject matter expertise via natural language
prompts for language and vision-language mod-
els. Alfred provides a simple Python interface
for the key steps of this emerging paradigm,
with a high-throughput backend for large-scale
data labeling. Users can quickly create, eval-
uate, and refine their prompt-based weak su-
pervision sources; map the results to weak la-
bels; and resolve their disagreements with a
label model. Alfred enables a seamless lo-
cal development experience backed by mod-
els served from self-managed computing clus-
ters. It automatically optimizes the execu-
tion of prompts with optimized batching mech-
anisms. We find that this optimization im-
proves query throughput by 2.9× versus a
naive approach. We present two example use
cases demonstrating Alfred on YouTube com-
ment spam detection and pet breeds classifi-
cation. Alfred is open source, available at
https://github.com/BatsResearch/alfred.

1 Introduction

Acquiring labeled data is a significant challenge
for machine learning for its time-consuming and
expensive nature. Programmatic weak supervision
(PWS) provides a more efficient method of data
annotation by using noisy heuristics to label data.
In a typical PWS setup, domain experts design la-
beling functions (LFs) as programs that vote for
a label or abstain. (Ratner et al., 2016, 2017) Re-
cently, there has been a growing interest in creating
LFs from large, pre-trained models through prompt-
ing (Smith et al., 2022; Arora et al., 2022; Zhang
et al., 2022b). In the shift to this new setting, exe-
cuting LFs goes from the least to the most computa-
tionally expensive part of the process, highlighting

the importance of providing a software infrastruc-
ture that facilitates efficient development. However,
existing toolkits for large language models mainly
prioritize prompt templating and tuning, leaving an
unmet need for a system that that connects prompt-
ing with the creation of training data.

Prompted models offer a unique opportunity
to enhance existing PWS systems. Traditional
PWS systems require programming LFs with code
that specifies heuristic domain knowledge. With
large pre-trained models, natural language-based
prompts can be used as LFs, also known as
prompted LFs (Smith et al., 2022). This approach
allows the easy expression of complex rules that
were previously difficult to specify using code, as
the example in Figure 1 shows. The ability to use
prompts to define labeling functions simplifies and
streamlines the weak supervision process, as well
as potentially elevating the quality of the annota-
tions. This benefit is particularly helpful for tasks
involving computer vision, where previously PWS
has been limited to tasks for which models can
identify key features (such as objects) over which
to program rules. Whether the domain is language
or multi-modal, prompts let users experiment with
different heuristics (and phrasings of those heuris-
tics). Therefore, enabling an iterative development
experience is essential for the success of a prompt-
based PWS system.

The switch to prompted models for weak super-
vision also presents significant challenges. It first
requires rethinking the abstractions and workflow
of first-generation PWS systems. Instead of edit-
ing code and managing libraries of functions, users
must manage libraries of prompts, track their out-
puts on multiple datasets, and develop strategies
for mapping those outputs to labels. This change is
complicated by large models’ demand for compu-
tational resources. The throughput of the models is
a new development bottleneck. The extra overhead
of remotely hosted models is a further hindrance to
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def biden_mention(instance):

    if re.match(

      r"(President\s)?(Jo(seph)|(e)\s)?(Biden)/i",

      instance):

        return POLITICS

    else:

        return ABSTENTION

"Text: [[instance]] Does this text mention President 

Biden?"

"Yes" ➡ POLITICS

"No"  ➡ ABSTENTION

Labeling Function Prompted Labeling Function

def positive_sentiment(instance):

    for token in tokenize(instance):

        if token in positive_words:

            return POSITIVE

    return ABSTENTION

"Text: [[instance]] Does this comment express positive 

sentiment?"

"Yes" ➡ POSITIVE

"No"  ➡ ABSTENTION

def stripe_detect(instance):

    if stripe_detector.infer(instance) >= 0.5:

        return [TIGER, ZEBRA]

    else:

        return ABSTENTION

    

instance

“A photo of an animal with stripes”, 

“a photo of an animal”

"A photo of an animal with stripes" ➡ [TIGER, ZEBRA]

"A photo of an animal"  ➡ ABSTENTION

Figure 1: Examples of a labeling function versus a prompted labeling function. For the first example, each expresses
supervision relating mentions of President Biden to the category of politics. Instead of specifying an intricate regular
expression, a prompted labeling function uses the prompt “Text: [[instance]] Does this text mention President
Biden?” where [[instance]] is replaced by the news article to be labeled. The response is mapped to a vote on the
true label. The second example demonstrates how heuristics about positive sentiment that were previously hard
to define can be flexibly expressed as a natural language question. Instead of defining a set of keywords for fuzzy
sentiment matching, we can simply ask large pretrained models for answers about the sentiment. For the third
example, we consider an animal labeling task where we use the visual attributes “stripes” to vote for the classes
TIGER and ZEBRA. Previously, we would need to first collect supervised training data for attributes like stripes
and then train classifiers to make the decisions. With modern vision-language models (e.g. CLIP), we can simply
express the attribute detection task as a set of candidate prompts.

the iterative workflow of weak supervision.

Existing open-source software for prompting
concentrates on prompt engineering (Orr, 2022;
Bach et al., 2022), prompt chains (Chase, 2022) or
continuous (i.e., soft) prompt tuning (Ding et al.,
2022); placing less emphasis on throughput for a
large-model-in-the-loop workflow. Additionally,
many existing open-source systems have not devel-
oped support for vision-language models, despite
their benefits for data labeling. Incorporating large
pre-trained models into a PWS system remains an
open problem in the open-source software space,
requiring innovative solutions to address these chal-
lenges and complement existing software focused
on other aspects of prompting.

We present Alfred, a versatile PWS system that
leverages large pre-trained models for image and
text annotations. Alfred aims to provide an environ-
ment for the rapid development of prompt-based
supervision, while maintaining a consistent devel-
opment experience similar to established PWS sys-
tems. We designed Alfred with usability and ef-
ficiency in mind, aiming to provide a rapid and

smooth experience for developing prompt-based su-
pervision. Alfred supports popular large language
models from Hugging Face’s transformer package
(Wolf et al., 2020), including the GPT family (Rad-
ford et al., 2019), the T5 family (Raffel et al., 2020),
etc., and vision-language models like CLIP (Rad-
ford et al., 2021), etc. Alfred also supports local
ONNX models, or API-based models from Ope-
nAI, AI21, and Cohere. Moreover, Alfred provides
easy templating tools to help users quickly create,
evaluate, and refine prompted LFs. Alfred offers
easy ways to deploy inference servers remotely, in
addition to local model hosting. Alfred also opti-
mizes model inference throughput with improved
batching techniques and provides utilities for ef-
ficient LLM deployment and interaction. Finally,
Alfred contains a library of label models to distill
the outputs of prompted labeling functions into the
final training datasets for downstream end models.

Alfred is a prototype for a second generation of
PWS systems with prompting at their core. To this
end, we highlight three key feature of Alfred:

• Prompt-based weak supervision for images
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Alfred ClientCompletionQuery

RankedQuery

Prompt

Prompt Candidates

Dev. Set Templates

API Model

CompletionResponse

RankedResponse

Prediction

Prediction Scores

Metrics

Query Response

Local ModelRemote Model

gRPC Transformers, ONNXAI21, Cohere, OpenAI

Voter Calibrate
Label Model

Metrics

Prompted LF Development   Label Modeling   End-Model Training

Figure 2: A typical workflow for programmatic weak supervision with Alfred. First, developers use Alfred to
iteratively design, evaluate, and refine their prompted labeling functions (LFs). They use prompt Templates to
generate Queries to Models based on data. The responses of Models are mapped to votes on the true labels for
examples by Voters, which can be calibrated. Then the included Label Models combine the noisy votes to produce
probabilistic training labels for an end model.

and text. Alfred provides the necessary tools for
users to create, evaluate, and refine prompt tem-
plates for both image and text weak supervision
tasks. The inclusion of a query caching system
that automatically stores and updates model re-
sponses facilitates development.

• Optimized inference throughput. Alfred im-
plements a dynamic batching mechanism that
optimizes large sets of prompts. This feature al-
lows models hosted by Alfred to achieve 2-3×
greater throughput than naive implementations.

• Seamless local development experience. Alfred
can host models remotely and make them acces-
sible to developers via gRPC, a high-throughput
protocol for remote procedure calls.1 It enables
sending datasets to servers in large chunks to
maintain higher throughput. Alfred also imple-
ments a SSH-based port-forwarding utility for
the gRPC connection, easing deployment on
shared clusters such as those at universities.

2 Related Work and Background

Alfred sits at the intersection of programmatic weak
supervision and large pretrained models. In this
section, we overview the most related work.
Programmatic Weak Supervision. Traditionally,
supervised learning relied on manually labeled data,
and data labeling has been seen as a key bottleneck
for many applications. Recently, a family of pro-
grammatic weak supervision (PWS) methods have
offered an alternative to costly manual annotations
by incorporating multiple sources of noisy labels
to create training datasets (Zhang et al., 2022a).

1grpc.io

Typically, a PWS system such as Snorkel (Ratner
et al., 2017) has a three-stage setup: First, develop-
ers will create heuristics called labeling functions
(LFs) that vote on the label for an example (or ab-
stain). Second, a label model will reconcile the
noisy votes and provide probabilistic labels for the
data. Finally, freshly annotated data is used to train
an end model with a noise-aware loss objective
(e.g. in a classification setting, this can be a soft
cross entropy (Ratner et al., 2016)). Alfred focuses
on the first two stages and aim to efficiently in-
corporate modern large pretrained models into the
development workflow.

Prompting for Pre-Trained Models. With the
emergence of large pre-trained langugae and vision-
language models, prompting has become a pop-
ular approach to many few-shot and zero-shot
tasks (Brown et al., 2020; Schick and Schütze,
2021a; Radford et al., 2021). Prompting can create
training examples, generate data, modify datasets,
and improve model reasoning (Schick and Schütze,
2021b; Ye et al., 2022; Chia et al., 2022; Wu et al.,
2022; Wang et al., 2022; Wei et al., 2022; Zelikman
et al., 2022). This presents a unique opportunity for
combining prompting for large pretrained models
and weak supervision. Recent studies have investi-
gated strategies to combine large language models
into weak supervision frameworks (Smith et al.,
2022; Chen et al., 2022; Arora et al., 2022; Zhang
et al., 2022b). Alfred aims to provide a platform for
the rapid development of weak supervision appli-
cations that rely on large pre-trained language and
vision-language models, as well as enable experi-
mentation with new ways of using those models.
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Systems for Prompt Development. Prompting
has led to the development of software toolkits
that aid in prompting and research across various
tasks. Many tools have been developed for various
use cases with large language models. Prompt-
Source (Bach et al., 2022) is a development envi-
ronment for creating and archiving sets of prompts.
OpenPrompt (Ding et al., 2022) is a library fo-
cused on tuning prompts and prompted models
with training data. Manifest (Orr, 2022) provides a
unified front end for prompting large language mod-
els via different APIs. LangChain (Chase, 2022)
provides convenient utilities for building applica-
tions that chain together multiple prompts and out-
puts. To complement the existing tools in this grow-
ing space, Alfred is designed to be a PWS system
based on prompting both large language and vision-
language models.

3 Prompted LF Development

Alfred is designed to enable the development and
application of prompted labeling functions (LFs)
Compared to the typical workflow of PWS sys-
tems, where developing LFs is not computationally
demanding, developing prompted LFs has model
inference as a bottleneck. These large models are
often hosted remotely on virtual instances or com-
puting clusters, which can add to the challenge of
iterative prompt development. In an iterative devel-
opment environment, creating prompted labeling
functions requires a platform that provides optimal
throughput and low latency for a rapid local de-
velopment experience. To illustrate Alfred’s key
focuses, we illustrate a typical workflow (Figure 2)
for using Alfred to create a training dataset:
Step 1: Task Setup For a large model to be used
in the development loop, developers can elect to
use either self-hosted models or API-based mod-
els. For self-hosted models, Alfred provides an
AlfredServer to host the model on cloud or cluster

nodes. As the main development interface, the user
can simply start a Client by specifying the type of
model. Before creating prompted LFs, users need
to familiarize themselves with the task by exploring
the raw, unlabeled dataset. If there is no develop-
ment subset available, the developer can annotate
a small portion of the data as a held-out evalua-
tion benchmark. Alfred implements a Dataset
class based on Apache Arrow for fast data access.
User may load a Dataset from CSV, JSON or
Dataframe objects. It also offers direct support

for datastes from the Hugging Face ‘Dataset‘ pack-
age (Lhoest et al., 2021). During the exploration
process, developers may gain insights into the data
and the label space, and identify potentially useful
heuristics. Moreover, users can freely experiment
with prompts with a few unlabeled instances by
directly interacting with the Client .
Step 2: Iterative Prompt Development: When
the user is ready for prompt development, they can
use a Template to define a prompted LF for either

text completion or scoring schemes. A Template ,

given a Dataset , will produce the correspond-
ing Query objects. Client will return the ap-

propriate Response object for each Query . To
map the model responses to votes, users define
the corresponding Voter and identify the label
maps and matching functions to be used for each
prompted LFs. Label maps define how potential
model responses are associated with the label space.
Matching functions specify how the Voter deter-
mines a match. By default, Alfred employs an
exact match mechanism, but this can be substituted
with user-defined matching functions for uncased
matching or embedding similarity matching, etc.
A Voter can be optionally calibrated to reduce
model-specific biases (Zhao et al., 2021). With
the model responses and the Voter, users can ob-
tain the label votes for each of their prompted LFs
and examples in a matrix format. Finally, users
can evaluate the quality of their prompted LFs us-
ing a set-aside development Dataset with desired
metrics. Here, users can continue to refine their
prompted LFs and iterate as necessary. Once users
are satisfied with the performance of their develop-
ment benchmark, they may proceed.
Step 3: Aggregate Prompt Responses Finally,
Alfred can aggregate the votes from each Voter
with a LabelModel to produce probabilistic esti-
mates of the true labels for the examples. Alfred
also supports partial labels, i.e., labels that narrow
down the possible set of classes but are not specific
enough to vote on a single class (Yu et al., 2022).
The probabilistic labels can then be used to train a
wide range of end models.

4 System Design

In this section, we describe and highlight the key
design decisions for Alfred.

4.1 Query and Response Types
We identify two main patterns using prompts
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from alfred import Client
from alfred.fm.query import RankedQuery,

CompletionQuery
LMClient = Client(...)

headline = "Liverpool wins 7-0!"

LMClient(
CompletionQuery(headline
+ " What is the topic of this headline?")

)
# Example Response:
# >> CompletionResponse(prediction="Football")

LMClient(
RankedQuery(headline
+ " What is the topic of this headline?",

candidate=["Sports", "Politics",
"Tech", "Business"])

)
# Example Response:
# >> RankedResponse(prediction="Sports",
# scores={"Sports":0.76, "Politics":0.10,
# "Tech":0.07, "Business":0.07 })

Figure 3: Typed Query and Response in Alfred

for PWS: text completion and scoring. Text
completion is when a language model gener-
ates responses using a heuristic decoding strat-
egy over the whole model vocabulary, while scor-
ing is when a language ranks candidate comple-
tions or a vision-language model ranks candidate
prompts, i.e., captions. Alfred implements typed
Query and Response classes for these two pat-

terns (Figure 3). Upon applying the Template
operation on a dataset instance, it produces ei-
ther a CompletionQuery or a RankedQuery for

each instance based on the Template definition.
The resulting query can be directly fed into the
Client . The Client then returns a corresponding
CompletionResponse or RankedResponse with

the prediction as the main payload, along with any
other requested or useful information, such as the
logits for each candidate.

4.2 Templates for Prompted LFs

Prompt templates are at the core of sys-
tems for prompting. In Alfred, prompt
templates are expressed as Template objects.
For natural language tasks, users use the
StringTemplate class. To produce Query ob-

jects, users can call ‘Template.apply(instance)’
or ‘Template.apply_to_dataset(dataset).’ A
StringTemplate is defined with a template string

with keywords enclosed by double square brack-
ets, e.g. “[[text]] Does the previous context ex-
press spouse relation between [[entity_a]] and
[[entity_b]]?”. An optional field for Template
is ‘answer_choices,’ where one may specify the
candidate completions. By specifying the ‘an-
swer_choices,’ the StringTemplate would yield

a RankedQuery . An example code snippet

showing the creation of a RankedQuery is in
Figure 4. For image annotation tasks, users
may define an ImageTemplate by specifying the
candidate prompts. Upon applying to images,
ImageTemplate will produce RankedQuery ob-

jects with the images and candidate prompts.

4.3 Throughput Optimization

Alfred is designed to handle large numbers of
queries. Self-hosted models from the Transform-
ers package (Wolf et al., 2020) are set up to use
model parallelization enabled by Accelerate (Syl-
vain Gugger, 2022), with user-customizable device
maps for parallelizing the model across multiple
GPUs. Alfred adopts a dynamic batching strategy
that groups instances with similar lengths together
and adjusts the input batch size dynamically to max-
imize model inference throughput. The core idea
of the dynamic batching strategy is to group input
instances with similar token lengths to minimize
padding and maximize memory utilization.

With the dynamic batching strategy, on a node
with 8 NVIDIA Tesla V100s, Alfred achieves a
speedup of up to 2.5× and a token throughput
increase of 2.9× for approximately 500 queries
(∼21,000 tokens) compared to an unoptimized
strategy with T0++ (Sanh et al., 2022), an 11-
billion parameter T5-based (Raffel et al., 2020)
language model in FP32. Additionally, Alfred in-
cludes a client-side query caching system that au-
tomatically stores and updates model responses
to facilitate prompt development and avoid redun-
dant queries during development. Alfred also im-
plements a server-side caching system for large
multi-modal pretrained models such as CLIP. At in-
ference time, Alfred will cache the input data with
its corresponding encoded latent representations
from different encoder head for each modalities.
This server-side caching system effectively avoids
redundant encoding computation on the server end.
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from alfred.template import StringTemplate, ImageTemplate

string_template = StringTemplate(
"Context: [[text]]\n\nIs the above text about weather?", answer_choices = ["Yes", "No"]

)
example = {'text': "A pleasant day with a sunny sky."}
prompt = string_template.apply(example)
# >> RankedQuery("Context: A pleasant day with a sunny sky.\n\nIs the above text about weather?",
# candidates=["Yes", "No"])

image_template = ImageTemplate(
{"label": ["cat", "dog"]},
template = "A photo of [[label]]."

)
example = cat_image
prompt = image_template.apply(example)
# >> RankedQuery(example, candidates=["A photo of cat.", "A photo of dog."])

Figure 4: Example code snippet for creating a RankedQuery from a StringTemplate or a ImageTemplate .

4.4 Remote Self-Hosting of Models

The computational demands of large pre-trained
models can pose a challenge when using them for
weak supervision development. To address this
challenge, Alfred provides utilities for deploying
and interacting with models on remote virtual in-
stances or computing clusters. Additionally, Alfred
implements a SSH-based tunneling service that en-
sures a secure local connection while preserving
all Alfred functionality. The tunneling utility also
simplifies deployment of the server on shared com-
puting clusters, with the login node serving as a
jump host for the computing node. This is particu-
larly useful for using Alfred on centrally-managed
shared computing clusters such as those at uni-
versities. Alfred’s built-in SSH tunneling is also
capable of handling 2-factor authentication, which
is common for shared clusters. To enable efficient
communication between the client and server, Al-
fred uses gRPC, a high-performance, open-source
remote procedure call framework. This enables
Alfred to provide a seamless development experi-
ence for weak supervision development without the
need for expensive local resources.

4.5 Mapping Responses to Votes

Another core piece of the Alfred system is the
Voter class. Each Voter defines how to map

model responses to votes for the true label of an
exmaple. The votes can be class labels or par-
tial labels (e.g., attributes) specified by the users.
The voting mechanism also relies on a match-
ing function, which by default only casts a vote
for an exact match. Users may provide their
intended matching mechanisms such as uncased

matching or embedding similarity matching for
more flexibility for each Voter . Furthermore,
Voter can be contextually calibrated for the spe-

cific Template class to reduce model bias towards
predicting certain answers. Recent studies show
calibration can be helpful for many prompt-based
tasks (Zhao et al., 2021; Smith et al., 2022). By
calling ‘Client.calibrate(Template, Voter),’ Alfred
will calibrate the voting weights according to the
strategy proposed by Zhao et al. and automatically
apply the calibration during voting.

4.6 Label Models for Aggregating Votes

Alfred currently includes four label models for
combining the votes from prompted labeling func-
tions. The four label models are available to meet
different use cases. The MajorityVote model is
a baseline option suitable for fast development it-
eration, while the NaiveBayes model is recom-
mended as the standard label model. Alfred also
includes NPLM (Yu et al., 2022) (noisy partial la-
bel model) to support weak supervision from partial
labels, which are labels that narrow down the possi-
ble set of classes but are not specific enough to vote
on a single class. FlyingSquid (Fu et al., 2020) is
the fourth model option and is recommended when
MajorityVote is not accurate enough but more

speed than NaiveBayes is needed. These label
model classes have a unified interface, providing a
consistent experience for users. After processing
votes, the label model module generates probabilis-
tic labels, represented as a distribution over the
label space, for the given unlabeled dataset. Finally
users can use the estimated probabilistic labels to
train an end model for the downstream task.
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5 Example Use Cases

In this section, we present two example use cases
for how Alfred can be used to create training data
for specific machine learning tasks using natural
language prompts in both text and image domains.
We measure the labeling quality by taking the top-1
accuracy of the estimated probabilistic labels given
by the label model. The notebooks to reproduce
these examples are in the Alfred repository.

5.1 Youtube Comment Spam Detection

Zero Shot Prompted LFs Prompted LFs+C
46.8 57.8 65.3

Table 1: Top-1 accuracy on YouTube spam detection.
Zero Shot refers to prompting T0++ directly. +C means
applying contextual calibration on the Voter objects.

In this experiment, we use Alfred to annotate the
training split of YouTube spam detection dataset.
(Alberto et al., 2015) We replicate the setup used
by Smith et al. The prompts are translated from
the code-based labeling functions provided by
the WRENCH benchmark (Zhang et al., 2021),
a comprehensive weak supervision benchmark. Al-
fred also includes a WrenchBenchmarkDataset
abstraction for easily running this benchmark. In to-
tal, we define 10 prompted labeling functions with
StringTemplate objects. Responses are mapped

to votes using Voter objects. For this experiment,
we use T0++ (Sanh et al., 2022) as the backbone
model for Alfred. Following Smith et al., we also
calibrate the responses from T0++ when voting
using the contextual calibration strategy proposed
by Zhao. Finally we aggregate the votes using
the NaiveBayes label model to produce the prob-
ablistic labels. Table 1 shows that Alfred makes
reproducing the results of Smith et al. easy, demon-
strating that the combination of weak supervision
and calibration yield a dramatic improvement over
zero-shot prompting alone.

5.2 Pet Breed Classification

Zero Shot Prompted LFs
86.0 92.4

Table 2: Top-1 accuracy on Oxford-IIIT Pet breed clas-
sification. Zero Shot refers to prompting CLIP directly.

Traditionally, programmatic weak supervision
for vision has been limited by the ability to express

supervision in code, relying on models such as ob-
ject or attribute detectors to extract features and
classify. However, these object detectors often de-
pend heavily on supervised training data, becoming
a bottleneck for applying programmatic weak su-
pervision in various vision tasks. Fortunately, with
large-pretrained vision-language model like CLIP
(Radford et al., 2021), we are now able to express
supervision with natural language. For this task, we
develop prompts to classify 37 different breeds of
pets from the Oxford-IIIT Pet dataset (Parkhi et al.,
2012). We use CLIP-ViT/L-14 as the backbone
model and developed three simple prompted LFs.
The first two prompted LFs use templates “a photo
of [[label]]” and “a photo of [[label]] [cat/dog]”
where “[cat/dog]” is selected based on the breed.
The third prompted LF produces a partial label
with the template "a photo of [cat/dog]", encour-
aging fine-grained labels to match with the coarse-
grained type detected by CLIP. We combine the
votes using the NPLM label (Yu et al., 2022) to
support weak supervision at various levels of gran-
ularity in the label space. Table 2 shows that this
multi-granular weak supervision provides a nice
boost over zero-shot prompting alone.

6 Discussion and Future Work

This paper introduces Alfred, a prototype for the
next generation of programmatic weak supervision
systems that leverage the potential of large pre-
trained models. Alfred complements the existing
ecosystem of large-pretrained-model toolkits, offer-
ing optimized inference throughput, a smooth local
development experience, and compatibility with
vision-language models to support image annota-
tion tasks. Alfred represents a notable advancement
in the domain of programmatic weak supervision,
as it enables users to express their domain-specific
knowledge and heuristics with flexible natural lan-
guage prompts for language and vision-language
models. This approach can be more user-friendly
than conventional PWS systems, which requires
expert programming of weak supervision sources.
Our objective is for Alfred to serve as the infras-
tructure and experimentation platform for many
future weak supervision research projects and ap-
plications. Furthermore, we plan to extend Alfred’s
capabilities to accommodate a wider range of mul-
timodal large pre-trained models, such as Whisper
(Radford et al., 2022) and LayoutLMs (Xu et al.,
2020b,a; Huang et al., 2022).
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Limitations

Alfred is a prototype for the second generation of
PWS systems, which incorporate large pre-trained
models. However, there are some potential limi-
tations to consider. As with all PWS approaches,
application quality is limited by the quality of the
weak supervision sources used to vote on the labels.
In this case of prompted labeling functions, this de-
pends on how well suited the prompts and model
are to the task and domain. If they are not well
suited, then additional fine-tuning of the prompted
models will be necessary. Compared with tradi-
tional labeling functions written in code, under-
standing when and why labeling functions fail on
certain examples can be particularly challenging.
Methods for explanations such as minimal con-
trastive edits (Ross et al., 2021) can potentially
help address this limitation. We plan to explore
incorporating such methods into Alfred.

Ethics Statement

One major concern for Alfred is the potential for
biased or unfair labeling. Large pre-trained models
are trained on massive datasets, which can reflect
societal biases and inequalities. Consequently, su-
pervision generated by these models can perpetu-
ate and amplify these biases, leading to discrimi-
nation or unfair treatment in downstream applica-
tions. Therefore, it is essential to carefully consider
the quality and representativeness of the backbone
model for Alfred, as well as the prompts used for
labeling data. To address potential labeling biases,
human oversight and auditing are needed during
the development loop to spot and correct any is-
sues. While Alfred has the potential to enhance
the efficiency of programmatic data labeling, it is
crucial to carefully consider and address potential
ethical challenges.
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Alexis Ross, Ana Marasović, and Matthew Peters. 2021.
Explaining NLP models via minimal contrastive edit-
ing (MiCE). In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3840–3852, Online. Association for Computational
Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Timo Schick and Hinrich Schütze. 2021a. Few-shot
text generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390–
402, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943–
6951, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ryan Smith, Jason A Fries, Braden Hancock, and
Stephen H Bach. 2022. Language models in the
loop: Incorporating prompting into weak supervision.
arXiv preprint arXiv:2205.02318.

Thomas Wolf Philipp Schmid Zachary Mueller
Sourab Mangrulkar Sylvain Gugger, Lysandre De-
but. 2022. Accelerate: Training and inference at
scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

487

https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://github.com/HazyResearch/manifest
https://github.com/HazyResearch/manifest
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate


Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yuxiang Wu, Matt Gardner, Pontus Stenetorp, and
Pradeep Dasigi. 2022. Generating data to mitigate
spurious correlations in natural language inference
datasets. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2660–2676, Dublin,
Ireland. Association for Computational Linguistics.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2020a. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020b. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1192–1200.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. arXiv preprint arXiv:2202.07922.

Peilin Yu, Tiffany Ding, and Stephen H. Bach. 2022.
Learning from multiple noisy partial labelers. In
Artificial Intelligence and Statistics (AISTATS).

Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
2022. Star: Bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang,
and Alexander Ratner. 2022a. A survey on
programmatic weak supervision. arXiv preprint
arXiv:2202.05433.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yam-
ing Yang, Mao Yang, and Alexander Ratner. 2021.
WRENCH: A comprehensive benchmark for weak
supervision. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track (Round 2).

Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song,
and Chao Zhang. 2022b. Prboost: Prompt-
based rule discovery and boosting for interac-
tive weakly-supervised learning. arXiv preprint
arXiv:2203.09735.

Fang Zhao. 2022. Auto-correction dans un analyseur
neuronal par transitions : un comportement factice
? (self-correction in a transition-based neural parser
: a spurious behaviour ?). In Actes de la 29e Con-
férence sur le Traitement Automatique des Langues
Naturelles. Volume 2 : 24e Rencontres Etudiants
Chercheurs en Informatique pour le TAL (RECITAL),
pages 20–32, Avignon, France. ATALA.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697–12706. PMLR.

488

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.190
https://doi.org/10.18653/v1/2022.acl-long.190
https://doi.org/10.18653/v1/2022.acl-long.190
https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io
https://aclanthology.org/2022.jeptalnrecital-recital.2
https://aclanthology.org/2022.jeptalnrecital-recital.2
https://aclanthology.org/2022.jeptalnrecital-recital.2
https://aclanthology.org/2022.jeptalnrecital-recital.2


Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 489–498

July 10-12, 2023 ©2023 Association for Computational Linguistics

OpenICL: An Open-Source Framework for In-context Learning

Zhenyu Wu♦†∗, Yaoxiang Wang♣†∗, Jiacheng Ye♠†

Jiangtao Feng♢, Jingjing Xu♢, Yu Qiao♢, Zhiyong Wu♢‡
♢Shanghai AI Laboratory ♦ East China Normal University

♣Xiamen University ♠The University of Hong Kong
carsonye@cs.hku.hk, {wuzhenyu,wangyaoxiang}@pjlab.org.cn
{fengjiangtao,xujingjing,qiaoyu,wuzhiyong}@pjlab.org.cn

Abstract

In recent years, In-context Learning (ICL) has
gained increasing attention and emerged as the
new paradigm for large language model (LLM)
evaluation. Unlike traditional fine-tuning meth-
ods, ICL instead adapts the pre-trained mod-
els to unseen tasks without any parameter up-
dates. However, the implementation of ICL is
sophisticated due to the diverse retrieval and
inference methods involved, as well as the vary-
ing pre-processing requirements for different
models, datasets, and tasks. A unified and
flexible framework for ICL is urgently needed
to ease the implementation of the aforemen-
tioned components. To facilitate ICL research,
we introduce OpenICL, an open-source toolkit
for ICL and LLM evaluation. OpenICL is
research-friendly with a highly flexible archi-
tecture that users can easily combine different
components to suit their needs. It also provides
various state-of-the-art retrieval and inference
methods to streamline the process of adapting
ICL to cutting-edge research. The effective-
ness of OpenICL has been validated on a wide
range of NLP tasks, including classification,
QA, machine translation, and semantic pars-
ing. As a side-product, we found OpenICL
to be an efficient yet robust tool for LLMs
evaluation. OpenICL is released at https:
//github.com/Shark-NLP/OpenICL.

1 Introduction

The rise of large language models (LLMs) (Brown
et al., 2020; Zhang et al., 2022a; Scao et al., 2022)
has shown impressive emergent In-Context Learn-
ing (ICL) ability (Wei et al., 2022a). Different
from finetuning which requires parameter updates,
ICL can perform inference with model parameters
frozen. ICL sidesteps the resource-intensive nature
of fine-tuning, yet still yields comparable results

∗Work done while interning at Shanghai AI Lab.
†Equal Contribution.
‡Corresponding Author.

to fine-tuned models in specific tasks (Zhao et al.,
2021; Lu et al., 2022; Gao et al., 2021a). How-
ever, we observed a lack of a unified framework
for ICL. Implementations from existing projects
are often high-customized to their own needs, thus
making further development and comparisons with
previous approaches a challenge.

The basic ICL pipeline contains two steps: re-
trieval and inference. Given a testing input X ′,
in the retrieval stage, several examples from the
training set are retrieved as in-context demonstra-
tions. In the inference stage, these demonstra-
tions are prepended before X ′ and fed into the
LLM to generate the prediction. Researchers have
explored various methods for both retrieval(e.g.,
BM25 (Robertson and Zaragoza, 2009), TopK (Liu
et al., 2022; Gao et al., 2021a) and VoteK (Su et al.,
2022)) and inference(e.g., perplexity-based (Brown
et al., 2020), channel-based (Min et al., 2022), and
Chain-of-thoughts (Wei et al., 2022b)). However,
these methods are often implemented under differ-
ent frameworks, and/or evaluated using different
LLMs and tasks. These inconsistencies make sys-
tematic evaluations and comparisons of various
methods challenging, thus hindering the develop-
ment of better ICL methods.

To address this issue, we present OpenICL,
an open-source and easy-to-use toolkit for ICL.
OpenICL has many state-of-the-art retrieval and
inference methods built in to facilitate system-
atic comparison and fast research prototyping.
OpenICL also provides a unified and flexible inter-
face for the development and evaluation of new ICL
methods. Users can easily incorporate different re-
trieval and inference methods, as well as different
prompt instructions, into their pipelines. To vali-
date OpenICL’s implementation and design, we use
OpenICL to evaluate LLMs on several NLP tasks,
including classification, question answering, trans-
lation, and semantic parsing. Our contributions are
summarized as follows:
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• We propose OpenICL, an easy-to-use and ex-
tensible ICL framework for zero-/few-shot
evaluation of language models

• OpenICL provides a wide range of ICL meth-
ods, LLMs, and tasks, requiring as little as a
few lines of code to use and paving the way
for more extensions in the future.

• We provide complete tutorials to walk users
through the framework, thus facilitating re-
search and development of ICL.

2 Related Work

In-context Learning Besides the classic “pre-
train and fine-tune” paradigm, Brown et al.
(2020) proposed In-context learning (ICL), a new
paradigm that leverages pre-trained language mod-
els to perform new tasks without any gradient-
based training. It appends a small number of train-
ing examples as prompts before the test input, and
have shown to be able to improve LLMs’ perfor-
mance in few-shot scenarios and generalize to a
wide range of downstream tasks, such as informa-
tion retrieval (Tay et al., 2022), fact checking (Rae
et al., 2021), commonsense reasoning (Geva et al.,
2021), arithmetic reasoning (Cobbe et al., 2021),
machine trainslation (Agrawal et al., 2022; Lin
et al., 2021a), and data generation (Ye et al., 2022),
etc.

Aside from those early successes, researchers
have developed more sophisticated ICL methods
that require some intermediate reasoning steps.
Among them, chain-of-thoughts (CoT) is the
first attempt that significantly surpasses the pre-
vious state-of-the-art methods on many reason-
ing tasks (Wei et al., 2022b). After that, dif-
ferent variants of CoT have been proposed to
strengthen its performance, such as Self-Ask (Press
et al., 2022), iCAP (Wang et al., 2022), Least-to-
Most prompting (Zhou et al., 2022), and Selection-
Inference (Zhang et al., 2022b; Fu et al., 2022).

Despite the surprising performance, ICL has
been criticized for being very sensitive to the choice
and ordering of in-context examples (Zhao et al.,
2021; Lu et al., 2022). To address this problem,
different criterion and context construction meth-
ods have been proposed. Gao et al. (2021a) and
Liu et al. (2022) select examples that are closer
to the test input in the embedding space; a line of
work (Su et al., 2022; Levy et al., 2022; Ye et al.,
2023) select the most representative examples in

the training set to encourage diversity of in-context
examples; Wu et al. (2022) observe that Minimum
Description Length (MDL) principle can be an ef-
fective criterion for in-context example selection.

Prompt Learning Prompt learning (Liu et al.,
2021) is a special case of ICL without any in-
context examples. Prompt learning comprises var-
ious topics including manual template engineer-
ing (Petroni et al., 2019; Brown et al., 2020), au-
tomated template learning (Wallace et al., 2019;
Shin et al., 2020; Li and Liang, 2021), and answer
engineering (Gao et al., 2021b; Schick and Schütze,
2021). We refer the readers to the usage of Open-
Prompt (Ding et al., 2021) which is a toolkit spe-
cially designed for prompt learning. In comparison,
OpenICL focuses more on integrating various ex-
emplar retrieving approaches and inference strate-
gies for in-context learning. Note that OpenICL
can also seamlessly support prompt learning by
setting the number of in-context examples to zero
and specifying the manual or pre-searched prompt
templates by OpenPrompt for different tasks.

3 OpenICL

In this section, we first explain OpenICL’s de-
sign principles. Then, we will briefly describe
OpenICL’s two major components, namely, the
Retriever and Inferencer.

3.1 Design Principles

The design principle of OpenICL is to facilitate in-
context learning research and enable efficient and
robust large language model evaluation. In detail,
we consider the following principles:

[P1: Modularity] Since ICL is a fast-evolving
research field, the design of OpenICL should be de-
coupled such that different components can be eas-
ily modified to support latest methods and/or com-
bined to suit various tasks and application needs.

[P2: Efficiency] Nowadays, large language mod-
els can have hundreds of billions of parameters. To
support inference at such a massive scale, OpenICL
should be optimized to enable efficient parallel in-
ference.

[P3: Generality] ICL has been widely used in all
fields in NLP, so OpenICL needs a flexible interface
that enables it to work with various LLMs, tasks,
retrieval methods, and inference approaches.
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Figure 1: Overview of the architecture in OpenICL. OpenICL first obtains proper in-context examples from an index
set for each test input or for the whole test set via retrieval methods (e.g., TopK or VoteK) specified by the users.
Then the in-context examples and test input are concatenated into a single sequence based on the provided prompt
template. Finally, all the prompts are fed into the language model to infer the output through defined inference
strategies (e.g., Chain-of-thought).

3.2 Architecture Overview
Figure 1 overviews OpenICL’s architecture. For
each input x̂ from the test set X̂ , the Retriever
retrieves several (x, y) pairs (represented as one
row in the dashed box) from an index set (X,Y )

as x̂’s in-context examples. These examples, as
well as x̂, are then formatted according to the user-
defined prompt template and concatenated to form
a text sequence. After that, the Inferencer di-
gests these sequences and fed them into the LLMs
to obtain the model prediction Ŷ .

3.3 Modularity
To satisfy Principle P1, OpenICL adopts a loosely-
coupled design between components. These com-
ponents separate the data pre-processing, retrieval,
and inference processes with very flexible inter-
faces that allow easy customization to fit specific
needs. Two major components are detailed below:

Retriever Retriever is responsible for re-
trieving in-context examples from the pre-existing
training data. This module supports both corpus-
level (i.e., only retrieving one group of examples
for the whole test set) and instance-level (i.e., re-
trieving examples for each testing input individu-
ally) retrieval methods. OpenICL primarily sup-
ports learning-free retrieval methods as follows:

• Random: Early practice (Brown et al., 2020)
of ICL often randomly select examples to con-
struct the context. Although Random brings
high variance for ICL performance, it is still
the popular choice when there are only a few
demonstrations available (Wei et al., 2022b;
Zhao et al., 2021).

• Heuristic method: To overcome the disad-
vantage of Random, various semantic sim-
ilarity based retrieval methods have been
proposed and shown great promise, such
as BM25 (Robertson and Zaragoza, 2009),
TopK (Liu et al., 2022; Gao et al., 2021a), and
VoteK (Su et al., 2022).

• Model-based method: More recently, re-
searchers have explored using models’ con-
fidence in the output to select and order ex-
amples, such as entropy (Lu et al., 2022) and
MDL (Wu et al., 2022).

OpenICL has implemented the existing methods
above to facilitate future research and systematic
comparison. Furthermore, the flexibility of the
Retriever module allows practitioners to select the
retrieval method and make further modification
that best suits their task and data. The interface
of Retriever also allows users to pack those
in-context examples and use them somewhere else.

Inferencer Inferencer invokes the pre-
trained language model to generate predictions
based on the concatenation of in-context examples
and testing input. The Inferencer supports var-
ious inference methods:

• Direct: Brown et al. (2020) use tokens in the
vocabulary to represent candidate answers and
select the final prediction using the one with
the highest probability.

• Perplexity: (Brown et al., 2020) compute the
sentence perplexity of the sequence concate-
nation of input and candidate answers and
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select the final prediction using the one with
the lowest perplexity.

• Channel: Min et al. (2022) proposed to utilize
channel models (Yu et al., 2016; Yee et al.,
2019) to compute the conditional probability
in a reversed direction, i.e., estimating the
likelihood of input query given the label.

The flexibility of Inferencer also allows users
to recursively invoke it to support multi-stage ICL
methods, such as chain-of-thought (Wei et al.,
2022b) and selection-inference (Creswell et al.,
2022). Additionally, Inferencer can be aug-
mented with a scorer to evaluate its prediction.

3.4 Efficiency
To satisfy Principle P2, we equip OpenICL with
various parallelism techniques to enable efficient
inference for large-scale models.

Data Parallel Data parallel (Li et al., 2020) is
a common technique used in parallel computing
to improve the efficiency of large-scale computa-
tion tasks. OpenICL implements data parallelism
to improve the performance of both the retrieval
and inference steps. During retrieval and inference,
data is divided into smaller batches for processing.
Additionally, for models that can fit into GPU’s
VRAM, OpenICL implements data parallelism by
sharding the data across multiple GPUs and per-
forming parallel inference on each GPU with a
complete copy of the model. This significantly
increases the inference speed when working with
large datasets.

Model Parallel In the era of LLMs, models often
have billions or hundreds of billions of parameters
that exceed modern GPUs’ capacity. To handle
this problem, we resort to model parallel (Shoeybi
et al., 2019): a parallel computing technique that
divides a large deep learning model into smaller
sub-models, each of which can be run on a separate
GPU. OpenICL supports model parallelism that
users can easily parallelize their models with mini-
mal modification to the code. Currently, we support
Megatron (Shoeybi et al., 2019) and Zero (Rajb-
handari et al., 2019).

3.5 Generality
To satisfy Principle P3, OpenICL is designed to
maximize users’ productivity by supporting a wide
range of models, tasks, and methods:

[Model] OpenICL supports both decoder-only
LMs (e.g., GPT family (Radford and Narasimhan,
2018; Radford et al., 2019; Black et al., 2021; Wang
and Komatsuzaki, 2021; Black et al., 2022), and
encoder-decoder-based LMs (e.g., T5 (Raffel et al.,
2020)). We also provide two alternatives for ac-
cessing the model: users can directly load model
checkpoints for evaluation or access a model via
API (e.g., OpenAI’s GPT-3 series models; Brown
et al. 2020; Chen et al. 2021; Ouyang et al.).1

[Tasks] With the help of OpenICL, users can eas-
ily conduct experiments on both classification and
generation tasks. OpenICL integrates Hugging-
Face’s datasets2 such that users can access and
download thousands of NLP tasks with ease.

[Methods] As aforementioned, OpenICL pro-
vides broad support for ICL methods that cover
both retrieval and inference. Furthermore,
OpenICL offers the flexibility to return the results
of the Retriever and Inferencer in a step-
by-step manner, making it easy to integrate these
intermediate results into other projects.

4 Toolkit Walkthrough

In this section, we demonstrate OpenICL by walk-
ing readers through several typical ICL use cases.

Example 1. We first demonstrate how to use
OpenICL to develop a typical ICL pipeline for
language classification using a few lines of code
and conduct evaluation on the popular sentiment
classification dataset SST-2 (Socher et al., 2013).
As shown in Figure 2, the pipeline begins with a
DatasetReader which loads the dataset given
its name on HuggingFace Dataset Hub3 or lo-
cal file path. Users need to specify the names
of columns where the input (“text”) and output
(“label”) are stored. Secondly, a customized
PromptTemplate is instantiated with a dictio-
nary that defines the prompts for each class label.
The placeholder </E> and </Q> will be replaced
by in-context examples and testing input, sepa-
rately. After that, we initiate the retriever based
on TopK (Liu et al., 2022) and set the number of
in-context examples to 8 (“ice_num = 8”). We
select perplexity-based method to initiate the in-
ferencer and use GPT2-XL as the LLM. Having

1https://openai.com/api/
2https://github.com/huggingface/datasets
3https://huggingface.co/datasets
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1 from openicl import DatasetReader, PromptTemplate
2 from openicl import TopkRetriever, PPLInferencer, AccEvaluator
3

4 # Load dataset
5 data = DatasetReader(’gpt3mix/sst2’, input_columns=[’text’], output_column=’label’)
6

7 # Define the prompt template for the task
8 tp_dict = { 0: ’</E> Positive Movie Review: </Q>’,
9 1: ’</E> Negative Movie Review: </Q>’ }

10 template = PromptTemplate(tp_dict, {’text’:’</Q>’}, ice_token=’</E>’)
11

12 # Initiate the retriever and inferencer
13 retriever = TopkRetriever(data, ice_num=8)
14 inferencer = PPLInferencer(model_name=’gpt2-xl’)
15

16 # Run inference and calculate score
17 predictions = inferencer.inference(retriever, ice_template=template)
18 score = AccEvaluator().score(predictions=predictions, references=data.references)

Figure 2: Illustration of Example 1 which evaluates the ICL performance of GPT2-XL (1.5B) on SST-2 dataset with
PPL inference strategy.

1 from datasets import load_dataset
2 from openicl import DatasetReader, PromptTemplate
3 from openicl import RandomRetriever, GenInferencer, BleuEvaluator
4

5 dataset = load_dataset("wmt16", ’de-en’).map(lambda example: example[’translation’])
6

7 data = DatasetReader(dataset, input_columns=[’de’], output_column=’en’)
8

9 template = PromptTemplate(’</E> German:</German> \n English: </English>’,
10 {’de’:’</German>’, ’en’:’</English>’}, ice_token=’</E>’)
11

12 retriever = RandomRetriever(data, ice_num=8)
13

14 # Inference by direct generation
15 inferencer = GenInferencer(model_name=’facebook/xglm-7.5B’)
16 predictions = inferencer.inference(retriever, ice_template=template)
17

18 # calculate Bleu
19 score = BleuEvaluator().score(predictions=predictions, references=data.references)

Figure 3: Illustration of Example 2 that evaluates the ICL performance of XGLM (7.5B) on WMT16 (de-en) dataset
with direct inference strategy.

1 from openicl import DatasetReader, PromptTemplate, BM25Retriever, CoTInferencer
2

3 data = DatasetReader(’gsm8k’, name=’main’,
4 input_columns=[’question’], output_column=’answer’)
5

6 template = PromptTemplate(’</E> Question: </Q> \n Answer: </A>’,
7 {’question’:’</Q>’, ’answer’:’</A>’},
8 ice_token=’</E>’)
9

10 retriever = BM25Retriever(data, ice_num=4)
11

12 # Inference by Chain-of-Thought
13 cot_list=["Let’s think step by step.",
14 "\nTherefore, the answer (arabic numerals) is"]
15

16 inferencer = CoTInferencer(cot_list=cot_list, api_name=’gpt3’)
17 predictions = inferencer.inference(retriever, ice_template=template)

Figure 4: Illustration of Example 3, which evaluates the ICL performance of text-davinci-003 version of GPT-3
(175B) on GSM8K dataset with Chain-of-thought inference strategy.
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Figure 5: Evaluation results. We conduct experiments on five representative tasks with OpenICL and use different
retrievers, inferencers, language models, and other components. In terms of model usage, we adopt GPT-Neo (2.7B)
for SST2, PiQA, and Gigaword, XGLM (7.5B) for WMT16 (de-en), and text-davinci-003 version of GPT-3 (175B)
for GSM8K.

all these been set, we can run the inference by in-
voking the inferencer (line 17) and calculating the
accuracy of the model’s prediction(line 18).

Example 2. Figure 3 shows how to use OpenICL
to work with generation problems. We consider the
popular machine translation dataset WMT16 (Bo-
jar et al., 2016). As in Example 1, we can easily
load the dataset, define the prompt template, and
initiate the retriever, by feeding new parameters
to the function, respectively. The major API dif-
ference from Example 1 is that (i) we add some
pre-processing for the translation task (line 5); (ii)
PPLInferencer is replaced by inferencer tailored for
generation (line 16); (iii) we use BLEU to evaluate
model performance.

Example 3. OpenICL also supports more ad-
vanced ICL methods, as shown in Figure 4. Users
can seamlessly switch to CoT by only modifying
two lines of code: line 14 defines the template for
CoT and line 15 initiates the inferencer with GPT3
using OpenAI’s API. Similar multi-step ICL meth-
ods such as Self-Consistency (Wang et al., 2022)
and Selection-Inference (Creswell et al., 2022) can
also be easily implemented by inheriting the super-
class Inferencer designed in OpenICL.

5 Evaluation

To demonstrate OpenICL’s flexibility we conducted
experiments on a diverse set of datasets, LLMs, and
ICL methods. We consider PiQA (Bisk et al., 2019)
for commonsense reasoning, SST-2 (Socher et al.,
2013) for sentiment analysis, GSM8K (Cobbe et al.,

2021) for arithmetic reasoning, WMT16 de-en (Bo-
jar et al., 2016) for machine translation and Gi-
gaword (Napoles et al., 2012) for summarization.
We’ve also tested various LLMs, including GPT-
Neo (2.7B) (Black et al., 2021; Gao et al., 2020),
text-davinci-003 version of GPT-3 (175B), and
XGLM (7.5B) (Lin et al., 2021b). We use Ope-
nAI’s official API4 to access GPT-3. The detailed
setups and results are shown in Figure 5. As we can
see, components of OpenICL can be easily chained
to support different evaluation needs and replicate
results of state-of-the-art methods.

6 Conclusion

We present OpenICL, an open-source toolkit for
In-context learning. OpenICL provides a conve-
nient and flexible interface for in-context learning
practice and research. Our modular design allows
it to support a wide range of LLMs, tasks, and ICL
methods with ease. We implement both model par-
allelism and data parallelism to make inference of
large models more efficient. OpenICL is highly ex-
tensible, and we will continue to update it to keep
pace with the latest research. Despite the promis-
ing results, ICL is still in its early stages, and many
challenges remain. We believe OpenICL will be a
valuable resource for researchers and practitioners
to facilitate their research and development.

4https://openai.com/api/
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Abstract

Teachers often guide students to improve their
essays by adding engaging modifiers to polish
the sentences. In this work, we present the
first study on automatic sentence polishing by
adding modifiers. Since there is no available
dataset for the new task, we first automatically
construct a large number of parallel data by
removing modifiers in the engaging sentences
collected from public resources. Then we fine-
tune LongLM (Guan et al., 2022) to reconstruct
the original sentences from the corrupted ones.
Considering that much overlap between inputs
and outputs may bias the model to completely
copy the inputs, we split each source sentence
into sub-sentences and only require the model
to generate the modified sub-sentences. Fur-
thermore, we design a retrieval augmentation
algorithm to prompt the model to add suitable
modifiers. Automatic and manual evaluation
on the auto-constructed test set and real human
texts show that our model can generate more
engaging sentences with suitable modifiers
than strong baselines while keeping fluency.
We deploy the model at http://coai.cs.
tsinghua.edu.cn/static/polishSent/. A
demo video is available at https://youtu.
be/Y6gFHOgSv8Y.

1 Introduction

Teachers’ guidance is necessary for students to im-
prove their essays in primary and secondary writing
education. For example, teachers can point out po-
tential logical errors and incoherence issues, and
polish sentences to improve the engagingness of
the essays. A typical way to polish sentences is to
add engaging modifiers (e.g., from “I ate a pear”
to “I ate a big pear enjoyably”), which usually are
adjectives or adverbs that enhance the meaning of
a sentence (Witte and Faigley, 1981). Since an es-
say usually contains tens of sentences, it is a heavy
burden for teachers to polish each one. To reduce

∗Corresponding author

Original Sentences Corrupted Sentences

先是轻盈的雨滴轻轻地
滴落，发出悦耳的“叮
咚”声，就像是乐曲的前
奏。 (First, light raindrops
drip softly, emitting a pleas-
ant “ding-dong” sound, like
a prelude to the music.)

先是雨滴轻轻地滴落，
发出“叮咚”声，就像是
乐曲的前奏。 (First, rain-
drops drip softly, emitting
a “ding-dong” sound, like a
prelude to the music.)

情不自禁地哼起那首
《乡间的小路》，抛
开了一切繁重的心事，
直 到 夜 幕 降 临 。 (I
can’t help but hum the
song Country Road, leav-
ing aside all heavy thoughts
until nightfall.)

哼起那首《乡间的小
路》，抛开了一切繁
重的心事，直到夜幕降
临。 (I hum the song Coun-
try Road, leaving aside all
heavy thoughts until night-
fall.)

Table 1: Examples of automatically constructed data.
After collecting original sentences, we corrupt them
to construct less engaging sentences by removing the
modifiers that are in a vocabulary of engaging words
(marked in red).

teachers’ workload and enable students to improve
their essays independently, we present a new study
on automatic sentence polishing, which requires
polishing a given sentence given its context. The
goal of polishing a sentence is to make the sen-
tence more expressive, attractive and engaging. We
only consider inserting modifiers for polishing in
this work, and leave other types of polishing to fu-
ture work (e.g., replacing words or rephrasing the
sentence). The challenges of the new task mainly
manifest in the following two folds: (1) finding
the words that can be modified; and (2) deciding
suitable modifiers for those words.

Considering that there are no available parallel
data for this new task, we propose a self-supervised
learning approach using automatically constructed
training data. We firstly collect a large number of
engaging sentences from public books and student
essays in Chinese, and then corrupt the sentences
to construct less engaging ones by removing the
modifiers in them, as exemplified in Table 1. We
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learn a generation model for sentence polishing
by training it to reconstruct the original sentences
from the corrupted ones. To alleviate the model’s
tendency to completely copy inputs as generation
outputs, we train the model to generate only the
changed sub-sentences split by commas (e.g., “I
can’t help but hum the song Country Road” in the
second example). Furthermore, we propose a novel
retrieval augmentation algorithm to improve the
correctness of added modifiers by retrieving suit-
able pairs of modifiers and modified words from
the training set as additional inputs.

Automatic and manual evaluation on the auto-
constructed test set and real human texts show that
our model can generate more engaging sentences
with suitable modifiers and comparable fluency
than strong baselines. Furthermore, we build a
website to enable real-time interaction with our de-
ployed model, where a user can upload a Chinese
sentence with its context and get the retrieval result
along with the polished sentence.

2 Related Work

2.1 Constrained Text Generation

Automatic sentence polishing can be regarded as
a kind of constrained text generation task (Gar-
bacea and Mei, 2022), which requires generating
coherent text that meets given constraints. Typ-
ical constrained generation tasks span from ma-
chine translation (Yang et al., 2020), summariza-
tion (Paulus et al., 2018), sentence generation from
input concepts (Lin et al., 2020a), story gener-
ation from input phrases (Rashkin et al., 2020)
or events (Ammanabrolu et al., 2020). Previous
studies usually adopt the encoder-decoder frame-
work (Sutskever et al., 2014) equipped with the at-
tention mechanism (Bahdanau et al., 2015) to deal
with constrained generation tasks. Recently, large-
scale pretraining models based on the Transformer
model (Vaswani et al., 2017) such as BART (Lewis
et al., 2020) and LongLM (Guan et al., 2022)
achieve more surprising performance (Lin et al.,
2020b) although they are still far from humans (Lin
et al., 2020a).

2.2 Text-Editing Models

There is significant overlap between inputs and out-
puts in many constrained generation tasks such as
grammatical error correction (Omelianchuk et al.,
2020) and sentence polishing in this work. When
applying the vanilla encoder-decoder framework

Train Val TestAuto TestReal

# Examples 143,185 17,898 1000 1000

Avg. M Len 29.33 29.41 29.48 28.71
Avg. S Len 37.89 37.76 38.31 41.92
Avg. N Len 29.22 29.38 27.89 27.37

Avg. T Len 42.40 42.22 42.79 N/A

Table 2: Statistics of the dataset. Len is the abbrevia-
tion of Length. Train, Val and TestAuto are the auto-
constructed training, validation and test sets, respec-
tively. TestReal is the test set from real human-written
sentences. We compute the length by counting the num-
ber of Chinese characters.

to such tasks, the models tend to directly copy the
input without modification and it seems wasteful to
generate the whole output text from scratch (Malmi
et al., 2019). Text-editing models are proposed to
address this issue, which usually conduct token-
wise prediction for how to edit the token. LaserTag-
ger (Malmi et al., 2019) presented three editing
types including retaining the token, deleting the
token, and inserting tokens before the token using a
fixed phrase vocabulary obtained from the training
set. Felix (Mallinson et al., 2020) further adopted a
pointer network to learn to reorder the input tokens,
and utilized a pretrained masked language model
to predict inserted tokens. Seq2Edits (Stahlberg
and Kumar, 2020) proposed a span-level editing
type that allowed to generate a span as insertion or
replacement. Lewis (Reid and Zhong, 2021) used a
two-step editor which first predicted coarse editing
types and then filled in replacements and insertions.
EdiT5 (Mallinson et al., 2022) was a semi-auto-
regressive approach with non-auto-regressive text
labeling and auto-regressive decoding. It first de-
cided the subset of input tokens to be retained using
an encoder, then reordered the tokens with a pointer
module, and finally infilled the missing tokens us-
ing a decoder. In this work, we proposed a simple
but effective approach to address the copy issue by
only decoding the changed sub-sentences.

3 Dataset Construction

We formulate our task as follows: given three con-
secutive sentences M,S,N , the model should out-
put a polished sentence T that is more engaging
than S while maintaining the original meaning of
S and the coherence along with M and N . Since
there are no available data for this task, we con-
struct a new dataset through automatic annotation.

Firstly, we use an off-the-shelf OCR tool to col-
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秋到了，⾛进空旷的
校园，⼀阵冷风吹来，
让⼈感到⼀阵凉意。
Autumn has arrived, 
walking into the empty 
campus, a cold wind 
blows, making people 
feel a chill.

<1>...<2>树依旧是那么绿；花⼉好像不知道深
秋已经来了<3>...<4>依旧⽤它那芳⾹吸引着只
只蜜蜂；蝴蝶依旧在校园⾥翩翩起舞<5>...
<1>...<2>the trees are still so green and the 
flowers don’t seem to know that the late autumn 
has arrived<3>...<4>it still attracts bees with its 
fragrance and butterflies still dance on the 
campus<5>...

校园的花坛⾥落着从树上落下来
的⼏⽚黄叶，⼈们的呼吸在空⽓
中凝成了乳⽩⾊的热⽓。
The flower beds on campus are 
covered with a few yellow leaves 
that have fallen from the trees, and 
people's breathing has condensed 
into milky white heat in the air.

Retrieving

盛开的花
⼉，勤劳
的蜜蜂...
Blooming 
flowers, 
industrious 
bees...

Sampling

Preceding Sentence M
Retrieved 
Modifiers Subsequent Sentence NSource Sentence S

Input

Encoder

Polished Sentence T

<2>郁郁葱葱的树依旧是那么绿；盛开的花⼉好像不知道深秋已经来了<4>依旧⽤它那芳⾹吸引着只只勤劳的蜜蜂；
美丽的蝴蝶依旧在校园⾥翩翩起舞
<2> the lush trees are still so green and the blooming flowers don’t seem to know that the late autumn has arrived<4> it still 
attracts industrious bees with its fragrance and beautiful butterflies still dance on the campus

Training Set

Decoder

Figure 1: Model overview. We split the source sentence S into sub-sentences by commas and only generate the
modified sub-sentences. We also retrieve relevant modifiers from the training set, which are taken as input. The
modifiers added by the model are marked in red.

lect about 50k engaging sentences and a vocabulary
of 61k engaging words from several books1, and
collect 26k high-quality Chinese student essays
from public resources2 that describe the scenery
and thus potentially contain lots of engaging sen-
tences. Then we take every triple of adjacent three
sentences in these texts collected from books and
websites as M,T and N3, respectively. We obtain
S by removing modifiers in T . Specifically, we
adopt a public Chinese NLP toolkit LTP 4 to iden-
tify attribute and adverbial words in T , and regard
those words included in the vocabulary of engaging
words as the modifiers that can be removed. Note
that we also remove the structural particle words
including “的” and “地” following the removed
modifiers to ensure the fluency of the final sentence
S. If there is no removed modifier in T , we will

1《1000篇好词好句好段（初中）》，《小学生好词
好句好段手册（新课标教材版）》，《书通网》，《黄
冈作文-小学生好词好句好段》。

2https://www.leleketang.com/zuowen/
list10-0-0-1-1.shtml

3An engaging text example collected from books may
contain less than three sentences. In this case, M or N can be
missing.

4https://github.com/HIT-SCIR/ltp

discard the example.
Table 2 shows the statistics of our dataset. Con-

sidering that the auto-constructed inputs may be
different from real texts, we construct an additional
test set, i.e., TestReal, where the inputs are original
sentences whose modifiers are not removed. We
set the size of both test sets to 1000 to balance the
estimation error and the inference time.

4 Methodology

An overview of our model is shown in Figure 1.
We build our model on LongLMLarge (Guan et al.,
2022) for the sentence polishing task, which is
an encoder-decoder model pretrained on Chinese
novels with 1 billion parameters. Considering the
significant overlap between the source sentence S
and the polished sentence T , we split S into several
sub-sentences by commas and require the model
to generate only the modified sub-sentences. We
describe the detailed input-output format in §4.1.
Moreover, we retrieve relevant modifiers from the
training corpus, which are taken as input for both
training and inference to help the model find suit-
able modifiers. We show the retrieval augmentation
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algorithm in §4.2.

4.1 Input-Output Format

In our pilot experiments, we take the concatenation
of M,S and N as input5 and train the model to min-
imize the log-likelihood of the whole target output
T . We observe that the model tends to directly
copy S as the generation result. We conjecture this
is because most tokens in T overlap with S dur-
ing training, making the model take the shortcut of
copying instead of generating new tokens. To alle-
viate this issue, we split the source sentence S into
several sub-sentences by commas (S without com-
mas is not split), and train the model to decode only
the modified sub-sentences. As shown in Figure 1,
the source sentence S is split into 5 sub-sentences
by commas, and the decoder only needs to decode
the second and the fourth sub-sentence since the
left three sub-sentences remain unchanged. This
training strategy not only reduces the ratio of gen-
erated tokens that completely copy from the source
inputs, but also improves the generation speed. Fi-
nally, we use the generated sub-sentences to replace
the original ones in S to obtain the whole output
sentence.

4.2 Retrieval Augmentation

We observe that the model trained with the frame-
work described in §4.1 sometimes adds unsuitable
modifiers (e.g., using “colourful” to modify “sun”).
To alleviate this problem, we propose a retrieval
augmentation algorithm to prompt the model to
find suitable modifiers.

To this end, we first collect all pairs of modifiers
and corresponding modified words from the en-
gaging sentences in the training corpus, including
attribute words paired with the modified nouns, and
adverbial words paired with the modified verbs. We
identify the attribute and adverbial words in each
sentence through the dependency parsing toolkit
of LTP. Furthermore, we restrict that the identified
attribute and adverbial words are included in the
vocabulary of engaging words. In this way, we
obtain a dictionary that can map a noun or verb to
a list of its suitable modifiers.

During inference, we first find all nouns and
verbs in the source sentence S that are included in
the dictionary and do not have engaging modifiers.
Then, we randomly sample at most five modifiers
for each noun or verb from its corresponding list

5M,S and N are separated by <sep>.

of modifiers. The sampled modifiers along with
the nouns and verbs are inserted before the original
input. During training, considering that condi-
tioning on too many modifiers that are not used for
generating may make the model tend not to use the
retrieved modifiers, we drop the retrieved modifiers
corresponding to the nouns or verbs that do not
have any modifiers in the target output with a prob-
ability p1. Furthermore, to avoid excessive depen-
dence on the retrieved modifiers, for those nouns
or verbs that have modifiers in the target output,
we drop all corresponding modifiers with a proba-
bility p2, randomly sample at most five modifiers
with the probability p3, or randomly sample at most
four modifiers along with the ground-truth modifier
with a probability p4. Note that p2 + p3 + p4 = 1.
Finally, we insert the selected modifiers with the
nouns and verbs before the original input.

5 Experiments

5.1 Compared Models

We compare our model with the following three
variants: (1) Retrieve, which randomly samples
modifiers from the retrieved phrases, and then adds
the sampled modifiers to the sentence without using
neural language model. (2) LongLMvanilla, which
generates the whole polished sentence instead of
only generating the modified sub-sentences; (3)
LongLMno-retrieve, which generates the modified
sub-sentences without retrieval augmentation.

5.2 Experiment Settings

We initialize our model using the pretrained
checkpoint of LongLMLarge. For retrieval aug-
mentation, the probability p1, p2, p3, p4 is set to
0.75, 0.25, 0.25, 0.5, respectively. And the sam-
pled modifiers are dynamically changed at different
epochs during training. We run our experiments on
6 Tesla V100 GPUs (32GB memory). We use Deep-
Speed6 with mixed precision to train our model,
which helps significantly reduce the memory us-
age. We set learning rate to 5e-5 and batch size
per GPU to 8. The maximum input length is set to
384 and the maximum output length is set to 128.
We train the model for 10 epochs and select the
best checkpoint that has the lowest perplexity on
the validation set. During inference, we combine
beam search (beam size = 10) (Graves, 2012), top-
k sampling (k = 50) (Fan et al., 2018) and top-p

6https://github.com/microsoft/DeepSpeed
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sampling (p = 0.9) (Holtzman et al., 2020) for
decoding. We apply these settings to all models.

5.3 Automatic Evaluation

We evaluate the models on both TestAuto and
TestReal. We adopt the following two metrics:
(1) Copy ratio: It calculates the ratio of samples
whose output and input are exactly the same.(2) #
Added Modifiers: It calculates the averaged num-
ber of added modifiers in the outputs. These two
metrics aim to measure the differences between the
inputs and outputs.

Models Copy Ratio # Added Modifiers

LongLMvanilla 3.8% / 38.6% 1.16 / 0.40
LongLMno-retrieve 0.2% / 8.5% 1.27 / 0.94
Ours 0.3% / 7.1% 1.23 / 0.92

Table 3: Automatic evaluation result. The two values
separated by “/” indicate the performance on TestAuto

and TestReal, respectively.

The automatic evaluation result is shown in Ta-
ble 3. We do not report the results of the Retrieve
model because it adds as many modifiers as possi-
ble without considering fluency. LongLMvanilla has
the highest copy ratio and adds the fewest modi-
fiers among the three models. Moreover, all three
models tend to copy more from inputs on TestReal

than TestAuto, and LongLMvanilla shows a larger
margin than other two models which only generate
the modified sub-sentences. The result suggests
the worse generalization ability of LongLMvanilla.
Besides, we find that our model has a lower copy ra-
tio than LongLMno-retrieve when tested on TestReal,
indicating that the retrieval augmentation module
helps improve generalization to real texts by pro-
viding references for adding modifiers.

Aspects Scores Descriptions

Fluency
0 The output is obviously not fluent.
1 The output is a little bit not fluent.
2 The output is fluent.

Correctness

0 The modifiers in the output are incorrect.

1 The correctness of the modifiers in the out-
put is ambiguous.

2 The modifiers in the output are correct.

Engagingness

1 The Engagingness of the output drops.

2 The engagingness of the output is un-
changed.

3 The engagingness of the output improves
slightly.

4 The engagingness of the output improves.

5 The engagingness of the output improves
significantly.

Table 4: Scoring rules in manual evaluation.

Models Fluency (κ) Correctness (κ) Engagingness (κ)

Retrieve 0.82 (0.42) 0.61 (0.50) 2.00 (0.64)
LongLMvanilla 1.93 (0.69) 1.87 (0.52) 2.91 (0.75)
LongLMno-retrieve 1.81 (0.55) 1.73 (0.52) 3.21 (0.76)

Ours 1.88 (0.57) 1.84 (0.57) 3.44 (0.85)

Table 5: Manual evaluation result. We show Fleiss’s
kappa value κ in the parentheses to measure the inter-
annotator agreement.

5.4 Manual Evaluation

Considering there may be many plausible modifica-
tions for the same input, it is hard to automatically
evaluate the quality of the added modifiers. There-
fore, we resort to manual evaluation in terms of
three aspects including: (1) Fluency (0-2): whether
the polished sentence is fluent in terms of grammat-
ical quality; (2) Correctness (0-2): whether the
added modifiers in the polished sentence are suit-
able to modify the corresponding nouns, verbs, etc.;
(3) Engagingness (1-5): whether the engagingness
of the polished sentence improves compared with
the source sentence. We show the detailed scoring
rules in Table 4. We first randomly sample 100
inputs from TestReal. Then we use the Retrieve
model, LongLMvanilla, LongLMno-retrieve and our
model to generate polished sentences for the sam-
pled inputs. For each generated sample, we hire
three well-trained professional annotators to give a
score for each of the three evaluation aspects. Note
that these aspects are evaluated independently. We
directly average the scores given by three annota-
tors to get the final scores.

Table 5 shows the evaluation results. All re-
sults show moderate or better (κ > 0.4) inter-
annotator agreement. By comparing LongLMvanilla
and LongLMno-retrieve, we can see that only gen-
erating the modified sub-sentences helps improve
the engagingness of the polished sentence due to
the lower copy ratio. However, the drop of copy
ratio also brings a higher risk of adding unsuitable
modifiers. Our retrieval augmentation algorithm
improves the correctness of the polished sentences
by providing multiple possible modifier candidates.
Moreover, the suitable modifiers make the polished
sentences more fluent and engaging. However, if
we remove LongLM and only utilize the retrieved
modifiers, it is hard to create fluent and coherent
sentences as the result shows, which suggests the
necessity to integrate the contextualization abil-
ity of generation models. In summary, our model
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M S N LongLMno-retrieve Ours

从远处看，桃花星
星点点，似一群娇
小可爱的小女孩，
从近处看，这桃花
恰似那闭月羞花的
少女，在风中轻歌曼
舞，柔美的身姿随风
摇摆。 (From a dis-
tance, the peach blos-
soms are dotted, like
a group of petite and
cute little girls. From
a close point of view,
this peach blossom is
just like the girl who
closes the moon and
shy flowers, singing
and dancing softly in
the wind, and the fem-
inine posture sways
with the wind.)

冬天，桃花树养精蓄
锐，吮吸着冬天仅有的
丝丝阳光，它们饱经风
霜，静待那一声撕破寒
冬的惊雷；终于，明媚
的春天来了，当迎春花
开过，它们便向世人展
示出那闭月羞花、沉鱼
落雁的姿态。 (In winter,
peach blossom trees nour-
ish themselves, sucking in
the only shred of sunlight
in winter. They are full
of wind and frost, waiting
for the thunder that tears
through the cold winter. Fi-
nally, the bright spring has
come, and when the spring
flowers have bloomed, they
show the world their beau-
tiful posture.)

我觉得不
是“梅 花
香自苦寒
来 ，”还
是“桃 花
艳 自 苦
寒 来 。”
(I think
it’s not
just “plum
blossom
fragrance
comes
from bitter
cold", but
also“peach
blossoms
come
from bitter
cold".)

冬天，桃花树养精蓄
锐，无助地吮吸着冬天仅
有的丝丝阳光，它们饱经
风霜，静待那一声撕破寒
冬的惊雷；终于，明媚
的春天来了，当迎春花
开过，它们便向世人展
示出那闭月羞花、沉鱼
落雁的姿态。 (In winter,
peach blossom trees nourish
themselves, helplessly suck-
ing in the only shred of sun-
light in winter. They are
full of wind and frost, wait-
ing for the thunder that tears
through the cold winter. Fi-
nally, the bright spring has
come, and when the spring
flowers have bloomed, they
show the world their beauti-
ful posture.)

冬天，桃花树养精蓄锐，贪婪地吮
吸着冬天仅有的丝丝阳光，它们
饱经风霜，静待那一声撕破寒冬
的沉闷的惊雷；终于，明媚的春
天来了，当热情的迎春花开过，它
们便骄傲地向世人展示出那闭月羞
花、沉鱼落雁的姿态。 (In winter,
peach blossom trees nourish themselves,
greedily sucking in the only shred of
sunlight in winter. They are full of wind
and frost, waiting for the dull thunder
that tears through the cold winter. Fi-
nally, the bright spring has come, and
when the enthusiastic spring flowers
have bloomed, they proudly show the
world their beautiful posture.)
Retrieved Phrases: 沉闷的惊雷，贪婪地吮吸，
热情的迎春花，充分地展示，火辣辣的阳光...
(Dull thunder, greedily suck, enthusiastic spring
flowers, fully show, fiery sunlight...)

秋风一阵阵吹来，
一 层 层 桔 色 的“海
浪”迎面“扑”来，感
觉 像 看 四 维 电 影
一样。 (The autumn
wind blows in waves,
and the layers of or-
ange "waves" "flutter"
in the face, feeling
like watching a four-
dimensional movie.)

仔细一看，像一大团桔
红色的火焰在燃烧，
花蕊被花瓣紧紧团住，
最大的有爸爸拳头那么
大。 (If you look closely,
it looks like a large orange-
red flame burning, and the
flower buds are tightly held
by the petals, the largest
of which is the size of
Daddy’s fist.)

花是桔红
色的，绿
色的叶子
把花瓣裹
住。 (The
flowers
are orange-
red, and
the green
leaves wrap
the petals.)

Same as the input source
sentence S.

仔细一看，像一大团桔红色的火焰
在燃烧，花蕊被鲜艳的花瓣紧紧团
住，最大的有爸爸拳头那么大。 (If
you look closely, it looks like a large
orange-red flame burning, and the flower
buds are tightly held by the brightly col-
ored petals, the largest of which is the
size of Daddy’s fist.)
Retrieved Phrases: 鲜艳的花瓣，纤细的花蕊...
(brightly colored petals, slender flower buds...)

Table 6: Cases generated by different models on TestReal. M,S and N are the preceding, source and subsequent
sentences, respectively. LongLMvanilla copies the source sentences for both cases and we omit the generation results.
We mark the added modifiers generated by LongLMno-retrieve in orange. In the generation result of ours, we mark the
added modifiers that have been retrieved in red, and others in blue.

can improve the engagingness significantly7 while
keeping fluency and correctness comparable with
baselines.

5.5 Case Study

We show two cases in Table 6. Our model can
add suitable modifiers in multiple sub-sentences
with the help of various retrieved modifiers. In
contrast, LongLMno−retrieve uses “helplessly” to
modify “sucking”, which is reasonable in isolation
but is incoherent with the context, thus decreasing
the engagingness of the sentence. We additionally
show the result of the Retrieve model in Table 7 in
the appendix.

6 Demonstration

We have deployed our model online to automati-
cally polish the source sentence given its context.
Figure 2 shows a screenshot of our demo website.
Users need to enter the source sentence and its pre-
ceding and subsequent sentences. Note that the

7p < 0.01 when compared with LongLMvanilla (Wilcoxon
signed-rank test).

Figure 2: A screenshot of our demo website.

source sentence is mandatory but its context can
be empty. Then users can submit the request and
the result will be returned after a few seconds. We
show the polished sentence at the bottom of the
page, and the retrieved modifiers for reference.

7 Conclusion

We propose a new task named sentence polishing,
which requires polishing a given sentence while
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maintaining fluency and coherence with the con-
text. To this end, we construct about 160k parallel
examples by removing modifiers in collected en-
gaging sentences. Then we fine-tune LongLM to re-
construct the original sentences from the corrupted
ones by generating the modified sub-sentences. We
also propose a retrieval augmentation algorithm to
retrieve engaging modifiers from the training set,
which can help generate suitable modifiers. Auto-
matic and manual evaluation demonstrate strong
performance of our model to generate engaging
sentences. We have deployed our model online for
public use. Although we focus on adding modifiers
in this paper, the perturbation-and-reconstruction
framework can be potentially adapted to other pol-
ishing techniques such as adding metaphors, which
is left as future work. Moreover, although we train
our model on collected Chinese data, we believe
the method can be easily transferred to other lan-
guages.
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M S N Retrieve Ours

从远处看，桃花星
星点点，似一群娇
小可爱的小女孩，
从近处看，这桃花
恰似那闭月羞花的
少女，在风中轻歌曼
舞，柔美的身姿随风
摇摆。 (From a dis-
tance, the peach blos-
soms are dotted, like
a group of petite and
cute little girls. From
a close point of view,
this peach blossom is
just like the girl who
closes the moon and
shy flowers, singing
and dancing softly in
the wind, and the fem-
inine posture sways
with the wind.)

冬天，桃花树养精蓄
锐，吮吸着冬天仅有的
丝丝阳光，它们饱经风
霜，静待那一声撕破寒
冬的惊雷；终于，明媚
的春天来了，当迎春花
开过，它们便向世人展
示出那闭月羞花、沉鱼
落雁的姿态。 (In winter,
peach blossom trees nour-
ish themselves, sucking in
the only shred of sunlight
in winter. They are full
of wind and frost, waiting
for the thunder that tears
through the cold winter. Fi-
nally, the bright spring has
come, and when the spring
flowers have bloomed, they
show the world their beau-
tiful posture.)

我觉得不
是“梅 花
香自苦寒
来 ，”还
是“桃 花
艳 自 苦
寒 来 。”
(I think
it’s not
just “plum
blossom
fragrance
comes
from bitter
cold", but
also“peach
blossoms
come
from bitter
cold".)

冬天，桃花树养精蓄
锐，尽情吮吸着冬天仅
有的丝丝清澈的阳光，它
们饱经风霜，静待那一
声撕破凛冽的寒冬的沉闷
的惊雷；终于，明媚的
春天轻盈地来了，当许许
多多的迎春花热热闹闹开
过，它们便向世人努力展
示出那闭月羞花、沉鱼
落雁的轻盈的一种姿态。
(In winter, peach blossom
trees nourish themselves, en-
joyably sucking in the only
shred of clear sunlight in
winter. They are full of
wind and frost, waiting for
the dull thunder that tears
through the nippy and cold
winter. Finally, the bright
spring has come airily, and
when a lot of spring flow-
ers have bloomed with high
spirits, they show the world
their beautiful and light-
some posture.)

冬天，桃花树养精蓄锐，贪婪地吮
吸着冬天仅有的丝丝阳光，它们
饱经风霜，静待那一声撕破寒冬
的沉闷的惊雷；终于，明媚的春
天来了，当热情的迎春花开过，它
们便骄傲地向世人展示出那闭月羞
花、沉鱼落雁的姿态。 (In winter,
peach blossom trees nourish themselves,
greedily sucking in the only shred of
sunlight in winter. They are full of wind
and frost, waiting for the dull thunder
that tears through the cold winter. Fi-
nally, the bright spring has come, and
when the enthusiastic spring flowers
have bloomed, they proudly show the
world their beautiful posture.)
Retrieved Phrases: 沉闷的惊雷，贪婪地吮吸，
热情的迎春花，充分地展示，火辣辣的阳光...
(Dull thunder, greedily suck, enthusiastic spring
flowers, fully show, fiery sunlight...)

秋风一阵阵吹来，
一 层 层 桔 色 的“海
浪”迎面“扑”来，感
觉 像 看 四 维 电 影
一样。 (The autumn
wind blows in waves,
and the layers of or-
ange "waves" "flutter"
in the face, feeling
like watching a four-
dimensional movie.)

仔细一看，像一大团桔
红色的火焰在燃烧，
花蕊被花瓣紧紧团住，
最大的有爸爸拳头那么
大。 (If you look closely,
it looks like a large orange-
red flame burning, and the
flower buds are tightly held
by the petals, the largest
of which is the size of
Daddy’s fist.)

花是桔红
色的，绿
色的叶子
把花瓣裹
住。 (The
flowers
are orange-
red, and
the green
leaves wrap
the petals.)

仔细一看，像一大团桔
红色的粗犷的火焰在一团
团燃烧，漂亮的花蕊被娇
嫩的小花瓣紧紧团住，最
大的有爸爸拳头那么大。
(If you look closely, it looks
like a large and clouds of
orange-red and rough flame
burning, and the beautiful
flower buds are tightly held
by the delicate petals, the
largest of which is the size
of Daddy’s fist.)

仔细一看，像一大团桔红色的火焰
在燃烧，花蕊被鲜艳的花瓣紧紧团
住，最大的有爸爸拳头那么大。 (If
you look closely, it looks like a large
orange-red flame burning, and the flower
buds are tightly held by the brightly col-
ored petals, the largest of which is the
size of Daddy’s fist.)
Retrieved Phrases: 鲜艳的花瓣，纤细的花蕊...
(brightly colored petals, slender flower buds...)

Table 7: Cases generated by the Retrieve model on the same test examples as Table 6. We mark the added modifiers
generated by the Retrieve model in orange. We also show the generation result of our model for reference.
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Abstract
Writing assistants are valuable tools that can
help writers improve their writing skills. We
introduce Effidit (Efficient and Intelligent
Editing), a digital writing assistant that facil-
itates users to write higher-quality text more
efficiently through the use of Artificial Intel-
ligence (AI) and Natural Language Process-
ing (NLP) technologies. We significantly ex-
pand the capacities of a writing assistant by
providing functions in three modules: text com-
pletion, hint recommendation, and writing re-
finement. Based on the above efforts, Effidit
can efficiently assist users in creating their
own text. Effidit has been deployed to sev-
eral Tencent products and publicly released at
https://effidit.qq.com/.

1 Introduction

Effective communication through writing is cru-
cial in modern society, as it allows individuals
to share their thoughts, opinions, and responses,
thereby enabling them to establish meaningful con-
nections with others. However, writing could be
a challenging task, regardless of whether you are
a beginner or an experienced writer. It requires a
combination of creativity, organization, and crit-
ical thinking. To address this challenge, several
writing assistant tools (Grammarly; QuillBot) have
been developed to help users write faster and more
efficiently. These tools use Artificial Intelligence
(AI) and Natural Language Processing (NLP) tech-
niques to provide suggestions, corrections, and rec-
ommendations to improve writing quality.

In general, the writing process can be divided
into three main stages: generating and proposing
ideas, composing coherent sentences, and refining
the language through editing and polishing (Flower
and Hayes, 1980). Tracking this, we present Effidit
(Efficient and Intelligent Editing) to provide users
with an innovative writing experience, which signif-
icantly expands the capacities of a typical writing
assistant by providing three categories of functions:

• Text Completion module intends to provide
high-quality continuations for any given textual
prefix for improving the user’s writing efficiency.
Effidit offers both short-form and long-form text
completion. For short-form completion, Effidit pro-
vides two functions including Phrase Completion
which takes the prefix as input and suggests suit-
able follow-up phrases, and a Cloud Input Method
Editor (IME) which can pop up instant suggestions
during typing. Cloud Chinese Pinyin and English
input methods are provided. Meanwhile, Sentence
Completion automatically completes the whole sen-
tence based on the prefix, serving as a long-form
assistance. The completion can be done by either
retrieving from an existing datastore or generat-
ing using advanced neural language models. To
help users create fun and distinctive content, Effidit
also supports stylistic automatic writing for Chi-
nese novel writing. Specifically, four distinct and
popular novel styles are covered currently.

• Hint Recommendation module can help users
to brainstorm when they are struggling to find
the inspiring words or are dealing with writer’s
block. This module can recommend various hints
given the input keywords, such as mono-lingual
and multi-lingual retrieval example sentences, gen-
erated sentences by infilling the input keywords,
representative papers, and a super-power dictio-
nary that can suggest synonyms, antonyms, related
words, possible modifiers, and related entities.

• Writing Refinement module is designed to help
users refine texts they have already typed down
by suggesting improvements in grammar, syntax,
phrase and vocabulary. Grammar Error Correc-
tion (GEC) focuses on identifying and correcting
grammar mistakes inside the sentence. Effidit addi-
tionally provides grammar-aware explanations and
evidence words for corrections in English GEC.
Effidit provides three different levels of text polish-
ing: phrase polishing, sentence rewriting (i.e. para-
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Text Completion

Error Correction

Sentence Paraphrase

Error Correction
with Explanation

Input Method Editor 

• typos (ERROR)

are →

It would be better to replace “are” with “is”  

【Explanation】It appears that the verb “is” doesn’t 

agree with the subject “Writing assistant”.

Ignore Adopt

is

Cross-Lingual
Sentence Recommendation

Figure 1: Screenshot of the Effidit online demo. To save our space, we put the results of Text Completion (Sentence
Generation) and Hint Recommendation (Cross-Lingual Sentence Recommendation) on the bottom of the left part,
which are originally on the right pane.

phrasing) and sentence expansion. By selecting
some words, phrase-level polishing automatically
recommends words that are more suitable for the
context, making the overall sentence more accu-
rate and vivid. Sentence rewriting automatically
modifies a sentence while retaining its semantics,
thus enhancing sentence diversity. Sentence expan-
sion generates longer sentences with consistent but
richer semantics for a target sentence by adding
some modifiers.

The first version of Effidit was released in April,
2022. Tencent AI lab constantly maintains and up-
dates Effidit, aiming to provide users with a better
writing experience. The current version supports
both Chinese and English. Effidit is now providing
support for many products and users both inside
and outside Tencent. Detailed documents and tuto-
rials are available at https://effidit.qq.com/
en.

2 Overview

Figure 1 illustrates the process of users using the
online demo of Effidit. The left part is a plain-text
editor for users to add and edit text, whereas the
right pane is for triggering most core functions of
Effidit and displaying corresponding results. In
addition, some UI elements are at the bottom for

changing domains and setting up the cloud IME.
Table 1 presents a comparison between Effidit and
several well-designed writing assistants. As can be
seen, previous writing assistants typically provide
the function of error checking (to detect and cor-
rect spelling and grammatical errors) and limited
text-rewriting functionality. In Effidit, we signifi-
cantly expand the capacities of a writing assistant
by providing functions in three perpectives. More
technical details can be found at Shi et al. (2022).

2.1 Architecture
Figure 2 shows three modules supported by Effidit:
Text Completion module takes the incomplete text
as input, and help users compose coherent sen-
tences; Hint Recommendation module suggests
relevant words/phrases/sentences given the input
words; Writing Refinement module polishes the
existing passage to improve writing quality. These
modules are introduced in the following subsec-
tions.

3 Text Completion Module

Effidit offers both short-form and long-form assis-
tance for text completion, which can help users
enhance the efficiency and effectiveness of their
writing. As an advanced feature, Effidit can provide
completion suggestions in specific writing styles.
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，

Text Content

Text Prefix

Hints

Grammar Error Correction

Spell Checker Error Explanation

Non-autoregressive Detection and 
Correction Model

Short-Form Assistance

Phrase Completion Input Method Editor

Text Polishing

Phrase Polishing Sentence Rewriting

Sentence Skeleton Detection

Long-Form Assistance

Stylistic AutoWriteSentence Completion

KG

Word Recommendation Sentence Recommendation
Synonyms and Entonyms

Related Entities

Cross-Language Retrieval

Literature Search

Sentence Expansion

Sentence Generation

Keywords-to-Sentence 
Text Infilling Model

KB

Figure 2: Overview of all modules and the main backbone models in Effidit. We categorize them based on the
semantic completeness of the model inputs: Text Content refers to all text that users have written down, which could
include multiple sentences, paragraphs, and articles; Text Prefix is a short piece of text with incomplete or partial
semantics that should be continued; Keywords are one or a few words that users want to explore further information
as hints to inspire their writing.

Figure 3: Phrase completion examples (Left: English;
Right: Chinese).

Currently, four unique styles are available, includ-
ing science fiction (SCI-FI), military novel (Mili-
tary), martial art fantasy (MartialArt), and urban
story (Urban), allowing users to create engaging
and stylistic content that is both fun and distinctive.

Phrase completion Figure 3 shows an example.
It is noteworthy that Effidit considers both the pre-
fix and suffix for phrase completion, setting it apart
from most other writing assistants that only take
the prefix into account. As illustrated in the left
part of the figure, when the caret is after the first let-
ter “B”, the top completion results contain both the
prefix “B” and the suffix “Spears”. Phrase comple-

Figure 4: An example of Cloud Input Methods.

tion can improve writing efficiency and reduce the
chance of typographical errors (Lee et al., 2021).
For example, if a user types “Los A” and triggers
phrase completion, the topmost suggestion is “Los
Angeles”, which can be directly selected by the
user. In this way, potential spelling mistakes such
as “Los Angelas” can be avoided.

Cloud input method editors (Cloud IMEs) Ef-
fidit provides cloud IMEs for both Chinese and
English to improve the input efficiency of words
and phrases. Instant suggestions pop up when the
user is typing in our text editor. Figure 4 depicts
an example where the names of some novels in the
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Function QuillBot Grammarly Deepl Pitaya Phrasebank Effidit
Phrase Completion - - - - - !

Retrieval-based Completion - - - - - !

Generation-based Completion - - - - - !

Mono-lingual Retrieval - - - ! - !

Cross-lingual Retrieval - - - - - !

keyword-to-sentence - - - ! - !

dictionary - - - ! ! !

Grammar Error Correction ! ! ! ! - !

Phrase Polish ! ! ! ! - !

Sentence Rewrite ! - - - - !

Sentence Expansion - - - ! - !
Supported language En En En En&Zh En En&Zh

Table 1: Comparison between Effidit and other writing assistants.

Figure 5: Examples of sentence-level completion using
Web Retrieval. The input prefix is “It was a nice day".

Harry Potter series are shown as suggestions.

Sentence completion Effidit also provides sen-
tence completion suggestions (Zweig et al., 2012).
Figure 5 and 6 demonstrate the results of two com-
pletion methods: web retrieval and AI generation.
Similar to phrase completion, Effidit supports both
Chinese and English. The web retrieval method
utilizes a large collection of high-quality sentences
to search for the most similar sentences to the in-
put prefix. On the other hand, the AI generation
method leverages large language models to gener-
ate the most probable continuations. To alleviate
the serious degeneration problem, i.e., the gener-
ated texts from the language model tend to be dull
and contain undesirable repetitions at different lev-

Figure 6: Examples of sentence-level completion using
AI generations. The input prefix is “It was a nice day".

els (e.g., token-, phrase-, and sentence-level), we
apply the contrastive search (Su et al., 2022) and
FSD decoding (Yang et al., 2023) methods. The
key intuitions behind are: (i) At each decoding
step, the output should be selected from the set of
most probable candidates predicted by the model
to better maintain the semantic coherence. (ii) The
patterns that occur in the input prefix and/or the pre-
viously generated sequence should be penalized to
avoid degeneration. Effidit integrates both retrieval
and generation methods by presenting multiple can-
didates from each of them, enabling users to choose
the best option according to their preferences.
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Stylistic AutoWrite To assist users in crafting
engaging, creative, and versatile stories, Effidit ex-
pands its sentence completion function to include
stylistic autowrite (Dathathri et al., 2020). With
four novel writing styles to choose from (SCI-FI,
Military, MartialArt, and Urban), Effidit generates
multiple possible continuations that adhere to the
selected writing style and the input prefix. This
functionality allows users to explore multiple stylis-
tic possibilities and inspires their creativity. Unlike
other text completion modules, stylistic autowrite
only supports Chinese writing currently, and we
are trying to upgrade our models for English and
more languages, which will be released soon.

4 Hint Recommendation Module

Effidit can take one or more keywords as input
and recommend a list of related words, sentences
and documents. Especially, each recommended
output sentence/document either contains the input
keywords, or is semantically related to them. These
modules are built for the scenario that users only
have some basic concepts in their minds but do not
have enough information to organize sentences to
express their ideas.

Word Recommendation Effidit provides a
super-power dictionary for users to first explore
a wide range of related words including synonyms,
antonyms, similar words, possible modifiers, and
related entities, etc. As shown in Figure 7, given a
keyword “linguistic”, Effidit produces both mono-
lingual and bi-lingual dictionaries.

Keyword2sentence (K2S) This module takes
several keywords as input and returns a list of sen-
tences. Effidit supports the retrieval-based method
and the generation-based method. For the retrieval-
based method, top sentences containing the in-
put keywords are retrieved from a corpus of high-
quality sentences collected beforehand from the
Web. Generation-based K2S is formulated as a
text-infilling problem (Zhu et al., 2019; Donahue
et al., 2020), which is to generate missing spans of
text. Our system considers a general text-infilling
setting, where the incomplete sentence can contain
an arbitrary number of blanks to be filled in, and
each blank can involve an unknown number of to-
kens. Illustrated examples are provided in Figure 8.
For both types of results, Effidit displays multiple
candidates, from which the user can select the most
appropriate one for reference.

Figure 7: Examples of word recommendations provided
by the super-power dictionary (Upper: Mono-lingual;
Lower: Bilingual).

Sentence/Document Recommendation We use
information retrieval methods (Baeza-Yates et al.,
1999; Manning, 2008) to index a large corpus of
sentences and documents. Note that Effidit sup-
ports cross-lingual retrieval, where the output is
English sentences and the input can be a mixture
of Chinese and English keywords. Effidit also sup-
port document-level search, especially paper rec-
ommendation. Unlike other paper search services
such as (Scholar), the paper search of Effidit fo-
cuses more on recalling papers that are semanti-
cally related to the input keywords other than those
containing the input keywords in their titles or con-
tents. In particular, when the input keyword is a
research topic, important papers on this topic will
be returned even if some keywords are missing in
some results.
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Figure 8: Examples of keywords2sentence.

5 Writing Refinement Module

Grammar Error Correction The grammar error
correction (GEC) capability is a pivotal attribute
for writers, particularly for novices and those uti-
lizing a non-native language (Dahlmeier and Ng,
2012; Wang et al., 2020). The GEC module of
Effidit can automatically detect and correct gram-
matical, syntactical, and spelling errors in written
texts. As shown in the upper right part of Figure 1,
Effidit offers users various types of suggestions,
such as substitution, deletion, and insertion, during
the process of error correction. We have a tail-to-
tail model (Li and Shi, 2021) to handle substitu-
tion errors and a tailored pretrained model (Zhou
et al., 2022) to handle deletion and insertion errors.
Moreover, Effidit advances its GEC capabilities
by providing grammar-aware explanations and ev-
idence words. Specifically, as shown in the upper
left part of Figure 1, the explanation describes why
a correction was made to a particular error (e.g. the
grammatical rule that was violated), and evidence
words provide a clear indication of such error (Fei
et al., 2023). With explainable GEC functions, Ef-
fidit can increase users’ trust and acceptance of
the corrections made by the algorithm, and help
them to improve their writing skills via detailed
and specific feedback.

Text Polishing Text polishing is a process of re-
fining and improving written text by enhancing its
clarity, readability, and overall quality (Bhagat and

Figure 9: Examples of phrasal paraphrasing.

Hovy, 2013; Gupta et al., 2018). Effidit provides
two functions, phrasal and sentential paraphrasing,
to achieve the goal of text polishing. Phrasal para-
phrasing involves rephrasing individual words or
phrases within a sentence to create more impact-
ful or clearer language. As shown in Figure 9,
by phrasal paraphrasing, writers can avoid repet-
itive language and create a more interesting and
varied writing style. Sentence paraphrasing, on
the other hand, involves rewriting an entire sen-
tence to convey the same meaning in a different
way. The lower right quadrant of Figure 1 illus-
trates an instance in which a range of diverse para-
phrased options are presented. Based on options
suggested by Effidit, writers can then choose al-
ternative phrasing that is more natural and intu-
itive. In this way, it would be able to eliminate
awkward or convoluted sentence structures that
make writing difficult to follow. Apart from nor-
mal rewriting, we also provide the conversion be-
tween classical↔modern Chinese language.1 Dif-
ferent from modern language, classical language
is often used in poetry, prose, and other forms of
traditional literature. The modern→classical con-
version can help writers seamlessly integrate classi-
cal elements into their writing, making their works
more artistic and expressive. On the other hand,
classical→modern conversion can accessibly help
users better understand classical literature, espe-
cially in the field of education.

Text Expansion Effidit provides the function of
text expansion by adding some elegant modifiers
to an input sentence to make a longer one with rich
information. In general, the new sentence will keep
the core meaning with the input sentence. For ex-

1
https://en.wikipedia.org/wiki/Chinese_classics.
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Figure 10: Examples of text expansion.

ample, given the text “A woman dressed in green
is playing with her tan dog”, the expanded sen-
tences are presented in Figure 10. Text expansion
module was implemented by two complementary
ideas. The first is to resort to syntactic parsing to
extract the skeleton of a long sentence to build the
training pairs, i.e., <skeleton, sentence>. Then the
skeleton is used to generate the long sentence with
a seq2seq model (Lewis et al., 2019). The second
idea is to identify some places (mainly around a
noun or verb) explicitly and then use a text in-filing
model (Raffel et al., 2020) to predict some words
or phrases that can be added to each place.

6 Conclusion

We introduced Effidit, a writing assistant that fa-
cilitates users to write high quality text efficiently
using AI technologies. Our system supports two
languages, Chinese and English, and has three cat-
egories of functions: text completion, hint recom-
mendation, and writing refinement. With these
modules, Effidit significantly expands the capaci-
ties of a typical writing assistant. In the future, we
plan to keep improving the quality of each module
to make the system more helpful and easy-to-use.
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Fig. 1: WIZMAP empowers machine learning researchers and domain experts to easily explore and interpret
millions of embedding vectors across different levels of granularity. Consider the task of investigating the embeddings
of all 63k natural language processing paper abstracts indexed in ACL Anthology from 1980 to 2022. (A) The
Map View tightly integrates a contour layer, a scatter plot, and automatically-generated multi-resolution embedding
summaries to help users navigate through the large embedding space. (B) The Search Panel enables users to rapidly
test their hypotheses through fast full-text embedding search. (C) The Control Panel allows users to customize
embedding visualizations, compare multiple embedding groups, and observe how embeddings evolve over time.

Abstract

Machine learning models often learn latent em-
bedding representations that capture the do-
main semantics of their training data. These
embedding representations are valuable for in-
terpreting trained models, building new models,
and analyzing new datasets. However, interpret-
ing and using embeddings can be challenging
due to their opaqueness, high dimensionality,
and the large size of modern datasets. To tackle
these challenges, we present WIZMAP, an in-
teractive visualization tool to help researchers
and practitioners easily explore large embed-
dings. With a novel multi-resolution embed-
ding summarization method and a familiar map-
like interaction design, WIZMAP enables users
to navigate and interpret embedding spaces
with ease. Leveraging modern web technolo-

gies such as WebGL and Web Workers, WIZ-
MAP scales to millions of embedding points
directly in users’ web browsers and computa-
tional notebooks without the need for dedicated
backend servers. WIZMAP is open-source and
available at the following public demo link:
https://poloclub.github.io/wizmap.

1 Introduction

Modern machine learning (ML) models learn high-
dimensional embedding representations to capture
the domain semantics and relationships in the train-
ing data (Raghu et al., 2019). ML researchers and
domain experts are increasingly using expressive
embedding representations to interpret trained mod-
els (Park et al., 2022), develop models for new
domains (Lee et al., 2018) and modalities (Ben-
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younes et al., 2019), as well as analyze and syn-
thesize new datasets (Kern et al., 2016). However,
it can be difficult to interpret and use embeddings
in practice, as these high-dimensional representa-
tions are often opaque, complex, and can contain
unpredictable structures (Bolukbasi et al., 2016).
Furthermore, analysts face scalability challenges
as large datasets can require them to study millions
of embeddings holistically (Tang et al., 2016).

To tackle these challenges, researchers have pro-
posed several interactive visualization tools to help
users explore embedding spaces (e.g., Smilkov
et al., 2016; Liu et al., 2019). These tools often visu-
alize embeddings in a low-dimensional scatter plot
where users can browse, filter, and compare embed-
ding points. However, for large datasets, it is taxing
or even implausible to inspect embedded data point
by point to make sense of the global structure of
an embedding space. Alternatively, recent research
explores using contour plots to summarize embed-
dings (Sevastjanova et al., 2022; Robertson et al.,
2023). Although contour abstractions enable users
to obtain an overview of the embedding space and
compare multiple embeddings through superposi-
tion, a user study reveals that contour plots restrict
users’ exploration of an embedding’s local struc-
tures, where users would prefer to have more visual
context (Robertson et al., 2023). To bridge this crit-
ical gap between two visualization approaches and
provide users with a holistic view, we design and
develop WIZMAP (Fig. 1). Our work makes the
following major contributions:

• WIZMAP, a scalable interactive visualization
tool that empowers ML researchers and domain
experts to explore and interpret embeddings with
millions of points. Our tool employs a familiar
map-like interaction design and fluidly presents
adaptive visual summaries of embeddings across
different levels of granularity (Fig. 2, § 4).

• Novel and efficient method to generate multi-
resolution embedding summaries. To automati-
cally summarize embedding neighborhoods with
different degrees of granularity, we construct a
quadtree (Finkel and Bentley, 1974) from em-
bedding points and extract keywords (text data)
or exemplar points (other data types) from tree
nodes with efficient branch aggregation (§ 3).

• An open-source1 and web-based implemen-
tation that lowers the barrier to interpreting

1WIZMAP code: https://github.com/poloclub/wizmap

Fig. 2: WIZMAP enables users to explore embeddings
at different levels of detail. (A) The contour plot
with automatically-generated embedding summaries
provides an overview. (B) Embedding summaries ad-
just in resolution as users zoom in. (C) The scatter plot
enables the investigation of individual embeddings.

and using embeddings. We develop WIZ-
MAP with modern web technologies such
as WebGL and Web Workers so that any-
one can access the tool directly in both
their web browsers and computational note-
books without a need for dedicated backend
servers (§ 4.4). For a demo video of WIZMAP,
visit https://youtu.be/8fJG87QVceQ.

2 Background and Related Work

Researchers can extract a data point’s embed-
dings by collecting its corresponding layer acti-
vations in neural networks trained for specific tasks
such as classification and generation (Raghu et al.,
2019). Additionally, researchers have developed
task-agnostic models, such as word2vec (Mikolov
et al., 2013), ELMo (Peters et al., 2018), and
CLIP (Radford et al., 2021) that generate trans-
ferable embeddings directly. These embeddings
have been shown to outperform task-specific, state-
of-the-art models in downstream tasks (Radford
et al., 2021; Dwibedi et al., 2021).

2.1 Dimensionality Reduction

Embeddings are often high-dimensional, such as
300-dimensions for word2vec, or 768-dimensions
for CLIP and BERT Base (Devlin et al., 2018).
Therefore, to make these embeddings easier to visu-
alize, researchers often apply dimensionality reduc-
tion techniques to project them into 2D or 3D space.
Some popular dimensionality reduction techniques
include UMAP (McInnes et al., 2020), t-SNE (van
der Maaten and Hinton, 2008), and PCA (Pear-
son, 1901). Each of these techniques has its own
strengths and weaknesses in terms of how well
it preserves the embeddings’ global structure, its
stochasticity, interpretability, and scalability. De-
spite these differences, all dimensionality reduction
techniques produce data in the same structure. This
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means users can choose any technique and visual-
ize the projected embeddings with WIZMAP.

2.2 Interactive Embedding Visualization
Researchers have introduced interactive visualiza-
tion tools to help users explore embeddings (e.g.,
Liu et al., 2018; Li et al., 2018; Arendt et al., 2020).
For example, Embedding Projector (Smilkov et al.,
2016) allows users to zoom, rotate, and pan 2D
or 3D projected embeddings to explore and in-
spect data point features. Similarly, Deepscat-
ter (Schmidt, 2021) and regl-scatterplot (Lekschas,
2023) empowers users to explore billion-scale 2D
embeddings in their browsers. Latent Space Cartog-
raphy (Liu et al., 2019) helps users find and refine
meaningful semantic dimensions within the embed-
ding space. In addition, researchers have designed
visualizations to aid users in comparing embed-
dings, such as embComp (Heimerl et al., 2022)
visualizing local and global similarities between
two embeddings, Emblaze (Sivaraman et al., 2022)
tracing the changes in the position of data points
across two embeddings, and Embedding Compara-
tor (Boggust et al., 2022) highlighting the neighbor-
hoods around points that change the most across
embeddings. In contrast, WIZMAP aims to help
users navigate and interpret both the global and
local structures of large embedding spaces by offer-
ing visual contexts at varying levels of granularity.

3 Multi-scale Embedding Summarization

Researchers have highlighted users’ desire for
embedding visualizations to provide visual con-
texts and embedding summaries to facilitate ex-
ploration of various regions within the embedding
space (Robertson et al., 2023). However, generat-
ing embedding summaries is challenging for two
reasons. First, efficiently summarizing millions of
data points in larger datasets can be a formidable
task. Second, selecting the embedding regions to
summarize is difficult, as users possess varying in-
terests in regions of different sizes and levels of
granularity. To tackle this challenge, we propose
a novel method to automatically generate multi-
resolution embedding summaries at scale.

Multi-resolution Quadtree Aggregation. First,
we apply a dimensionality reduction technique such
as UMAP to project high-dimensional embedding
vectors into 2D points. From these points, we con-
struct a quadtree (Finkel and Bentley, 1974), a tree
data structure that recursively partitions a 2D space

Fig. 3: (A) A quadtree recursively partitions a 2D space
into four equally-sized squares, (B) and each square is
represented as a tree node. WIZMAP efficiently aggre-
gates information from the leaves to the root, summariz-
ing embeddings at different levels of granularity.

into four equally-sized squares, each represented
as a node. Each data point exists in a unique leaf
node. To summarize embeddings across different
levels of granularity, we traverse the tree bottom
up. In each iteration, we first extract summaries of
embeddings in each leaf node, and then merge the
leaf nodes at the lowest level with their parent node.
This process continues recursively, with larger and
larger leaf nodes being formed until the entire tree
is merged into a single node at the root. Finally,
we map pre-computed embedding summaries to
a suitable granularity level and dynamically show
them as users zoom in or out in WIZMAP (§ 4.1).

Scalable Leaf-level Summarization. When per-
forming quadtree aggregation, researchers have
the flexibility to choose any suitable method for
summarizing embedding from leaf nodes. For text
embeddings, we propose t-TF-IDF (tile-based TF-
IDF) that adapts TF-IDF (term frequency-inverse
document frequency) to extract keywords from leaf
nodes (Sparck Jones, 1972). Our approach is simi-
lar to c-TF-IDF (classed-based TF-IDF) that com-
bines documents in a cluster into a meta-document
before computing TF-IDF scores (Grootendorst,
2022). Here, we merge all documents in each leaf
node (i.e., a tile in the quadtree partition) as a meta-
document and compute TF-IDF scores across all
leaf nodes. Finally, we extract keywords with the
highest t-TF-IDF scores to summarize embeddings
in a leaf node. This approach is scalable and com-
plementary to quadtree aggregation. Because our
document merging is hierarchical, we only con-
struct the n-gram count matrix once and update it
in each aggregation iteration with just one matrix
multiplication. Summarizing 1.8 million text em-
beddings across three granularity levels takes only
about 55 seconds on a MacBook Pro. For non-text
data, we summarize embeddings by finding points
closest to the embedding centroid in a leaf node.
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4 User Interface

Leveraging pre-computed multi-resolution embed-
ding summarization (§ 3), WIZMAP tightly inte-
grates three interface components (Fig. 1A–C).

4.1 Map View
The Map View (Fig. 1A) is the primary view of
WIZMAP. It provides a familiar map-like interface
that allows users to pan and zoom to explore differ-
ent embedding regions with varying sizes. To help
users easily investigate both the global structure
and local neighborhoods of their embeddings, the
Map View integrates three layers of visualization.

Distribution Contour. To provide users with a
quick overview of the global structure of their
embeddings, we use Kernel Density Estimation
(KDE) (Rosenblatt, 1956) to estimate the distri-
bution of 2D embedding points. We use a stan-
dard multivariate Gaussian kernel with a Silverman
bandwidth for the KDE model (Silverman, 2018).
Next, we compute the distribution likelihoods over
a 200×200 2D grid whose size is determined by
the range of all embedding points. Finally, we vi-
sualize the likelihoods over the grid as a contour
plot (Fig. 4), highlighting the high-level density
distribution of users’ embeddings. Researchers can
adjust the grid density, and we tune it by balancing
the computation time and the contour resolution.

Multi-resolution Labels. The Map View helps
users interpret embeddings across various lev-
els of granularity by dynamically providing pre-
computed contextual labels. It overlays summaries
generated via quadtree aggregation (§ 3) onto the
distribution contour and scatter plot. Users can
hover over to see the summary from a quadtree tile
closest to the cursor. Our tool adjusts the label’s tile
size based on the user’s current zoom level. For ex-
ample, when a user zooms into a small region, the
Map View shows summaries computed at a lower
level in the quadtree. In addition to on-demand em-
bedding summaries, this view also automatically
labels high-density regions (Fig. 4) by showing
summaries from quadtree tiles near the geometric
centers of high-probability contour polygons.

Scatter Plot. To help
users pinpoint embed-
dings within their local
neighborhoods, the Map
View visualizes all embed-
ding points in a scatter plot with their 2D positions.

Fig. 4: The Map View provides an embedding overview
via a contour plot and auto-generated multi-resolution
embedding labels placed around high-density areas.

The corresponding scatter plot for Fig. 4 is shown
on the right. Users can specify the color of each
embedding point to encode additional features,
such as the class of embeddings. Also, users
can hover over an embedding point to reveal its
original data, such as ACL paper abstracts (§ 5.1).

4.2 Control Panel
The Map View shows all
three visualization layers
by default, and users can customize them to fit
their needs by clicking buttons in the Control
Panel (Fig. 1C). In addition, WIZMAP allows users
to compare multiple embedding groups in the same
embedding space by superimposing them in the
Map View (Gleicher, 2018). In the case of em-
beddings that include times, users can use a slider
(shown on the right) in the Control Panel to observe
changes in the embeddings over time (Fig. 5).

4.3 Search Panel
Searching and filtering can help users discover
interesting embedding patterns and test their hy-
pothesis regarding the embedding structure (Carter
et al., 2019). In WIZMAP, users can use the Search
Panel (Fig. 1B) to search text embeddings includ-
ing specified words in the original data. The panel
shows a list of search results, and the Map View
highlights their corresponding embedding points.

4.4 Scalable & Open-source Implementation
WIZMAP is scalable to millions of embedding
points, providing a seamless user experience with
zooming and animations, all within web browsers
without backend servers. To achieve this, we lever-
age modern web technologies, especially WebGL
to render embedding points with the regl API (Ly-
senko, 2016). We also use Web Workers and
Streams API to enable the streaming of large em-
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Fig. 5: WIZMAP allows users to observe how embeddings change over time. For example, when exploring 63k ACL
paper abstracts, clicking the play button in the Control Panel animates the visualizations to show embeddings of
papers published in each year in purple and the distribution of all papers in blue. This animation highlights changes
in ACL research topics over time, such as the decline in popularity of grammar and the rise of question-answering.

bedding files in parallel with rendering. To enable
fast full-time search, we apply a contextual index
scoring algorithm with FlexSearch (Wilkerling,
2019). We use D3 (Bostock et al., 2011) for other
visualizations and scikit-learn (Pedregosa et al.,
2011) for KDE. To ensure that our tool can be eas-
ily incorporated into users’ current workflows, we
apply NOVA (Wang et al., 2022b) to make WIZMAP

available within computational notebooks. We pro-
vide detailed tutorials to help users use our tool
with their embeddings. We have open-sourced our
implementation to support future research and de-
velopment of embedding exploration tools.

5 Usage Scenarios

We present two hypothetical scenarios, each with
real embedding data, to demonstrate how WIZMAP

can help ML researchers and domain experts easily
explore embeddings and gain a better understand-
ing of ML model behaviors and dataset patterns.

5.1 Exploring ACL Research Topic Trends
Helen, a science historian, is interested in explor-
ing the evolution of computational linguistic and
natural language processing (NLP) research since
its inception. She downloads the Bibtex files of all
papers indexed in ACL Anthology (Rohatgi, 2022).
and extracts the paper title and abstract from 63k
papers that have abstracts available. Then, He-
len applies MPNet, a state-of-the-art embedding
model (Song et al., 2020), to transform the con-
catenation of each paper’s title and abstract into a
768-dimensional embedding vector. She then trains
a UMAP model to project extracted embeddings
into a 2D space. She tunes the UMAP’s hyperpa-
rameter n_neighbors to ensure projected points
are spread out (Coenen and Pearce, 2019).

Helen uses a Python function provided by WIZ-
MAP to generate three JSON files containing
embedding summaries (§ 3), the KDE distribu-

tions (§ 4.1), and the original data in a streamable
format (Hoeger et al., 2014). Helen configures the
function to use the dataset’s year feature as the em-
bedding’s time—the function computes the KDE
distribution of embeddings for each year slice. She
provides the files to WIZMAP and sees a visualiza-
tion of all ACL abstract embeddings (Fig. 4A).

Embedding Exploration. In the Map View, He-
len explores embeddings with zoom and pan. She
also uses the Search Panel to find papers with spe-
cific keywords, such as “dialogue”, and Helen is
pleased to see all related papers are grouped in a
cluster (Fig. 1B). With the help of multi-resolution
embedding summaries, Helen quickly gains an
understanding of the structure of her embedding
space. For example, she finds that the top right
cluster features translation papers while the lower
clusters feature summarization and medical NLP.

Embedding Evolution To examine how ACL re-
search topics change over time, Helen clicks the
play button clicking the play button in the Con-
trol Panel to animate the visualizations. The Map
View shows embeddings of papers published in
each year from 1980 to 2022 in purple, while the
distribution of all papers is shown as a blue back-
ground (Fig. 5). As Helen observes the animation,
she identifies several interesting trends. For ex-
ample, she observes a decline in the popularity of
grammar research, while question-answering has
become increasingly popular. She also notes the
emergence of some small clusters in recent years,
featuring relatively new topics, such as sarcasm,
humor, and hate speech. Satisfied with the findings
using WIZMAP, Helen decides to write an essay
on the trend of NLP research over four decades.

5.2 Investigating Text-to-Image Model Usage
Bob, an ML researcher, works on improving text-
to-image generative models. Recent advancements
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in diffusion models, such as Stable Diffusion (Rom-
bach et al., 2022), have attracted an increasing num-
ber of users to generate photorealistic images by
writing text prompts. To gain an understanding
of these models’ behaviors and identify potential
weaknesses for improvement, Bob decides to study
how users use these models in the wild by analyz-
ing DiffusionDB, a dataset containing 14 million
images generated by Stable Diffusion with 1.8 mil-
lion unique text prompts (Wang et al., 2022a).

Bob’s analysis goal is to study the relationship
between the text prompts and their generated im-
ages. Thus, he chooses to use CLIP (Radford et al.,
2021) to encode both prompts and images into
a 768-dimensional multimodal embedding before
projecting them to a 2D space with UMAP. He uses
prompts to generate embedding summaries for the
CLIP space. After creating all JSON files, WIZ-
MAP visualizes all 3.6 million embeddings (Fig. 6).

Embedding Exploration. Bob begins his ex-
ploration by hiding image embeddings and scat-
ter plots, focusing on the global structure of em-
beddings with the contour plot and embedding
summaries. He discovers two dominant prompt
categories: art-related prompts and photography-
related prompts. Two categories appear far from
each other, which is not surprising as they are ex-
pected to have distinct semantic representations.
Bob also notices two smaller clusters within the
photography region, prompting him to zoom in and
turn on the scatter plot to further investigate these
local regions (Fig. 2). After hovering over a few
points, he realizes one cluster is mostly about non-
human objects while the other is about celebrities.

Embedding Comparison. To investigate the re-
lationship between text prompts and their generated
images, Bob clicks a button in the Control Panel to
superimpose the contour and scatter plot of image
embeddings in red onto the text embedding visu-
alizations in blue (Fig. 6). Bob quickly identifies
areas where two distributions overlap and differ.
He notes that the “movie” cluster in the text em-
beddings has a lower density in the image embed-
dings, whereas a high-density “art portrait” cluster
emerges in image embeddings. Bob hypothesizes
that Stable Diffusion may have limited capability to
generate photorealistic human faces (Borji, 2022).
After exploring embedding with WIZMAP, Bob
is pleased with his findings, and he will apply his
insights to improve the curation of his training data.

Fig. 6: WIZMAP enables users to compare multiple em-
beddings by visualization superposition. For instance,
comparing the CLIP embeddings of 1.8 million Stable
Diffusion prompts and 1.8 million generated images
reveals key differences between two distributions.

6 Future Work and Conclusion
WIZMAP integrates a novel quadtree-based embed-
ding summarization technique that enables users
to easily explore and interpret large embeddings
across different levels of granularity. Our usage sce-
narios showcase our tool’s potential for providing
ML researchers and domain experts with a holistic
view of their embeddings. Reflecting on our design
and development of WIZMAP, we acknowledge
its limitations and distill future research directions
that could further assist users in interpreting and
applying embeddings for downstream tasks.

• User evaluation. To investigate the usefulness
of flexible transitioning across various levels of
abstraction during embedding exploration, future
researchers can use WIZMAP as a research in-
strument to conduct observational user studies
with ML researchers and domain experts.

• Automated insights. Our tool provides auto-
matic and multi-scale visual contexts to guide
users in their exploration. While our quadtree-
based approach is effective and scalable, it is
sensitive to tile size selection. Researchers can
explore more robust methods for embedding sum-
marization and automated data insights, such as
clustering-based approaches (Law et al., 2020).

• Enhanced comparison. WIZMAP helps users
compare embedding groups through contour su-
perposition. However, for local comparisons,
other techniques such as juxtaposition and ex-
plicit encoding may be more effective (Gleicher,
2018). Future researchers can design visualiza-
tion tools that integrate these techniques.
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7 Broader Impact

We designed and develop WIZMAP with good
intentions—to help ML researchers and domain ex-
perts easily explore and interpret large embeddings.
However, bad actors could exploit insights gained
from using WIZMAP for malevolent purposes. For
example, research has shown that ML embeddings
contain societal biases (Bolukbasi et al., 2016).
Therefore, bad actors could manipulate and sab-
otage ML predictions by injecting inputs whose
embeddings are known to associate with gender
and racial biases. The potential harms of biased
embeddings warrant further study.
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Abstract
Our research focuses on the most prevalent type
of queries—simple questions—exemplified by
questions like “What is the capital of France?”.
These questions reference an entity such as
“France”, which is directly connected (one hop)
to the answer entity “Paris” in the underlying
knowledge graph (KG). We propose a multi-
lingual Knowledge Graph Question Answer-
ing (KGQA) technique that orders potential
responses based on the distance between the
question’s text embeddings and the answer’s
graph embeddings. A system incorporating this
novel method is also described in our work.

Through comprehensive experimentation using
various English and multilingual datasets and
two KGs — Freebase and Wikidata — we illus-
trate the comparative advantage of the proposed
method across diverse KG embeddings and lan-
guages. This edge is apparent even against
robust baseline systems, including seq2seq QA
models, search-based solutions and intricate
rule-based pipelines. Interestingly, our research
underscores that even advanced AI systems like
ChatGPT encounter difficulties when tasked
with answering simple questions. This finding
emphasizes the relevance and effectiveness of
our approach, which consistently outperforms
such systems. We are making the source code
and trained models from our study publicly ac-
cessible to promote further advancements in
multilingual KGQA.

1 Introduction

A knowledge graph (KG) is a collection of subject–
predicate–object triples, for example ⟨Paris, capi-
tal_of, France⟩. Large KGs are valuable resources
for many tasks, including question answering
(QA) (Ji et al., 2022). Knowledge graph question
answering (KGQA) is an active research area, as
well as a popular application.

Even though all major web search engines imple-
ment KGQA capabilities – KG results can be easily

*The first two authors contributed equally.

recognized in their ‘smart answers’ – there are few
operational KGQA research prototypes available
online. A rare example is QAnswer (Diefenbach
et al., 2020a), a rule-based KGQA system over
Wikidata. There are also only a few free KGQA
codebases available (Huang et al., 2019; Burtsev
et al., 2018; Chen et al., 2021).

In this work, we focus on simple questions such
as “What is the capital of France?”. There exists
an opinion that the task of answering such ques-
tions is nearly solved (Petrochuk and Zettlemoyer,
2018), but openly available systems are scarce and
do not support multiple languages. Besides, their
performance, as will be observed from our work,
is still far from perfect even for models based on
deep neural networks specifically pre-trained on
QA data. In our work, our aim is to address these
limitations of the prior art.

We developed a KGQA method M3M (multilin-
gual triple match) based on text-to-graph embed-
ding search. The key idea illustrated in Figure 1
is to combine a pre-trained multilingual language
model for question representation and pre-trained
graph embeddings that represent KG nodes and
edges as dense vectors. In the training phase, we
learn separate projections of the question text em-
beddings to the subject, predicate, and object of
the KG triple corresponding to the question-answer
pair. In the test phase, we first fetch a set of can-
didate KG triples based on the question’s word
n-grams and extract named entities to make the
process more computationally efficient. Then, we
rank candidate triples according to the sum of three
cosine similarities – between the embeddings of
the triple’s components and respective projections
of the question’s embeddings. Finally, the object
of the top-ranked triple is returned as an answer.

Our approach build upon Huang et al. (2019)
expanding the method beyond a single KG and
a single monolingual dataset. We experimented
with the de facto standard English KGQA dataset
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Figure 1: Workflow of M3M Knowledge Graph Question Answering system for simple questions.

Figure 2: Graphical user interface of the KGQA system for answering one-hop questions.

SimpleQuestions, which is based on the now depre-
cated Freebase, to allow comparison with previous
art. Moreover, we conducted experiments with sev-
eral Wikidata-based datasets: SimpleQuestionsWd
(a Wikidata mapping from the original benchmark),
Russian/English RuBQ 2.0 dataset, as well as a re-
cent Mintaka dataset covering nine languages. Our
experiments demonstrate the applicability of the
proposed method in different KGs and languages.

Our online demo (see Figure 2) implements two
KGQA methods: (1) a T5 model fine-tuned on QA
data and (2) our approach dubbed M3M based on
embedding search. We believe that a combination
of an online demo, publicly available code, as well
as evaluation results on several datasets will con-
tribute to future developments in the field of mul-

tilingual KGQA. To summarize, our contributions
are the following:

• A novel multilingual approach to one-hop
KGQA, which compares favorably to strong
baselines, such as T5 QA system, and previ-
ous embedding-based methods on a battery of
benchmarks.

• Open implementation of an online system for
one-hop QA over Wikidata knowledge graph.
We also release pre-trained models and pro-
vide an API making seamless integration into
NLP applications possible.1

1Source code, link to the demo and video demonstration:
https://github.com/s-nlp/m3m
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embedding search similar to our approach, and gen-
erative neural models, e.g. sequence-to-sequence.

QAnswer is a rule-based multilingual QA sys-
tem proposed by Diefenbach et al. (2020b). It re-
turns a ranked list of Wikidata identifiers as an-
swers and a corresponding SPARQL query. We use
QAnswer API in our experiments.8

KEQA: Knowledge Embedding based Question
Answering. There are no published results on
SimpleQuestions aligned with Wikidata KG which
is why we adopt the official implementation of
KEQA (Huang et al., 2019) – an open-source
embedding-based KGQA solution to SimpleQues-
tionsWd benchmark. It was initially trained and
evaluated on Freebase embeddings. To the best of
our knowledge, there are no open-sourced KGQA
models with better performance than KEQA. We
use this model as the main baseline on Simple-
QuestionsWd and original SimpleQuestions bench-
marks. To make a comparison with KEQA on
the SimpleQuestionsWd test set more fair, we re-
train it on PTBG-Wikidata embeddings. We use
the official implementation with provided hyperpa-
rameters and an internal validation mechanism.9

As SimpleQuestionsWd is a subset of the original
SimpleQuestions, we evaluate Freebase-pretrained
KEQA on this dataset as well (taking into account
the corresponding entity mapping).

T5-based QA system. Question answering can
also be addressed as a seq2seq task. To pro-
vide a comparison with this type of approaches,
we conducted experiments with T5, an encoder-
decoder transformer-based model pre-trained on
a multi-task mixture of unsupervised and super-
vised tasks (Raffel et al., 2020). T5 works well
on a variety of tasks out-of-the-box by prepend-
ing a prefix to the input corresponding to each of
the tasks. To answer English questions, we used
T5 model fine-tuned on a large NaturalQuestions
dataset (Roberts et al., 2020). For other languages,
we fine-tuned mT5-xl model (Xue et al., 2021) on
Mintaka Simple.

In addition, we carried out experiments employ-
ing the Flan-T5-xl (Chung et al., 2022) model,
a recent development trained on a diverse mix-
ture of tasks. We evaluated this model in

8https://qanswer-frontend.
univ-st-etienne.fr

9https://github.com/xhuang31/KEQA_
WSDM19

two distinct setups using the Mintaka dataset:
firstly in a zero-shot setting, utilizing the prompt
“Question: question Answer:”, and secondly, by
separately fine-tuning the model on the training
data for each individual language.

GPT-3 has gained recognition for its impressive
performance in both few-shot and zero-shot con-
texts (Brown et al., 2020), excelling in a vast array
of benchmarks. A recent study (Chung et al., 2022)
evaluate different GPT versions on complex KG
questions. However, the experiments don’t include
datasets in our study. To address this oversight and
offer a comparative baseline for our system, we
subjected the GPT-3 model (davinci-003) to the
SimpleQuestionsWd and RuBQ 2.0 benchmarks.
Detailed information on the generation parameters
and prompts can be found in the Appendix.

ChatGPT stands as one of the leading systems
in the field of Natural Language Processing (NLP),
demonstrating capabilities for intricate reasoning
and extensive factual knowledge (OpenAI, 2023).
We evaluated this system (GPT-3.5-turbo-0301) us-
ing the RuBQ 2.0 and SimpleQuestionsWd bench-
marks. Specifics about the prompts and generation
parameters are available in the Appendix.

4.3 Experimental Setup

To compare our algorithm with baselines, we use
the Accuracy@1 metric i.e. correctness of the first
retrieved result. The answer of a QA system to
an answerable question is considered correct if its
object matches the answer in terms of Wikidata id
or just by a label string.

It is essential to acknowledge that sequence-to-
sequence (seq2seq) models yield a string instead
of a knowledge graph ID, which may pose a chal-
lenge during evaluation. To mitigate this, we apply
specific transformations to the responses produced
by seq2seq systems. These include converting the
text to lowercase and eliminating any leading and
trailing spaces. This transformation process is also
applied to label-aliases representing the actual an-
swers present in the RuBQ and Mintaka datasets.

Regarding the SimpleQuestionsWd dataset, we
procure aliases for the correct answers via the Wiki-
data API.10 We then determine the accuracy of the
seq2seq model’s prediction by checking for an ex-
act match between the predicted string and one of
the aliases.

10https://pypi.org/project/Wikidata
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Model SQ SQ-WD RuBQ-ru RuBQ-en

QAnswer (Diefenbach et al., 2020a) – 33.31 30.80 32.30
T5-11b-ssm-nq, fine-tuned (Roberts et al., 2020) – 20.40 – 42.75
ChatGPT – GPT-3.5-turbo – 17.75 26.99 30.12
GPT-3 – davinci-003 – 28.51 18.10 34.20
KEQA (Huang et al., 2019) – TransE FB2M 75.40 40.48 – –
KEQA (Huang et al., 2019) – TransE PTBG – 48.89 – 33.80

M3M (Ours) – TransE FB2M 76.90 � 0.30 – – –
M3M (Ours) – TransE PTBG – 53.50 � 0.30 48.40 � 0.30 49.50 � 0.30

Table 2: Comparison of M3M system with KGQA baselines in terms of Accuracy@1 for monolingual one-hop QA
datasets. The best scores are highlighted. M3M scores are averages over models trained with five random seeds.

Model en es de ar fr pt it hi avg

mT5-xl, fine-tuned (Xue et al., 2021) 20.8 19.5 19.3 12.6 19.7 18.3 20.9 9.7 17.6
FlanT5-xl, fine-tuned (Chung et al., 2022) 35.3 22.0 23.3 0.2 25.0 24.0 25.5 0 19.41
FlanT5-xl, zero-shot (Chung et al., 2022) 14.7 6.5 7.6 0 0.7 0.9 0.9 0 3.19

M3M (Ours) – TransE PTBG 26.0 26.1 25.0 24.1 25.0 24.7 25.3 24.1 25.0

Table 3: Results on Mintaka-Simple dataset (one-hop questions) for models trained simultaneously on all languages.

It is noteworthy to mention that in the Mintaka-
Simple test set, about a half of the answers don’t
have labels in Hindi.

4.4 Results

Table 2 contains the results of our M3M model and
several baselines on two versions of the Simple-
Questions dataset and two versions of the RuBQ
dataset. Specifically, for the RuBQ dataset, we de-
tail the outcomes derived from testing both Russian
and English language queries.

Interestingly, ChatGPT, despite being recog-
nized as a more sophisticated system, exhibits
a weaker performance on factoid questions com-
pared to GPT-3. Upon conducting a concise man-
ual error analysis, we observed that ChatGPT fre-
quently dismissed queries with responses such as
“Answer is unknown”, or sought supplemental in-
formation. We suggest that this behavior may be
a consequence of the system’s alignment with hu-
man feedback, implemented to limit the model’s
tendency for generating ungrounded or ‘halluci-
nated’ responses. However, it is plausible that a
more refined prompt design could address this is-
sue and enhance the system’s performance on such
questions. Nonetheless, this exploration extends
beyond the scope of our current research and is
suggested as an avenue for further investigation.

Table 3 features the results obtained on the
Mintaka-Simple dataset, providing an opportunity
to evaluate the mT5, Flan-T5 and M3M mod-
els. This table highlights the multilingual capabili-

ties exhibited by both the generative and the KG-
retrieval approaches. An analysis of these results
reveals that our model’s performance is markedly
stable across languages, indicating a lesser depen-
dence on the language relative to the seq2seq ap-
proach. Our model manifests exceptional perfor-
mance on one-hop simple questions and achieves
a new state-of-the-art on the RuBQ 2.0 (Russian)
benchmark as well as on the English SimpleQues-
tionsWd dataset. These findings illustrate the su-
periority of KG-based models, outperforming both
GPT-3 and ChatGPT by a considerable margin.

5 Conclusion

In this study, we introduced M3M, a multilingual
model, along with an open implementation, de-
vised for one-hop knowledge base question answer-
ing. Our approach leverages the use of a multilin-
gual text encoder and pre-trained KG embeddings,
which are aligned using a triple projection method
of a question to subject/relation/object of KG triple
to facilitate efficient answer search in the embed-
ding space.

For simple questions, our system not only out-
performs previous strong alternatives, including
rule-based approaches, embeddings-based similar-
ity search, and pre-trained sequence-to-sequence
neural models, but also excels when compared to
advanced AI models like ChatGPT. These com-
parative results were drawn from a comprehensive
battery of one-hop QA datasets, including both
monolingual and multilingual data.
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6 Limitations

While a large fraction of users’ information needs
may be fulfilled by answering simple questions,
the main limitation of the proposed system is that
in the current implementation, it can be applied
only to one-hop KG questions. As it may be not
obvious to figure out beforehand which question
is one-hop and which is multi-hop in a KG spe-
cial classifiers or uncertainty estimation techniques
should be ideally combined with the proposed sys-
tem to not let the system answer questions it is
not designed to answer in the first place. At the
same time, our preliminary experiments with train-
ing classifiers of question type based on Mintaka
data show promising results, suggesting that such
classifier effectively could be created and used in
real deployments in conjunction with the proposed
system.

In terms of computational efficiency, communi-
cation with a knowledge graph can be a bottleneck
if based on a public SPARQL endpoint with query
limits but could be substantially sped up using an in-
house SPARQL engine or using indexing of triples
with appropriate data structures. However, in the
latter case, a mechanism for updating such struc-
tures is requires to keep system answers up to date.

7 Ethical Statement

QA systems built on top of large pretrained neu-
ral models, such as those described in this paper,
may transitively reflect biases available in the train-
ing data potentially generating stereotyped answers
to questions. It is therefore recommended in pro-
duction (as compared to research settings) to use
a special version of debiased pre-trained neural
models and/or deploy a special layer of debiasing
systems around the proposed methodology.
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A Parameter Settings and Prompts for OpenAI Models

The parameters for GPT-3 (davinci-003) and ChatGPT (GPT-3.5-turbo-0301) were configured to a
temperature setting of 0.1, while the top_p for GPT-3 was set to 0.85. The prompts for both models, which
are illustrated in Figure 3, were used respectively: for GPT-3 directly, and for ChatGPT, conveyed via the
“user” field in the chat API interface.

Figure 3: Prompts employed for ChatGPT and GPT-3 in the English and Russian language benchmarks, respectively.

B Additional Illustrations of the Knowledge Graph Question Answering System

This section contains three illustrations of the graphical user interface with three additional questions as
well as a demonstration of the API for integration into external applications.

Figure 4: Graphical user interface of KGQA system for the one-hop question “What is capital of Germany?”.
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Figure 5: Graphical user interface of KGQA system for the one-hop question “Who was director of Star Wars?”.

Figure 6: Graphical user interface of KGQA system for the one-hop question “Who is the king of United Kingdom?”.
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Figure 7: Swagger API for the developed system allowing for integration of the KGQA functionality into applications
(e.g. “seq2seq” or “m3m” endpoints) as well as subcomponents, such as NER for questions or type selection.

Figure 8: Swagger API of an individual endpoint: parameters for KGQA method are documented and can be called
using a RESTful endpoint.
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Abstract

We present KWJA, a high-performance uni-
fied Japanese text analyzer based on founda-
tion models. KWJA supports a wide range of
tasks, including typo correction, word segmen-
tation, word normalization, morphological anal-
ysis, named entity recognition, linguistic fea-
ture tagging, dependency parsing, PAS analysis,
bridging reference resolution, coreference reso-
lution, and discourse relation analysis, making
it the most versatile among existing Japanese
text analyzers. KWJA solves these tasks in a
multi-task manner but still achieves competi-
tive or better performance compared to exist-
ing analyzers specialized for each task. KWJA
is publicly available under the MIT license at
https://github.com/ku-nlp/kwja.

1 Introduction

End-to-end neural network-based models have be-
come mainstream for many NLP tasks including
machine translation (Sutskever et al., 2014; Luong
et al., 2015; Vaswani et al., 2017) and dialogue re-
sponse generation (Serban et al., 2015; Roller et al.,
2020). However, end-to-end models are not always
the best means of developing an NLP application
because exploratory tasks, such as information anal-
ysis and causal analysis, inherently require manual
trial-and-error processes. We believe that for such
tasks, text analysis still plays an important role.

Text analysis, including morphological analy-
sis, dependency parsing, predicate-argument struc-
ture (PAS) analysis, and discourse relation analysis,
saw shifts in model architectures. Recent studies
demonstrate that foundation models (Bommasani
et al., 2021) drastically improve the performance in
dependency parsing (Zhou and Zhao, 2019), PAS
analysis (Ueda et al., 2020; Umakoshi et al., 2021),
and discourse relation analysis (Kishimoto et al.,
2020; Kiyomaru and Kurohashi, 2021). Moreover,
improvements on foundation models tend to have
a greater impact on performance than incremental

improvements tailored to individual tasks (Bom-
masani et al., 2021).

In this study, we design and build a unified
Japanese text analyzer, KWJA,1,2 in view of the
fact that recent high-performance text analysis mod-
els are all based on foundation models. KWJA sup-
ports a wide variety of text analysis tasks: typo
correction, word segmentation, word normaliza-
tion, morphological analysis, named entity recogni-
tion, linguistic feature tagging, dependency parsing,
PAS analysis, bridging reference resolution, coref-
erence resolution, and discourse relation analysis
(Figure 1, Table 1).

Our emphasis is on usability in addition to per-
formance. KWJA provides a single command to
perform a variety of text analyses, collapsing the
painstaking steps previously needed to obtain the
same result, namely, installing and combining mul-
tiple text analyzers, one for each task.

The design policy of KWJA is to minimize the
amount of code and hand-written rules by max-
imally exploiting the power of foundation mod-
els. This is a drastic departure from the traditional
Japanese analysis suite, including the morphologi-
cal analyzers JUMAN (Kurohashi et al., 1994)3 and
Juman++ (Tolmachev et al., 2018)4 and the depen-
dency parser KNP (Kurohashi and Nagao, 1994),5

which rely heavily on manually constructed dic-
tionaries, rules, and features. Such lexical knowl-
edge is context insensitive and suffers from limited
coverage. Motivated by the observation that foun-
dation models learn massive knowledge through
pre-training on large raw corpora, we narrow our
efforts to supervised learning from relatively small
annotated corpora. This approach enables us to sup-
port a new task just by constructing an annotated

1Kyoto-Waseda Japanese Analyzer.
2Video demo: https://youtu.be/p2x_IrSmS20
3https://github.com/ku-nlp/juman
4https://github.com/ku-nlp/jumanpp
5https://github.com/ku-nlp/knp
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Figure 1: A flowchart of the analysis process in KWJA. KWJA consists of the typo module, character module, and
word module. An input text is processed through each module.

Analysis Component Input Output Unit Output

Typo Correction characters character corrected characters

Word Segmentation
corrected characters

word words
Word Normalization word normalized words

Morphological Analysis

words

word POS, conjugation, lemma, and reading
Named Entity Recognition word named entity spans and categories

Linguistic Feature Tagging
word word features
base phrase base phrases features

Dependency Parsing
word dependency tree and dependency types
base phrase dependency tree and dependency types

PAS Analysis base phrase predicates and their arguments
Bridging Reference Resolution base phrase anaphors and their referents
Coreference Resolution base phrase coreferring mentions
Discourse Relation Analysis clause discourse relations

Table 1: Input and output of each analysis component. A base phrase is a unit consisting of a single independent
word and its ancillary words (Hangyo et al., 2012). We group the components into three blocks (separated by
horizontal lines) for multi-task learning.

corpus for the task.
KWJA reorganizes text analysis tasks into a

dozen of components, as shown in Table 1, on
the ground of task independence and the units of
inputs and outputs. A notable difference from con-
ventional morphological analysis is that while it is
usually defined as the joint task of word segmenta-
tion, part-of-speech (POS) tagging, and the tagging
of lexical information, such as lemmas and read-
ings, we divide the task into word segmentation
and the remaining tasks. For convenience, we refer
to the latter as morphological analysis.

Each analysis component utilizes a fine-tuned
Transformer. As Transformer consumes a consider-
able amount of computational resources, we resort
to multi-task learning to reduce the model parame-
ters. We group the components into three modules:
the typo module, character module, and word mod-
ule. Within each module, analysis components
share most of their model parameters and run con-
currently. Consequently, KWJA executes all the
components in three steps (Figure 1).

Although KWJA is extremely slow for users
who only need word segmentation, it is the most

practical choice for advanced text analysis, for
which, after all, only Transformer achieves state-of-
the-art performance. KWJA is publicly available
under the MIT license at https://github.com/
ku-nlp/kwja.

2 Related Work

Traditionally, Japanese text analysis tasks have
been tackled individually, with separate analyzers
for each task. Juman++ (Tolmachev et al., 2018)
and Mecab (Kudo et al., 2004) are examples of mor-
phological analyzers, while KNP (Kurohashi and
Nagao, 1994) is a dependency parser. Juman++ and
Mecab segment Japanese text into words and assign
lexical information to each word using manually
constructed dictionaries. KNP assigns dependency
relations between phrases using linguistic features
obtained from Juman++ and external dictionaries.
In addition to dependency parsing, KNP handles
named entity recognition, linguistic feature tagging,
and PAS analysis. KWJA, however, supports an
even broader range of tasks.

The Universal Dependencies (UD)
project (Nivre et al., 2020) standardizes the
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annotation of dependency structures across
languages. While their focus is on dependency
relations, the UD guidelines define word units,
POS tags, and other linguistic features. The tasks
supported by major UD-based analyzers, UD-
Pipe (Straka et al., 2016), spaCy,6 and Stanza (Qi
et al., 2020), are sentence segmentation, word
segmentation, POS tagging, lemmatization, and
dependency parsing.7 In other words, higher-level
tasks such as PAS analysis and discourse relation
analysis are out of the scope of these analyzers.
A major advantage of UD-based analyzers is
that they can handle multiple languages. This is
done at the expense of ignoring language-specific
features (Kanayama et al., 2018). For the purpose
of pioneering task design, it is reasonable to focus
on a single language.

GiNZA8 is also a UD-based analyzer but special-
izes in Japanese. GiNZA supports morphological
analysis, dependency parsing, and named entity
recognition. GiNZA v5 improved the dependency
parsing performance by utilizing the foundation
model ELECTRA.

Kachako (Kano, 2013) and Jigg (Noji and Miyao,
2016) have been proposed as frameworks for com-
bining existing analysis tools to form a pipeline.
These works aim to improve the usability of exist-
ing analysis tools. In contrast, our goal is to design
and build a unified analyzer itself.

3 Resources

This section presents the model and data resources
used when training the modules in KWJA.

3.1 Foundation Models

As a foundation model, we adopt DeBERTa (He
et al., 2021), which has shown high performance
in the SuperGLUE language understanding bench-
mark (Wang et al., 2019). We pre-trained character-
level9 and word-level10 DeBERTa V2 large models
on Japanese texts. The typo and character module
employs the character-level model, and the word
module employs the word-level model.

6https://spacy.io
7Using extra resources, spaCy and Stanza support named

entity recognition in some languages.
8https://github.com/megagonlabs/ginza
9https://huggingface.co/ku-nlp/

deberta-v2-large-japanese-char-wwm
10https://huggingface.co/ku-nlp/

deberta-v2-large-japanese

3.2 Annotated Corpora

We use the Japanese Wikipedia Typo Dataset
(JWTD v2, Tanaka et al., 2021) to train a typo
correction model. JWTD was created by mining
typos from the edit history of Japanese Wikipedia.

We use the Kyoto University Text Corpus (KC,
Kurohashi and Nagao, 1998),11 the Kyoto Uni-
versity Web Document Leads Corpus (KWDLC,
Hangyo et al., 2012),12 and the Annotated Fuman
Kaitori Center Corpus (Fuman)13 to train models
for tasks other than typo correction. Note that as for
discourse relation analysis, we use only KWDLC
because the other two corpora do not have dis-
course relation annotations.

4 Architecture

Each analysis component of KWJA uses a
Transformer-based (Vaswani et al., 2017) founda-
tion model. We add two layers of feed-forward
neural networks for each task and fine-tune the
whole model.

KWJA formulates the text analysis tasks as a se-
quence labeling task, word selection task, or word
relation classification task. A sequence labeling
task assigns a label to each character or word in a
text. Figure 2 shows an example of solving named
entity recognition as a sequence labeling task. In a
word selection task, a word is selected from a text
for each given word in the text. Figure 3 shows an
example of solving dependency parsing as a word
selection task. A word relation classification task
assigns a label to each word pair in a text.

To reduce computational time and space, the
model parameters of the analyzer are shared as
much as possible through multi-task learning. The
tasks in each block separated by the horizontal
lines in Table 1 are the unit of multi-task learning.
Multi-task learning is not possible for the pair of
word segmentation and morphological analysis, for
example, because the latter’s input depends on the
former’s output. In this study, we perform multi-
task learning for tasks in each block. Thus, KWJA
consists of three modules corresponding to each
block. These modules are referred to as the typo,
character, and word modules, respectively.

While morphological analysis and dependency
parsing use a sentence as the smallest unit of anal-
ysis, PAS analysis and discourse relation analysis

11https://github.com/ku-nlp/KyotoCorpus
12https://github.com/ku-nlp/KWDLC
13https://github.com/ku-nlp/AnnotatedFKCCorpus
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B-ORG O O B-DATE I-DATE O O B-MON I-MON I-MON O O

Foundation Model (DeBERTa)

[CLS] Toyota announ-
ced on Sep ##. 31 to invest 730 billion yen in EVs [SEP]

Figure 2: An example of solving named entity recognition as a sequence labeling task.

Foundation Model (DeBERTa)

[CLS] I visited Kyoto ##, a city in Japan ##, and saw … [SEP] [ROOT]

Softmax
𝑃(𝑤!|𝑤")

𝑠(𝑤! , 𝑤")

𝑤"

2.6 0.88.3 5.5 2.31.5

FFN FFN FFN FFNFFNFFN FFNFFN FFN FFN

…7.4 1.2 0.9

0.00 0.000.67 0.04 0.000.00 …0.28 0.00 0.00

Figure 3: An example of solving dependency parsing as a word selection task.

require document-level processing. In this study,
we apply document-level processing for all tasks
to perform multi-task learning. With this formula-
tion, obtaining sentence boundaries becomes less
important. Thus, we only use simple rules based
on regular expressions for sentence segmentation.

5 Analysis Components

KWJA consists of eleven analysis components be-
longing to three modules. In this section, we de-
scribe the details of each component, including its
definition, formulation, and evaluation.

5.1 Typo Module
5.1.1 Typo Correction
Typo correction is the task of detecting and cor-
recting typos in a text. Tanaka et al. (2021) used a
pre-trained seq2seq model to convert input text to
typo-corrected text. While seq2seq models enable
flexible typo correction, they are at risk of grossly
deviating from the input text.

To reduce the risk, we take a conservative ap-
proach; we formulate the task as a sequence label-
ing task where two edit operations (Malmi et al.,
2019) are assigned to each character. Specifically,
for each character in an input text, the model (1)
chooses one from {KEEP, DELETE, REPLACE:x} and
(2) predicts INSERT:x. REPLACE:x is an operation
of replacing the character with x. INSERT:x in-
serts x before the character (x can be null). Follow-

ing Tanaka et al. (2021), we use the F1 score of
character-level minimum edits for evaluation.

5.2 Character Module

5.2.1 Word Segmentation
Word segmentation is the task of splitting a text
into words. We formulate the task as a character-
level sequence labeling task. This task assigns a
B (Begin) or I (Inside) label to each character in a
text. The evaluation metric is the F1 score for word
spans.

5.2.2 Word Normalization
Word normalization is the task of normalizing non-
standard notations such as “Thank youuuuu” in
place of “Thank you.” As with typo correction,
we formulate the task as a sequence labeling task
where a normalization operation is assigned to each
character. The list of normalization operations is
shown in Appendix A. The evaluation metric is
the micro-averaged F1 score over labels other than
KEEP, given that KEEP overwhelms the others.

5.3 Word Module

5.3.1 Morphological Analysis
In this study, we refer to morphological analysis
as the task of assigning a POS, a sub-POS, a con-
jugation type, a conjugation form, a lemma, and a
reading to each word. We formulate the first four
tasks as word-level sequence labeling tasks. A post-
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processing code is used to generate the lemma of
a word by looking up its normalized surface form,
conjugation type, and conjugation form in the con-
jugation table. We also formulate the task of as-
signing readings as a sequence labeling task, where
the label set is the subword vocabulary defined in a
pre-trained model. This is somewhat complicated
because we have to preprocess the training data to
split a reading into two or more if the correspond-
ing word is split into multiple subwords. To do this,
we perform alignment of character sequences of
words and readings in accordance with subwords.

5.3.2 Named Entity Recognition

Named entity recognition is the task of identifying
named entities in a text. We formulate the task
as a word-level sequence labeling task. Following
Akbik et al. (2018), we add a CRF layer on top
of a foundation model. Named entities have the
eight categories defined in the IREX CRL named
entity data (Sekine and Isahara, 2000). The evalua-
tion metric is the micro-averaged F1 score over the
named entity categories.

5.3.3 Linguistic Feature Tagging

Linguistic feature tagging is the task of assigning
various linguistic features to each word or base
phrase.14 We formulate the task as a word-level
sequence labeling task. Base phrase linguistic
features are assigned to the head word of each
base phrase. The evaluation metric is the macro-
averaged F1 score over the features.

As the existing corpora do not have manually
annotated linguistic features, we assign silver fea-
tures using a rule-based Japanese linguistic feature
tagger, KNP (Kurohashi and Nagao, 1994). In the
future, we will manually correct some of the fea-
tures and use them as gold data. All the features
we used are listed in Appendix B.

5.3.4 Dependency Parsing

In this study, dependency parsing consists of two
sub-tasks; one recognizes syntactic dependencies
between words, and the other identifies their de-
pendency types. We formulate the former task as a
word selection task, following Zhang et al. (2017),
and the latter task as a word relation classification
task. As the evaluation metric, we use the Labeled
Attachment Score (LAS) for base phrases.

14A unit consisting of a single independent word and its
ancillary words. One or more base phrases make up a phrase.

5.3.5 PAS Analysis, Bridging Reference
Resolution, and Coreference Resolution

PAS analysis, bridging reference resolution, and
coreference resolution are the tasks of recognizing
semantic relations between base phrases. PAS anal-
ysis finds arguments corresponding to who did/does
what to whom for a predicate. Bridging reference
resolution finds nouns that complement the essen-
tial information of another noun. Coreference res-
olution finds a set of nouns that refer to the same
real-world entity.

Following Ueda et al. (2020), we formulate all
the tasks as a word selection task. In PAS analysis,
we focus on four cases: nominative, accusative,
dative, and nominative-2.15

5.3.6 Discourse Relation Analysis
Discourse relation analysis is the task of recogniz-
ing discourse relations between clauses. Following
Kawahara et al. (2014), we assign a label to each
clause pair in a text. Note that clauses are identified
with linguistic feature tagging.

We target the following discourse relations:
CAUSE/REASON, PURPOSE, CONDITION, JUS-
TIFICATION, CONTRAST, and CONCESSION. In
addition, we introduce a special relation NORELA-
TION, which indicates none of the above relations
is applicable, and formulate the task as a seven-
way word relation classification task. We use the
micro-averaged F1 score of the labels other than
NORELATION as the evaluation metric.

6 Experiments and Discussion

In this section, we investigate the performance of
each analysis component through fine-tuning foun-
dation models.

6.1 Experimental Settings

We trained models on all the training data of KC,
KWDLC, and Fuman, and evaluated the perfor-
mance per corpus. The details of the experimental
settings are described in Appendix C.

6.2 Results

The result of each task is shown in Table 2. Over-
all, the performance of KWJA was comparable to
SOTA and was sufficient for practical use. How-
ever, the F1 score of word normalization was 33.3,
which was remarkably lower than those of the other

15Nominative-2 is used for a common Japanese construction
in which a predicate has two nominative arguments.
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Task Corpus Metric Reference SOTA KWJA

Typo Correction JWTD F1 Tanaka et al. (2021) 77.6 83.1±0.3

Word Segmentation KC F1 Tolmachev et al. (2020) 99.5 99.3±0.1

Word Normalization all F1 — — 33.3±0.0

Morphological
Analysis

POS KC F1 Tolmachev et al. (2020) 99.1 99.7±0.1

sub-POS KC F1 Tolmachev et al. (2020) 97.8 99.0±0.1

conjugation type all F1 — — 99.3±0.3

conjugation form all F1 — — 99.5±0.2

reading all Accuracy — — 95.8±0.7

Named Entity Recognition all F1 — — 84.3±4.0

Linguistic Feature
Tagging

word all F1 — — 98.6±0.1

base phrase all F1 — — 88.3±3.1

Dependency Parsing KC LAS Kawahara and Kurohashi (2006) 90.4 92.7±0.4

PAS Analysis all F1 Ueda et al. (2020) 77.4 75.9±1.5

Bridging Reference Resolution all F1 Ueda et al. (2020) 64.3 65.8±1.6

Coreference Resolution all F1 Ueda et al. (2020) 67.4 77.7±0.9

Discourse Relation Analysis KWDLC F1 Omura and Kurohashi (2022) 51.9 41.7±0.9

Table 2: The performance of KWJA on each task in comparison to the state-of-the-art (SOTA). We fine-tuned KWJA
with 3 different random seeds and report the mean and standard deviation of the performance. “—” indicates that no
previous studies reported the performance on the corpora we used. “all” indicates KC, KWDLC, and Fuman corpus,
and the metric is the macro-average of them.

tasks. Moreover, PAS analysis and discourse rela-
tion analysis scores were more than 1 point lower
than SOTA.

6.3 Discussion

We discuss word normalization, PAS analysis, and
discourse relation analysis in the following sec-
tions. Section 6.3.3 compares the analysis speed of
KWJA with existing Japanese analyzers.

6.3.1 Word Normalization

The F1 score of word normalization, 33.3, was
strinkingly low. We attribute the poor performance
to the highly unbalanced label distribution. Word
normalization mainly targets informal texts, and
there were very few examples with labels other
than KEEP in the annotated corpora. We generated
pseudo training data by applying denormalization
rules to randomly selected words. Even with the
pseudo-data, the percentage of labels other than
KEEP was less than 0.1%, however. We plan to
expand training data by specifically targeting low-
frequency phenomena.

Analyzer Time

Juman++ & KNP 1.1min
Juman++ & KNP (w/ PAS analysis) 18.4min
KWJA (ours) 2.7min

Table 3: Time spent by KWJA to analyze 1k sentences,
with comparison to Juman++ (Tolmachev et al., 2018)
and KNP (Kurohashi and Nagao, 1994).

6.3.2 PAS Analysis and Discourse Relation
Analysis

We hypothesized that the low performance of PAS
analysis and discourse relation analysis was due to
multi-task learning, in which the model’s capability
was allocated to the other tasks. To test this hypoth-
esis, we trained the model separately for each task
using single-task learning. The F1 score of PAS
analysis was 79.3±1.0, and that of discourse re-
lation analysis was 55.3±3.6. Both scores were
significantly higher, confirming the hypothesis. We
plan to adjust the loss weights and provide an op-
tion to use models trained with single-task learning.
Appendix D shows the results of single-task learn-
ing for all tasks in the word module.
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6.3.3 Speed of Analysis
We compared KWJA with the existing Japanese
analyzers, Juman++ (Tolmachev et al., 2018) and
KNP (Kurohashi and Nagao, 1994), in terms of
speed of analysis. For KWJA, we performed all
the tasks it supports. Juman++ supports word seg-
mentation and morphological analysis while KNP
supports named entity recognition, linguistic fea-
ture tagging, dependency parsing, and optionally,
PAS analysis. We used 1k sentences randomly
sampled from the Japanese portion of the CC-100
corpus (Wenzek et al., 2020). We used an NVIDIA
TITAN V 12GB GPU to run KWJA.

Table 3 shows the results. We can see that KWJA
was considerably faster than Juman++ and KNP
even though KWJA performed a larger number of
tasks.

7 Conclusion

In this study, we designed and built a unified
Japanese text analyzer, KWJA, on top of founda-
tion models. KWJA supports typo correction, word
segmentation, word normalization, morphological
analysis, named entity recognition, linguistic fea-
ture tagging, dependency parsing, PAS analysis,
bridging reference resolution, coreference resolu-
tion, and discourse relation analysis in a unified
framework. Users can quickly obtain analysis re-
sults by inputting a text and specifying the desired
level of analysis.

One of the advantages of KWJA is its simplified
design, thanks to the use of foundation models. Var-
ious analysis tasks, previously solved separately,
are now performed only with three modules. For
further simplification, we plan to solve all the anal-
ysis tasks with a character-level foundation model.

Limitations

As KWJA is based on a large Transformer model,
the analysis in an environment without GPUs is
expected to be slow. Even in environments with
GPUs, when we need only a specific task (e.g.,
word segmentation), existing analyzers might be
faster with little difference in accuracy.

The experiments showed that multi-task learning
decreased accuracy in PAS analysis and discourse
relation analysis. This fact may be true for other
tasks as well. Therefore, when very high analysis
accuracy is required for a particular task, using a
model trained only on that task is recommended
instead of KWJA.
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A Word Normalization Operations

We define six types of normalization operations as
follows:

KEEP Keep the original character.
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DELETE Delete the character.

VOICED Replace voiced or semi-voiced charac-
ter with voiceless character (e.g., “が ” (ga)
→ “か ” (ka), “ぱ ” (pa)→ “は ” (ha)). This
reverts rendaku, the voicing of the initial con-
sonant of a non-initial word of a compound.

SMALL Replace a small character with the large
character (e.g., “なぁ ”→ “なあ ”).

PROLONG Replace prolonged sound mark with
its equivalent hiragana or katakana (e.g., “
もーれつ ” (moRretsu) → “ もうれつ ”
(mouretsu)).

PROLONG-E Replace a prolonged sound mark
with “え ” (e) (e.g., “ねー ” (neR)→ “ねえ
” (nee)).

B Word and Base Phrase Features

KWJA assigns the following linguistic fea-
tures.16,17 † indicates that the feature is to be cor-
rected manually in the future.

Word Features

• base phrase head†

• base phrase end†, phrase end†

• declinable head or end

Base Phrase Features

• verbal (verb, adjective, copula)†, nominal†

• stative predicate, active predicate

• nominal predicate (verb, adjective)†

• modality†, tense†, negation†, potential expres-
sion, honorific, time

• modification

• SM-subject

• verbal level

• dependency:genitive

• clause head†, clause end†,
clause end:adnominal,
clause end:complement, clause functional

16https://github.com/ku-nlp/knp/blob/master/
doc/knp_feature.pdf

17https://github.com/ku-nlp/KWDLC/blob/master/
doc/clause_feature_manual.pdf

C Training Details

We trained each module with hyper-parameters
shown in Table 4. During training, we evaluated
a score averaged over tasks on the validation set
at the end of each epoch and picked the model
with the highest score. When training the word
module, the ground-truth word segmentation was
used as input. We trained each module three times
with different random seeds. Single training runs
of the typo, character, and word modules took 38
hours, 2.5 hours, and 5.8 hours on four Tesla V100-
SXM2-32GB GPUs, four TITAN X 12GB GPUs,
and two Tesla V100-SXM2-32GB GPUs, respec-
tively. The transformers package (Wolf et al.,
2020) was used for implementation.

D Single-task Learning Results

Table 5 shows the results of single-task learning.
We trained each task in the word module separately
in a single-task manner. Note that the training of
POS, sub-POS, conjugation type, and conjugation
form tasks was performed in a multi-task manner
as before because these tasks had already achieved
enough performance.
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Hyper-parameter Typo Module Character Module Word Module

Maximum Sequence Length 256 512 256
Dropout 0.1 0.1 0.1
Batch Size 352 32 16
Maximum Training Epochs 20 20 20
Early Stopping Patience 3 3 3
Warmup Steps 1k 2k 100
Maximum Learning Rate 2e-5 2e-5 1e-4
Learning Rate Decay Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW
AdamW ϵ 1e-6 1e-6 1e-6
AdamW β1 0.9 0.9 0.9
AdamW β2 0.99 0.99 0.99
Weight Decay 0.01 0.01 0.01
Gradient Clipping 0.5 0.5 0.5

Table 4: Hyper-parameters for training each module.

Task Corpus Metric KWJA (multi) KWJA (single)

Morphological
Analysis

POS all F1 99.4±0.1 99.4±0.1

sub-POS all F1 98.7±0.1 98.7±0.0

conjugation type all F1 99.3±0.3 99.5±0.0

conjugation form all F1 99.5±0.2 99.6±0.0

reading all Accuracy 95.8±0.7 96.2±0.0

Named Entity Recognition all F1 84.3±4.0 77.9±4.2

Linguistic Feature
Tagging

word all F1 98.6±0.1 98.5±0.1

base phrase all F1 88.3±3.1 92.4±0.1

Dependency Parsing all LAS 93.6±0.3 93.5±0.3

PAS Analysis all F1 75.9±1.5 79.3±1.0

Bridging Reference Resolution all F1 65.8±1.6 65.2±1.6

Coreference Resolution all F1 77.7±0.9 77.6±1.2

Discourse Relation Analysis KWDLC F1 41.7±0.9 55.3±3.6

Table 5: The performance of KWJA on each task in single-task learning (single) compared to that in multi-task
learning (multi). We fine-tuned KWJA with three different random seeds. We report the mean and standard
deviation of the performance. “all” indicates KC, KWDLC, and Fuman corpus, and the metric is the macro-average
of them.
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Abstract

We present Disease Network Constructor
(DNC)1, a system that extracts and visualizes a
disease network, in which nodes are entities
such as diseases, proteins, and genes, and
edges represent regulation relation. We
focused on the disease network derived
through regulation events found in scientific
articles on idiopathic pulmonary fibrosis
(IPF). The front-end web-base user interface
of DNC includes two-dimensional (2D) and
3D visualizations of the constructed disease
network. The back-end system of DNC
includes several natural language processing
(NLP) techniques to process biomedical text
including BERT-based tokenization on the
basis of Bidirectional Encoder Representations
from Transformers (BERT), flat and nested
named entity recognition (NER), candidate
generation and candidate ranking for entity
linking (EL) or, relation extraction (RE), and
event extraction (EE) tasks. We evaluated
the end-to-end EL and end-to-end nested EE
systems to determine the DNC’s back-end
implementation performance. To the best of
our knowledge, this is the first attempt that
addresses neural NER, EL, RE, and EE tasks
in an end-to-end manner that constructs a path-
way visualization from events, which we name
Disease Network Constructor.
The demonstration video can be ac-
cessed from https://youtu.be/
rFhWwAgcXE8. We release an online system
for end users and the source code is available
at https://github.com/aistairc/
PRISM-APIs/.

1 Introduction

In the human body, various substances (entities)
such as proteins and compounds interact and reg-
ulate each other, forming huge pathway networks.

1DNC is publicly available at https://
biomed-text.airc.aist.go.jp/disease_
network/

Such interactions and regulations can be consid-
ered as biochemical events. In a disease state, the
status of such biochemical events are considered
different from those in the healthy state. In or-
der to identify specific substances that can be drug
targets in the disease, automatic extraction and vi-
sualization of a disease network from scientific
articles will be beneficial. The visualization of phe-
nomena and inter-molecular relationships can, for
example, make it easier to notice central regula-
tory molecules, leading to the discovery of drug
targets. In this work, we present a system called
disease network constructor (DNC) that extracts
and visiualizes a disease netowrk. We focus on id-
iopathic pulmonary fibrosis (IPF), which is a severe
chronic fibrosis interstitial lung disease, the causes
of which remain unclear (Raghu et al., 2011); thus,
a deeper understanding of the disease network is
urgently needed. DNC is capable of 3D network
drawing, and such 3D visualization can help in un-
derstanding diseases such as IPF, where complex
factors are entangled and multi-level phenomena
are involved.

The task formulation of DNC involves sev-
eral natural language processinbg (NLP) tech-
niques. DNC is mainly composed of five core mod-
els: a Bidirectional Encoder Represenatation from
Transformers (BERT)-based masked language
model (Devlin et al., 2019), named entity recogni-
tion (NER) model (Sohrab and Miwa, 2018) that
enumerates all possible spans as potential entity
mentions and classifies them into entity types, en-
tity linking (EL) model (Sohrab et al., 2020a) that
executes candidate generation and candidate rank-
ing, relation extraction (RE) model (Sohrab et al.,
2020b), and event extraction (EE) model (Trieu
et al., 2020). DNC provides a web-based user inter-
face to facilitate the end-to-end process of neural
EL and deep EE on the basis of these five models
without any training required by end users. The
interface visualizes the 2D and 3D networks on the
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basis of output of EL to EE.

2 DNC: Back-end System

The BERT-based back-end system of DNC is built
upon four layers:

• NER that uses a contextual neural exhaustive
approach to extract mentions, entities, and
triggers in text.

• EL that normalizes every detected mention
by assigning it an ID in the target knowledge
base2.

• RE that extracts all possible role pairs (trig-
ger–trigger and trigger–entity pairs) given de-
tected triggers and entities and assigns a role
type to each pair.

• EE that enumerates all legal combinations of
role pairs to construct event candidates for
each trigger.

We employ the modeling of deep EE (Trieu et al.,
2020) on the basis of entity, relation, and event over
the IPF dataset (Nagano et al., 2023), which is a
manually annotated corpus of IPF-related literature.
We further extend the end-to-end deep EE model
by leveraging the EL (Sohrab et al., 2020a) model
to construct a disease network. Figure 1 shows an
overview of DNC workflow.

2.1 BERT Layer

To preprocess a given text, we use BERT’s tok-
enizer to remove special characters and redundant
whitespaces, and then split the text into sub-words.
A BERT-based pre-trained language model is then
used to assign contextual representations to each
sub-word.

2.2 Named-entity-recognition Layer

The NER layer assigns entity or trigger types to
overlapping text spans by enumerating all possible
mention spans on the basis of the same idea as
the span-based model (Sohrab and Miwa, 2018;
Sohrab et al., 2020b).

2.3 Entity-linking Layer

The EL, or entity normalization, layer, receives the
detected mentions M = {m1,m2, . . . ,mn} from

2https://www.nlm.nih.gov/research/
umls/index.html

the above NER, where mi denotes the i-th men-
tion and n denotes the total number of extracted
mentions. We address the EL in which detected
mentions are mapped to the corresponding concept
unique identifiers (CUIs) C = {c1, c2, . . . , cn}
by leveraging candidate generation and candidate
ranking. We use the output of mention extraction as
an input to the candidate generation model where
we generate a list of k potential CUI candidates for
each extracted mention (k = 50 in this study). The
potential candidates are then fed to the candidate
ranking model to select the best candidate for each
extracted mention. Our EL layer is based on the
EL system of Sohrab et al. (2020a).

2.4 Relation-extraction Layer

The detected mentions and triggers from the NER
layer are then fed into the RE layer to assign a role
type such as Cause, Cue, Participant, Theme, etc.
or no role type to the trigger-argument pairs. The
RE layer enumerates all trigger-arguments (trigger-
trigger and trigger-entity) to assign a role type.

2.5 Event-extraction Layer

The EE layer receives the detected entities/triggers
and the predicted role pairs from the previous layers
and enumerates all legal combinations of role pairs
to construct event candidates for each trigger. The
event candidates include those with and without
arguments. Each event candidate is then classified
on the basis of whether it is an valid event. Ex-
tracting event modifications, such as speculation or
negation, is also included in this layer. We describe
the event structure to construct event candidates in
Section 3.

3 Disease Network Constructor

DNC provides a graph of disease network from the
event statistics of IPF. The graph is generated by
first applying EL and EE to each input text, then
repeatedly collapsing regulation events and their
consequents, marking the resultant event with the
sign of the regulation event (positive or negative).
The resulting graph represents entities as nodes,
and regulated events as edges.

We define a “regulation events” as
any events with one of the follow-
ing types: Positive_regulation,
Negative_regulation, or Regulation.
Regulation describes a regulation event for
which it is not clear whether its effect is positive
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Figure 1: Workflow of DNC.

Figure 2: Web-based user interface of DNC.

or negative, and a regulation sign R is defined
as +1, −1, and 0, respectively. A regulation
event’s Disorder or Cause roles are considered
antecedents, and denoted as A; Theme roles
are consequents, denoted as C. The application
collapses regulation events in the following
manner.

For each non-negated event E0 of type T0 and
regulation sign R0, for each antecedent-consequent
pair (A0, C0) where A0 is an entity (or (null), if
E0 has no antecedents): If C0 is also an entity, we
generate a Direct_regulation(A0, C0, R0)
edge for E0. If C0 is a non-regulation event of
type T1, for each of its Theme arguments C1, we
generate a T1(A0, C1, R0) edge for E0. If C0 is
a regulation event, the data (A0, E0, C0) will be
remembered as an uncollapsed regulation link.

After each event is processed as above, we iter-
atively collapse uncollapsed regulation links until
it is no longer possible. We look for an uncol-
lapsed regulation link (A0, E0, C0), such that there
exist edges Te(Ae, Ce, Re) generated for event
C0. Those edges are deleted, and new edges
Te(A0, Ce, R0 ∗ Re) is generated for E0. Finally,

any edges with a null source is removed.

Intuitively speaking, each regulation event is
“folded into” its consequent as its sign. For exam-
ple, a “negative regulation” of a “gene expression”
becomes a “negatively regulated gene expression”
edge, connecting the cause of the “negative regu-
lation” with the theme of the “gene expression”.
If there is a chain of multiple regulation events,
their signs interact: a “negative regulation” of a
“negative regulation” of a “gene expression”, for
example, becomes a “positively regulated gene ex-
pression” edge.

This algorithm results in many events not being
included on the graph. Since nodes are entities,
any regulation event the antecedents of which are
not entities are ignored. Similarly, any regulation
events that lacks an antecedent or a consequent, as
well as any events that do not have a Theme, will
not be included, as there cannot be an edge with-
out both a source and a target node. Any negated
events, and any entities that do not participate in at
least one edge are also left out.

3.1 DNC: User Interface

Figure 2 shows a user input interface of DNC. For
a given text or single or multiple documents from
users or a sample text from the provided list, DNC
constructs the graph of regulated events on the basis
of EL and EE results and visualizes it in 2D and
3D. The user interface also enables visualization
of an already pre-computed disease network by
uploading an exported .json or .tgz file.
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Figure 3: 2D graph produced with DNC.

Figure 4: 3D graph produced with DNC.

Information IPF Dataset
#Documents 150
#Entity types 15
#Event types 13
#Mentions 12868
#Mentions linked to UMLS CUIs 12148
#Mentions linked to NULL 720
#Entities + Triggers 13049
#Relations 6685
#Events 4899
#Modalities 707

Table 1: Statistics of IPF dataset (Nagano et al., 2023).

Data P R F1 (%)
MD 86.12±1.35 87.13±1.71 86.61±1.11

EL 72.54±2.34 59.44±3.83 65.30±2.98

Table 2: EL performance across 10-fold CV on IPF
dataset.

3.2 2D Disease Network

The 2D network based on Cytoscape.js3 is used to
visualize the 2D network graph. Figure 3 shows a
2D graph of a disease network produced with DNC
where ten documents or PubMed abstracts on IPF
datae are loaded through the user input interface.

3.2.1 2D Graph Features
In the 2D graph, the edges are colored on the basis
of whether they represent a positive or negative reg-
ulation, or if the regulation type is unknown. Node
colors show their types. Node names are normal-
ized where possible; where EL has not succeeded,
mentions are grouped into nodes by literal text of
the mention, displayed in quotes. In case the men-
tions represented by an edge or a node do not all
have the same type, the color and/or label reflect
that of the majority of mentions.

Besides the standard features of zooming and
panning, any edge or node can be selected both for
better visibility in the graph and displaying more
detailed information in a side panel. Nodes can
also be selected from an alphabetical list displayed
in the info panel when no selection is made. The
info panel also enables the selection of edges and
nodes in the neighborhood of the selected element
and shows the list of all text mentions that the se-
lected element represents. Clicking on a mention
displays the EE result in a brat (Stenetorp et al.,
2012) visualization panel, enabling easy checking
of the context (see the bottom part of Figure 3).

The graph can be filtered by event and entity
types, regulation sign, and by the minimum size of
connected subgraphs to be displayed. The zoom
button enables quick focus on the selected element
as well as an overview of the entire graph. The
graph can be exported in several formats: tarball
(containing the Cytoscape.js JSON representation
of the graph as well as input texts and their EE re-
sults, which can be later uploaded to the web app to
view without having to re-analyze the documents),
JSON only (which can also be uploaded to view,
though some features will not be available) of both
the full graph and its current filtered state, as well
as PNG and SVG images.

3.3 3D Disease Network

The web-base user interface also has a 3D graph
function, the main advantage of which is that the
nodes are split into layers, representing phenotypes,

3https://js.cytoscape.org
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Task 10-fold Cross-Validation of End-to-End Entity Linking
(%) Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

P 87.84 87.29 84.19 85.47 87.64 85.54 84.87 85.08 85.57 87.67
MD R 88.56 89.17 85.62 86.02 86.57 87.11 87.03 87.94 89.38 83.87

F 88.21 88.22 84.90 85.75 87.10 86.31 85.93 86.49 87.44 85.73
P 71.96 71.47 75.29 74.31 70.40 68.59 71.52 75.78 74.57 71.48

EL R 63.86 61.68 62.84 60.17 53.11 56.66 57.12 59.55 64.29 55.14
F 67.67 66.22 68.51 66.50 60.54 62.06 63.51 66.69 69.05 62.26

Table 3: EL performances across 10-fold CV. MD indicates mention detection.

Task P R F (%)
NER 84.77±1.56 82.05±2.65 83.37±1.73

RE 58.62±4.20 59.49±3.97 58.95±3.09

EE 51.55±4.17 40.10±4.17 45.08±4.12

ME 51.59±14.97 26.09±10.72 34.24±12.06

Table 4: EE performances across 10-fold of CV on IPF
dataset. ME indicates modality extraction.

organs, cells, organelles, and molecules. Figure 4
shows a 3D graph of a disease network produced
with DNC.

4 Experimental Settings

In this section, we evaluate the DNC system based
on the IPF dataset (Nagano et al., 2023).

4.1 Datasets

We conduct experiments on the IPF dataset which
includes 150 abstracts of IPF-related scientific liter-
ature where entity, relation, and event information
are manually annotated (Nagano et al., 2023). Ta-
ble 1 shows the statistics of the IPF dataset, which
is split into training set and test set for 10-fold
cross-validation (CV) in this work. The IPF dataset
is randomly divided into 10 folds, each turn, one
data fold is used for testing and the remaining folds
are used for training.

Moreover, to address IPF-related networks, this
dataset includes entity normalization with concept
unique identifiers (CUIs) assigned to entities. The
UMLS version 2017AA 4 is used to assign the
CUIs of entities. It contains 2.1M unique CUIs
which covers 100% of entities in the IPF dataset.
As shown in Table 1, the IPF dataset includes
12,319 mentions among which 12,148 and 720

4https://www.nlm.nih.gov/pubs/
techbull/mj17/mj17_umls_2017aa_release.
html

mentions are respectively present and absent in
the UMLS. Therefore, the entity coverage ratio of
the IPF dataset over the UMLS is around 94.3%.

4.2 Implementation Details
We train the EL and EE models on the pre-trained
BERT model and use the pre-trained PubMed-
BERT(Gu et al., 2020) for end-to-end EL task.
We employ the pre-trained SciBERT(Beltagy et al.,
2019) model to address the end-to-end event ex-
traction task. We optimize the end-to-end EL and
end-to-end EE models using AdamW (Loshchilov
and Hutter, 2019) with a learning rate of 3e-5. We
train our EL and EE models with 100 epochs and a
mini-batch size of 16 on a single graphics process-
ing unit (GPU) with half precision enabled.

5 Results

Table 2 shows the end-to-end EL performances
based on the IPF dataset, with the mean scores
of precision (P), recall (R), and F-score (F) over
the 10-fold CV. The ±(.) subscript indicates the
standard deviation of variation of a set of 10-fold
CV scores. Table 3 shows the 10-fold CV end-to-
end EL performances over the IPF dataset. The
overall performances in Table 2 and the consistent
performances over each fold in Table 3, suggest
that MD and EL perform well on the IPF dataset.

Table 4 shows the end-to-end EE performances
based on the IPF dataset where the end-to-end deep
event extraction model is simultaneously trained
for entity/trigger, role, and event detection. Since
the EE model follows the end-to-end manner, there-
fore it is noticeable that the model performances
are decreased from the NER layer to the modal-
ity extraction (ME) layer where each layer error is
propagated to the next layer, making the task chal-
lenging for the following layers. Table 5 shows the
results of the 10-fold CV of the end-to-end deep
EE. ME does not perform well compared with the
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10-fold Cross-Validation of End-to-End Deep Event Extraction
(%) Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

P 85.46 84.97 82.74 84.94 88.28 85.82 84.05 84.47 83.49 83.48
NER R 84.01 83.04 81.29 80.71 82.20 82.73 82.55 84.19 84.42 75.35

F 84.72 83.99 82.01 82.77 85.13 84.25 83.29 84.33 83.95 79.21
P 61.13 56.76 60.64 61.10 55.77 62.54 64.53 58.75 54.18 50.83

RE R 62.05 59.95 57.26 57.23 59.61 60.55 60.06 58.83 67.54 51.86
F 61.59 58.31 58.91 59.10 57.63 61.53 62.21 58.79 60.12 51.34
P 52.99 52.19 54.80 50.11 50.93 41.48 52.55 51.42 57.74 51.25

EE R 41.03 39.49 43.51 35.82 39.25 32.56 41.26 43.56 47.01 37.47
F 46.24 44.96 48.51 41.78 44.34 36.48 46.22 47.16 51.82 43.29
P 48.65 64.86 73.08 43.75 58.33 43.75 50.01 19.35 64.10 50.01

ME R 32.14 33.80 32.26 17.28 25.61 18.75 27.85 10.01 46.55 16.67
F 38.71 44.44 44.76 24.78 35.59 26.25 35.77 13.19 53.94 25.01

Table 5: 10-fold cross validation (CV) of end-to-end deep event extraction. ME indicates modality extraction.

other extractions due to insufficient gold data as in
Table 1.

6 Related Work

Recent successes in neural networks have shown
impressive performance gains on many NLP ap-
plications including NER (Lu and Roth, 2015; Ma
and Hovy, 2016; Muis and Lu, 2017; Katiyar and
Cardie, 2018; Sohrab et al., 2019b; Sohrab and
Bhuiyan, 2021), EL (Gupta et al., 2017; Sohrab
et al., 2019a), RE (Christopoulou et al., 2019; Jia
et al., 2019), and EE (Feng et al., 2016). In con-
trast, other approaches have emphasized end-to-end
EL (Kolitsas et al., 2018), end-to-end RE (Miwa
and Bansal, 2016) or even end-to-end EE (Trieu
et al., 2020) to facilitate biomedical information
extraction tasks. There have been no studies on
an all-in-one neural end-to-end approach to facil-
itate biomedical research, especially to construct
disease network pathways that visualize the events
along with entity normalization. We addressed this
gap by introducing two end-to-end approaches: EL
and deep EE to construct a disease network based
on IPF, hoping that the DNC can bring insights in
making scientific discovery.

Current NLP techniques often use an event rep-
resentation data format called the “standoff format”
to represent their results. Spranger et al. (2015) pro-
posed and discussed a software scheme to convert
NLP event representations to standard biomedical
pathway data formats (SBML and BioPAX). Apart
from neural end-to-end modeling, we integrated
brat visualization panels for event representation
of the context.

There are several web-based tools exist that sup-
port the retrieval of biomedical information using
text mining. Sohrab et al. (2020a) introduced BEN-
NERD a web-based workflow of NER and EL for
NLP research that addresses COVID-19 research.
Huang et al. (2021) addressed document-level EE,
for extracting entity-centric information such as
entity types and entity relations, which is a key to
automatic knowledge acquisition from text corpora
for various domains. Sohrab et al. (2022) presented
an effective web application by addressing entity
detection, EL without context using knowledge
base application programming interfaces (API),
generative RE, and text classification approaches
in a pipeline manner for automatic data curation
in the biomedical domain. The advantage of this
approach is that it can output important fields in a
data format that is needed by intended users.

Li et al. (2022) proposed pubmedKB, a web
server designed to extract and visualize seman-
tic relationships between four biomedical entity
types: variants, genes, diseases, and chemicals.
pubmedKB uses state-of-the-art NLP techniques
to extract semantic relations from a large number
of PubMed abstracts. Deng et al. (2021) addressed
an extraction of gene-disease association using a
BERT-based language model. Xing et al. (2018)
proposed a pipeline based approach to extract the
relation between gene-phenotype from biomedical
literature.

Many works have shown considerable atten-
tion to boost the EE performances. Previous neu-
ral models on flat or non-nested EE have been
mainly focused on event trigger and argument de-
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tection (Chen et al., 2015; Nguyen et al., 2016;
Liu et al., 2018; Sha et al., 2018). Besides, deep
neural networks including recurrent and convolu-
tional neural networks (CNNs) have boosted EE
performance (Björne and Salakoski, 2018; Nguyen
and Nguyen, 2019). These models show better
performance than traditional hand-crafted feature-
based approaches (Björne and Salakoski, 2013;
Miwa and Ananiadou, 2013; Yang and Mitchell,
2016). In addition, there are a few end-to-end mod-
els (Yang and Mitchell, 2016; Nguyen and Nguyen,
2019) to extract flat events on flat entities; none
of these models can treat nested events on nested
entities that may further overlap with event trig-
gers. In contrast, Trieu et al. (2020) introduced an
end-to-end neural nested EE model which detects
nested entities and triggers, roles, nested events;
and achieved the new state-of-the-art performance
on seven biomedical nested event extraction tasks.
In our DNC, we employ the modeling of Deep
EE (Trieu et al., 2020) to detect the flat and nested
events over the IPF dataset.

7 Conclusion

We present Disease Network Constructor (DNC)
to address end-to-end EL and end-to-end deep EE
in order to identify and visualize the specific sub-
stances (such as proteins) that work differently
from those in the healthy state of human bodies.
DNC provides an interactive web-based user inter-
face https://biomed-text.airc.aist.
go.jp/disease_network/ for enabling real-
time visualization and extracting graph information
in different formats for end users. We will con-
tinue to improve DNC as well as implement new
2D and 3D graph functions to facilitate biomed-
ical research. Moreover, the applicability of this
system can be extended to lung diseases such as
COVID-19 because some entities and events of the
IPF dataset are also related to such diseases.
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Abstract

Many NLP tasks benefit from using large lan-
guage models (LLMs) that often have more
than 100 billion parameters. With the release of
BLOOM-176B and OPT-175B, everyone can
download pretrained models of this scale. Still,
using these models requires high-end hardware
unavailable to many researchers. In some cases,
LLMs can be used more affordably via RAM
offloading or hosted APIs. However, these tech-
niques have innate limitations: offloading is too
slow for interactive inference, while APIs are
not flexible enough for research that requires
access to weights, attention or logits. In this
work, we propose PETALS — a system for in-
ference and fine-tuning of large models col-
laboratively by joining the resources of multi-
ple parties. We demonstrate that this strategy
outperforms offloading for very large models,
running inference of BLOOM-176B on con-
sumer GPUs with≈ 1 step per second, which is
enough for many interactive LLM applications.
Unlike most inference APIs, PETALS also na-
tively exposes hidden states of served models,
allowing to train and share custom model ex-
tensions based on efficient fine-tuning methods.
The system, its source code, and documentation
are available at https://petals.ml.

1 Introduction

In recent years, the NLP community has found that
pretrained language models can solve many practi-
cal tasks, through either fine-tuning (Radford et al.,
2018) or simple prompting (Brown et al., 2020).
Furthermore, performance tends to improve as
scale increases (Radford et al., 2019; Kaplan et al.,
2020). Following this trend, modern LLMs often
have hundreds of billions of parameters (Brown
et al., 2020; Rae et al., 2021; Zeng et al., 2021;
Kim et al., 2021). Some of these LLMs were re-
leased publicly (Zhang et al., 2022; Khrushchev

∗Equal contribution. Correspondence to:
borzunov.alexander@gmail.com

et al., 2022; Zeng et al., 2022). Most recently, the
BigScience project has released BLOOM, a 176
billion parameter model supporting 46 natural and
13 programming languages (Scao et al., 2022).

While the public availability of 100B+ parameter
models makes them easier to access, they remain
difficult to use for the majority of researchers and
practitioners due to memory and computational
costs. For instance, OPT-175B and BLOOM-176B
need over 350 GB accelerator memory for infer-
ence and significantly more for fine-tuning. As a
result, these LLMs usually require multiple high-
end GPUs or multi-node clusters to be run. Both
of these options are extremely expensive, which
limits research and potential applications of LLMs.

Several recent works aim to democratize LLMs
by “offloading” model parameters to slower but
cheaper memory (RAM or SSD), then running
them on the accelerator layer by layer (Pudipeddi
et al., 2020; Ren et al., 2021). This method al-
lows running LLMs with a single low-end acceler-
ator by loading parameters from RAM justin-time
for each forward pass. Offloading can be efficient
for processing many tokens in parallel, but it has
inherently high latency: for example, generating
one token at a time with BLOOM-176B takes at
least 5.5 seconds for the fastest RAM offloading
setup and 22 seconds for the fastest SSD offloading.
In addition, many computers do not have enough
RAM to offload 175B parameters.

Another way to make LLMs more accessible is
through public inference APIs, where one party
hosts the model and lets others query it over the
Internet (OpenAI; AI21; Forefront). Since most
of the engineering work is done by the API owner,
this is a relatively user-friendly option. However,
APIs are often not flexible enough for research use:
there is no way to change the model control flow
or access internal states. On top of that, current
API pricing can make some research projects pro-
hibitively expensive (Liu et al., 2022a).
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Figure 1: An overview of PETALS. Some participants (clients) want to use a pretrained language model to solve
various tasks involving processing texts in natural (e.g., French, Hindi) or programming (e.g., C++) languages. They
do it with help of other participants (servers), who hold various subsets of model layers on their GPUs. Each client
chooses a sequence of servers so that it performs an inference or fine-tuning step in the least amount of time.

In this work, we explore an alternative strategy
inspired by crowdsourced distributed training of
neural networks from scratch (Ryabinin and Gu-
sev, 2020). We introduce PETALS, a platform
that allows multiple users to collaborate and per-
form inference and fine-tuning of large language
models over the Internet. Each participant runs a
server, a client or both. A server hosts a subset of
model layers (typically, Transformer blocks) and
handles requests from clients. A client can form
a chain of pipeline-parallel consecutive servers to
run the inference of the entire model (Section 2.1).
Aside from inference, participants can fine-tune the
model through parameter-efficient training meth-
ods like adapters (Houlsby et al., 2019) or prompt
tuning (Lester et al., 2021) or by training entire
layers (Section 2.2). Once trained, submodules
can be shared on a model hub (Section 2.3), where
others can use them for inference or further train-
ing. We demonstrate that existing 100B+ models
can run efficiently in this setting with the help of
several optimizations: dynamic quantization, prior-
itizing low-latency connections, and load balancing
between servers (Section 3). Finally, we discuss
limitations and possible future work (Appendix A).

2 Design and use cases

Practical usage of large language models can be
broadly divided into two main scenarios: inference
and parameter-efficient adaptation to downstream
tasks. In this section, we outline the design of
PETALS, showing how it handles both scenarios
and also allows easily sharing trained adapters be-
tween the users of the system.

2.1 Inference of billion-scale models

When generating tokens, a client stores the model’s
token embeddings (which typically comprise a

small fraction of the total parameter count and can
fit in RAM in most modern laptops, servers, and
workstations) locally and relies on servers to run
Transformer blocks. Each server holds several con-
secutive blocks, the number of which depends on
the server’s available GPU memory. Before each
inference session, the client finds a chain of servers
that collectively hold all model layers.

Once the chain is formed, the client uses the local
embedding layer to look up embedding vectors for
prefix tokens, then sends those vectors to servers
and receives new representations. Once the client
obtains the outputs of the final block, it computes
next token probabilities and repeats this process.

While the session is active, servers store atten-
tion keys and values from past client inputs and use
them for subsequent inference steps. Clients also
store past inputs to each server so that if any server
fails or goes offline, another one can quickly take
its place. The procedure for finding servers and
recovering from failures is detailed in Section 3.2.

Client-side API. To generate tokens with
PETALS, one first creates an inference session. An
inference session iteratively takes inputs as Py-
Torch tensors, runs them through all Transformer
blocks and returns final representations as PyTorch
tensors. Under the hood, sessions form server
chains, hold cache, and recover from server failures
in a way that is transparent to the user. An example
of using an inference session is shown in Figure 2.

System requirements. For BLOOM-176B infer-
ence, clients need at least 12 GB RAM, most of
which is used to store 3.6B embedding parame-
ters. We recommend at least 25 Mbit/s bidirectional
bandwidth to avoid bottlenecks in network trans-
fers. Simple greedy inference can use any CPU
that runs PyTorch, but more advanced algorithms
(e.g., beam search) may require a GPU.
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# Initialize distributed BLOOM model
model = DistributedBloomForCausalLM \

.from_pretrained("bigscience/bloom-petals")
input_ids = tokenizer(prefix_text)

with model.inference_session() as session:
# Session maintains a set of servers that
# store attention KV from previous steps
for _ in range(sequence_length):

# Compute the word embeddings locally
hid = model.word_embeddings(input_ids)
# Run distributed Transformer blocks,
# store attention KV for future steps
hid = session.step(hid)
# Sample the next token locally
probs = model.lm_head(hid)
input_ids = sample_next_token(probs)

Figure 2: A basic PyTorch code snippet for generation
with a distributed BLOOM-176B model.

In turn, servers need at least 16 GB of CPU
RAM, 100 Mbit/s bandwidth and a GPU with at
least 8 GB of memory.

Chat application. We also provide an exam-
ple application that lets users chat with LLMs
in a messenger-like user interface (see Figure 3).
The application supports BLOOM-176B and
BLOOMZ-176B, a version of BLOOM fine-tuned
to better perform in the zero-shot regime (Muen-
nighoff et al., 2022). The application is comprised
of the frontend and the backend. The frontend is
a web page that allows users to communicate with
the model by prompting it with text and receiving
the generated output. The backend is a Flask web
server that uses the PETALS client to run inference
over the swarm. It accepts requests via HTTP or
Websocket protocols, so anyone can develop their
own applications using our backend for inference.

2.2 Training for downstream tasks

While LLMs achieve high quality on many prob-
lems with simple prompt engineering (Brown et al.,
2020), they often need training to achieve the best
results. Traditionally, this is done by fine-tuning all
model parameters on the downstream task. How-
ever, for very large models, this strategy becomes
impractical due to hardware requirements. For
example, fine-tuning BLOOM-176B with Adam
would require almost 3 TB of GPU memory to
store model, gradients, and optimizer states.

To combat this issue, the NLP community has
developed parameter-efficient fine-tuning methods
that keep most of the pretrained model intact. Some
of them (Sung et al., 2021; Guo et al., 2021) choose
a subset of existing parameters, others (Hu et al.,
2021; Houlsby et al., 2019; Liu et al., 2021b; Lester
et al., 2021; Liu et al., 2021a, 2022a) augment the

Figure 3: A chat application that runs BLOOM-176B
or BLOOMZ-176B over the PETALS swarm, available
at https://chat.petals.ml

model with extra trainable weights.
Despite their lower memory requirements,

parameter-efficient approaches are often compet-
itive with full model fine-tuning (Hu et al., 2021;
Liu et al., 2021a; Yong and Nikoulina, 2022) and
even outperform it in low-data regimes (Liu et al.,
2022b). Another appealing property of these ap-
proaches for our use-case is that they allow rapidly
switching a pretrained LLM between different uses.

Distributed fine-tuning. The core principle of
fine-tuning in a distributed network is that clients
“own” trained parameters while servers host origi-
nal pretrained layers. Servers can run backpropaga-
tion through their layers and return gradients with
respect to activations, but they do not update the
server-side parameters. Thus, clients can simulta-
neously run different training tasks on the same set
of servers without interfering with one another.

To illustrate this principle, we first review an ex-
ample of soft prompt-tuning for text classification
and then generalize it to other methods and tasks.
Similarly to Section 2.1, clients store the embed-
ding layers locally and rely on servers to compute
the activations of Transformer blocks. In this fine-
tuning scenario, a client needs to store trainable
soft prompts (task-specific input embeddings) and
a linear classification head.

For each training batch, the client routes its data
through a chain of remote servers to compute sen-
tence representations, then obtains predictions with
the classifier head and computes the cross-entropy
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# Use distributed BLOOM with soft prompts
model = AutoModelForSequenceClassification \

.from_pretrained(
"bigscience/bloom-petals",
tuning_mode="ptune", pre_seq_len=5)

# Define optimizer for prompts and linear head
opt = torch.optim.AdamW(model.parameters())

for input_ids, labels in data_loader:
# Forward pass with local & remote layers
out = model.forward(input_ids)
loss = cross_entropy(out.logits, labels)

# Distributed backward w.r.t. local params
loss.backward() # Compute prompts.grad
opt.step() # Update local params only
opt.zero_grad()

Figure 4: A basic PyTorch code of soft prompt tuning
for sequence classification with PETALS.

loss. During backpropagation, the client runs its
data through the same chain of servers in reverse
order to compute gradients for the learned prompt
vectors. Having obtained those gradients, the client
can use a regular PyTorch optimizer to update the
parameters of both the head and the prompts, then
proceed to the next minibatch.

User interface. To allow users greater flexibility
in their training workloads, we made distributed
backpropagation module compatible with the Py-
Torch Autograd engine. Like in the inference stage,
this module handles fault tolerance and load balanc-
ing transparently to the user while allowing them
to access intermediate activations and insert cus-
tom PyTorch modules. Figure 4 shows an example
training code snippet.

This interface can also support other popular
parameter-efficient fine-tuning algorithms, such as
LoRA (Hu et al., 2021) or prefix tuning (Li and
Liang, 2021). Finally, users can insert custom local
modules after some of the existing blocks, which
could allow use-cases like retrieval-augmented gen-
eration (Borgeaud et al., 2021; Lewis et al., 2020).

2.3 Sharing and reusing trained modules

Although most fine-tuned extensions for pretrained
models can be easily shared as-is, simplifying the
workflow for sharing these extensions enables users
to more easily adapt the model to their target sce-
nario. Indeed, existing model hubs (Wolf et al.,
2020; TensorFlow Hub; PyTorch Hub) have gained
immense popularity due to many supported models
and ease of use, especially when vetting different
pretrained models for a given problem. One particu-
larly relevant project is AdapterHub (Pfeiffer et al.,
2020), a repository of trained adapters accompa-
nied by a library with implementations of different

adaptation methods. While PETALS does not de-
pend on AdapterHub, it is possible to leverage this
library for training adapters in the distributed set-
ting. Instead, we support sharing modules trained
by users via the Hugging Face Hub (also used as
a backend by AdapterHub). Its infrastructure and
the corresponding open source library simplify the
learning process for users already familiar with
the ecosystem. Because the primary navigation
mechanism on the Hugging Face Hub are tags that
have been applied to uploaded modules, a user only
needs to the task it was trained on and the model
upon which the adapter was built. Uploading the
weights and the code of the fine-tuned module is
done by committing them to a Git repository. When
navigating the Hub, users can choose the most suit-
able adapters by filtering the list of all available
modules by the required tags.

3 Internal structure and optimizations

One of the primary considerations for distributed
inference is its performance. It can be broken down
into three main aspects: computation speed (5-year-
old gaming GPU vs. new data center GPU), com-
munication delay due to distance between nodes
(intercontinental vs. local), and communication
delay due to bandwidth (10 Mbit/s vs. 10 Gbit/s).

In terms of raw FLOPs, even consumer-grade
GPUs like GeForce RTX 3070 could run a com-
plete inference step of BLOOM-176B in less than a
second (NVIDIA, 2020). However, the GPU mem-
ory can only hold a small fraction of model lay-
ers: running naïvely would require 44 RTX 3070
GPUs and 44 communication rounds. To make
this more efficient, we use quantization to store
more parameters per GPU, reducing the number
of consecutive devices and communication rounds
(Section 3.1). On top of that, each client priori-
tizes nearby servers to make communication rounds
faster (Section 3.2).

3.1 Large model inference on consumer GPUs

We assume that each server has at least 16 GB of
CPU RAM, 8 GB of GPU memory. From this
assumption, one of the primary considerations is to
reduce the model memory footprint, so that each
device can hold more Transformer blocks.

For example, BLOOM has 176B parameters,
which takes 352 GB of GPU memory in 16-bit
precision. Thus, in the worst case, the model is
distributed among 352 GB / 8 GB (per server)
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Table 1: Zero-shot accuracy for OPT-175B and
BLOOM-176B with 8-bit and 16-bit weights.

Model Bits HellaSwag LAMBADA WinoGrande Avg

OPT-175B
16 78.5 74.7 72.6 75.3
8 78.5 74.6 71.7 74.9

BLOOM
16 73.0 67.2 70.1 70.1
8 72.8 68.1 70.1 70.3

Table 2: Generation throughput (tokens/s) for BLOOM-
176B with 8-bit and 16-bit weights on 8× A100 GPUs.

Weights Batch size

1 8 32
16-bit 4.18 31.3 100.6
8-bit 3.95 29.4 95.8

= 44 nodes. We can reduce both frequency and
amount of data transfer in two ways. First, we can
achieve this by compressing the hidden states ex-
changed between nodes. Second, we can compress
the weights to 8-bit precision, reducing the number
of nodes required to hold all layers. For BLOOM,
this changes the number of required nodes from 44
to 22, which reduces latency in half and decreases
the probability of a failure.

Compressing communication buffers. To send
less data between subsequent pipeline stages, we
use dynamic blockwise quantization (Dettmers
et al., 2022b). We apply it to the hidden states
before pipeline-parallel communication, as done in
Ryabinin et al. (2023). Dynamic blockwise quanti-
zation halves the bandwidth requirements without
any noticeable effect on generation quality.

Compressing model weights. We use 8-bit
mixed matrix decomposition for matrix multiplica-
tion to quantize the weights to 8-bit precision and
reduce the memory footprint compared to 16-bit
weights, as suggested in (Dettmers et al., 2022a).
This decomposition separates hidden states and
weights into two portions: about 0.1% of 16-bit
outlier and 99.9% of 8-bit regular values, which
roughly halves the memory footprint.

As shown in Table 1, this method has little effect
on LLM quality for major benchmarks. In terms of
inference time, Table 2 demonstrates that quantiza-
tion has about 5% of overhead with batch size 1 (20
tokens), but becomes negligible for larger batches.

3.2 Collaborating over the Internet

Another challenge is to provide reliable inference
and training despite nodes joining, leaving or fail-
ing at any time. To address this, PETALS uses the

hivemind library (Learning@home, 2020) for
decentralized training with custom fault-tolerant
algorithms for servers and clients detailed below.

Fault-tolerant generation. During inference,
clients rely on servers to store attention keys and
values for previous tokens. This introduces a poten-
tial problem if one or more servers disconnect (or
fail) while generating a long sequence. To combat
this, PETALS needs a way to recover from server
failures transparently to the user.

A naive solution would be to restart the gener-
ation procedure, treating previously generated to-
kens as part of the prompt. This approach has two
scaling issues. When generating longer sequences,
the inference would have to restart more often, in-
creasing the inference time superlinearly. Also, the
more participants take part in the generation proce-
dure, the higher the chance that one of them fails
and the entire procedure needs to restart.

To reduce the time spent re-running computa-
tions Petals uses a special generation algorithm that
supports partial restarts. To enable this, we make
both clients and servers store previous activations.
While each server stores past keys and values for
its local blocks, each client remembers intermedi-
ate activations at every “junction” between servers
(i.e., the activations it receives from the previous
server and sends to the next one).

If one of the servers fail, the client only needs
to replace the activations from that server. To do
so, the client finds other servers holding the same
blocks, then resends the cached activations that
were sent to the previous (failed) server. Once this
recovery is complete, the replacement server is in
the same “inference state” as the rest of the chain,
and the client can continue generating tokens.

Communication pattern. The algorithm above
implies that clients send requests and receive re-
sponses from servers one by one, while servers do
not directly pass activations to each other. This is
suboptimal for sequential inference, where perfor-
mance is bounded by the network latency.

To address this, we can make intermediate
servers send the output activations both (a) directly
to the next server and (b) back to the client. This
way, the next server will start computations as soon
as possible (after only one network hop instead
of two hops), while the client will still be able to
reuse the activations in case of server failures. Note
that, in this case, sending two times more data does

562



not worsen performance since, typically, sequential
inference is not bounded by network bandwidth.

Server load balancing. First, we ensure that
servers are distributed evenly among Transformer
blocks. Formally, servers maximize the total model
throughput by choosing the blocks with the lowest
throughput, thus eliminating potential bottlenecks.

Here, the block throughput is the sum of through-
puts of all servers hosting this block, while the
server throughput is the minimum of its network
and compute throughputs (in requests/sec), mea-
sured empirically before a server joins the system.

Each active server periodically announces its
active blocks to a distributed hash table (May-
mounkov and Mazieres, 2002). When a new server
joins, it uses this information to choose an inter-
val of blocks that contains blocks with the lowest
throughput. The server only considers contiguous
intervals, since hosting disjointed blocks would
harm the inference latency. Once the server selects
the best blocks to host, it reports them to the dis-
tributed hash table along with its own throughput.

Since peers may leave or fail at any time, all
nodes periodically check if launching a rebalancing
procedure would significantly improve the overall
throughput. If it is the case, they switch layers until
the throughput becomes near-optimal. In particular,
if all peers serving certain blocks suddenly leave
the system, this procedure quickly redistributes the
remaining resources to close the emerged gaps.

Client-side routing. Next, we want clients to be
able to find a sequence of servers that run the model
in the least amount of time. During generation,
clients process one or few tokens at a time; in prac-
tice, the inference time is mostly sensitive to the
network latency. Thus, clients have to ping nearby
servers to measure latency and then find the path
with minimal time via beam search. Conversely,
during fine-tuning one needs to process a batch of
examples in parallel. Here, clients can split their
batches between multiple servers using the algo-
rithm from Ryabinin et al. (2023). If a server fails,
a client removes it from consideration and reruns
routing to find a replacement, possibly recovering
inference caches as described above.

3.3 Benchmarks

We evaluate the performance of PETALS by run-
ning BLOOM-176B in emulated and real-world
setups. Our first setup consists of 3 local servers,

Table 3: Performance of sequential inference steps and
parallel forward passes. RTT is the round-trip latency.

Network
Single-batch Parallel

inference (steps/s) forward (tokens/s)

Sequence length Batch size

Bandwidth, RTT 128 2048 1 64

PETALS on 3 physical servers, with one A100 each

1 Gbit/s, < 5 ms 1.71 1.54 70.0 253.6
100 Mbit/s, < 5 ms 1.66 1.49 56.4 182.0
100 Mbit/s, 100 ms 1.23 1.11 19.7 112.2

PETALS on 12 virtual servers

1 Gbit/s, < 5 ms 1.24 1.06 37.9 180.0
100 Mbit/s, < 5 ms 1.24 1.05 25.6 66.6
100 Mbit/s, 100 ms 0.57 0.53 5.8 44.3

PETALS on 14 real servers in Europe and North America

Real world 0.83 0.79 32.6 179.4

Offloading, max. speed on 1x A100

256 Gbit/s 0.18 0.18 2.7 170.3
128 Gbit/s 0.09 0.09 2.4 152.8

Offloading, max. speed on 3x A100

256 Gbit/s 0.09 0.09 5.1 325.1
128 Gbit/s 0.05 0.05 3.5 226.3

each running on an A100 80GB GPU. This is an
optimistic scenario that requires the least amount of
communication. In the second setup, we simulate
12 weaker devices by partitioning each A100-80GB
into several virtual servers (3 large and 1 small).
We evaluate the above setups with three network
configurations: 1 Gbit/s with < 5 ms latency, 100
Mbit/s with < 5 ms latency and 100 Mbit/s with
100 ms latency1. The client nodes have 8 CPU
cores and no GPU.

Next, we benchmark BLOOM in a real-world
distributed setting with 14 smaller servers holding
2× RTX 3060, 4×2080Ti, 2×3090, 2×A4000, and
4×A5000 GPUs. These are personal servers and
servers from university labs, spread across Europe
and North America and connected to the Internet
at speeds of 100–1000 Mbit/s. Four of the servers
operate from under firewalls2.

In Table 3, we report the performance of single-
batch inference and parallel forward passes for
batches of 128-token sequences. For inference, per-
formance does not depend much on bandwidth or
sequence length but degrades with higher latency.
Parallel forward passes with large batches (used for
fine-tuning and parallel inference) are affected by
both bandwidth and latency.

1We simulate network conditions using tc qdisc.
2We use the Circuit Relay protocol (libp2p, 2022) to

traverse NATs and firewalls.
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We also test the effect of having multiple clients.
For 12 servers with 100 Mbit/s bandwidth and 100
ms latency, if 8 clients run inference concurrently,
each of them gets ≈ 20% slowdown compared to
the case when it runs inference alone.

Additionally, we compare PETALS with parame-
ter offloading to run large models with limited re-
sources (Ren et al., 2021; Rajbhandari et al., 2021).
For the offloading benchmark we calculate the max-
imum inference and forward training throughput
to receive an upper bound on offloading perfor-
mance. We base our offloading numbers on the
best possible hardware setup for offloading: CPU
RAM offloading via PCIe 4.0 with 16 PCIe lanes
per GPU and PCIe switches for pairs of GPUs.

We calculate the maximum throughput for of-
floading as follows. In 8-bit, the model uses 1 GB
of memory per billion parameters while PCIe 4.0
with 16 lanes has a throughput of 256 Gbit/s (or 128
Gbit/s if two GPUs are behind a PCIe switch). As
such, offloading 176B parameters takes 5.5 seconds
for a regular setup and 11 seconds for a multi-GPU
setup. We assume an offloading latency of zero for
the upper bound estimation.

These results are also shown in Table 3. We
can see that offloading is about an order of magni-
tude slower for single-batch inference compared to
PETALS. For the fine-tuning forward pass, offload-
ing is competitive if multiple GPUs are used and
the networking for PETALS is limited to 100 Mbit/s
or has high latency. In other cases, PETALS offers
higher throughput than offloading for training.

4 Conclusion

This paper introduces PETALS, a system for ef-
ficient collaborative inference and fine-tuning of
large language models. We offer a user-friendly
generation interface and a flexible API to access
models served over the Internet. We use 8-bit com-
pression that reduces the resource requirements to
run very large models. In addition, we develop
algorithms for reliable routing and load balancing.

With the release of this system, we hope to
broaden access to LLMs and pave the road to ap-
plications, studies or research questions that were
previously not possible or simply too expensive.

Running LLMs over the Internet raises a broad
range of related questions. One of them is pri-
vacy: how to avoid revealing private data to outside
peers. Another challenge is to ensure that partici-
pants can benefit from this system equitably, i.e. in

proportion to their contribution. We discuss future
problems such as privacy, security, and incentive
structures in Appendix A.

Limitations

An important limitation of our work is data pri-
vacy: the intermediate activations of the model for
given inputs are sent to the servers without any en-
cryption. As such, it might be possible for people
hosting the servers to recover the user’s input data.
Another limitation is security: while there are ways
to detect and penalize peers sending faulty outputs,
still there is a chance that peers may do that due to
faulty hardware or a malicious intent.

Thus, we recommend users working with sensi-
tive data to only use servers hosted by institutions
trusted to process this data or set up an isolated
PETALS swarm.

We discuss these limitations in more detail in Ap-
pendix A and acknowledge that the development of
methods for privacy-preserving and secure decen-
tralized inference without performance penalties
remains an open research problem.

Ethics Statement

This work introduces a general-purpose algorithm
for decentralized inference of large models, aim-
ing to simplify access to the latest research in deep
learning. Thus, we do not envision any direct nega-
tive impacts from our research aside from granting
the broader public an ability to interact with LLMs
trained on uncurated web-crawled data. However,
all models we serve are already in open access and
thus can be exposed via APIs or other means.
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Appendix

A Discussion and future work

Incentives for peers to contribute. In PETALS,
peers using the client are not required to run a
server. This may lead to an imbalance between sup-
ply (peers who dedicate GPUs to serve model lay-
ers) and demand (peers using the servers to perform
inference or fine-tuning for their own needs) in the
network. One way to encourage users to serve
model layers is to introduce a system of incentives:
peers running servers would earn special points,
which can be spent on high-priority inference and
fine-tuning or exchanged for other rewards.

Privacy. A key limitation of our approach is that
peers serving the first layers of the model can
use their inputs to recover input tokens. Thus,
clients working with sensitive data should only
use the servers hosted by institutions trusted to
process this data. This can be achieved with the
allowed_servers parameter that limits the set
of servers a client can use. Alternatively, users can
set up their own isolated Petals swarm.

This limitation may be addressed in future work,
leveraging the fields of secure multi-party com-
puting (Evans et al., 2018) or privacy-preserving
hardware (NVIDIA, 2022).

Security. We assume that servers in our system
are run by many independent parties. In practice,
some of them may turn out to be faulty and return
incorrect outputs instead of the actual results of for-
ward and backward passes. This may happen due
to a malicious intent to influence other people’s out-
puts or, when rewards are introduced (as described
above), to earn a reward for serving layers without
actually performing the calculations.

A possible way to address these issues would
be to use an economically motivated approach.
Some servers may vouch for the correctness of their
outputs (e.g., in exchange for increased inference
price) by depositing a certain number of points as
a pledge. Then, for each request, they announce a
cryptographic hash of the input and output tensors,
so anyone having the inputs can check whether the
outputs are correct.

If someone finds a mismatch confirmed by a
trusted third party, they can claim the server’s
pledge as a reward. In practice, it may be a client
who suspects that they received wrong outputs or
a “bounty hunter” sending requests to different

servers in the hope of catching errors. While this
approach still leaves a chance of receiving wrong
outputs, it makes cheating costly and creates an
incentive to quickly expose the malicious servers.

Making changes to the main model. As dis-
cussed in Section 2.2, distributed parameter-
efficient fine-tuning makes it easy for users to apply
the base model to new tasks. In Section 2.3, we also
described how these updates can be easily shared
and reused by others. This capability provides a
meaningful step towards collaborative improve-
ment of machine learning models (Raffel, 2021):
as more and more users train the base model, it will
effectively become more capable over time.

Furthermore, we might expect the model param-
eters that perform best on a specific task to change
over time. Similarly to version control systems
for code, it would be useful to track versions of
fine-tuned model parameters as they change. A
system for rapidly testing the performance of a set
of parameters on “living benchmarks” (Kiela et al.,
2021; Gehrmann et al., 2022; Gao et al., 2021)
would be valuable to ensure that subsequent ver-
sions improve the desired capabilities.

Apart from adaptation to new tasks, it would also
be useful to eventually update the main model. Ide-
ally, such updates could be tracked in a principled
way. Users of PETALS could specify the versions
of the model they want to use, and servers could
indicate which versions they support. Introducing a
newer version of the model then reduces to adding
a new group of layers, which then naturally super-
sedes older parameters based on the approach from
Section 3.2. Similarly, fine-tuned adapters could
be annotated with tags denoting the model version
they are applicable for. Such fine-grained model
versioning is currently uncommon but would be
straightforward to add to PETALS.
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Abstract

The continuous development of Question An-
swering (QA) datasets has drawn the research
community’s attention toward multi-domain
models. A popular approach is to use multi-
dataset models, which are models trained on
multiple datasets to learn their regularities and
prevent overfitting to a single dataset. How-
ever, with the proliferation of QA models in
online repositories such as GitHub or Hug-
ging Face, an alternative is becoming viable.
Recent works have demonstrated that combin-
ing expert agents can yield large performance
gains over multi-dataset models. To ease re-
search in multi-agent models, we extend UKP-
SQuARE, an online platform for QA research,
to support three families of multi-agent sys-
tems: i) agent selection, ii) early-fusion of
agents, and iii) late-fusion of agents. We con-
duct experiments to evaluate their inference
speed and discuss the performance vs. speed
trade-off compared to multi-dataset models.
UKP-SQuARE is open-source1 and publicly
available at square.ukp-lab.de.

1 Introduction

The current high-speed development of Artifi-
cial Intelligence yields thousands of datasets and
trained models in repositories such as GitHub and
Hugging Face (Rogers et al., 2023). These models
are creating new research and application opportu-
nities, such as high-performing Question Answer-
ing (QA) skills in chatbots (Burtsev et al., 2018;
Miller et al., 2017). Comparing and analyzing these
models usually requires learning libraries, writing
code to run the models, and unifying their formats
to compare them, which makes this process time-
consuming and not scalable.

UKP-SQuARE (Baumgärtner et al., 2022b;
Sachdeva et al., 2022) addresses this challenge, pro-
viding the first online platform that offers an ecosys-

1https://github.com/UKP-SQuARE/square-core

tem for QA research enabling reproducibility, anal-
ysis, and comparison of QA models through a stan-
dardized interface and from multiple angles (i.e.,
general behavior, explainability, adversarial attacks,
and behavioral tests).

The large variety of tasks and domains in QA
datasets is pushing the research community to-
wards creating models that generalize across do-
mains (Fisch et al., 2019; Talmor and Berant, 2019;
Khashabi et al., 2020). Currently, there are two
main approaches to achieve this: i) multi-dataset
models and ii) multi-agent models. While the for-
mer trains a model on multiple datasets (Talmor
and Berant, 2019; Khashabi et al., 2020), the lat-
ter combines multiple expert agents (Geigle et al.,
2021; Friedman et al., 2021; Puerto et al., 2023).
Concurrently, large language models (LLM) such
as GPT-3 (Brown et al., 2020) are emerging as new
powerful systems for multi-task and multi-domain
NLP applications. These LLM models are com-
plementary to the focus of our work, multi-agent
systems. While LLMs show impressive perfor-
mance, they are extremely expensive to run and
can usually only be accessed through APIs or de-
ployed with great hardware resources. On the other
hand, multi-agent systems offer a solution to create
multi-domain models reusing available pretrained
models that can be run on more modest hardware,
which is an important requirement, e.g. where data
cannot be sent to third parties.

Multi-agent models are particularly promising
due to the thousands of models readily available
on online model hubs and their current exponential
growth.2 This growth in the number of models is
increasing the interest of the community in multi-
agent model research (Wang et al., 2020; Matena
and Raffel, 2021; Geigle et al., 2021; Friedman
et al., 2021; Puerto et al., 2023; Wortsman et al.,
2022; Jin et al., 2023). However, model hubs such
as Hugging Face only allow inference on individ-

2https://www.nazneenrajani.com/emnlp_keynote.pdf
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Figure 1: Overview of different multi-agent system architectures deployed in UKP-SQuARE. TWEAC (left) selects
an agent (a Skill in UKP-SQuARE) based on which dataset it predicts the question is closest to and on which dataset
a Skill was trained. MADE (center) fuses the weights of adapters trained on different datasets. MetaQA (right)
predicts the final answer from a set of answers and their confidence scores. We illustrate the architectures with three
different Skills. However, in practice, more Skills are used.

ual models, disregarding the possibility of com-
bining them to make systems modular and multi-
domain. This is a severe limitation as Puerto et al.
(2023) showed that combining several QA models
can yield performance gains of over 10 percentage
points with respect to multi-dataset models (i.e., a
single model trained on multiple datasets).

Therefore, we extend UKP-SQuARE to democ-
ratize access and research to multi-agent models. In
particular, we add support to the three main meth-
ods to combine agents3: i) Skill selection, ii) early-
fusion of Skills, and iii) late-fusion of Skills. The
first consists of identifying the Skill with the high-
est likelihood of giving the correct answer and then
routing the input to that Skill. We deploy TWEAC
(Transformer With Extendable QA Agent Classi-
fiers; Geigle et al., 2021) as an example of this
method. The second one combines multiple mod-
els’ weights to obtain a new model with the distribu-
tional knowledge of the source weights. We deploy
MADE (Multi-Adapter Dataset Experts; Friedman
et al., 2021) as an example of this method. Lastly,
the late-fusion of models consists of running multi-
ple models to get their predictions and then comb-
ing them. This creates a system that can combine
heterogeneous expert agents without reducing their
performance in each domain. We provide MetaQA
(Puerto et al., 2023) as an example of this method.

UKP-SQuARE facilitates research on multi-

3An agent is referred to as Skill in UKP-SQuARE.

agent QA systems by offering a platform equipped
with dozens of agents and three methods to com-
bine them. This upgrade holds paramount signifi-
cance as the number of QA models created annu-
ally is increasing exponentially. UKP-SQuARE
enables users to run, compare, and evaluate the
strengths and weaknesses of multi-agent models,
and compare them with multi-dataset models.

2 Related Work

The most famous types of multi-agent systems are
Mixture of Experts (MoE) and ensemble methods.
MoE consists of a gating mechanism that routes the
input to a set of agents (Jacobs et al., 1991) while
ensemble methods aggregate the outputs of multi-
ple experts through a voting mechanism (Breiman,
1996; Freund and Schapire, 1996). Much work
has been made to simplify the training of these
multi-agent systems (Pedregosa et al., 2011; Chen
and Guestrin, 2016; He et al., 2021; Hwang et al.,
2022). However, as far as we know, there are no
online platforms to run and compare them.

The most similar works to ours are the online
model hubs such as Hugging Face’s Model Hub4

and AdapterHub (Pfeiffer et al., 2020a). They both
offer a large number of models to download. In
addition, Hugging Face’s Model Hub also allows
running models through Spaces.5 However, this re-

4https://huggingface.co/models
5https://huggingface.co/spaces
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quires implementing the Space, which can be non-
trivial for complex scenarios such as ours (i.e., de-
ploying and comparing multi-agent systems). UKP-
SQuARE removes technical barriers and allows
researchers to deploy multi-agent systems with a
user-friendly interface.

Transformer (Vaswani et al., 2017) models using
adapters (Houlsby et al., 2019) can also be seen as
a type of multi-agent system. For this type of ar-
chitecture, AdapterHub (Pfeiffer et al., 2020a) is a
well-established library. In addition to simplifying
the training of adapter-based models, it allows com-
posing adapters (i.e., agents) with methods such as
AdapterFusion (Pfeiffer et al., 2021) or stacking
(Pfeiffer et al., 2020b). However, this library is
not an online platform for analyzing models such
as UKP-SQuARE. Their focus is to offer tools to
create models based on adapters.

3 UKP-SQuARE

UKP-SQuARE (Baumgärtner et al., 2022b;
Sachdeva et al., 2022) is the first online platform
that offers an ecosystem for QA research. Its goal
is to provide a common place to share, run, com-
pare, and analyze QA models from multiple angles,
such as explainability, adversarial attacks, behav-
ioral tests, and I/O behaviors. The platform follows
a flexible and scalable microservice architecture
containing five main services:

• Datastores: Provide access to collections
of unstructured text such as Wikipedia and
Knowledge Graphs such as ConceptNet
(Speer and Havasi, 2012).

• Models: Enable the dynamic deployment
and inference of any Transformer model
that implements a Hugging Face pipeline
(Wolf et al., 2020) including models that
use the adapter-transformers (Pfeiffer et al.,
2020a) or sentence-transformers (Reimers and
Gurevych, 2019) framework.

• Skills: central entity of the UKP-SQuARE.
They specify a configurable QA pipeline (e.g.,
extractive, multiple-choice, and open-domain
QA) leveraging Datastores and Models. Users
interact with Skills since the platform’s goal
is to remove technical barriers and focus on
QA research (i.e., the QA pipeline). These
Skills are equivalent to agents in the multi-
agent system literature.

• Explainability: Provides saliency maps, be-
havioral tests, and graph visualizations6 that
explains the outputs of a Skill.

• Adversarial Attacks: Create modified ver-
sions of the input to create adversarial attacks
to expose vulnerabilities of the Skills.

All these services allow UKP-SQuARE to offer
an ecosystem of tools to analyze Skills through a
user-friendly interface without writing any code or
complex configurations. UKP-SQuARE helps re-
searchers identify the models’ strengths and weak-
nesses to push the boundaries of QA research.

3.1 Target Users and Scenarios

This new update of UKP-SQuARE targets re-
searchers working on multi-agent and multi-dataset
systems. These users can use the platform as a
showcase of their systems. The dozens of Skills
already available in UKP-SQuARE simplify the
deployment of multi-agent systems since users can
employ our user-friendly interface to select the
Skills they want to combine using the three families
of methods we deploy. Furthermore, researchers
can deploy their new multi-skill methods through
a pull request in our repository. The platform can
also be used to analyze and compare multiple multi-
agent systems from efficiency (i.e., inference time)
and effectiveness (i.e., performance) points of view.
Furthermore, it can also be used to compare multi-
agent with multi-dataset systems. Lastly, UKP-
SQuARE can also be used for teaching QA. The
ecosystem of QA tools can be used to help stu-
dents understand explainability, adversarial attacks,
multi-dataset, and multi-agent models through in-
teractive explanations with examples. Our platform
can also be used to design homework where stu-
dents train QA models and analyze them with the
aforementioned QA tools.

4 Multi-Agent Systems

Multi-Agent systems are a type of multi-domain
system that aggregate multiple expert agents from
different domains to create a unified system. i.e.,
their focus is on the agents (Skills in UKP-
SQuARE). On the other hand, multi-dataset sys-
tems aim to learn a unified model from multiple
data distributions to create a single, general agent.
For example, UnifiedQA (Khashabi et al., 2020) is

6For graph-based models.
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Figure 2: TWEAC predicts that the question is SQuAD-
like and routes it to Skills trained on this dataset.

a QA model trained on multiple datasets using a
generative model to overcome format boundaries.

However, Raffel et al. (2020) show that a model
trained on multiple datasets may underperform the
same architecture trained on a single dataset, i.e.,
multi-dataset models may underfit certain distri-
butions. Based on this observation, Puerto et al.
(2023) show that multi-agent models can avoid
this limitation while being data-efficient to train
and even outperform multi-dataset models by large
margins in both in-domain and out-of-domain sce-
narios. This is possible because instead of using
a very general architecture to solve multiple tasks,
it uses a list of expert agents with specific archi-
tectures designed to solve those tasks (i.e., SOTA
agents) and establishes a collaboration between
these agents. However, this performance comes
at a cost. The inference time is higher because it
needs to run more than one model (at least one
expert agent and one answer aggregator).

Therefore, we extend UKP-SQuARE to add sup-
port to the three main approaches for multi-agent
systems, which we refer to as Meta-Skills on the
platform: i) Skill Selection (§4.1), ii) Early-Fusion
of Skills (§4.2), and iii) Late-Fusion of Skills (§4.3).
An overview of the different architectures is illus-
trated in Figure 1.

4.1 Skill Selection
Skill selection is the simplest method of the three.
It aims to identify the Skill with the highest likeli-
hood of returning the correct answer to the input
question and then route the input to that Skill. More

formally, it defines a function f : Q→ S that maps
any question Q to an available Skill S. Geigle et al.
(2021) follow this approach and propose TWEAC
(Transformer with Extendable QA Agent Classi-
fiers), a Transformer model with a classification
head for each Skill that maps questions to Skills.
However, instead of predicting Skills, they predict
datasets, i.e., they identify the dataset from which
the input question comes. Then, they select a Skill
trained on that dataset. Using this method, they
report a Skill prediction accuracy higher than 90%
across ten different QA types.

We train TWEAC on 16 datasets (shown in Ap-
pendix 5) with an accuracy of 79% and deploy it in
UKP-SQuARE. The cause of the accuracy differ-
ence is the selection of the datasets. While the au-
thors experiment on widely different QA tasks such
as SQuAD, CommunityQA, and Weather Report,
we use the most popular QA datasets, including
the 2019 MRQA Shared Task (Fisch et al., 2019),
which are more similar and thus, the task becomes
more challenging since it is more difficult to dis-
tinguish the type of questions. We deploy two
TWEAC Skills on UKP-SQuARE: one for extrac-
tive QA and another for multiple-choice. Figure 2
shows an extractive QA TWEAC that identifies the
question as SQuAD-like and routes it to two Skills
trained on SQuAD.

4.2 Early-Fusion of Skills

This method combines the weights of multiple mod-
els to create a new model that generalizes across
all the input models.

Friedman et al. (2021) propose to train adapter
weights for individual datasets while sharing the
weights of a common Transformer that is also
trained with those adapters. Later, in a second train-
ing phase, they freeze the Transformer weights and
fine-tune each adapter on its corresponding dataset.
The intuition behind this is that the shared parame-
ters encode the regularities of the QA task while the
adapters model the sub-distributions. This training
schema yields a model that performs robustly on
new domains by averaging its adapter weights.

Following this work, we extend UKP-SQuARE
to allow the creation of Skills that average the
weights of a series of adapters. To do this, on the
Skill creation page (Figure 3), users are prompted
to select whether they wish to combine adapters
and, if affirmative, which ones to average.

572



Figure 3: UKP-SQuARE allows combining adapters by
simply writing the list of adapters.

4.3 Late-Fusion of Skills
Lastly, Puerto et al. (2023) propose MetaQA, a sys-
tem that combines 18 heterogeneous expert agents
across multiple formats. This system yields signifi-
cant gains over multi-dataset models because some
tasks require particular architectures to solve them,
such as DROP (Dua et al., 2019), which requires
numerical reasoning. Thus, while a one-size-fits-
all architecture cannot learn such a wide variety of
distributions, a multi-agent system that combines
predictions can use expert agents to solve these
datasets and yield a higher-performing model in
general. Figure 4 shows how MetaQA answers
a question from the DuoRC dataset but selects
an out-of-domain (OOD) agent instead of the in-
domain agent to answer, which gives a wrong an-
swer. Thanks to the interface provided by UKP-
SQuARE, it is easier to analyze the collaboration
between the Skills established by MetaQA.

One limitation of this type of system is its need
to run multiple models, which makes it more expen-
sive than the previous two approaches. To alleviate
this limitation, we run the expert agents in parallel.
In this way, the inference time of MetaQA remains
close to the other multi-agent systems, as shown in
Table 1.

4.4 Comparison of Multi-Skill Models
In this section, we compare the inference time of
the deployed multi-skill systems (i.e., MetaQA,
TWEAC, and MADE) and UnifiedQA as a repre-
sentative of the multi-dataset models. We extract
20 random questions from the six datasets from
the MRQA 2019 Shared Task (Fisch et al., 2019)
yielding a total of 120 questions and measure the
time needed by each Skill to solve them. We repeat
this process with five different random seeds and

Figure 4: UKP-SQuARE simplifies the analysis of the
collaboration between the agents. The question comes
from the DuoRC dataset. However, while the in-domain
agent gives a wrong answer (not shown), MetaQA se-
lects an out-of-domain agent that gives a correct answer.
Only an excerpt of the context is shown.

show the means and standard deviations in Table 1.
Each model has 8 CPUs7 assigned to it and runs
behind an asynchronous API.

As shown in Table 1, MetaQA is the slowest
model. This is expected since it needs to run all the
expert agents to get the predictions. However, its
inference time is remarkably close to both MADE
and TWEAC. TWEAC is surprisingly as fast as
MADE, considering that TWEAC has to run at
least two models (router and expert agent), while
MADE only runs one. We conjecture that MADE
is not faster because the adapter layers increase
the depth of the transformer stack. UnifiedQA is
the fastest model, as expected, since it is a multi-
dataset model and hence, does not need to combine
multiple agents.

Beyond inference, training time and cost are
also interesting factors to consider. TWEAC and
MetaQA are considered cheap to train assuming the
existence of pretrained agents on online model hubs
such as the Hugging Face Model Hub.8 Hence, the
part that they train is a small router or answer aggre-
gator. On the other hand, MADE and UnifiedQA
require training a neural network from scratch in
the task of question answering, which is much more
challenging than simply routing questions or aggre-
gating answers. Therefore, MADE and UnifiedQA
need more training data than TWEAC and MetaQA,
making them more expensive.

7AMD EPYC 7543 with 2.8GHz.
83.6K models on https://huggingface.co/models?

pipeline_tag=question-answering&sort=downloads.
Accessed on Feb 2023
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Model F1
Inference
Time [s] Training

TWEAC 77.65 5.38 ± 0.06 cheap
MADE 82.20 5.45 ± 0.18 expensive
MetaQA 81.13 7.08 ± 0.16 cheap
UnifiedQA 77.30 2.15 ± 0.02 expensive

Table 1: Comparison of inference time on UKP-
SQuARE averaged over 600 predictions. Performance
from their respective papers.

Table 1 shows the trade-off between perfor-
mance, training, and inference efficiency. Although
MetaQA is the slowest Skill to run, its inference
time is very close to the other models’ thanks to
the parallel inference of the expert agents offered
by UKP-SQuARE (cf. Figure 1). Furthermore, it is
cheap to train, has almost the highest performance,
and is compatible with any QA format. This makes
it interesting for scenarios where model updating,
performance, and flexibility are vital. TWEAC is
also cheap and as flexible as MetaQA. Although,
it is significantly worse than MetaQA on extrac-
tive QA datasets. This makes TWEAC ideal in
the same scenarios as MetaQA but where running
the expert agents in parallel is difficult (i.e., when
MetaQA cannot be used). MADE has the highest
performance and is as fast as TWEAC. However,
it is more expensive to train than MetaQA and
TWEAC, and it is not as flexible as MetaQA and
TWEAC since it cannot be used for multiple for-
mats simultaneously. Therefore, it should be used
when inference, performance, and simple deploy-
ment are vital, while the model is not expected to
need re-training (i.e., updates) often and is not re-
quired to be compatible with multiple QA formats
at the same time. Lastly, UnifiedQA is compati-
ble with any text-based QA format but has lower
(although competitive) results. Although it is the
fastest to run, it is more expensive to train than
TWEAC and MetaQA. Thus, its ideal use case is
a scenario where a simple deployment is needed
while being flexible to process any text-based QA
format. Therefore, this small study suggests that
in scenarios where new domains are introduced of-
ten, router-based systems such as MetaQA might
be more suitable, whereas, in scenarios where in-
ference speed or simple deployment are needed,
MADE and UnifiedQA might be more appropriate.

5 Conclusions and Discussions

In this work, we have extended UKP-SQuARE to
support multi-agent models. In particular, we de-
ployed a routing system, TWEAC (Geigle et al.,
2021), a method to combine adapter weights,
MADE (Friedman et al., 2021), and a model
that combines the prediction of multiple Skills,
MetaQA (Puerto et al., 2023). We have conducted
experiments on these three models and UnifiedQA
(Khashabi et al., 2020), a multi-dataset system, to
analyze the trade-off between the performance, effi-
ciency, and flexibility of these systems. We showed
that in scenarios where new domains or expertise
are often needed, MetaQA provides the best trade-
off since its performance is close to the best model,
it is compatible with any QA format, cheap to train,
and its inference runtime is close to TWEAC and
MADE using the parallel engine provided by UKP-
SQuARE. However, when simple deployment is
needed or the model is not expected to be updated,
MADE and UnifiedQA might be more appropriate.

This update of UKP-SQuARE is of utmost im-
portance due to the current speed of development
of QA models that creates thousands of models
per year. Our platform eases the deployment, run-
ning, comparison, and analysis of QA Skills. With
this update, we also facilitated the aggregation of
these Skills into Multi-Skills simplifying research
on multi-agent systems. We leave as future work
the comparison of these modular systems with
prompting-based QA in large language models
(Brown et al., 2020; Zhong et al., 2022).

Limitations

UKP-SQuARE v3 does not aim to provide all ex-
isting multi-skill systems off the shelf. Instead,
we deploy three different approaches and encour-
age the community to share, deploy and compare
their multi-skill systems. Using the modular Skill
system of UKP-SQuARE and the reference im-
plementations, users can reconfigure the existing
multi-skill pipelines or implement and deploy their
own through a streamlined pull request.9

Another limitation is that the multi-skill systems
deployed in this paper have been shown to work
effectively with no more than 20 Skills. Hence,
the effectiveness of multi-skill systems remains
unknown for a larger number of Skills. We hope

9For details, we refer to the documentation at
https://square.ukp-lab.de/docs/home/components/skills
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that UKP-SQuARE v3 can help shed light on this
topic.

Lastly, since multi-skill systems combine several
models, it is feasible that the resulting system can
inherit biases and unfair behaviors. Although the
Skills we used are not intended to exhibit any bias
or unfairness, users should use them at their own
discretion.

Ethics Statement

Intended Use The intended use of UKP-
SQuARE v3 is deploying, running, comparing, an-
alyzing, and combining Skills. Our platform pro-
vides dozens of Skills readily available to be com-
bined using the implemented multi-agent systems
or new systems to be created by the community.
This simplifies the analysis of these systems and
thus fosters multi-agent QA research.

Potential Misuse A malicious user could train
multiple Skills with biased and unfair behaviors,
such as a QA system that responds harmful an-
swers, and combine them with the deployed meth-
ods available in UKP-SQuARE. UKP-SQuARE
does not provide any Skill with such an intended
behavior, but the community is free to upload any
model to our platform. Therefore, we encourage
the community not to publicly upload such models
unless there is a clear research intention with a dis-
cussion of the ethics of such research, and in this
case, make the Skills private, so that nobody can
use them in an unintended way. We are not liable
for errors, false, biased, offensive, or any other un-
intended behavior of the Skills. Users should use
them at their own discretion.

Environmental Impact The use of UKP-
SQuARE can reduce the computational cost of
reproducing prior research since it prevents the
community from training models that are already
trained.
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A Further Updates

Although our focus is the development of multi-
domain systems, we further extended UKP-
SQuARE with other minor but important features.

A.1 Knowledge Graph Question Answering
To maximize the advantage of multi-agent systems,
UKP-SQuARE needs to be compatible with most
QA systems available. UKP-SQuARE is already
compatible with most QA formats (i.e., extractive,
multiple-choice, boolean, and abstractive), and in
this version, we add support for Knowledge Graph
Question Answering (KGQA) systems. Sachdeva
et al. (2022) include support for neuro-symbolic
systems that combine language models with Con-
ceptNet but lack support for KGQA models. Thus,
this paper implements a generic KGQA Skill com-
patible with any knowledge graph and any gener-
ation model that generates SPARQL queries. As
a demo, we deploy a BART-based (Lewis et al.,
2020) semantic parser on KQA Pro (Cao et al.,
2022), which is a complex KGQA dataset based on
Wikidata (Vrandecic and Krötzsch, 2014) with nine
different question types. The KGQA Skill parses a
question into an executable SPARQL query, which
is then executed against a KG to get the final an-
swer. For this purpose, a dataset-centric subgraph
is deployed using virtuoso.10 Thanks to the modu-
larity of UKP-SQuARE, we can flexibly combine
different semantic parsers with different KGs to
get the final answer. Therefore, all aforementioned
multi-Skill methods can be easily adapted for multi-
Skill KGQA, which we leave as future work.

A.2 BERTViz
We also extended our explainability ecosystem by
adding BERTViz (Vig, 2019), a method that al-
lows the exploration of the attention weights as
shown in Figure 5. While UKP-SQuARE v2 fo-
cuses on high-level explanations through saliency
maps, BERTViz offers a low-level explanation uti-
lizing the attention weights across all layers of the
transformer models.

A.3 Datastores
Lastly, regarding Datastores, while UKP-SQuARE
v1 focuses on document collections such as
Wikipedia or PubMed, and UKP-SQuARE v2 fo-
cuses on Knowledge Graphs, UKP-SQuARE v3
offers a datastore that is updated in real-time. This

10https://virtuoso.openlinksw.com/

type of information is vital for real-time questions
(i.e., questions whose answers may change over
time; Kasai et al. (2022)). For instance, some
facts, such as the president of a country, can change
quickly. Therefore, we deploy a real-time datas-
tore by using the Bing Search API. This datastore
does not store documents and, instead, relies on the
Bing Search engine to retrieve online documents
(i.e., websites) that are more likely to be updated.

Furthermore, we create an information-retrieval
Skill that allows the inference of only an IR
model (instead of combining them with a reader
model). We allow providing relevance-feedback
for sparse retrieval, as it has shown to perform well
in information-seeking and interactive scenarios
(Baumgärtner et al., 2022a).

Figure 5: Screenshot of the BERTViz attention visu-
alization in UKP-SQuARE. The token who attends to
Biden (the answer) more than to other tokens.
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B Datasets

Dataset Characteristics Train Dev Test License

SQuAD (Rajpurkar et al., 2016) Crowdsourced questions on Wikipedia 6573 5253 5254 MIT
NewsQA (Trischler et al., 2017) Crowdsourced questions about News 74160 2106 2106 MIT
HotpotQA (Yang et al., 2018) Crowdsourced multi-hop questions on Wikipedia 72928 2950 2951 MIT
SearchQA (Dunn et al., 2017) Web Snippets, Trivia questions from J! Archive 117384 8490 8490 MIT
NQ (Kwiatkowski et al., 2019) Wikipedia, real user queries on Google Search 104071 6418 6418 MIT
TriviaQA-web (Joshi et al., 2017) Web Snippets, crowdsourced trivia questions 61688 3892 3893 MIT

Table 2: Summary of the datasets used in §4.4.

C Expert Agents

Expert Agents Link

Span-BERT Large for SQuAD https://huggingface.co/haritzpuerto/spanbert-large-cased_SQuAD
Span-BERT Large for NewsQA https://huggingface.co/haritzpuerto/spanbert-large-cased_NewsQA
Span-BERT Large for HotpotQA https://huggingface.co/haritzpuerto/spanbert-large-cased_HotpotQA
Span-BERT Large for SearchQA https://huggingface.co/haritzpuerto/spanbert-large-cased_SearchQA
Span-BERT Large for NQ https://huggingface.co/haritzpuerto/spanbert-large-cased_NaturalQuestionsShort
Span-BERT Large for TriviaQA-web https://huggingface.co/haritzpuerto/spanbert-large-cased_TriviaQA-web
Span-BERT Large for QAMR https://huggingface.co/haritzpuerto/spanbert-large-cased_QAMR
Span-BERT Large for DuoRC https://huggingface.co/haritzpuerto/spanbert-large-cased_DuoRC

Table 3: List of the expert agents used for TWEAC and MetaQA.
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Abstract

In this paper, we introduce Ranger - a toolkit
to simplify the utilization of effect-size-based
meta-analysis for multi-task evaluation in NLP
and IR. We observed that our communities
often face the challenge of aggregating re-
sults over incomparable metrics and scenarios,
which makes conclusions and take-away mes-
sages less reliable. With Ranger, we aim to
address this issue by providing a task-agnostic
toolkit that combines the effect of a treatment
on multiple tasks into one statistical evaluation,
allowing for comparison of metrics and com-
putation of an overall summary effect. Our
toolkit produces publication-ready forest plots
that enable clear communication of evaluation
results over multiple tasks. Our goal with the
ready-to-use Ranger toolkit is to promote ro-
bust, effect-size based evaluation and improve
evaluation standards in the community. We pro-
vide two case studies for common IR and NLP
settings to highlight Ranger’s benefits.

1 Introduction

We in the NLP (natural language processing) and
IR (information retrieval) communities maneu-
vered ourselves into somewhat of a predicament:
We want to evaluate our models on a range of dif-
ferent tasks to make sure they are robust and gener-
alize well. However, this goal is often reached by
aggregating results over incomparable metrics and
scenarios (Thakur et al., 2021; Bowman and Dahl,
2021). This in turn makes conclusions and take
away messages much less reliable than we would
like. Other disciplines, such as social and medical
sciences have much more robust tools and norms
in place to address the challenge of meta-analysis.

In this paper we present Ranger – a toolkit to
facilitate an easy use of effect-size based meta-
analysis for multi-task evaluation. Ranger pro-
duces beautiful, publication-ready forest plots to

∗All authors contributed equally

help everyone in the community to clearly com-
municate evaluation results over multiple tasks.
Ranger is written in python and makes use of
matplotlib. Thus it will be easy and time-
efficient to customize if needed.

With the effect-size based meta-analysis (Boren-
stein et al., 2009) Ranger lets you synthesize the
effect of a treatment on multiple tasks into one sta-
tistical evaluation. Since in meta-analysis the influ-
ence of each task on the overall effect is measured
with the tasks’ effect size, meta-analysis provides
a robust evaluation for a suite of tasks with more
insights about the influence of one task for the over-
all benchmark. With the effect-size based meta-
analysis in Ranger one can compare metrics across
different tasks which are not comparable over dif-
ferent test sets, like nDCG, where the mean over
different test sets holds no meaning. Ranger is not
limited to one metric and can be used for all evalu-
ation tasks with metrics, which provide a sample-
wise metric for each sample in the test set. Ranger
can compare effects of treatments across different
metrics. How the effect size is measured, depends
on experiment characteristics like the computation
of the metrics or the homogeneity of the metrics be-
tween the multiple tasks. In order to make Ranger
applicable to a wide range of multi-task evaluation,
Ranger offers effect size measurement using the
mean differences, the standardized mean difference
or the correlation of the metrics. In order to have
an aggregated, robust comparison over the whole
benchmark, Ranger computes an overall combined
summary effect for the multi-task evaluation. Since
these statistical analysis are rather hard to interpret
by only looking at the numbers, Ranger includes
clear visualization of the meta-analysis comprised
in a forest plot as in Figure 1.

In order to promote robust, effect-size based eval-
uation of multi-task benchmarks we open source
the ready-to-use toolkit at:
https://github.com/MeteSertkan/ranger
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Overall summary effect 
(Using a random-effect model 
to estimate each effect’s 
contribution) 

Effect size: 🔹 = the mean; whisker = 95% confidence interval

We compare: 1 baseline (TAS-B) with 1 treatment (Uni-ColBERTer) method

One line per task
(Both visual information & 
exact numbers for diving deep 
into the results) 

Figure 1: Example forest plot, with explanations highlighting the output of our Ranger toolkit for a multi-task
meta-analysis using effect sizes between a control baseline and treatment methods (In this case we use experiments
from ColBERTer (Hofstätter et al., 2022)).

2 Related Work

In the last years, increasingly more issues of bench-
marking have been discussed in NLP (Church et al.,
2021; Colombo et al., 2022) and IR (Craswell
et al., 2022; Voorhees and Roberts, 2021). Bow-
man and Dahl (2021) raise the issue that unreli-
able and biased systems score disproportionately
high on benchmarks in Natural Language Under-
standing and that constructing adversarial, out-of-
distribution test sets also only hides the abilities
that the benchmarks should measure. Bowman
(2022) notice that the now common practices for
evaluation lead to unreliable, unrealistically posi-
tive claims about the systems. In IR one common
multi-task benchmark is BEIR Thakur et al. (2021),
which evaluates retrieval models on multiple tasks
and domains, however in the evaluation the over-
all effect of a model is measured by averaging the
nDCG scores over each task. As the nDCG score
is task dependent and can only be compared within
one task, it can not be averaged over different tasks
and the mean of the nDCG scores does not hold
any meaning. Thus there is the urgent need in the
NLP and IR community for a robust, synthesized
statistical evaluation over multiple tasks, which is
able to aggregate scores, which are not comparable,
to an overall effect.

To address these needs Soboroff (2018) propose

effect-size based meta-analysis with the use case
of evaluation in IR for a robust, aggregated evalua-
tion over multiple tasks. Similarily, Colombo et al.
(2022) propose a new method for ranking systems
based on their performance across different tasks
based on theories of social choice.

In NLP and IR research exist numerous single
evaluation tools (Azzopardi et al., 2019; MacA-
vaney et al., 2022), however to the best of our
knowledge there exists no evaluation tool address-
ing the needs for robust, synthesized multi-task
evaluation based on meta-analysis.

In order to make this robust, effect-size based
evaluation easily accessible for a broad range of
tasks, we present our Ranger toolkit and demon-
strate use cases in NLP and IR.

3 Ranger

3.1 Methodology

Besides analyzing the effects in individual studies,
meta-analysis aims to summarize those effects in
one statistical synthesis (Borenstein et al., 2009).
Translated to the use case of NLP and IR, meta-
analysis is a tool to compare whether a treatment
model yields gains over a control model within dif-
ferent data collections and overall (Soboroff, 2018).
A treatment, for example, could be an incremental
update to the control model, a new model, or a

582



model trained with additional data; a control model
can be considered as the baseline (e.g., current
SOTA, etc.) to compare the treatment with. To
conduct a meta-analysis, defining an effect size is
necessary. In this work, we quantify the effect size
utilizing the raw mean difference, the standardized
mean difference, and the correlation. In particular,
we implement the definitions of those effect sizes
as defined by Borenstein et al. (2009) for paired
study designs since, typically, the compared met-
rics in IR and NLP experiments are obtained by
employing treatment and control models on the
same collections.

Raw Mean Difference D. In IR and NLP experi-
ments, researchers usually obtain performance met-
rics for every item in a collection. By comparing
the average of these metrics, they can make state-
ments about the relative performance of different
models. Thus, the difference in means is a simple
and easy-to-interpret measure of the effect size, as
it is on the same scale as the underlying metric. We
compute the raw mean difference D by averaging
the pairwise differences between treatment XT and
control metric XC and use the standard deviation
(Sdiff ) of the pairwise differences to compute its
corresponding variance VD as follows:

D =
XT −XC

n
,

VD =
S2
diff

n
,

(1)

where n is the number of compared pairs.

Standardized Mean Difference d. Sometimes,
we might consider standardizing the mean differ-
ence (i.e., transforming it into a “unitless” form)
to make the effect size comparable and combin-
able across studies. For example, if a benchmark
computes accuracy differently in its individual col-
lections or employs different ranking metrics. The
standardized mean difference is computed by divid-
ing the raw mean difference D by the within-group
standard deviation Swithin calculated across the
treatment and control metrics.

d =
D

Swithin
(2)

Having the standard deviation of the pairwise differ-
ences Sdiff and the correlation of the correspond-
ing pairs r, we compute Swithin as follows:

Swithin =
Sdiff√
2(1− r)

(3)

The variance of standardized mean difference d is

Vd = (
1

n
+

d2

2n
)2(1− r), (4)

where n is the number of compared pairs. In small
samples, d tends to overestimate the absolute value
of the true standardized mean difference δ, which
can be corrected by factor J to obtain an unbiased
estimate called Hedges’ g (Hedges, 1981; Boren-
stein et al., 2009) and its corresponding varianceVg:

J = 1− 3

4df − 1
,

g = J × d,

Vg = J2 × Vd,

(5)

where df is degrees of freedom which is n− 1 in
the paired study setting with n number of pairs.

Correlation r. Some studies might utilize the
correlation coefficient as an evaluation metric, for
example, how the output of an introduced model
(treatment) correlates with a certain gold standard
(control). In such cases, the correlation coefficient
itself can serve as the effect size, and its variance
is approximated as follows:

Vr =
(1− r2)2

n− 1
, (6)

where n is the sample size. Since the variance
strongly depends on the correlation, the correlation
coefficient is typically converted to Fisher’s z scale
to conduct a meta-analysis (Borenstein et al., 2009).
The transformation and corresponding variance is:

z = 0.5× ln(
1 + r

1− r
),

Vz =
1

n− 3

(7)

As already mentioned, z and Vz are used
throughout the meta-analysis; however, for report-
ing/communication, z metrics are transformed back
into the correlation scale using:

r =
e2z − 1

e2z + 1
(8)

Combined Effect M∗. After calculating the indi-
vidual effect sizes (Yi) and corresponding variances
(VYi) for a group of k experiments, the final step
in meta-analysis is to merge them into a single
summary effect. As Soboroff (2018), we assume
heterogeneity, i.e., that the effect size variance
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varies across the experiments. Following (Sobo-
roff, 2018), we employ the random-effects model
as defined in (Borenstein et al., 2009) to consider
the between-study variance T 2 for the summary
effect computation. We use the DerSimonian and
Laird method (DerSimonian and Laird, 2015) to
estimate T 2:

T 2 =
Q− df

C
,

Q =
k∑

i=1

WiY
2
i −

(
∑k

i=1WiY
2
i )

2

∑k
i=1Wi

,

df = k − 1,

C =
∑

Wi −
∑

W 2
i∑

Wi
.

(9)

where the weight of the individual experiments
Wi = 1/VYi . We adjust the weights by T 2 and
compute the weighted average of the individual
effect sizes, i.e., the summary effect M∗, and its
corresponding variance VM∗ as follows:

W ∗
i =

1

VYi + T 2
,

M∗ =

∑k
i=1W

∗
i Yi∑k

i=1W
∗
i

,

VM∗ =
1

∑k
i=1W

∗
i

.

(10)

Confidence Interval (CI). We determine the cor-
responding confidence interval (represented by the
lower limit, LLY , and the upper limit, ULY ) for a
given effect size Y , which can be the result of an
individual experiment (Yi) or the summary effect
(M∗), as follows:

SEY =
√
VY ,

LLY = Y − Zα × SEY ,

ULY = Y + Zα × SEY ,

(11)

where SEY is the standard error, VY the variance of
the effect size, and Zα the Z-value corresponding
to the desired significance level α. Given α we
compute Zα:

Zα = ppf(1− α

2
), (12)

where ppf() is the percent point function (we use
scipy.stats.norm.ppf1). For example, α = 0.05
yields the 95% CI of Y ± 1.96× SEY .

1https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.norm.html

Forest Plots. The meta-analysis results in the
individual experiments’ effect sizes, a statistical
synthesis of them, and their corresponding confi-
dence intervals. Forest plots are a convenient way
of reporting those results, which enables a very
intuitive interpretation at one glance. Ranger sup-
ports forest plots out of the box, which can easily
be customized to one’s needs since it is based on
python and matplotlib. We provide an example
with explanations in Figure 1. Effect sizes and
corresponding confidence intervals are depicted as
diamonds with whiskers ⊢ ♦ ⊣. The size of the dia-
monds is scaled by the experiments’ weights (W ∗

i ).

The dotted vertical line
... at zero represents the zero

effect. The observed effect size is not significant
when its confidence interval crosses the zero effect
line; in other words, we cannot detect the effect
size at the given confidence level.

3.2 Usage

We explain the easy usage of Ranger along with
two examples on classification evaluation of GLUE
in NLP and retrieval evaluation of BEIR in IR.

The meta-analysis with Ranger requires as input
either 1) a text file already containing the sample-
wise metrics for each task (in the GLUE example)
or 2) a text file containing the retrieval runs and the
qrels containing the labels (in the BEIR example).

The paths to the text files for each task are
stored in a config.yaml file and read in with
the class ClassificationLocationConfig or
RetrievalLocationConfig. The entry point for
loading the data and possibly computing metrics
is load_and_compute_metrics(name, measure,
config). Having the treatment and control data,
we can analyze the effects and compute effect sizes:

from ranger.metric_containers import
AggregatedPairedMetrics, AggregatedMetrics
from ranger.meta_analysis import
analyze_effects

effects = AggregatedPairedMetrics(
treatment=t.get_metrics(),
control=c.get_metrics())

eff_size = analyze_effects(
list(conf.display_names.values()),
effects=effects,
effect_type="SMD")

Here the effect_type variable refers to the type
of difference measurement in the meta-analysis as
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Figure 2: Forest plot of Ranger toolkit for tasks of the
GLUE benchmark. Comparison in terms of accuracy
between BERT and DistilBERT.

introduced in the previous section. The choice
is between Raw Mean differences ("MD"), stan-
dardized mean differences ("SMD") or correlation
("CORR"). In order to visualize the effects, Ranger
produces beautiful forest plots:

from ranger.forest_plots import forest_plot

plot = forest_plot(title=title,
experiment_names=list(config.display_names
.values()),
label_x_axis="Standardized Mean Difference",
effect_size=eff_size,
fig_width=8,
fig_height=8)

4 Case Study NLP: GLUE benchmark

In order to demonstrate the usage of the Ranger
toolkit for various multi-task benchmarks, we con-
duct an evaluation on the popular General Lan-
guage Understanding (GLUE) Benchmark (Wang
et al., 2018).

We train and compare two classifiers on the
GLUE benchmark: one classifier based on BERT
(Devlin et al., 2018), the latter based on a smaller,
more efficient transformer model trained on BERT
scores, namely DistilBERT (Sanh et al., 2019) 2.

The official evaluation metric for two of the nine
tasks (for CoLA and STS-B) is a correlation-based
metric. Since these correlation-based metrics can
not be computed sample-wise for each sample in
the test set, the effect-size based meta-analysis can
not be applied to those metrics and we exclude
these two tasks from our evaluation.

2Checkpoints from Huggingface. bert-base-cased for
BERT, distilbert-base-cased for DistilBERT.

We conduct the effect-size based meta-analysis
based on the accuracy as metric and use Standard-
ized Mean Difference to measure the effect-size
(type in Ranger toolkit is ’SMD’). We illustrate the
meta-analysis of the BERT and DistilBERT clas-
sifier in Figure 2. We also publish the Walk-you-
Through Jupyter notebook in the Ranger toolkit to
attain this forest plot for GLUE.

The location of the black diamonds visualizes
the effect of the treatment (DistilBERT) compared
to the baseline (BERT), whereas the size of the
diamonds refers to the weight of this effect in the
overall summary effect. We can see that using Dis-
tilBERT as base model for the classifier compared
to BERT, has overall effect of a minor decrease in
effectiveness. This behaviour is similar with the re-
sults on the MNLI, QNLI, and QQP where we also
notice that the confidence intervals are very narrow
or even non existent in the forest plot. For MRPC
and SST-2 there is also a negative effect, however
the effect is not significant, since the confidence
intervals overlap with the baseline performance.
For RTE and WNLI the effect of using DistilBERT
compared to BERT is rather big compared to the
summary effect, where for RTE the mean is 8%
lower and for WNLI the mean is 11% higher than
for the BERT classifier. However the large con-
fidence intervals of these tasks indicate the large
variability in the effect and thus the weight for tak-
ing these effects into account in the summary effect
are rather low (0.7% and 1.7%).

Overall the summary effect shows that the Dis-
tilBERT classifier decreases effectiveness consis-
tently by 2%. Since the confidence intervals are
so narrow for the overall effect and do not overlap
with the baseline (BERT classifier), we see that the
overall effect is also significant.

5 Case Study IR: BEIR benchmark

Especially in IR evaluation, where it is common
to evaluate multiple tasks with metrics, which are
not comparable over different tasks (Thakur et al.,
2021), we see a great benefit of using Ranger to
aggregate the results of multiple tasks into one com-
parable statistical analysis. Thus we demonstrate
the case study of using the Ranger toolkit for eval-
uation on commonly used IR collections, including
a subset of the BEIR benchmark (Thakur et al.,
2021). We presented this study originally as part
of (Hofstätter et al., 2022), and the Ranger toolkit
is a direct descendent of these initial experiments.
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Figure 3: Forest plot of Ranger toolkit for tasks of the BEIR benchmark. Comparison in terms of nDCG@10
between TAS-B and ColBERTer.

We select tasks, which either 1) were annotated
at a TREC 3 track and thus contain high quality
judgements, 2) were annotated according to the
Cranfield paradigm (Cleverdon, 1967) or 3) con-
tain a large amount of labels. All collections are
evaluated with the ranking metric nDCG@10. We
compare zero-shot retrieval with TAS-B (Hofstät-
ter et al., 2021) as baseline to retrieval with Uni-
ColBERTer (Hofstätter et al., 2022) as treatment.

We conduct a meta-analysis of the evaluation
results based on nDCG@10 as metric and mea-
sure the effect-size with the mean difference (type
is ’MD’). The output of the Ranger toolkit is il-
lustrated in Figure 3. We publish a walk-through
Jupyter notebook in the Ranger toolkit to attain this
forest plot for BEIR benchmark evaluation.

In Figure 3 the effect size, the weight of the
effect on the overall effect as well as the mean
and confidence intervals of the effect are visual-
ized. As an extension for IR we also visualize the
nDCG@10 performance and J@10 judgement ratio
from baseline→ to treatment.

For NFCorpus and TREC Podcast we see a
small positive effect of Uni-ColBERTer compared
to TAS-B, however the confidence intervals are
overlapping with the baseline performance incdi-
cating no clear positive effect on these tasks. For
TripClick, DBPedia Entity and TREC Robust 04
we see a consistent and significant small positive
effect with narrow confidence intervals of Uni-
ColBERTer and this effect is even greater for An-
tique and TREC Covid. Notice the great confidence
intervals for TREC Covid, since the evaluation of
TREC Covid is only based on 50 queries and thus

3https://trec.nist.gov/

its influence for the overall effect should be and is
the lowest (6.2%) among the test sets.

The judgement ratio J@10 in the left most col-
umn shows the percentage of judged documents
in the Top 10 of retrieved results. Analyzing the
judgement ratio one can also get an understanding
of how reliable the evaluation results are and how
comparable the results of the two different retrieval
models are, since a high difference in judgement
ratio could indicate lower comparability of the two
models with the respective test set.

Overall the summary effect of Uni-ColBERTer
compared to TAS-B is consistent and significantly
positive, increasing effectiveness by 0.05.

6 Conclusion

We presented Ranger – a task-agnostic toolkit
for easy-to-use meta-analysis to evaluate multiple
tasks. We described the theoretical basis on which
we built our toolkit; the implementation and usage;
and furthermore we provide two cases studies for
common IR and NLP settings to highlight capabil-
ities of Ranger. We do not claim to have all the
answers, nor that using Ranger will solve all your
multi-task evaluation problems. Nevertheless, we
hope that Ranger is useful for the community to
improve multi-task experimentation and make its
evaluation more robust.
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Abstract

Noticing the urgent need to provide tools for
fast and user-friendly qualitative analysis of
large-scale textual corpora of the modern NLP,
we propose to turn to the mature and well-tested
methods from the domain of Information Re-
trieval (IR)—a research field with a long history
of tackling TB-scale document collections. We
discuss how Pyserini—a widely used toolkit for
reproducible IR research can be integrated with
the Hugging Face ecosystem of open-source AI
libraries and artifacts. We leverage the existing
functionalities of both platforms while propos-
ing novel features further facilitating their in-
tegration. Our goal is to give NLP researchers
tools that will allow them to develop retrieval-
based instrumentation for their data analytics
needs with ease and agility. We include a
Jupyter Notebook-based walk through the core
interoperability features, available on GitHub.
We then demonstrate how the ideas we present
can be operationalized to create a powerful tool
for qualitative data analysis in NLP. We present
GAIA Search—a search engine built following
previously laid out principles, giving access to
four popular large-scale text collections. GAIA
serves a dual purpose of illustrating the poten-
tial of methodologies we discuss but also as a
standalone qualitative analysis tool that can be
leveraged by NLP researchers aiming to under-
stand datasets prior to using them in training.
GAIA is hosted live on Hugging Face Spaces.

1 Introduction

Training large language models, or LLMs (Brown
et al., 2020; Lieber et al., 2021; Rae et al., 2021;
Smith et al., 2022; Le Scao et al., 2022; Chowdhery
et al., 2022; Touvron et al., 2023), established itself
as the central task of the modern Natural Language
Processing (NLP) research. The attempts to under-
stand the scaling laws of LLMs led researchers to
believe that simply increasing the number of pa-
rameters may not bring the desired improvements
without a simultaneous increase in the size of the

LLM training data (Kaplan et al., 2020; Hoffmann
et al., 2022). These observations only increased an
already pressing need for massive textual datasets,
fueling the proliferation of Web-based corpora of
TB-scale created with varying levels of curation
and quality control.

Rather than investing in scraping the Web on
their own, dataset creators typically turn to Com-
mon Crawl1 as the main source of text to include
in their corpora. A repository of Web snapshots
dating back to 2011, Common Crawl contains var-
ious types of low-quality text (Luccioni and Vi-
viano, 2021). Pre-processing steps commonly intro-
duced by dataset creators aiming to filter out unde-
sired content include removing any documents with
words matching a pre-defined, static blacklist, like
in the case of C4 (Raffel et al., 2020), perplexity-
based filtering like in CCNet and ROOTS (Wenzek
et al., 2019; Laurençon et al., 2022), removing mal-
formed text via simple text statistics like in the case
of OSCAR (Abadji et al., 2022) or through dedu-
plication, studied extensively by Lee et al. (2022).
However, the generated artifacts still tend to con-
tain a multitude of worrying phenomena, such as
synthetic data (Dodge et al., 2021), private and
copyrighted data (Huang et al., 2022) or incorrect
language codes and translations (Kreutzer et al.,
2022). A lack of representation of diversity and
socio-cultural and socio-economic biases consti-
tute another big challenge of Common Crawl and
datasets derived from it (Bender et al.; Blodgett
et al., 2020; Field et al., 2021; Stanczak and Au-
genstein, 2021; Beaulieu and Leonelli, 2021).

Aware of the mounting problems with training
data for modern LLMs, and appreciating the value
of data exploration for better modeling in general,
we focus our current work on building tools that can
facilitate the qualitative analysis of NLP datasets.
We propose to leverage the extensive experience
of the Information Retrieval community in build-

1https://commoncrawl.org/
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Figure 1: The user interface of GAIA Search.

ing relevance-based search indices for large-scale
document collections and put it into practice in
the context of NLP data exploration work. We
follow with a demonstration of ways in which
the interoperability between Pyserini (Lin et al.,
2021), a leading toolkit for reproducible IR re-
search on one side, and Hugging Face2, a platform
for open AI research on the other, can be lever-
aged to build tools for easy and effective analysis
of textual data. To facilitate the adoption of the pro-
posed methods we provide a collection of Jupyter
Notebooks with step-by-step explanations of ex-
plored functionalities available at github.com/
huggingface/gaia/tree/main/notebooks.

Finally, we release GAIA—a simple, yet pow-
erful search engine giving relevance-based inter-
face to four popular, large-scale, textual datasets,
namely C4 (Raffel et al., 2020), the Pile (Gao
et al., 2021; Biderman et al., 2022), ROOTS (Lau-
rençon et al., 2022) and captions from LAION-
2B-en (Schuhmann et al., 2022). All considered
datasets rely to a big extent on data mined from
Common Crawl. GAIA benefits from the interop-
erability between Pyserini and Hugging Face that

2https://huggingface.co/

we discuss in the first part of the paper, while also
constituting a standalone contribution which can
benefit the NLP research community by making it
easy to study leading corpora qualitatively. GAIA
is available online at hf.co/spaces/spacerini/
gaia.

2 Background

The ability to analyze large collections of textual
data is core in multiple research and engineering
disciplines. While the industrial standard is to rely
on robust, scalable database and data analytics in-
frastructure, in the research environment, we typi-
cally resort to more local, granular and flexible, if
ad-hoc, solutions which leverage toolkits such as
NumPy (Harris et al., 2020), Pandas (pandas de-
velopment team, 2020; Wes McKinney, 2010),
SciPy (Virtanen et al., 2020) and others. A common
research approach to data analytics involves using
one of the aforementioned packages in combination
with Jupyter Notebooks3. Notebooks make it easy
to deploy and share analyses, however, typically
they remain essentially non-interactive, requiring

3https://jupyter.org/
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Dataset Reference Hugging Face Hub link # docs # snippets Data Size Index Size

C4 Raffel et al. (2020) c4 365M 1,587M 829GB 1.3TB
The Pile Gao et al. (2021) the_pile_deduplicated 134M 673M 825GB 1.2TB
ROOTS Laurençon et al. (2022) bigscience-data 598M 2,171M 1.6TB 2.6TB
LAION Schuhmann et al. (2022) laion2B-en 2,322M 1,351M 503GB 446GB

Total 3,419M 5,782M 3.76 TB 5.55TB

Table 1: Datasets included in the GAIA Search tool. All numbers refer to the size of the train split of the data.

at least a basic understanding of programming to
be able to work with them efficiently. With the
commodification of AI, and NLP in particular, and
the expansion of NLP technologies into research
areas beyond AI (Yang et al., 2022; Smith et al.,
2015; Bhardwaj et al., 2017; Niezni et al., 2022),
the need for easy to use, no-code tools for under-
standing AI artifacts arises. This need is partly
addressed by Python packages such as Streamlit4

and Gradio5, designed to facilitate the creation of
interactive Machine Learning (ML) demos. As
the authors of the Gradio white paper (Abid et al.,
2019) point out, the accessibility and ease of use
of the analysis tools is critical if we want to build
an understanding of AI and trust in it. The Hug-
ging Face Spaces platform, providing free hosting
of both Streamlit, Gradio, and Docker-based ap-
plications, serves this exact purpose. However, it
puts emphasis on demonstrating the capabilities of
models while paying less attention to the datasets
used to train them.

Even more so than in NLP, the evaluation of
IR systems is heavily dependent on the implemen-
tation details of the retrieval systems serving the
search indices being evaluated. The lack of stan-
dardisation of IR evaluation was the main motiva-
tor behind creating Anserini (Yang et al., 2017), a
Lucene6-based toolkit for reproducible IR research,
and the follow-up Pyserini (Lin et al., 2021)—a
convenient Python API to the underlying Java-
based implementation of Anserini. While it is rela-
tively easy to build and serve search indices backed
by Pyserini and Lucene, the task of building and de-
ploying interactive user interfaces generally comes
with a higher engineering barrier of entry.

Relevance-based search interfaces have been pre-
viously explored in the context of NLP—e.g. in
the C4 (Raffel et al., 2020) analysis (Dodge et al.,
2021), in COVID-related datasets (Zhang et al.,
2020) or in news quotes (Vuković et al., 2022).

4https://streamlit.io/
5https://gradio.app/
6https://lucene.apache.org/

Rather than focusing only on providing finished
artifacts, however, we intend our current work to
serve as a reference and inspiration for NLP re-
searchers looking to develop and deploy similar
applications by themselves.

We attempt to bring together the power of
Pyserini-backed retrieval and the agility of ML
demo development within the Hugging Face
ecosystem to serve the goal of building intuitive
data exploration tools. We believe that resulting
applications will make a great difference for NLP
researchers trying to study their data qualitatively,
as well as to non-technical researchers looking for
tools allowing them to perform dataset analysis in
a no-code fashion. We propose our search engine
GAIA as a compelling case in point.

3 Pyserini and Hugging Face: From Data
to Search

In the current section we discuss core components
which need to be considered when building a search
application for textual datasets. We focus on how
each step can be facilitated by the use of Pyserini,
Hugging Face, or a combination of the two. We
also provide hands-on tutorials covering basic con-
cepts and search engine building blocks such as
data loading and indexing, tokenization, search,
and index analysis. We further release the pre-
processing, backend and frontend code that allowed
us to index 3.5 billion documents—chunked into
5.8 billion snippets—and serve 5.55TB worth of
BM25 indexes.

3.1 Data Access

The Hugging Face hub is the repository of over
20,000 datasets from across AI domains. This in-
cludes the most popular large-scale text corpora
in NLP—for example all the datasets we con-
sider in GAIA (see Table 1 for details), but also
other popular large scale text datasets such as OS-
CAR (Abadji et al., 2022) and The Stack (Kocetkov
et al., 2022) among many others. Each dataset

590

https://huggingface.co/datasets/c4
https://huggingface.co/datasets/EleutherAI/the_pile_deduplicated
https://huggingface.co/bigscience-data
https://huggingface.co/datasets/laion/laion2B-en
https://streamlit.io/
https://gradio.app/
https://lucene.apache.org/
https://nbviewer.org/github/huggingface/gaia/blob/main/notebooks/00-indexing.ipynb
https://nbviewer.org/github/huggingface/gaia/blob/main/notebooks/01-tokenization.ipynb
https://nbviewer.org/github/huggingface/gaia/blob/main/notebooks/02-searching.ipynb
https://nbviewer.org/github/huggingface/gaia/blob/main/notebooks/03-analysis.ipynb
https://github.com/huggingface/gaia/tree/main/preprocessing
https://github.com/huggingface/gaia/tree/main/preprocessing
https://github.com/huggingface/gaia/tree/main/web
https://huggingface.co/spaces/spacerini/gaia/blob/main/app.py
https://hf.co/datasets/oscar-corpus/OSCAR-2201
https://hf.co/datasets/oscar-corpus/OSCAR-2201
https://hf.co/datasets/bigcode/the-stack


hosted on the Hub can be accessed locally using
the datasets (Lhoest et al., 2021) library which
provides convenient and parallelizable APIs for
downloading and processing the data. Memory-
mapping is supported by default and uses the effi-
cient an Apache Arrow format,7 making it possible
to seamlessly handle datasets surpassing the RAM
constraints of a given machine. Datasets also pro-
vide a streaming functionality which dispenses of
downloading data to disk, making it possible to
work with larger-than-disk datasets.

3.2 Tokenization

Tokenization is a crucial pre-processing step in
NLP in general, and Information Retrieval in par-
ticular. In the context of IR, this process typically
includes removing stop words, stemming, lemma-
tization, and removing non-alphanumeric charac-
ters. By default, Pyserini uses Lucene analyzers—
heuristics-based algorithms designed for various
languages and use cases, to tokenize text. The
drawback of this approch is that only some lan-
guages have dedicated analyzers, while others have
to resort to simply breaking on whitespace, which
inadvertently leads to suboptimal performance.

An alternative to whitespace tokenization that
has shown promise in Information Retrieval and is
a mainstay in NLP is subword tokenization (Mielke
et al., 2021), a process which splits words into
smaller units based on their frequency in the cor-
pus. Hugging Face provides a range of tokenizers
that are specifically designed to work with its pre-
trained transformer language models, as well as the
means to train such tokenizers (MOI et al., 2022).

As of recently, Pyserini can leverage Hugging
Face pre-trained subword tokenizers to improve in-
dexing and searching for multiple languages. Pre-
trained tokenizers from Hugging Face can serve
as drop-in replacements for Lucene Analyzers, im-
proving retrieval effectiveness, particularly in low-
resource languages (Ogundepo et al., 2022). This
interoperability between Hugging Face and Py-
serini makes it easy for researchers to incorporate
deep learning-based language models into their in-
formation retrieval workflows and opens up new
avenues for research in the field.

3.3 Building the Index

Indexing constitutes the core functionality of Py-
serini. The library enables experiments with bag-of-

7https://arrow.apache.org/

words sparse retrieval using Lucene, and dense vec-
tor retrieval using Faiss (Johnson et al., 2019), as
well as hybrid retrieval combining the two. Though
this project focuses solely on sparse retrieval us-
ing BM25 indexes, Pyserini’s dense encoding and
retrieval API would make it very easy to adapt all
examples and demos to this paradigm.

Offline Indexing. Arrow-backed Hugging Face
datasets readily lend themselves to being indexed
by Pyserini’s standard Lucene indexer. In prin-
ciple, one can build an index of a Hugging Face
dataset simply by downloading it locally and then
passing the file path to the Pyserini indexer via a
command line argument. The scenario where a
pre-processing step is required in between the data
download and the indexing step—as with docu-
ment segmentation which we discuss later in Sec-
tion 4–can be realised straightforwardly for smaller
datasets, which fit both on disk and into RAM. The
larger-than-RAM datasets which fit on disk, can
be easily sharded into any of the disk text formats
supported by Pyserini (those include CSV, TSV,
JSON, and JSONL) and processed concurrently
within RAM limits to be then passed to the indexer.

Datasets Streaming. As of recently, it is also
possible to index datasets which don’t fit on disk.8

This new addition to Pyserini—one that resulted
out of our current collaboration—allows users to
stream text into the index directly—in other words,
build an index on the fly from a text stream rather
than from a static file saved on disk. As a result,
larger-than-disk collections can be streamed from
the Hugging Face Hub directly into the local in-
dexing process. Data streaming can also improve
experimental agility for smaller datasets, by remov-
ing the data downloads step from the Hugging Face
dataset—Pyserini index pipeline.

3.4 Backend: Custom Pyserini Server

Once the data index is ready we need a way to host
it and serve the search functionality to the clients.
We propose a simple Python-based, Pyserini server
implementation for GAIA, which can be easily
generalized to other use-cases. The server code can
be accessed on GitHub.

8Note however, that the resulting index does have to fit
on disk. As a result, we envision this functionality to be
particularly convenient for scenarios where either the dataset
or the index may be able to fit on disk, but both do not—a
common scenario when dealing with TB-scale artefacts.
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3.5 Frontend: Interactive Demos

Providing interactive demos which enable the ex-
ploration of AI artifacts is crucial in order to be
able to collaborate across research disciplines and
share results with colleagues without imposing the
burden of setting up their own engineering stack
on them. By offering the hosting of Gradio and
Streamlit applications Hugging Face Spaces meet
this need perfectly. We encourage readers to follow
the implementations of GAIA for an example of
how to build a simple UI for a search tool.

4 Case Study: GAIA Search

Relevance-based search tools have the potential
of the largest impact on massive-scale datasets,
common in modern NLP. Unlike with smaller data
collections, where simpler investigation strategies,
e.g. via a combination of Pandas and Jupyter
Notebooks, may be feasible, huge datasets are
generally too cumbersome to process this way.
A big benefit of search engines in the form that
we propose is also the fact that after being set
up, they require no engineering skills or exten-
sive computing resources to operate, expanding
the community of potential users. We demon-
strate this with GAIA search, available online at
hf.co/spaces/spacerini/gaia.

4.1 Included Datasets

GAIA proposes a simple interface to four large-
scale textual datasets—C4, The Pile, ROOTS, and
captions from LAION-2B-en. The reader may con-
sult Table 1 for details on respective datasets. All
of the datasets included in GAIA are sourced at
least partly from Common Crawl. The users of the
tool are therefore bound by the Common Crawl
terms of use9 in respect of the content contained in
the datasets. Additionally, in order to respect the
data subjects’ rights (Jernite et al., 2022) we refrain
from presenting full documents in the tool, and in-
stead include snippets of at most 256 words. We
redact the personally identifiable information (PII)
on all search results on the backend side, using the
PII redaction script open-sourced alongside the Big-
Science10 language model BLOOM (Le Scao et al.,
2022). Below we discuss details of the respective
datasets’ pre-processing.

9https://commoncrawl.org/terms-of-use/
10bigscience.huggingface.co

C4. This is a dataset fully sourced from Common
Crawl. We index the variant of the English split of
the dataset available on the Hugging Face hub. C4
has been used to train T5 (Raffel et al., 2020), a ma-
jor seq-2-seq model with a plethora of downstream
applications, parts of it have also contributed to the
training of other LLMs, e.g. LaMDA (Thoppilan
et al., 2022) and Chinchilla (Hoffmann et al., 2022),
which makes it a compelling dataset to study.

The Pile. This corpus has been a standard dataset
for many English LLM releases from various or-
ganizations (Biderman et al., 2023; Black et al.,
2021; Wang and Komatsuzaki, 2021; Black et al.,
2022; Smith et al., 2022; Tang, 2021; Zhang et al.,
2022; Lieber et al., 2021), so we believe that it
is important to expose its contents to public view.
The Pile is an English-only corpus containing mul-
tiple sub-corpora from various sources (Biderman
et al., 2022). We use a variant of The Pile which
has been deduplicated with MinhashLSH and a
threshold of 0.87, following the advice of Lee et al.
(2022). Notably, this variant of the Pile has also
been used to train an LLMs (Biderman et al., 2023).
We hope that providing the search interface will
allow further investigation of the subjective dif-
ferences between deduplicated and unprocessed
corpora. Both the canonical variant of The Pile and
it’s deduplicated counterpart are available on the
Hugging Face Hub.

ROOTS. Developed for the purpose of training
BLOOM (Le Scao et al., 2022), this is the only mul-
tilingual dataset available in GAIA. We therefore,
create independent indices for each language or
language group provided in the corpus, resulting in
13 separate indices—Arabic, Catalan, Code (com-
prising all programming languages included in the
corpus), English, Spanish, Basque, French, Indone-
sian, Indic and Niger-Congo (language groups),
Portuguese, Vietnamese and Chinese. We return
results for each index when issuing queries in the
tool.

LAION-2B-en LAION is a dataset of [image
caption, image URL] pairs scraped from the Web.
It has been used to train Stable Diffusion (Rombach
et al., 2021), a textual-prompt-based image gener-
ation model, constituting an open-source counter-
part to OpenAI’s DALL·E 2 (Ramesh et al., 2022).
We use LAION-2B-en, the subset of the original
dataset with captions in English, as the starting
point for further pre-processing. We start by dedu-

592

hf.co/spaces/spacerini/gaia
https://commoncrawl.org/terms-of-use/
bigscience.huggingface.co
https://huggingface.co/datasets/c4
https://huggingface.co/datasets/the_pile
https://huggingface.co/datasets/EleutherAI/the_pile_deduplicated


plicating captions, which yields clusters of image
URLs with identical captions (deduplication code
is available on GitHub). We then index unique cap-
tions. For textual queries to our tool, we return
results consisting of the relevant captions. Along-
side each result, we include the list of associated
image URLs.

4.2 Implementation and Functionality

The implementation of GAIA makes use of a va-
riety of interoperability features we’ve discussed
in Section 3. As detailed in Table 1, all of the
considered datasets are available on the Hugging
Face Hub. We download and segment them locally.
Such segmented datasets are then provided as in-
put to a Pyserini indexer. We leverage Streamlit
to build the user interface for our tool and host it
on Hugging Face Spaces. On the backend side,
the indices are served from Hugging Face provi-
sioned machines. We open-source helper functions
for segmenting long documents and the backend
server code at github.com/huggingface/gaia.

5 Limitations and Future Plans

A major area for consideration when developing
data access tools is that of data governance, privacy
and data ownership (Jernite et al., 2022; Carlini
et al., 2020). In our current work we focus on
the technical aspects of giving access to large data
collections, however, we urge users to consider data
governance principles when designing their own
tools. In terms of the infrastructure, the cost and
complexity of hosting the retrieval index falls on
the creator of the tool, which can be easy to manage
for small datasets but becomes more problematic
when entering the realm of TB-scale corpora. We
are currently investigating a parallel workstream
that could address this limitation at least partly.

6 Conclusions

We showcase interoperability between Hugging
Face and Pyserini and provide value to the NLP
community by demonstrating easy ways to perform
high-quality, large-scale retrieval with open-source
tools. We also introduce GAIA - a search engine
for retrieval-based exploration of four major tex-
tual datasets. We wish to encourage NLP and IR
practitioners to follow our examples and build their
own tools to explore both large and smaller-scale
textual datasets.
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introduce guardrails, namely the PII redaction and
the segmentation of documents into short snippets,
preventing the ability to reconstruct full documents
or full corpora, into the GAIA Search design. We
strongly encourage researchers aiming to build sim-
ilar tools to do the same. Overall, a lot of these
problems seem to occur because we’re proposing
the tool only after the datasets have been created
and models trained on them. The workflow we
envision for future research projects would involve
building data exploration tools prior to the release
of the datasets, so that core problems can be ob-
served, studied and addressed before datasets reach
an external audience.
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Abstract

An open-source DeepPavlov Dream Platform
is specifically tailored for development of com-
plex dialog systems like Generative AI Assis-
tants. The stack prioritizes efficiency, mod-
ularity, scalability, and extensibility with the
goal to make it easier to develop complex dia-
log systems from scratch. It supports modular
approach to implementation of conversational
agents enabling their development through the
choice of NLP components and conversational
skills from a rich library organized into the
distributions of ready-for-use multi-skill AI as-
sistant systems. In DeepPavlov Dream, multi-
skill Generative AI Assistant consists of NLP
components that extract features from user ut-
terances, conversational skills that generate or
retrieve a response, skill and response selectors
that facilitate choice of relevant skills and the
best response, as well as a conversational or-
chestrator that enables creation of multi-skill
Generative AI Assistants scalable up to indus-
trial grade AI assistants. The platform allows
to integrate large language models into dialog
pipeline, customize with prompt engineering,
handle multiple prompts during the same dia-
log session and create simple multimodal assis-
tants.

1 Introduction

Complex AI assistants are becoming more and
more widespread. As a result, interest in technol-
ogy for building complex conversational interfaces
has grown significantly over the last years. At the
same time, most of the available systems enabling
complex dialog systems development are propri-
etary or limited. This opens up new opportunities
for open-source systems that facilitate the develop-
ment of complex AI assistants.

The DeepPavlov Dream Platform1 provides a
stack of Apache 2.0-licensed open-source technolo-
gies that enable development of complex dialog sys-
tems such as enterprise AI assistants. The platform
features a conversational AI orchestrator called
DeepPavlov Agent to coordinate an asynchronous
scalable dialog pipeline; a framework called Deep-
Pavlov Dialog Flow Framework (DFF) to facilitate
development of the multi-step skills; support for
Wikidata and custom knowledge graphs; a library
of modern NLP components and conversational AI
skills (script-based, chit-chat, question answering
(QA), and generative skills) organized into a set of
distributions of multi-skill conversational AI sys-
tems; and a visual designer. These components
make it possible for developers and researchers to
implement complex dialog systems ranging from
multi-domain task-oriented or chit-chat chatbots
to voice and multimodal AI assistants suitable for
academic and enterprise use cases.

The DeepPavlov Dream Platform supports in-
tegrating large language models (LLMs) into
production-ready dialog systems with the help of
general and custom knowledge graphs (KGs) for
fact checking, pre- and post-filters for filtering out
unsuitable responses, and prompt-based generation
for indirect control of LLMs.

Multimodality in DeepPavlov Dream provides
an opportunity to operate with images and to per-
form actions via APIs based on the user’s com-
mands extracted during the conversation.

In this paper, we present the DeepPavlov Dream
Platform for dialog systems development. In Sec-
tion 2, we compare the platform with existing com-
petitors. Sections 3, 4 and 5 introduce the pipeline’s

1https://github.com/deeppavlov/dream
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orchestrator, distributions and other development
tools. The platform’s components and proposed
approaches for dialog system development are de-
scribed in Section 6. Section 7 presents our method-
ology for building prompt-based Generative AI
Assistants. Approaches to managing multimodal-
ity are described in Section 8. Finally, Section 9
provides an overview of a custom dialog system
development process.

2 Comparison with Competitors

In Table 1 we present a comparison of the pop-
ular Conversational AI Platforms. Unlike other
solutions, we provide an open-source Apache 2.0-
based, multi-skill platform that enables develop-
ment of complex open-domain dialog systems.
DeepPavlov Dream allows for combining different
response generation methods, adding pre- and post-
filters, utilizing Wikidata and custom knowledge
graphs, designing custom dialog management algo-
rithms, integrating large language models (LLMs)
to production-ready dialog systems. DeepPavlov
Dream also provides simple integration with load-
balancing tools that is crucial for LLMs-based dia-
log systems in production. We are also working to-
wards text-based and multimodal experiences like
robotics.

3 Pipeline

The DeepPavlov Dream is built upon the Deep-
Pavlov Agent, an open-source framework for or-
chestrating complex systems. The full dialog sys-
tem pipeline of the DeepPavlov Dream is presented
in Figure 1. There are four component groups —
Annotators, Skills, Candidate Annotators, and Re-
sponse Annotators — and two dialog management
components — Skill Selector and Response Selec-
tor. Dialog State is a shared memory that contains
all the information about the dialog as DeepPavlov
Agent expects that services are stateless and can
be run as multiple instances. There are two syn-
chronization points — Skill Selector and Response
Selector. The other services can be run in parallel,
although the Agent allows dependencies between
services within the group to effectively chain them.

DeepPavlov Agent’s pipeline is asynchronous,
i.e., one user’s request does not block the agent
and does not prevent the agent from receiving and
processing requests from other users. Each service
is deployed in a separate docker container. In addi-
tion, separate containers are used for the agent itself

and the database. For development, one can run
the dialog system locally using docker-compose
or Kubernetes.

4 Distributions

Original DREAM Socialbot (Kuratov et al., 2020;
Baymurzina et al., 2021b) included a large num-
ber of components for Natural Language Under-
standing (NLU) and Natural Language Genera-
tion (NLG). Different components are run indepen-
dently and accept dialog state in a required format.
Although some components may depend on the
other ones’ annotations, in general modular sys-
tem’s elements can be safely removed or replaced
with their analogues. Platform users can re-use
existing components to design their own dialog sys-
tems or develop custom components and include
them into existing or custom dialog systems.

The DeepPavlov Dream Platform utilizes a
distribution-based approach for dialog systems de-
velopment. A distribution is a set of YML-files
specifying parameters of docker containers, and a
configuration JSON-file determining a processing
pipeline for DeepPavlov Agent. Platform contains
different distributions including script-based En-
glish distributions, generative-based English, Rus-
sian and multi-lingual distributions, multimodal
distribution, robot controller distribution, and lots
of multi-skill distributions utilizing prompt-based
generation with LLMs (details in Section 6).

5 Development Tools

Platform is supported by development tools
— DeepPavlov dreamtools and DF De-
signer (Kuznetsov et al., 2021), a visual aid in
developing scenario-driven skills for the Dream
Platform using DFF2.
DeepPavlov dreamtools is a set of tools in

Python with a built-in command line tool which
allows developers to operate with Platform distri-
butions in a programmatic way.

Python Package The package exposes Dream
distribution API via configuration and component
objects. It supports a strict set of configuration
files: one pipeline JSON-file and 4 docker-compose
YML configuration files (for production, develop-
ment, proxy, and local deployments). For each file,
the package implements configuration definitions

2https://github.com/deeppavlov/dialog_flow_
framework
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DeepPavlov
Dream Mycroft AI Linto AI RASA Amazon

Lex
Google

DialogFlow
IBM

Watson Avaamo Kore.AI Amelia

License Apache 2.0 Apache 2.0 AGPL-3.0 Apache 2.0 N/A N/A N/A N/A N/A N/A
Open Source Yes Yes Yes Yes No No No No No No
On-Premises Yes Yes Yes Yes No No Yes Yes No Yes
Multi-skill Yes Yes Yes No No No Yes Yes Yes Yes
Generative AI Yes Limited Limited Limited No Limited Yes Yes Yes Limited
FAQ Skills Yes No No Yes No Yes Yes Yes Yes Yes
Task-oriented
Skills Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Chit-Chat
Skills Yes Limited Limited Limited Limited Limited Limited Limited Limited Yes

QA Skills Wikidata,
Custom No No Custom No Custom Custom Custom Custom Custom

Knowledge
Graphs

Wikidata,
Custom KGs No No Yes No Custom Custom Yes Custom Yes

Multilingual
NLU

Per-lang,
multilingual Per-lang Per-lang Per-lang Per-lang Per-lang Per-lang Per-lang Per-lang Per-lang

Domain-specific
NLU No No Yes 3rd-party Limited 3rd-party Yes Yes Yes Yes

External
NLU Yes Yes No Yes No Partial No Yes No Unknown

Scalability Yes No Yes Yes Yes Yes Yes Yes Yes Yes

Multimodality
Text,Voice-3,
Image(wip),
Video(wip)

Text,
Voice-3

Text,
Voice

Text,
Voice-3

Text,
Voice

Text,
Voice

Text,
Voice

Text,
Voice-3

Text,
Voice-3

Text,
Voice

Table 1: Comparison of popular Conversational AI Platforms: DeepPavlov Dream (DeepPavlov, 2023), Mycroft
AI (AI, 2022b), Linto AI (AI, 2022a), RASA (RASA, 2022), Amazon Lex (Amazon, 2022), DialogFlow (Google,
2022), IBM Watson (Watson, 2022), Avaamo (Avaamo, 2022), Kore.AI (Kore.ai, 2022), Amelia (Amelia, 2022). In
Multimodality row Voice-3 denotes usage of third-party applications for Voice processing

Figure 1: The high-level architecture of the user utterance’s processing in DeepPavlov Dream pipeline. The
DeepPavlov Dream supports any number of components limited only by the available computational resources

as objects with methods for serializing, listing, cre-
ating, editing, and validating components. The
components are defined as generic structures.

Additionally, its higher-level functionality al-
lows for creating new distributions from scratch

or using the existing ones as a template, editing
distributions, verifying consistency between com-
ponent definitions (e.g., correct port forwarding,
component naming, etc.), and creating DFF-based
skills with all the necessary template files. We have
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also trnasferred distribution testing utilities previ-
ously bundled with Dream: an automated dialog
tester and a file validation script.

CLI DeepPavlov dreamtools can be used as a
command line utility that wraps most of high-level
package functionality. One of the common uses
is creating a local.yml configuration file, which
contains instructions on whether to deploy a com-
ponent locally or redirect to a proxied DeepPavlov
deployment.

6 Components

The platform contains English, Russian, and mul-
tilingual annotators and skills. Skill and Re-
sponse Selectors are language-agnostic in general.
The Skill Selector’s output may include skills not
present in the running pipeline, making the Skill Se-
lector’s code reusable. There are several available
algorithms for Response Selector – tag-based for
script-based distributions, LLM-based and ranking-
based for generative distributions.

Modular container-based architecture of the
Dream platform allows for integrating components
from different frameworks and with different re-
quirements. For many conversational NLP mod-
els, DeepPavlov (Burtsev et al., 2018) library is
extensively used in several annotators and skills.
DeepPavlov library, an open-source conversational
NLP framework that is based on PyTorch and sup-
ports huggingface transformers, which allows
it to use various transformer-based models from
huggingface Hub (Burtsev et al., 2018). Tradi-
tionally, DeepPavlov contains several variants of
models: the best-performing one with the highest
score, the resource-efficient one with the fastest
inference time (Kolesnikova et al., 2022), and the
multilingual one with the support of several lan-
guages. DeepPavlov library provides ready-for-use
tools for training and inference of NLP pipelines
along with appropriate docker images that simplify
integrating and adapting new components.

Annotators solve a variety of NLP tasks: text
re-writing (sentence segmentation, punctuation re-
covery, spelling preprocessing, coreference reso-
lution (Le et al., 2019)), text classification (senti-
ment, toxicity, emotions, factoidness, topics (Sagy-
ndyk et al., 2022; Karpov and Burtsev, 2023), di-
alog acts (Yu and Yu, 2019), intents and speech
functions (Ostyakova et al., 2022)), token clas-
sification (NER, entity detection), knowledge re-

trieval (requests to external APIs, entity linking to
KBs (Evseev), knowledge extraction from struc-
tured and textual KBs), text ranking (selecting
most relevant prompts for conditional generation,
response candidate ranking (Gao et al., 2020)).

Conversational input usually does not imply
correct case sensitivity, so DeepPavlov Dream
utilizes NER model (Chizhikova et al., 2023)
adapted to both cased and uncased inputs. Ad-
ditionally, the model is based on the Multilin-
gual BERT (MBERT), which allows to support
entity extraction in multiple languages due to the
MBERT cross-lingual transferability (Konovalov
et al., 2020).

Resource consumption is also one of the most
challenging parts of the dialog systems develop-
ment. Often, the production-level annotators qual-
ity can be reached only by NN-based models each
of which may require gigabytes of GPU memory.
To tackle this problem, DeepPavlov equips Dream
with a multi-task learning (MTL) classifier (Karpov
and Konovalov, 2023) trained to solve nine prob-
lems within a single model and decreasing GPU
memory usage ninefold.

Skills in the Dream Platform define response gen-
erators. There are different types of algorithms
for response generation, e.g., template-based, re-
trieval, and generative models. The skills that plan
the dialog more than one step ahead are called
scripted skills. These skills are able to get the
dialog to develop in depth, which is already a gen-
erally accepted expectation of users from conversa-
tional systems. The scripts may utilize either slot-
filling (Baymurzina et al., 2021a) in template-based
responses or controllable generation via LLMs.
Creating script-based skills by hands is a labour-
consuming task, so we also researched approaches
for automatic scripts generation (Kapelyushnik
et al., 2022; Evseev et al.). A dialog system’s
behavior may need to be deterministic in some
cases. For that, developers may utilize either an
intent-based templated response skill, a FAQ skill,
or prompt-based generation via LLMs.

Prompt-based response generation via LLMs,
a recent trend in NLP field (Bai et al., 2022; Taylor
et al., 2022; Scao et al., 2022; Biderman et al., 2023;
Köpf et al., 2023; Dey et al., 2023), was reflected
in the development of prompt-based skills that uti-
lize given prompts and LLMs to respond to the
current context. Developers may create a prompt-
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based generative distribution featuring their own
prompts by copy-pasting several lines of code and
configuration descriptions and selecting the gen-
erative services of interest as a parameter (more
detailed instructions are provided in our tutorials
and documentation). One of the main features of
DeepPavlov Dream is a multi-skill support which
allows a dialog system to contain and switch be-
tween several different prompts during a dialog
session. More details in Section 7.

Knowledge Bases help the dialog system to
generate meaningful responses that require world
knowledge. Although generative models may learn
some information from the training data, correct
responses to factoid question require the dialog
system to utilize an updating Knowledge Base.
Knowledge Bases contain facts in graph or tex-
tual form which can be used as knowledge of
the dialog assistant. DeepPavlov Dream utilizes
graph and textual KBs for different annotators
and skills, e.g., knowledge-based question answer-
ing (KBQA) (Evseev and Arkhipov, 2020), fact
retrieval, paragraph-based open-domain question
answering (ODQA). For AI assistants, one of the
main required features is a custom ontology and a
knowledge graph which allows to extract and store
structured information about users. DeepPavlov
Dream now integrates support of the custom KGs
that allows to integrate corporate knowledge locally
without any concerns on the data safety.

7 Prompt-based Generative AI Assistants

Since the emergence of LLMs, they have been used
to tackle a variety of natural language tasks. The
earlier and smaller models had to be fine-tuned for
each specific task. However, very large models
have shown a remarkable capacity of handling the
same tasks few-shot and zero-shot using prompts,
which are tokens appended or prepended to the
model’s as an instruction to “guide” its behavior.

When using LLMs in dialog modeling, it is cru-
cially important to avoid insensitive or potentially
harmful content and tailor the responses for the spe-
cific user needs. That is where prompt engineering
allows to steer the model in the right direction with
no need for fine-tuning.

DeepPavlov Dream provides an approach to
building Generative AI Assistants with prompt-
based control and lets the user develop their own
ones with the use of prompt engineering. For that,
the platform features Generative Skills, which en-

capsulate Generative Model Services used to lo-
cally run the LLMs of the user’s choice or utilize
external Generative API services. Each Generative
Skill is controlled by one user-specified prompt,
utilizes selected Generative Service and is built
using Dialog Flow Framework to provide an op-
portunity for the developer to control the skill in a
script-based manner. To build an assistant, which
comes in a form of a custom Generative AI As-
sistant Distribution, several Generative Skills can
be combined with help of Prompt Selector picking
the most relevant prompts among presented and
Response Selector managing the dialog. Prompt
selection could be performed in different ways:
simple ranking of prompt-context pairs, ranking of
pairs of context and prompts goals extracted from
prompts using LLMs, predicting with LLMs based
on prompts descriptions.

In upcoming releases, we plan to enhance our
skills by incorporating structured, vector-based,
and RMT-based (Bulatov et al., 2022, 2023) repre-
sentations of episodic and working memory based
on the dialog state and conversation history stored
within DeepPavlov Dream. Given the importance
of supporting queries over documents and knowl-
edge bases, future versions of DeepPavlov Dream
will support LLM-driven interaction with external
data sources like corporate databases. We also plan
to add support for prompt-chaining to enable rea-
soning simulation to address more complex prob-
lems through planning and to facilitate develop-
ment of the autonomous AI agents.

8 Multimodal Generative AI Assistants

Users’ expectations from chatbots are rapidly in-
creasing, so multimodality, which is operating with
images, audio and video, is becoming an important
direction in dialog systems’ development. While
the audio input can be converted to text almost
without losing sense (except of intonations and
emotions), received images may bring a key infor-
mation to a dialog.

DeepPavlov Dream utilizes stateless paradigm,
which means that components do not store any
information about the dialog. The dialog state con-
tains all the information and is forwarded through
the full pipeline (partially, according to the given
formatters) by the Agent component. Sending
images or video between containers can be time-
consuming, so we offer to use a special database
storing images and videos and send file paths in
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this database through the pipeline.
We implemented one of the most obvious ideas,

which is to convert images to textual modality using
image captioning models. Textual input replace-
ment with an original image caption does not work
as expected, so we created a scripted approach
which extracts topics and entities from the cap-
tion, detects the type of the objects, and returns
scripted responses for several particular types of
objects, such as people, animals and food. We
are also working on the skills responding to the
user with images to provide a more engaging and
human-like experience. In addition to that, we are
working on enabling Socratic Models-like (Zeng
et al., 2022) approach to address user tasks by run-
ning conversations between skills understanding
different modalities.

9 Developer Experience

DeepPavlov Dream Platform enables developers to
build their own multi-skill dialog systems. Despite
of low-code/no-code trends for development tools,
our platform requires its users to work with python
and docker that will give them enough flexibility
and customization opportunities.

Developer’s path starts with repository on
GitHub3. Developer needs a PC with Ubuntu or
other Unix-like OS capable of running docker.
To run heavy NLP components, locally dedicated
GPUs are necessary. Any IDE can be utilized, how-
ever, VS Code is needed to use our DF Designer
to create custom scenario-driven skills in a visual
interface.

To create a custom distribution, developer can
either make it by hands or use a single command
from DeepPavlov dreamtools specifying a list
of selected components. Developer can talk to the
system by running a chat in a developer’s mode in a
command line, via Telegram or using web interface
on “/chat” endpoint of the agent4.

One can utilize some components via proxy.
Agent and database components are always run
locally, while proxied components are light-weight
containers. All components not present in the proxy
YML-file for the current distribution are run locally,
which allows the developer to run and debug any
new or existing component locally.

Here are the main opportunities for customiz-
ing a dialog system in DeepPavlov Dream: one

3https://github.com/deeppavlov/dream
4http://0.0.0.0:4242/chat

may combine a new dialog system with particu-
lar existing components, change the parameters of
these components in configuration files, create new
components from scratch or change the existing
components.

To create a custom scenario-driven DFF skill and
add it to the distribution, the developer can use a
single command from DeepPavlov dreamtools.
To visually design a custom scenario-driven DFF
skill, the developer can use DF designer (refer to
the Workshop video5 for detailed instructions).

Prompt-based Generative AI Assistants can be
created by hands using a template distribution. One
can add any number of prompt-based skills and cus-
tomize them by prompt engineering and selecting
Generative Services of interest. Multi-skill dialog
management is handled automatically.

Debugging a complex distributed platform is
always a challenge. In the DeepPavlov Dream
Platform, one can use different techniques to suc-
cessfully debug their Distribution. One can utilize
DeepPavlov Agent’s console to debug based on
the entire dialog state, docker logging output to
debug individual components, or POST requests to
DeepPavlov Agent via Postman or similar tools.

The developer can build a custom user experi-
ence around their Dream-based multi-skill AI assis-
tant or connect it to some of the existing channels,
such as Amazon Alexa, to make it available for the
end users. There is a Workshop Video6 available
with detailed instructions.

We also provide the documentation site for Deep-
Pavlov Dream7. The site provides access to com-
prehensive resources for building intelligent conver-
sational assistants tailored to users’ specific needs.
The site offers extensive documentation, release
notes, and detailed examples to facilitate the de-
velopment of advanced conversational AI appli-
cations. The site also provides opportunities to
join the community of developers leveraging Deep-
Pavlov Dream to shape the future of conversational
AI technology.

10 Conclusion

As complex conversational systems are becoming
more and more popular, it is important to make
the development process of such systems easier for
researchers and developers. DeepPavlov Dream is

5https://www.youtube.com/watch?v=WVlFV9VBh1g
6https://www.youtube.com/watch?v=WAN_IlO-M4M
7https://dream.deeppavlov.ai/
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an open-source conversational platform designed
to let the users develop their own complex dialog
systems and access existing NLP components for
feature extraction and classification of user utter-
ances. The platform features a variety of skills
developed with scenario-driven, retrieval, and gen-
erative approaches using modern NLP techniques
including prompt-based generation. These skills
are organized into ready-to-use distributions of the
multi-skill AI assistants. DeepPavlov Dream al-
lows to customize dialog systems at all levels. The
platform was battle-tested during Amazon Alexa
Prize 3 and 4 and is now providing core infras-
tructure to facilitate the development of multi-skill
generative AI assistants for industry and academia.

We built a DeepPavlov Dream8 Platform’s web-
site9 including documentation, tutorials and useful
links, chat with the demo distribution. We have
published a series of articles about DeepPavlov
Dream on Medium10. We also have a YouTube
channel11 where we publish video workshops and
seminars. To communicate with our team, one can
use our forum12. Short demo video is available on
YouTube13.
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The DeepPavlov Dream Platform contains English,
Russian, and multilingual components. However,
the multilingual generative model does not always
respond in the same language.

8https://github.com/deeppavlov/dream
9https://dream.deeppavlov.ai/

10https://medium.com/deeppavlov
11https://www.youtube.com/c/DeepPavlov
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DeepPavlov Dream covers open-domain hy-
brid conversational systems able to chat on any
topic in addition to the commercial scenario-driven
template-based chatbots. Therefore, we propose
to use generative models. Generative-based distri-
butions are able to respond to most of the dialog
contexts with various replies while consume signif-
icant computational resources requiring at least a
single GPU to run models like DialoGPT. Current
distributions have a limited number of task-oriented
skills, like Factoid QA and weather skill.
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is not currently being considered for publication
elsewhere. (3) The paper reflects the authors’ own
research and analysis in a truthful and complete
manner. (4) We acknowledge that the use of the
generative language models like DialoGPT and oth-
ers in production might lead to potential harm to
the end user experience; while we have adopted
measures to prevent inappropriate language out-
put we can not guarantee that the dialog systems
that incorporated generative models can be free
of inappropriate language. (5) All conversations
users have with the publicly deployed English dis-
tribution of DeepPavlov Dream available at14 are
recorded and are available for the conversational AI
researchers via15 as an open-source dialog dataset.
Users have to agree to a privacy agreement prior to
talking to the Dream distribution. They are warned
that their dialogs will become publicly available
as part of the dataset and are strongly encouraged
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tribution. (6) The dialogs that developers have
with the Dream distribution running completely via
proxy (including MongoDB instance used by Deep-
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of our open-source conversational AI dataset.

References

Linto AI. 2022a. Linto ai. https://linto.ai/.

14https://dream.deeppavlov.ai/
15http://deeppavlov.ai/dream/datasets/

605

https://github.com/deeppavlov/dream
https://dream.deeppavlov.ai/
https://medium.com/deeppavlov
https://www.youtube.com/c/DeepPavlov
https://forum.deeppavlov.ai/
https://youtu.be/1EwiqNsfomI
https://linto.ai/
https://dream.deeppavlov.ai/
http://deeppavlov.ai/dream/datasets/


Mycroft AI. 2022b. Mycroft ai. https://mycroft.
ai/.

Amazon. 2022. Amazon lex. https://docs.aws.
amazon.com/lex/index.html.

Amelia. 2022. Amelia. https://amelia.ai/
conversational-ai/.

Avaamo. 2022. Avaamo. https://avaamo.ai/
conversational-ai-platform/.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

D Baymurzina, Yu Kuratov, D Kuznetsov, D Kornev,
and M Burtsev. 2021a. Evaluation of conversational
skills for commonsense.

Dilyara Baymurzina, Denis Kuznetsov, Dmitry Evseev,
Dmitry Karpov, Alsu Sagirova, Anton Peganov, Fe-
dor Ignatov, Elena Ermakova, Daniil Cherniavskii,
Sergey Kumeyko, et al. 2021b. Dream technical re-
port for the alexa prize 4. 4th Proceedings of Alexa
Prize.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite
for analyzing large language models across training
and scaling. arXiv preprint arXiv:2304.01373.

Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev.
2023. Scaling transformer to 1m tokens and beyond
with rmt. arXiv preprint arXiv:2304.11062.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079–
11091.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yurii Kuratov, Denis Kuznetsov, et al.
2018. Deeppavlov: Open-source library for dia-
logue systems. In Proceedings of ACL 2018, System
Demonstrations, pages 122–127.

Anastasia Chizhikova, Vasily Konovalov, and Mikhail
Burtsev. 2023. Multilingual case-insensitive named
entity recognition. In Advances in Neural Computa-
tion, Machine Learning, and Cognitive Research VI,
pages 448–454, Cham. Springer International Pub-
lishing.

DeepPavlov. 2023. Deeppavlov dream. https://
dream.deeppavlov.ai/.

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William
Marshall, Ribhu Pathria, Marvin Tom, Joel Hestness,
et al. 2023. Cerebras-gpt: Open compute-optimal
language models trained on the cerebras wafer-scale
cluster. arXiv preprint arXiv:2304.03208.

DA Evseev. Lightweight and accurate system for entity
extraction and linking.

DA Evseev and M Yu Arkhipov. 2020. Sparql query
generation for complex question answering with bert
and bilstm-based model. In Computational Linguis-
tics and Intellectual Technologies, pages 270–282.

DA Evseev, MS Nagovitsin, and DP Kuznetsov. Con-
trollable multi-attribute dialog generation with pals
and grounding knowledge.

Xiang Gao, Yizhe Zhang, Michel Galley, Chris Brockett,
and Bill Dolan. 2020. Dialogue response ranking
training with large-scale human feedback data. arXiv
preprint arXiv:2009.06978.

Google. 2022. Google dialogflow. https://cloud.
google.com/dialogflow.

Denis Kapelyushnik, Dilyara Baymurzina, Denis
Kuznetsov, and Mikhail Burtsev. 2022. Auto-
matic generation of conversational skills from dialog
datasets. In Advances in Neural Computation, Ma-
chine Learning, and Cognitive Research VI: Selected
Papers from the XXIV International Conference on
Neuroinformatics, October 17-21, 2022, Moscow,
Russia, pages 31–41. Springer.

Dmitry Karpov and Mikhail Burtsev. 2023. Monolin-
gual and cross-lingual knowledge transfer for topic
classification. Proceedings of AINL 2023.

Dmitry Karpov and Vasily Konovalov. 2023. Knowl-
edge transfer in the multi-task encoder-agnostic
transformer-based models ( ). Komp’juternaja
Lingvistika i Intellektual’nye Tehnologii.

Alina Kolesnikova, Yuri Kuratov, Vasily Konovalov, and
Mikhail Burtsev. 2022. Knowledge distillation of rus-
sian language models with reduction of vocabulary.
arXiv preprint arXiv:2205.02340.

Vasily Konovalov, Pavel Gulyaev, Alexey Sorokin, Yury
Kuratov, and Mikhail Burtsev. 2020. Exploring the
bert cross-lingual transfer for reading comprehension.
In Dialogue-21.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-
ley, Richárd Nagyfi, et al. 2023. Openassistant
conversations–democratizing large language model
alignment. arXiv preprint arXiv:2304.07327.

Kore.ai. 2022. Kore.ai. https://kore.ai/.

Yuri Kuratov, Idris Yusupov, Dilyara Baymurzina,
Denis Kuznetsov, Daniil Cherniavskii, Alexan-
der Dmitrievskiy, Elena Ermakova, Fedor Ignatov,

606

https://mycroft.ai/
https://mycroft.ai/
https://docs.aws.amazon.com/lex/index.html
https://docs.aws.amazon.com/lex/index.html
https://amelia.ai/conversational-ai/
https://amelia.ai/conversational-ai/
https://avaamo.ai/conversational-ai-platform/
https://avaamo.ai/conversational-ai-platform/
https://dream.deeppavlov.ai/
https://dream.deeppavlov.ai/
https://cloud.google.com/dialogflow
https://cloud.google.com/dialogflow
http://www.dialog-21.ru/media/5100/konovalovvpplusetal-118.pdf
http://www.dialog-21.ru/media/5100/konovalovvpplusetal-118.pdf
https://kore.ai/


Dmitry Karpov, Daniel Kornev, et al. 2020. Dream
technical report for the alexa prize 2019. Alexa Prize
Proceedings.

Denis Kuznetsov, Dmitry Evseev, Lidia Ostyakova,
Oleg Serikov, Daniel Kornev, and Mikhail Burtsev.
2021. Discourse-driven integrated dialogue develop-
ment environment for open-domain dialogue systems.
In Proceedings of the 2nd Workshop on Computa-
tional Approaches to Discourse, pages 29–51.

TA Le, MA Petrov, YM Kuratov, and MS Burtsev. 2019.
Sentence level representation and language models in
the task of coreference resolution for russian. Com-
putational Linguistics and Intellectual Technologies,
pages 364–373.

Lidiia Ostyakova, M Molchanova, Ksenia Petukhova,
Nika Smilga, D Kornev, and M Burtsev. 2022. Cor-
pus with speech function annotation: Challenges, ad-
vantages, and limitations. Computational Linguistics
and Intellectual Technologies, pages 1129–1139.

RASA. 2022. Rasa platform. https://rasa.com/
product/rasa-platform/.

Beksultan Sagyndyk, Dilyara Baymurzina, and Mikhail
Burtsev. 2022. Deeppavlov topics: Topic classifica-
tion dataset for conversational domain in english. In
Studies in Computational Intelligence, Springer.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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Kawahara, Daisuke, 538
Kiyomaru, Hirokazu, 538
Klein, Lauren, 377
Koch, Gertraud, 328
Kodama, Takashi, 538
Kornev, Daniel, 599
Kosenko, Dmitry, 599
Kruszewski, Germán, 144
Kumar, Vishwajeet, 51
Kuroda, Masakata, 549
Kurohashi, Sadao, 538
Kuznetsov, Ilia, 291
Kwon, Bum Chul, 42

Landwehr, Fabian, 208
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