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Message from the General Chair

Welcome to ACL 2022, the 60th Annual Meeting of the Association for Computational Linguistics! The
conference will be held in Dublin, the capital of Ireland, on May 22-27, 2022.

ACL 2022 will be a hybrid conference. After two fully virtual editions, ACL 2020 and ACL 2021, due to
the covid-19 pandemic, this year we are gradually coming back to normality, estimating, at the moment
of writing this message, that about 50% of the registered participants will be able to attend the conference
in-person, enjoying the atmosphere of the CCD congress center, the social events of the conference, and
the many opportunities in Dublin. On the other side, virtual attendees will have the possibility to interact
almost like they were in Dublin, thanks to a sophisticated virtual conference platform.

There are few important innovations this year. The most relevant is that ACL 2022 adopted a new
reviewing process, based on “rolling review” (ARR), with the goal of coordinating and making more
efficient the paper reviews of the ACL conferences. This initiative was shared with NAACL 2022, resul-
ting in a coordinated effort. As a side effect of moving to ARR, we have been working on a new version
of the software, called ACLPUB2, used to produce both the conference proceedings and the conference
schedule. I would like to thank all the people who contributed to those achievements. Finally, this year
we celebrate the 60th anniversary of the ACL conference. Thanks to the enthusiastic contributions of
many organizations, coordinated by the Diversity and Inclusion co-chairs, we are preparing a very spe-
cial initiative for our community, which, at the time of writing this message, is still secret and that will
be disclosed during the opening of the conference.

I was very lucky to work together with three fantastic Program Chairs: Preslav Nakov, Smaranda Mure-
san and Aline Villaviciencio. I could not thank you more for the dedication and the capacity with which
you have organized a very exciting scientific program and for the help in all the phases of the conference
organization.

Thanks to the local organizers in Dublin, Andy Way and John Kelleher, and to the PCO, who managed the
local organization in a period in which we have had very few certainties, and many more uncertainties.

We are extremely grateful to all sponsors for their continuing and generous support to help our conferen-
ces be very successful. Thank you to Chris Callison-Burch, the ACL Sponsorship Director, for managing
the relations between the sponsors and ACL 2022.

I am also very grateful to the chairs of the previous years’ conferences, who were always ready to help
and to provide advice, contributing to the transmission, from year to year, of all the know-how and
collective memory. Thanks to all the members of The ACL Executive Committee, they were always
supportive, particularly when feedback on delicate issues was needed.

Many thanks to the senior area chairs, the area chairs, the reviewers, our workshop organizers, our tutorial
instructors, the authors and presenters of papers, and the invited speakers.

ACL requires a long process, involving a large team of committed people. It is an honor for me to have
coordinated such a team of talented people, who kindly volunteered their time to make this conference
possible. I would like to thank the members of the organizing committee for their dedication and hard
work, often under a tight schedule:

e Workshop Co-Chairs: Elena Cabrio, Sujian Li, Mausam;
e Tutorial Co-Chairs: Naoaki Okazaki, Yves Scherrer, Marcos Zampieri;
e Demo Co-Chairs: Valerio Basile, Zornitsa Kozareva, Sanja étajner;

e Student Research Workshop Co-Chairs: Samuel Louvan, Brielen Madureira, Andrea Madotto;



e SRW Faculty Advisors: Cecile Paris, Siva Reddy, German Rigau;

e Publication Co-Chairs (also publication co-chairs for NAACL 2022): Danilo Croce, Ryan Cotte-
rell, Jordan Zhang;

e Conference Handbook Chair: Marco Polignano;

e Diversity & Inclusion Co-chairs: Mona Diab, Martha Yifiru Tachbelie;
e Ethic advisor committee: Su Lin Blodgett, Christiane Fellbaum:;

e Technical OpenReview Chair: Rodrigo Wilkens;

e Publicity and Social Media Co-chairs: Isabelle Augenstein, Emmanuele Chersoni, Diana May-
nard, Soujanya Poria, Joel Tetreault;

e Local Arrangement Committee: Fiona McGillivray, Greg Carew, Laird Smith;

e Student Volunteer Coordinators: Filip Klubicka, Vasudevan Nedumpozhimana, Guodong Xie,
Pintu Lohar;

e Internal Communications Chair: Marcely Boito Zanon.

Let me deserve a special thanks to Priscilla Rasmussen. She has been the pillar not only of this year’s
ACL, but of the ACL conferences for many years. She has offered her invaluable experience to the
organizing committee, and her presence has always given us a pleasant sense of security.

Finally, I would like to thank all the participants, both in-person and virtual, who will be the main
actors from May 22 to May 27, 2022. I am convinced that we will experience a fantastic conference,
scientifically exciting and full of fond memories.

Welcome and hope you all enjoy the conference!

Bernardo Magnini (FBK, Italy)
ACL 2022 General Chair
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Message from the Program Chairs

Welcome to the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022).
ACL 2022 has a special historical significance, as this is the 60th Anniversary edition. It is also the first
hybrid ACL conference after two years of a fully virtual format for ACL in 2020 and 2021 due to the
COVID-19 pandemic. Finally, it is the first *ACL conference to fully embrace the ACL Rolling Review
(ARR) as a reviewing process. Below, we discuss some of these changes and we highlight the exciting
program that we have put together with the help from our community.

Using ARR for Reviewing

In coordination with the NAACL 2022 team and the ACL executive committee, we decided to fully
adopt the ACL Rolling Review (ARR) as the only reviewing platform for ACL 2022. ARR is a new
review system for * ACL conferences, where reviewing and acceptance of papers to publication venues is
done in a two-step process: (i) centralized rolling review via ARR, and (ii) commitment to a publication
venue, e.g., ACL 2022. The purpose of the ACL Rolling Review is to improve the efficiency and the
turnaround of reviewing in *ACL conferences while keeping diversity (geographic and otherwise) and
editorial freedom.

As ACL 2022 is the first conference to fully adopt the ARR review process, we worked very closely
with ARR and we coordinated our efforts with the NAACL 2022 PC chairs. In particular, given the short
distance between ACL 2022 and NAACL 2022, we allowed authors to commit their papers to ACL 2022
and simultaneously to submit a revision to ARR in January, which were eligible for NAACL 2022. We
also joined ARR as Guest Editors-in-Chief (EiCs) to help with the September—November submissions
to ARR, which primarily targeted ACL 2022. We worked together to integrate ARR and some of the
conference workflows to ensure scaling up, and to maintain the quality and the timely processing of the
submissions for November, and thus to guarantee that all papers submitted by the November 15, 2021
ARR deadline could be considered for ACL 2022 if the authors decided to commit them. This required
making sure we had all reviews and meta-reviews ready in time, which we managed to achieve thanks
to the combined efforts of the ARR and the ACL 2022 teams. We would also like to note that this is a
community effort, and we are grateful for the support of the authors, the reviewers, the Action Editors
(AEs), and the Senior Area Chairs (SACs), who have been constructively engaging and helping with
ARR and ACL 2022.

Committing to ACL 2022

The commitment form for ACL 2022 asked the authors to provide a link to their paper in ARR: we
asked for a link to the latest version of the paper that had reviews and a meta-review. The authors also
needed to select an area (including the Special Theme area) they were submitting their paper to (this
was needed as ACL 2022 had areas, while ARR did not). Finally, the authors were allowed to submit
optional comments to the ACL 2022 Senior Area Chairs (SACs). Note that these comments were only
visible to the SACs, and they were not sent to the reviewers or to the Action Editors: the rationale was
that responding to reviewers and Action Editors should be handled in a response letter if the authors
decided to do a resubmission in ARR, which is a completely different process than committing a paper
to ACL 2022. These comments to the SACs were designed mainly to raise concerns about objective
misunderstandings by the reviewers and/or by the Action Editor about the technical aspect of the paper
that the authors believed might help the SACs in their decision-making process.

Areas While ARR did not have areas, ACL 2022 did: it had 23 areas, including the 22 areas from ACL
2021 plus our Special Theme. Our special theme was on “Language Diversity: from Low-Resource to
Endangered Languages,” to commemorate the 60th anniversary of ACL with the goal of reflecting and
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stimulating a discussion about how advances in computational linguistics and natural language proces-
sing can be used to promote language diversity from low-resource to endangered languages. We invited
papers that discuss and reflect on the “role of the speech and language technologies in sustaining langua-
ge use” (Bird, 2020) for the large variety of world languages with focus on under-resourced, indigenous,
and/or endangered languages. We were interested in the challenges for developing and scaling up the
current NLP technologies for the rich diversity of human languages and in the ethical, cultural, and po-
licy implications of such technologies for local communities. We also have a best Theme paper award
category.

Acceptance to ACL 2022

As ACL 2022 submissions in ARR, we count all papers from September, October, and November, which
we advertised as ACL 2022 months, after removing all re-submissions and also nine papers that selected
NAACL 2022 as a preferred venue (a total of 3,360 papers) + the papers from the May—August period
that were actually committed to ACL 2022 and that were not resubmissions (a total of 18 papers), for a
total of 3,378 papers.

This number is on par with the number of submissions to ACL 2021, which received 3,350 submissions.
Subsequently, 1,918 papers were committed to ACL 2022 (i.e., 57%). After the review process, 701
papers (604 long and 97 short) were accepted into the main conference.

Acceptance Rates for the Main Conference

The quality of a conference is often perceived based on the acceptance rate of the papers submitted there,
and thus it is important to have an acceptance rate that adequately represents the difficulty of publishing
a paper in the conference. Given the adoption of ARR, it is also important to allow for consistency
across various conferences. Thus, ACL 2022 (and NAACL 2022) adopted the following two ways of
calculating the acceptance rates:

(a) (Number of accepted papers at ACL 2022) / (Number of papers that selected ACL 2022 as the
preferred venue in ARR or were committed to ACL 2022). For ACL 2022, for the denominator we
consider the 3,378 papers as explained above. Thus, the acceptance rate is 701 / 3,378 = 20.75%
for the Main conference.

(b) (Number of accepted papers at ACL 2022) / (Number of papers committed to ACL 2022). For the
denominator, we had 1,918 papers committed to ACL 2022, and thus, the acceptance rate is 701 /
1,918 = 36.54% for the Main conference.

Note that option (a) is closer to the way the acceptance rate was computed at previous *ACL conferences,
where submitting and committing a paper was done in one step and papers were rarely withdrawn after
the reviews, the meta-reviews, and the corresponding scores were released. However, one issue with this
option for ACL 2022 was that indicating a preferred venue was only enabled starting with the October
ARR submissions, and it was not available for earlier months. As mentioned above, we removed a small
number of papers from our denominator that selected NAACL 2022 as a preferred venue in October
and November (a total of 9 papers) and we considered the ARR submissions only for the months of
September, October, and November, as these months were advertised in our CFP, plus any papers that
were committed to ACL 2022 from earlier months (May-July) and which were also not resubmissions.
Option (b) yields a higher “acceptance rate”, as many authors with low reviewing scores chose not to
commit their paper to ACL 2022.

Best Paper Awards

From the committed ACL 2022 papers, we selected 32 papers as candidates for the following Best Paper
awards, based on nominations by the Senior Area Chairs: Best Research Paper, Best Special Theme
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Paper, Best Resource Paper, and Best Linguistic Insight Paper. These papers were assessed by the Best
Paper Award Committee. The selected best papers will be presented in a dedicated plenary session for
Best Paper Awards on May 24, 2022.

Findings of ACL 2022

Given the success of the Findings at EMNLP 2020 and 2021 and ACL-IJCNLP 2021, we also have Fin-
dings of ACL 2022 papers, which are papers that were not accepted for publication in the main confe-
rence, but nonetheless were assessed by the Program Committee as solid work with sufficient substance,
quality, and novelty. A total of 361 papers were offered to be included in the Findings of ACL 2022.
Given the two ways of computing acceptance rates described above, this results in a 10.68% acceptance
rate in option (a), and 19.82% in option (b). Out of the 361 papers, 30 papers declined the offer, leading
to 331 papers to be published in the Findings of ACL 2022. In order to increase the visibility of the
Finding of ACL 2022 papers, we offered the authors of these 331 papers the possibility to present their
work as a poster at ACL 2022, in addition to making a 6-minute or a 3-minute video to be included in
the virtual conference site (for long and for short papers, respectively). The authors of 305 of the 331
papers accepted our invitation to present their work as a poster at ACL 2022.

TACL and Computational Linguistics

Continuing the tradition from previous years, ACL 2022 also features 43 articles that were published
at the Transactions of the Association for Computational Linguistics (TACL) and 8 papers from the
Computational Linguistics journal.

Keynote and Invited Speakers
Another highlight of our program are the keynotes, which we run in three different formats:

¢ a keynote talk by Angela Friederici (Max Planck Institute for Human Cognitive and Brain Scien-
ces) on “Language in the Human Brain’;

o a Kkeynote fire-side chat on “The Trajectory of ACL and the Next 60 years” with Barbara Grosz
(Harvard University) and Yejin Choi (University of Washington and Allen Institute for Artificial
Intelligence), moderated by Rada Mihalcea (University of Michigan);

e a keynote panel on “How can we support linguistic diversity?” led by Steven Bird (Charles
Darwin University), with panelists representing a variety of world languages, including (currently
confirmed) Teresa Lynn (Irish), Robbie Jimerson (Seneca), Heather Long (Creole languages), and
Manuel Mager (Wixaritari).

‘We further had two additional invited talk initiatives:

¢ Spotlight Talks by Young Research Stars (STIRS) by Eunsol Choi (University of Texas at Au-
stin), Ryan Cotterell (ETH Zurich), Sebastian Ruder (Google, London), Swabha Swayamdipta
(Allen Institute for Al), and Diyi Yang (Georgia Tech);

e Next Big Ideas Talks by Marco Baroni (Pompeu Fabra University), Eduard Hovy (The Univer-
sity of Melbourne and Carnegie Mellon University), Heng Ji (UIUC), Mirella Lapata (Universi-
ty of Edinburgh), Hang Li (Bytedance Technology), Dan Roth (University of Pennsylvania and
Amazon), and Thamar Solorio (University of Houston).
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Thank You

ACL 2022 is the result of a collaborative effort and a supportive community, and we want to acknowledge
the efforts of so many people who have made significant efforts into the organization of ACL 2022! First
of all, we would like to thank our Program Committee (the full list of names is quite long and it is
included in the Program Committee pages of the Proceedings):

Our awesome 82 Senior Area Chairs who were instrumental in every aspect of the review process,
from liaising with ARR, to supporting the implementation of a two-stage reviewing system, re-
commending Action Editors and reviewers, working on paper acceptance, and nomination of best
papers and outstanding reviewers. For all of them, this involved familiarizing themselves with a
new protocol to accommodate the integration of ARR reviews and a new system, and for many of
them, the scope of their responsibilities was equivalent to chairing a small conference.

The 363 ARR Action Editors (from the June—November ARR cycles), who had the role of ACL
2022 Area Chairs interacting with reviewers, leading paper review discussions, and writing meta-
reviews.

The 2,323 ARR reviewers (from the June—-November ARR cycles), who contributed for the ACL
2022 reviewing cycles, providing valuable feedback to the authors.

The emergency ARR Action Editors and reviewers, who provided their support at the last minute
to ensure a timely reviewing process.

The amazing ARR team, who collaborated in the challenge of managing and implementing the
ARR reviewing needed for the scale of ACL 2022. In particular, we acknowledge Amanda Stent
and Goran Glava$ as Guest ARR Editors-in-Chief for ACL 2022, Graham Neubig as Guest ARR
Chief Technical Officer for ACL 2022, and Sara Goggi as Guest ARR Editorial Manager for ACL
2022.

ACL 2022 counted on the contributions of many wonderful committees, including:

Our Best Paper Selection Committee, who selected the best papers and the outstanding papers:
Tim Baldwin, Kathleen McKeown, David Chiang, Min-Yen Kan, and Taro Watanabe.

Our Ethics Advisory Committee, chaired by Christiane Fellbaum and Su Lin Blodgett, for their
hard work to ensure that all the accepted papers addressed the ethical issues appropriately, under a
very tight schedule and on a new platform.

Our amazing Publication Chair Danilo Croce, our Handbook Chair Marco Polignano, the Techni-
cal OpenReview Chair Rodrigo Wilkens, and the Scheduler Chair Jordan Zhang, who jointly with
the NAACL 2022 Publication Chair, Ryan Cotterell, made an enormous contribution to the com-
munity by implementing the integration scripts for generating the proceedings, the handbook and
the schedule from the OpenReview platform.

Our Publicity Chairs Isabelle Augenstein, Emmanuele Chersoni, Diana Maynard, Soujanya Poria,
and Joel Tetreault, for their work on managing the communications on social media platforms.

The Internal Communications Chair Marcely Boito Zanon for streamlining the processes.

The wonderful Technical OpenReview Chair Rodrigo Wilkens, who went above and beyond to
ensure that the typical ACL conference functionalities were translated to a new environment.

We would also like to thank many people who helped us with various software used for the conference:

The ARR Tech team, in particular Sebastin Santy and Yoshitomo Matsubara, who served as Guest
ARR Tech Team for ACL 2022.



The OpenReview team, in particular Nadia .’Bahy, Celeste Martinez Gomez, and Melisa Bok,
who helped to implement the integration of ARR as a reviewing platform for ACL 2022.

The whole Underline team, in particular Sol Rosenberg, Jernej Masnec, Damira Mrsi¢, and Mateo
Antonic, who created a virtual site for the conference.

As Program chairs, we had to deal with many tasks, including handling new protocols and situations and
a new conference management environment. We would not be able to complete these tasks without the
advice from our colleagues, including

Our fantastic General Chair Bernardo Magnini, who provided invaluable support and feedback
throughout the whole process, including collaborating on the efforts to take on the challenge of
reengineering the conference reviewing processes and pipeline.

The Program Co-Chairs of NAACL 2022 Marine Carpuat, Marie-Catherine de Marneffe, and Ivan
Vladimir Meza Ruiz, and the NAACL 2022 General Chair, Dan Roth, for collaborating in the
challenge of coordinated adoption of ARR reviewing in a full scale for ACL 2022 and NAACL
2022.

The Program Co-Chairs of previous editions of *ACL conferences, in particular the ACL-IJCNLP
2021 PC chairs Roberto Navigli, Fei Xia, and Wenjie Li, as well as the EMNLP 2021 PC chairs Lu-
cia Specia, Scott Wen-tau Yih, and Xuanjing Huang for providing amazing guidance and support,
and sharing their experience and answering our many questions, often on short notice.

The ACL Executive Committee, especially Tim Baldwin (the ACL President), Rada Mihalcea (the
ACL Past President), Shiqi Zhao (Secretary), Priscilla Rasmussen (Business Manager), and the
members of the ACL executive committee for providing invaluable feedback and for helping us
sort through various issues.

The Computational Linguistics Editor-in-Chief Hwee Tou Ng, the TACL Editors-in-Chief Ani
Nenkova and Brian Roark, and the TACL Editorial Assistant Cindy Robinson, for coordinating the
Computational Linguistics and the TACL presentations at ACL 2022.

We would also like to thank all the authors who submitted/committed their work to ACL 2022. Although
we were only able to accept a small percentage of the submissions, your hard work makes this conference
exciting and our community strong. Our huge thanks goes to the *ACL communities for the kind and
patient support during a year of major changes in our submission and reviewing processes.

Last, but not least, we thank our students, interns, postdocs, colleagues, and families for being so under-
standing and supportive during this intense year, and especially when we were swamped by countless
conference deadlines and meetings. Our deepest gratitude is to all of you. We hope you will enjoy this
60th Anniversary edition of ACL.

Smaranda Muresan (Columbia University and Amazon AWS Al Labs, USA)
Preslav Nakov (Qatar Computing Research Institute, HBKU)
Aline Villavicencio (University of Sheffield, UK)

ACL 2022 Program Committee Co-Chairs
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Message from the Local Chairs

Back in March 2020, just after the first COVID-19 lockdown, we submitted our bid for Dublin to host
ACL 2022, conference that you are currently attending. In November 2020, we learned that our bid had
been successful, which we were of course delighted to hear. Of course, at that stage — and at many points
in between — we have wondered whether we would be able to meet face-to-face at all, and it is great
that we are able to host you in the wonderful city of Dublin where we are privileged to live, as well as
accommodating many of you online.

ACL is an opportunity to welcome not just our European friends and colleagues, but also those from
farther afield. Ireland punches above its weight in the areas of NLP and Machine Learning, principally
through the SFI-funded €100 million ADAPT Centre for Digital Content Technology, which comprises
experts from 4 local Dublin universities as well as 4 further universities from across the country in a
range of disciplines in Al. We have internationally renowned groups in machine translation, information
retrieval, speech technology, parsing and grammar Induction, among others, so we believe it is appro-
priate that ACL is being held in our country for the first time. We are of course grateful to everyone
who submitted a paper; whether your work was selected for presentation or not, if no-one had submitted,
we wouldn’t have had a conference. For those of you whose work was selected for presentation, many
thanks for coming to Dublin, or for presenting online.

Along the way, we have been helped greatly by the General Chair Bernardo Magnini, and by Priscilla
Rasmussen and others from the ACL executive team, to whom we are extremely thankful. However, by
far the biggest thanks are due to Greg Carew and his team in Abbey Conference and Events for their
professional support of the conference. You will have met them at registration, and they are available
throughout the event to ensure your needs are met. We have been engaging with them for 2 years now on
ACL, and for longer as they helped Andy host the MT Summit in 2019. We could not have made a better
choice of PCO to assist us with all the requirements involved in hosting the best-regarded conference in
our area. This has been a true partnership that has made this journey an enjoyable one.

We are also extremely grateful to Fdilte Ireland for their extremely generous support of this conference,
and to our PostDocs Guodong Xie & Pintu Lohar (with Andy at DCU), and Vasudevan Nedumpozhimana
& Filip Klubic¢ka (with John at TUD) for their huge efforts to recruit and manage the small army of
student volunteers. Finally, we really hope that you all enjoy the conference, that you benefit from
the excellent programme that has been assembled, and that you go away from here having made new
friends. We are fortunate indeed that many of our very best friends are in the computational linguistics
community, and we will try our very best to meet as many of you as possible during the event.

Andy Way (Dublin City University, Ireland)
John Kelleher (TU Dublin, Ireland)

Local Chairs, ACL 2022
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Keynote Talk: Language in the Human Brain

Angela D. Friederici
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Abstract: Language is considered to be a uniquely human faculty. The different aspects of the language
system, namely phonology, semantics and syntax have long been discussed with respect to their species-
specificity. Syntax as the ability to process hierarchical structures appears to be specific to humans. The
available neuroscientific data allow us to define the functional language network which involves Broca’s
area in the inferior frontal cortex and the posterior superior temporal cortex. Within this network, the
posterior part of Broca’s area plays a special role as it supports the processing of hierarchical syntactic
structures, in particular the linguistic computation Merge which is at the root of every language. This
part of Broca’s area is connected to the posterior temporal cortex via a dorsally located white matter
fiber tract hereby providing to structural basis for the functional interplay of these regions. It has been
shown that the maturation of this white matter pathway is directly correlated with the ability to process
syntactically complex sentences during human development. Moreover, this dorsal pathway appears to
be weak in the prelinguistic infant and in the non-human primate. These findings suggest that the dorsal
pathway plays a crucial role in the emergence of syntax in human language.

Bio: Angela D. Friederici is a cognitive neuroscientist in the domain of language. She is director at the
Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) in Leipzig, Germany and the
Founding director of this institution founded in 1994.

She graduated in linguistics and psychology at the University of Bonn (Germany) and spent a postdoc-
toral year at MIT (USA). She was a research fellow at the Max Planck Institute in Nijmegen (NL), at the
University Rene Descartes, Paris (F) and University of California, San Diego (USA). Prior to joining the
Max Planck Society as a director, she was professor for Cognitive Sciences at the Free University Berlin.
Friederici is honorary professor at the University of Leipzig (Psychology), the University of Potsdam
(Linguistics) and the Charité Universititsmedizin Berlin (Neurology) and she holds a Doctor honoris
causa from the University of Mons, Belgium. Between 2014 and 2020 she was Vice President for the
Human Sciences Section of the Max Planck Society.

Her main field of research is the neurobiology of language. She published about 500 scientific papers on
this topic in major international journals. She received a number of scientific awards: 1987 Heisenberg
Fellowship of the German Research Foundation, 1990 Alfried Krupp Award of the Alfried Krupp von
Bohlen and Halbach-Stiftung, 1997 Gottfried Wilhelm Leibniz Prize of the German Research Founda-
tion, and 2011 Carl Friedrich Gauss Medal of the Brunswick Scientific Society. She is member of the
Berlin-Brandenburg Academy of Sciences and Humanities, member of the national German Academy
of Sciences ’Leopoldina’ and member of the Academia Europaea.
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Keynote Fire-Side Chat with Barbara Grosz and Yejin Choi
on “The Trajectory of ACL and the Next 60 Years”

For the 60th Anniversary of ACL 2022, we will feature a keynote fire-side chat on “The Trajectory of
ACL and the Next 60 years” with two keynote talks in dialogue: Barbara Grosz and Yejin Choi followed
by a moderated discussion lead by Rada Mihalcea.

Remarks on What the Past Can Tell the Future

Barbara J. Grosz
Harvard University SEAS

Abstract: Research in computational linguistics and spoken language systems has made astonishing
progress in the last decade. Even so, the challenge remains of achieving human-level fluent dialogue
conversational capabilities beyond narrowly defined domains and tasks. Findings of earlier ACL times
research on dialogue hold some lessons for breaking the “dialogue boundary” in computational lingui-
stics yet again, if ways can be found to integrate them into deep-learning language models. These models
raise some of the most serious ethical challenges of current computing research and technologies. Ex-
panding their powers in this direction will raise more. In discussing these topics, I will raise questions
for Prof. Choi and our subsequent discussion.

Bio: Barbara J. Grosz is Higgins Research Professor of Natural Sciences in the Paulson School of En-
gineering and Applied Sciences at Harvard University. Her contributions to Al include fundamental
advances in natural-language dialogue processing and in theories of multi-agent collaboration as well
as innovative uses of models developed in this research to improve healthcare coordination and science
education. She co-founded Harvard’s Embedded EthiCS program, which integrates teaching of ethical
reasoning into core computer science courses. A member of the National Academy of Engineering,
the American Philosophical Society, and the American Academy of Arts and Sciences, she is a fellow
of several scientific societies and recipient of the 2009 ACM/AAAI Allen Newell Award, the 2015 1J-
CAI Award for Research Excellence, and the 2017 Association for Computational Linguistics Lifetime
Achievement Award.

2082: An ACL Odyssey
The Dark Matter of Intelligence and Language

Yejin Choi
Paul G. Allen School of Computer Science & Engineering at the University of Washington

Abstract: In this talk, I will wander around reflections on the past of ACL and speculations on the future
of ACL. This talk will be purposefully imaginative and accidentally controversial, by emphasizing on the
importance of deciphering the dark matter of intelligence, by arguing for embracing all the ambiguous
aspects of language at all pipelines of language processing, by highlighting the counterintuitive contin-
uum across language, knowledge, and reasoning, and by pitching the renewed importance of formalisms,
algorithms, and structural inferences in the modern deep learning era. Looking back, at the 50’th ACL,
I couldn’t possibly imagine that I would be one day giving this very talk. For that reason, I will also
share my personal anecdotes on the lasting inspirations from the previous lifetime achievement award
speeches, how I believe talent is made, not born, and the implication of that belief for promoting diversity
and equity.
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Bio: Yejin Choi is Brett Helsel Professor at the Paul G. Allen School of Computer Science & Engi-
neering at the University of Washington and a senior research manager at AI2 overseeing the project
Mosaic. Her research investigates commonsense knowledge and reasoning, neuro-symbolic integration,
neural language generation and degeneration, multimodal representation learning, and Al for social good.
She is a co-recipient of the ACL Test of Time award in 2021, the CVPR Longuet-Higgins Prize in 2021,
a NeurIPS Outstanding Paper Award in 2021, the AAAI Outstanding Paper Award in 2020, the Borg
Early Career Award in 2018, the inaugural Alexa Prize Challenge in 2017, IEEE AI’s 10 to Watch in
2016, and the ICCV Marr Prize in 2013.
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Keynote Panel: Supporting Linguistic Diversity

Chair: Steven Bird, Charles Darwin University

Panelists and languages represented:

e Robert Jimerson, Rochester Institute of Technology (Seneca, USA)

Fajri Koto, The University of Melbourne (Minangkabau, Indonesia)

Heather Lent, University of Copenhagen (Creole languages)

Teresa Lynn, Dublin City University (Irish)

Manuel Mager, University of Stuttgart (Wixaritari, Mexico)

Perez Ogayo, Carnegie Mellon University (Luo and Kiswabhili, Kenya)

How do the tools and techniques of computational linguistics serve the full diversity of the world’s lan-
guages? In particular, how do they serve the people who are still speaking thousands of local languages,
often in highly multilingual, post-colonial situations? This 60th meeting of the ACL features a special
theme track on language diversity with the goal of “reflecting and stimulating discussion about how the
advances in computational linguistics and natural language processing can be used for promoting lan-
guage diversity”. This keynote talk-panel will showcase the special theme and identify key learnings
from the conference. We hope this session will help to shape the future agenda for speech and language
technologies in support of global linguistic diversity. The session will be organised around a series of
questions under three headings.

Diverse Contexts. What is the situation of local languages where panel members are working? Are
there multiple languages with distinct functions and ideologies? What are the local aspirations for the
future of these languages. How are people advocating for language technology on the ground? How did
the work begin? What does success look like?

Understanding Risks. Do the people who provide language data fully understand the ways their da-
ta might be used in future, including ways that might not be in their interest? What benefit are local
participants promised in return for their participation, and do they actually receive these benefits? Are
there harms that come with language standardisation? What principles of doing no harm can we adopt?

New Challenges. How can we provide benefits of text technologies without assuming language stan-
dardisation, official orthography, and monolingual usage? When working with local communities, do
we always require data in exchange for technologies, or is a non-extractive NLP possible? How do we
decolonise speech and language technology? At the beginning of the International Decade of Indigenous
Languages 2022-2032, we ask: how do we respond as a community, and how can our field be more
accessible to indigenous participation?
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Abstract

We introduce BitFit, a sparse-finetuning
method where only the bias-terms of the model
(or a subset of them) are being modified. We
show that with small-to-medium training data,
applying BitFit on pre-trained BERT models is
competitive with (and sometimes better than)
fine-tuning the entire model. For larger data,
the method is competitive with other sparse
fine-tuning methods. Besides their practical
utility, these findings are relevant for the ques-
tion of understanding the commonly-used pro-
cess of finetuning: they support the hypothesis
that finetuning is mainly about exposing knowl-
edge induced by language-modeling training,
rather than learning new task-specific linguistic
knowledge.

1 Introduction

Large pre-trained transformer based language mod-
els, and in particular bidirectional masked language
models from the BERT family (Devlin et al., 2018;
Liu et al., 2019; Joshi et al., 2019), are responsible
for significant gains in many NLP tasks. Under
the common paradigm, the model is pre-trained
on large, annotated corpora with the LM objec-
tive, and then finetuned on task-specific supervised
data. The large size of these models make them
expensive to train and, more importantly, expensive
to deploy. This, along with theoretical questions
on the extent to which finetuning must change the
original model, has led researchers to consider fine-
tuning variants where one identifies a small subset
of the model parameters which need to be changed
for good performance in end-tasks, while keeping
all others intact (§2).

We present a simple and effective approach to
fine tuning (§3), which has the following benefits:

1. Changing very few parameters per fine-tuned
task.

2. Changing the same set of parameters for every
tasks (task-invariance).

1

3. The changed parameters are both isolated and
localized across the entire parameter space.

4. For small to medium training data, changing
only these parameters reaches the same task
accuracy as full fine-tuning, and sometimes
even improves results.

Specifically, we show that freezing most of the
network and fine-tuning only the bias-terms is
surprisingly effective. Moreover, if we allow the
tasks to suffer a small degradation in performance,
we can fine-tune only two bias components (the
“query” and “middle-of-MLP” bias terms), amount-
ing to half of the bias parameters in the model, and
only 0.04% of all model parameters.

This result has a large practical utility in de-
ploying multi-task fine-tuned models in memory-
constrained environments, as well as opens the way
to trainable hardware implementations in which
most of the parameters are fixed. Additionally, it
opens up a set of research directions regarding the
role of bias terms in pre-trained networks, and the
dynamics of the fine-tuning process.

2 Background: fine-tuning and
parameter-efficient fine-tuning

In transfer-learning via model fine-tuning, a pre-
trained encoder network takes the input and pro-
duces contextualized representations. Then, a task-
specific classification layer (here we consider linear
classifiers) is added on top of the encoder, and the
entire network (encoder+task specific classifiers) is
trained end-to-end to minimize the task loss.
Desired properties. While fine-tuning per-task
is very effective, it also results in a unique, large
model for each pre-trained task, making it hard to
reason about what was changed in the fine-tuning
process, as well as hard to deploy, especially as the
number of tasks increases. Ideally, one would want
a fine-tuning method that:

(1) matches the results of a fully fine-tuned model;
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(i1) changes only a small portion of the model’s
parameters; and (iii) enables tasks to arrive in a
stream, instead of requiring simultaneous access to
all datasets. For efficient hardware based deploy-
ments, it is further preferred that (iv): the set of
parameters that change values is consistent across
different tasks.

Learning vs. Exposing. The feasibility of fulfill-
ing the above requirements depends on a fundamen-
tal question regarding the nature of the fine-tuning
process of large pre-trained LMs: to what extent
does the fine-tuning process induces the learning of
new capabilities, vs. the exposing of existing capa-
bilities, which were learned during the pre-training
process.

Existing approaches. Two recent works have
demonstrated that adaptation to various end-tasks
can in fact be achieved by changing only a small
subset of parameters. The first work, by Houlsby
et al. (2019) (“Adapters”), achieves this goal by in-
jecting small, trainable task-specific “adapter” mod-
ules between the layers of the pre-trained model,
where the original parameters are shared between
tasks. The second work, by Guo et al. (2020)
(“Diff-Pruning”), achieves the same goal by adding
a sparse, task-specific difference-vector to the orig-
inal parameters, which remain fixed and are shared
between tasks. The difference-vector is regular-
ized to be sparse. Both methods allow adding only
a small number of trainable parameters per-task
(criteria ii), and each task can be added without
revisiting previous ones (criteria iii).

They also partially fulfill criteria (i), suffering
only a small drop in performance compared to full
fine-tuning. The Adapter method, but not the Diff-
Pruning method, also supports criteria (iv). How-
ever, Diff-Pruning is more parameter efficient than
the Adapter method (in particular, it adds no new
parameters), and also achieves better task scores.
We compare against Diff-Pruning and Adapters in
the experiments section, and show that we perform
favorably on many tasks while also satisfying crite-
ria (iv).

3 Bias-terms Fine-tuning (BitFit)

We propose a method we call BitFit! (BIas-Term
FIne-Tuning), in which we freeze most of the
transformer-encoder parameters, and train only the
bias-terms and the task-specific classification layer.

'Our code is publicly available at www . github.com/
benzakenelad/BitFit

BitFit has three key properties: (i) match the re-
sults of fully fine-tuned model. (ii) enable tasks
to arrive in a stream, this way it does not require
simultaneous access to all datasets. (iii) fine-tune
only a small portion of the model’s parameters.

The approach is parameter-efficient: each new
task requires storing only the bias terms parameter
vectors (which amount to less than 0.1% of the
total number of parameters), and the task-specific
final linear classifier layer.

Concretely, the BERT encoder is composed of
L layers, where each layer ¢ starts with M self-
attention heads, where a self attention head (m, ¢)
has key, query and value encoders, each taking the
form of a linear layer:

Qm,f(x) _ Wgn,,éx + b'(r]n,,é

K™ (x) = W 'x + b}t

Vm,f(x> _ W:}n.ﬁx + b,:/,””é
Where x is the output of the former encoder layer
(for the first encoder layer x is the output of the
embedding layer). These are then combined using

an attention mechanism that does not involve new
parameters:

h? — att(Ql’é, K1,€7 Vl,ﬁ’ " (‘Qm,f7 Km,Z’ Vm,l)
and then fed to an MLP with layer-norm (LN):

hg:Dropout(WZ ‘hY + b ) @

mq mi

hf +x) — )
(20)M+bKLN1 2)

hi = GELU(W!_ -h{ + bl ) 3

hﬁ = Dropout(Van3 ‘hfl + bfm) 4)

(hf +h§) — p
o2

¢ ¢
hy; =gy, ©

out’ = geLN2 ® + ngQ ®))

é,()

The collection of all matrices W 0 and vectors

gf_), bffg'), indicated in blue and purple are the net-
work’s parameters ©, where the subset of purple
vectors sz(‘) are the bias terms.”

The bias terms are additive, and correspond to a
very small fraction of the network, in BERTgasg
and BERT} srgg bias parameters make up 0.09%
and 0.08% of the total number of parameters in
each model, respectively.

We show that by freezing all the parameters
W) and g() and fine-tuning only the additive

*In Appendix §A.1 we relate this notation with parameter
names in HuggingFace implementation.



%Param  QNLI SST-2 MNLI, MNLIL,, CoLA MRPC STS-B RTE QQP Avg.
Train size 105k 67k 393k 393k 8.5k 3.7k 7k 2.5k 364k

(V) Full-FT 100% 93.5 94.1 86.5 87.1 62.8 91.9 89.8 71.8 87.6 84.8
(V) Full-FT 100% 91.74£0.1 934402 855+04 85.7+0.4 62.2+1.2 90.7£0.3 90.0+0.4 71.9+1.3 87.5+04 84.1
(V) Diff-Prunef 0.5% 93.4 94.2 86.4 86.9 63.5 91.3 89.5 71.5 86.6 84.6
(V) BitFit 0.08%  91.4+£24 932404 844402 848+0.1 63.6+0.7 91.7+0.5 90.3+£0.1 73.24+3.7 85.4+0.1 842
(T) Full-FT§ 100% 91.1 94.1 86.7 86.0 59.6 88.9 86.6 71.2 71.7 81.2
(T) Full-FTf} 100% 93.4 94.9 86.7 85.9 60.5 89.3 87.6 70.1 72.1 81.8
(T) Adapters} 3.6% 90.7 94.0 84.9 85.1 59.5 89.5 86.9 71.5 71.8 81.1
(T) Diff-Prunef 0.5% 93.3 94.1 86.4 86.0 61.1 89.7 86.0 70.6 71.1 81.5
(T) BitFit 0.08% 92.0 94.2 84.5 84.8 59.7 88.9 85.5 72.0 70.5 80.9

Table 1: BERT| arge model performance on the GLUE benchmark validation set (V) and test set (T). Lines with |

and I indicate results taken from Guo et al. (2020) and Houlsby et al. (2019) (respectively).

bias terms b("), we achieve transfer learning perfor-
mance which is comparable (and sometimes bet-
ter!) than fine-tuning of the entire network,

We also show that we can fine-tune only a subset
of the bias parameters, namely those associated
with the query and the second MLP layer (only
b<(1'> and b7<7122 ), and still achieve accuracies that
rival full-model fine-tuning.

4 Experiments and Results

Datasets. We evaluate BitFit on the GLUE bench-
mark (Wang et al., 2018).%> Consistent with previ-
ous work (Houlsby et al., 2019; Guo et al., 2020)
we exclude the WNLI task, on which BERT models
do not outperform the majority baseline.

Models and Optimization. We use the publicly
available pre-trained BERTgasg, BERT argE (De-
vlin et al., 2018) and RoBERTagssg (Liu et al.,
2019) models, using the HuggingFace (Wolf et al.,
2020) interface and implementation.

Appendix §A.2 lists optimization details.
Comparison to Diff-Pruning and Adapters (Ta-
ble 1) In the first experiment, we compare Bit-
Fit to Diff-Pruning method and Adapters method,
when using a fewer number of parameters. Table 1
reports the dev-set and test-set performance com-
pared to the Diff-Pruning and Adapters numbers
reported by Guo et al. (2020) and Houlsby et al.
(2019) (respectively). This experiment used the
BERTL ARGE model.

On validation set, BitFit outperforms Diff-
Pruning on 4 out of 9 tasks, while using 6x fewer
trainable parameters . As for test-set results, two
clear wins compared to Diff-Pruning and 4 clear
wins compared to Adapters while using 45x fewer
trainable parameters.

3 Appendix §A.3 lists the tasks and evaluation metrics.
*QNLI results are not directly comparable, as the GLUE
benchmark updated the test set since then.
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Figure 1: Change in bias components (RTE task).

Different Base-models (Table 2) We repeat
the BERT arGg results on different base-models
(the smaller BERTgasg and the better performing
RoBERTagasg). The results in Table 2 show that
the trends remain consistent.

Are bias parameters special? Are the bias pa-
rameters special, or will any random subset do? We
randomly sampled the same amount of parameters
as in BitFit from the entire model, and fine-tuned
only them (“rand uniform” line in Table 3). The
results are substantially worse across all tasks; sim-
ilar patterns are observed when the random param-
eters are sampled as complete rows/columns in the
parameter matrices (‘“rand row/col” line in Table
3).

Fewer bias parameters (Table 3) Can we fine-
tune on only a subset of the bias-parameter?

We define the amount of change in a bias vector
b to be ﬁ(b) |bg — brl|;, that is, the average
absolute change, across its dimensions, between the
initial LM values by and its fine-tuned values bpg.
Figure 1 shows the change per bias term and layer,
for the RTE task (other tasks look very similar,
see Appendix §A.4). The ‘key’ bias by has zero



Method %Param  QNLI SST-2 MNLI,, MNLInm  CoLA MRPC STS-B RTE QQP Avg.
BB Full-FT 100% 90.7+0.2 92.0+£04 83.5+0.1 83.7+0.3 56.4+09 89.0£1.0 88.9+0.7 70.5+0.6 87.1+0.1 82.3
BB BitFit 0.09%  90.2+0.2 92.1+0.3 81.4+0.2 82.24+0.2 58.8+0.5 90.4+0.5 89.2+0.2 72.3+0.9 84.0+0.2 82.4
BL Full-FT 100% 91.7+£0.1 93.4+0.2 85.5+:04 857+04 622412 90.7£03 90.0+04 71.9+1.3 87.5+04 84.1
BL BitFit 0.08% 914424 932404 84.4+02 84.8+0.1 63.6+0.7 91.7+£0.5 90.3+0.1 73.2+3.7 854+0.1 84.2
Ro Full-FT 100% 92.3+0.2 94.2+04 86.4+0.3 86.9+0.3 61.1+0.8 92.5+04 90.6+0.2 77.4+1.0 88.0+0.2 853
Ro  BitFit 0.09%  91.3+£0.2 93.7+0.1 84.8+0.1 852+0.2 61.8+41.3 92.0+04 90.8+0.3 77.8+1.7 84.5+0.2 84.6

Table 2: Dev-set results for different base models. BB: BERTgasg. BL: BERT Arge. Ro: ROBERTagasE.

% Param  QNLI SST-2 MNLI,, MNLI,n CoLA MRPC STS-B RTE QQP Avg.
Full-FT 100% 90.7+£0.2 92.0+04 83.5+0.1 83.7£0.3 56.4+09 89.0£1.0 88.9+0.7 70.5+0.6 87.1£0.1 823
BitFit 0.09% 90.2+0.2 92.1+0.3 81.4+02 822+0.2 58.84+0.5 90.4+0.5 89.24+0.2 72.3+0.9 84.0+0.2 824
b2, by 0.04% 89.4+0.1 91.2+0.2 80.4+0.2 81.5+0.2 57.4+0.8 89.0+£0.2 88.4+0.1 68.6£0.6 83.7£0.2 8l.1
b 0.03% 88.9+0.1 91.1+£0.3 79.9+03 80.7£0.2 54.9+£0.9 87.9+0.6 88.2+0.1 66.8+0.6 82.1+04 80.0
b, 0.01% 86.8+0.1 89.6+£0.2 744403 757+£0.2 49.1+1.5 844402 85.6+0.1 61.4+1.1 80.6+£04 76.6
Frozen 0.0% 68.7+0.3 81.7£0.1 42.4+0.1 43.840.1 31.9£1.1 81.1£0.1 71.44+0.1 56.9+04 62.4+£0.2 62.1
rand uniform 0.09% 87.8£0.3 90.5+£0.3 78.3+03 78.8+0.2 54.1£1.0 84.3+03 87.2+0.4 62.9+0.9 824+03 785
rand row/col 0.09% 88.4+0.2 91.0+£03 794403 80.1+£0.3 53.4+0.6 88.0+0.7 87.9+£0.2 65.1+£0.7 823+£02 795

Table 3: Fine-tuning using a subset of the bias parameters. Reported results are for the BERTgasg model.

change, consistent with the theoretical observation
in Cordonnier et al. (2020). In contrast, b, the bias
of the queries, and b,,,2, the bias of the intermediate
MLP layers (which take the input from 768-dims
to 3072), change the most. Table 3 reports dev-
set results when fine-tuning only the b((]'> and bg,'gz
bias terms, for the BERTgasg model. Results are
only marginally lower than when tuning all bias
parameters. Tuning either b.” or b,(732 alone yields
substantially worse results, indicating both bias
types are essential. As expected, using a frozen

BERTgAsE model yields much worse results.

Generalization gap. While in most cases full
fine-tuning reaches nearly 100% train accuracy, we
find that the generalization gap (Shalev-Shwartz
and Ben-David, 2014)—the difference between
training error and test error—is substantially
smaller for the BitFit models.

Token-level tasks. The GLUE tasks are all sen-
tence level. We also experimented with token-level
PTB POS-tagging. Full-FT results for BERTpASE,
BERT orge and RoBERTagasg are 97.2, 97.4,
97.2, while BitFit results are 97.2, 97.4, 97.1.

Size of training data. The GLUE results suggest
a reverse correlation between BitFit ability to reach
Full-FT performance, and training set size. To test
this (and to validate another token-level task), we
train on increasing-sized subsets of SQuAD v1.0
Rajpurkar et al. (2016a). The results on Figure
2 show a clear trend: BitFit dominates over Full-
FT in the smaller-data regime, while the trend is
reversed when more training data is available. We

70
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Figure 2: Comparison of BitFit and Full-FT with
BERTgasE exact match score on SQuAD validation set.

conclude that BitFit is a worthwhile targetted fine-
tuning method in small-to-medium data regimes.

5 Related Work

The problem of identifying the minimal set of pa-
rameters that need to be fine-tuned to achieve good
performance in end-tasks relates both to practi-
cal questions of model compression, and also to
more fundamental question on the nature of the
pre-training and finetuning process, the “linguis-
tic knowledge* induced by each of them, and the
extent to which it generalizes to different tasks.

Over-parameterization Large LM models were
shown to be over-parameterized: they contain
more parameters than needed in inference (Bucilud
et al., 2006; Hinton et al., 2015; Urban et al., 2017;
Karnin, 1990; Reed, 1993; Augasta and Kathir-
valavakumar, 2013; Liu et al., 2014; Han et al.,
2015; Molchanov et al., 2017). Gordon et al. (2020)
have demonstrated that overparmeterization can be
exploited in finetuning: pruned network perform



well in transfer setting. We work in a complemen-
tary setting, where the entire model is kept, but
only some parameters are updated. The remarkable
success of those works have sparked interest the
lottery-ticket hypothesis (Frankle and Carbin, 2019;
Chen et al., 2020; Prasanna et al., 2020): the con-
jecture that large models are needed in pretraining
only to induce (in high probability) the existing of
sub-networks initialized with the correct inductive
bias for learning, and the findings that those sparse
networks often transfer well to different tasks.
Bias terms Bias terms and their importance
are rarely discussed in the literature.’> Zhao
et al. (2020) describe a masking-based fine-tuning
method, and explicitly mention ignoring the bias
terms, as handling them “did not observe a positive
effect on performance”.

An exception is the work of Wang et al. (2019)
who analyzed bias terms from the perspective of
attribution method. They demonstrate that the
last layer bias values are responsible for the pre-
dicted class, and propose a way to back-propagate
their importance. Michel and Neubig (2018) fine-
tuned the biases of the output softmax in an NMT
systems, to personalize the output vocabulary,
and Frankle et al. (2020) have demonstrated that
randomly-initialized CNNs achieve reasonable ac-
curacy after training the batch-norm layers alone.
Finally, and closest to our work, Cai et al. (2020)
demonstrate that bias-only fine-tuning similar to
ours is effective also for adaptation of pre-trained
computer vision models. Our work empirically
shows the importance and power of the bias param-
eters to substantially change the networks’ behav-
ior, calling for further analysis and attention on the
bias terms.

6 Conclusions

We propose BitFit, a novel method for localized,
fast fine-tuning of pre-trained transformers for end-
tasks. The method focuses the finetuning on a spe-
cific fraction of the model parameters—the biases—
and maintains good performance in all GLUE tasks
we evaluated on. The focus on modifying a small
group of parameters eases deployment, as the vast
majority of the parameters of the model are shared
between various NLP tasks. It also allows for ef-
ficient hardware implementations that hard-wire

>Indeed, the equations in the paper introducing the Trans-
former model (Vaswani et al., 2017) do not include bias terms

at all, and their existence in the BERT models might as well
be a fortunate mistake.

most of the network computation with the pre-
trained weights, while only allowing few change-
able parts for inference time.

Besides its empirical utility, the remarkable ef-
fectiveness of bias-only fine-tuning raises intrigu-
ing questions on the fine-tuning dynamics of pre-
trained transformers, and the relation between the
bias terms and transfer between LM and new tasks.
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A Appendices

A.1 Layer naming

For convenience, we relate the notation used in the
paper with the names of the corresponding parame-
ters in the popular HuggingFace (Wolf et al., 2020)
implementation.

HuggingFace Parameter Name BitFit notation
attention.self.query.bias b,
attention.self key.bias by
attention.self.value.bias b,
attention.output.dense.bias b,
attention.output.LayerNorm.bias by,
intermediate.dense.bias b,
output.dense.bias b,
output.LayerNorm.bias brn,

Table 4: Mapping the HuggingFace’s BertLayer bias
parameters names to BitFit paper bias notation.

A.2 Training Details

To perform classification with BERT, we follow the
approach of Devlin et al. (2018), and attach a linear
layer to the contextual embedding of the [CLS]
token to predict the label. The GLUE tasks are fed
into BERT using the standard procedures.

We optimize using AdamW (Loshchilov and Hut-
ter, 2017), with batch sizes of 16. For full fine-
tuning, we used initial learning rates in {1e-5, 2e-5,
3e-5, 5e-5}, and for the bias-only experiments we
used initial learning rates in {le-4, 4e-4, 7e-4, le-
3} as the smaller rates took a very long time to
converge on some of the tasks. With the larger
learning rates, the bias-only fine-tuning converged
in 8 or fewer epochs for most tasks, and up to 20
epochs on the others. We did not perform hyper-
parameter optimization beyond the minimal search
over 4 learning rates. In each evaluation we report
X+Y where X is the average result for training
5 models with 5 different random seeds, Y is the
standard deviation.

To perform classification with ROBERTagasg, we
follow the above details but without hyperparam-
eter search over the learning rates, for bias-only
fine-tuning we used le-4 as learning rate and for
full fine-tuning we used le-5 as learning rate.

As Mosbach et al. (2020) show, fine-tuning
BERT arge and RoBERTagasE is a unstable due
to vanishing gradients. BitFit allows for the usage
of bigger learning rates, and overall the optimiza-
tion process is much more stable, when compared

Task Name Metric

QNLI acc.

SST-2 acc.

MNLI matched acc./mismatched acc.
CoLA Matthews corr.

MRPC F1

STS-B Spearman corr.

RTE acc.

QQpP F1

Table 5: Metrics that we use to evaluate GLUE Bench-
mark.

Task Name BERTB ASE BERTL ARGE
QNLI le-4 Te-4
SST-2 4e-4 4e-4
MNLI le-4 le-4
CoLA Te-4 4e-4
MRPC Te-4 le-3
STS-B le-4 le-4
RTE le-3 4e-4
QQP de-4 Je-4

Table 6: Learning rate configurations for best perform-
ing models.

with a full fine-tuning.

A.3 GLUE Benchmark

We provide information on the GLUE tasks we
evaluated on, as well as on the evaluation metrics.
We test our approach on the following subset of
the GLUE (Wang et al., 2018) tasks: The Corpus
of Linguistic Acceptability (CoLA; Warstadt et al.
(2018)), The Stanford Sentiment Treebank (SST-
2; Socher et al. (2013)), The Microsoft Research
Paraphrase Corpus (MRPC; Dolan and Brockett
(2005)), The Quora Question Pairs (QQP; Iyer et al.
(2017)), The Semantic Textual Similarity Bench-
mark (STS-B; Cer et al. (2017)), The Multi-Genre
Natural Language Inference Corpus (MNLI; Bow-
man et al. (2015)), The Stanford Question Answer-
ing Dataset (QNLI; Rajpurkar et al. (2016b)) and
The Recognizing Textual Entailment (RTE; Dagan
et al. (2005)).

The metrics that we used to evaluate GLUE
Benchmark are in Table 5. Learning rate config-
urations for best performing models are in Table
6. For all the experiments we used the common
train:dev:test partition of GLUE.

A.4 Amount of change in bias terms
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A.5 SQuAD F1 Results
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Figure 6: Comparison of BitFit and Full-FT with
BERTgasg F1 score on SQuAD validation set.
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Abstract

Existing self-explaining models typically fa-
vor extracting the shortest possible rationales
— snippets of an input text “responsible for’
corresponding output — to explain the model
prediction, with the assumption that shorter ra-
tionales are more intuitive to humans. How-
ever, this assumption has yet to be validated. Is
the shortest rationale indeed the most human-
understandable? To answer this question, we
design a self-explaining model, LmiTeEDINK,
which allows users to extract rationales at any
target length. Compared to existing base-
lines, LimitepInk achieves compatible end-
task performance and human-annotated ratio-
nale agreement, making it a suitable represen-
tation of the recent class of self-explaining
models. We use LimiTepINk to conduct a user
study on the impact of rationale length, where
we ask human judges to predict the sentiment
label of documents based only on LimiTEDINK-
generated rationales with different lengths. We
show rationales that are too short do not help
humans predict labels better than randomly
masked text, suggesting the need for more
careful design of the best human rationales.'

s

1 Introduction

While neural networks have recently led to large
improvements in NLP, most of the models make
predictions in a black-box manner, making them
indecipherable and untrustworthy to human users.
In an attempt to faithfully explain model decisions
to humans, various work has looked into extract-
ing rationales from text inputs (Jain et al., 2020;
Paranjape et al., 2020), with rationale defined as
the “shortest yet sufficient subset of input to predict
the same label” (Lei et al., 2016; Bastings et al.,
2019). The underlying assumption is two-fold: (1)
by retaining the label, we are extracting the texts
used by predictors (Jain et al., 2020); and (2) short

'Find open-source code at: https://github.com/

huashen218/LimitedInk.git
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A1l Rationale Length A2 Rationale Generation Prediction Score A3

k=10% It's not life - affirming -- its vulgar and mean , but I liked it . Y=Neg

k=20% 1t 's not life -

affirming -- its vulgar and mean , but I liked it . Y=
Good Explanation (A4)

k=30% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=

k=40% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=

k=50% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=
(A) Control on Rationale Length
B1 Context-Independent Rationale
Input X It's not life - affirming -- its vulgar and mean , but I liked it . Y=
© IDENTIFIER
v YyYvY ¥ ¥ ¥ YYY v
[ N A |

':B-i’:IWith Contextual Information

YYYy ¥Yyw

Input X It's not life - affirming - its vulgar and mean , but I liked it . Y=

¥ ¥ ¥V V¥ ¥

O OEEE

T A v vMax v
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(B) Contextual Rationale Generation

€1) No Continulty (C) Continuity Regularization

k=40% 1t 's not life - affirming -- its vulgar and mean , but I liked it . Y=
(€2) with continuity
k=40% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=

Figure 1: LivitepINk’s rationale generation with length
control: (A) control rationale generation with different
lengths; (B) incorporating contextual information into
rationale generation; (C) regularizing continuous ratio-
nale for human interpretability. Examples use the SST
dataset for sentiment analysis (Socher et al., 2013).

rationales are more readable and intuitive for end-
users, and thus preferred for human understand-
ing (Vafa et al., 2021). Importantly, prior work
has knowingly traded off some amount of model
performance to achieve the shortest possible ratio-
nales. For example, when using less than 50% of
text as rationales for predictions, Paranjape et al.
(2020) achieved an accuracy of 84.0% (compared
to 91.0% if using the full text). However, the as-
sumption that the shortest rationales have better
human interpretability has not been validated by

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 10 - 19
May 22-27, 2022 (©)2022 Association for Computational Linguistics



human studies (Shen and Huang, 2021). Moreover,
when the rationale is too short, the model has much
higher chance of missing the main point in the full
text. In Figure 1A, although the model can make
the correct positive prediction when using only 20%
of the text, it relies on a particular adjective, “life-
affirming,” which is seemingly positive but does
not reflect the author’s sentiment. These rationales
may be confusing when presented to end-users.

In this work, we ask: Are shortest rationales re-
ally the best for human understanding? To answer
the question, we first design LmvitepInk, a self-
explaining model that flexibly extracts rationales
at any target length (Figure 1A). LivitepInk allows
us to control and compare rationales of varying
lengths on input documents. Besides controls on
rationale length, we also design LiviTepINK’s sam-
pling process and objective function to be context-
aware (i.e., rank words based on surrounding con-
text rather than individually, Figure 1B;) and co-
herent (i.e., prioritize continuous phrases over dis-
crete tokens, Figure 1C,). Compared to existing
baselines (e.g., Sparse-IB ), LimitepINk achieves
compatible end-task performance and alignment
with human annotations on the ERASER (DeY-
oung et al., 2020) benchmark, which means it can
represent recent class of self-explaining models.

We use LimitepInk to conduct user studies to
investigate the effect of rationale length on human
understanding. Specifically, we ask MTurk par-
ticipants to predict document sentiment polarities
based on only LimitepINk-extracted rationales. By
contrasting rationales at five different length lev-
els, we find that shortest rationales are largely not
the best for human understanding. In fact, humans
do not perform better prediction accuracy and con-
fidence better than using randomly masked texts
when rationales are too short (e.g., 10% of input
texts). In summary, this work encourages a rethink-
ing of self-explaining methods to find the right
balance between brevity and sufficiency.

2 LmrepInk

2.1 Self-Explaining Model Definition

We start by describing typical self-explaining meth-
ods (Lei et al., 2016; Bastings et al., 2019; Paran-
jape et al., 2020). Consider a text classification
dataset containing each document input as a tu-
ple (x,y). Each input x includes n features (e.g.,
sentences or tokens) as x [x1,x2, ..., x,], and
y is the prediction. The model typically consists
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of an identifier idn(-) to derive a boolean mask
m = [my,my,...,m,], where m; € {1,0} indicates
whether feature x; is in the rationale or not. Note
that the mask m is typically a binary selection
from the identifier’s probability distribution, i.e.,
m ~ idn(x). Then it extracts rationales z by
z = m O X, and further leverages a classifier cls(-)
to make a prediction y based on the identified ratio-
nales as y = cls(z). The optimization objective is:
min  Eyeianeo L(€ls(2), )+ AQ(m)
=

Bidn,Ocls )
sufficient prediction ~ regularization

where 6ign and s are trainable parameters of iden-
tifier and classifier. Q(m) is the regularization func-
tion on mask and A is the hyperparameter.

2.2 Generating Length Controllable
Rationales with Contextual Information

We next elaborate on the definition and method of
controlling rationale length in LimiTEDINK Assum-
ing that the rationale length is & as prior knowledge,
we enforce the generated boolean mask to sum up
to kas k = 37, (m;), where m = idn(x, k). Exist-
ing self-explaining methods commonly solve this
by sampling from a Bernoulli distribution over in-
put features, thus generating each mask element m;
independently conditioned on each input feature
x; (Paranjape et al., 2020). For example, in Fig-
ure 1B)), “life affirming” is selected independent
of the negation context “not” before it, which con-
tradicts with the author’s intention. However, these
methods potentially neglect the contextual input
information. We leverage the concrete relaxation
of subset sampling technique (Chen et al., 2018)
to incorporate contextual information into ratio-
nale generation process (see Figure 1B;), where
we aim to select the top-k important features over
all n features in input x via Gumbel-Softmax Sam-
pling (i.e., applying the Gumbel-softmax trick to
approximate weighted subset sampling process).
To further guarantee precise rationale length con-
trol, we deploy the vector and sort regularization
on mask m (Fong et al., 2019). See more model
details in Appendix A.1.

2.3 Regularizing Rationale Continuity

To further enforce coherent rationale for human
interpretability, we employ the Fused Lasso to en-
courage continuity property (Jain et al., 2020; Bast-
ings et al., 2019). The final mask regularization is:

n
Qm) = 4 E |m; — m;_{| +A, || vecsort (m) — ||
. R A———
i=1
—_—
Continuity

Length Control



Method Movies BoolQ Evidence Inference MultiRC FEVER
Task P R F1|Task P R Fl1|Task P R Fl |Task P R Fl|Task P R Fl
Full-Text| 91 - - - | 47 - - -] 48 - - -]67 - - -]8 - - -
Sparse-N| .79 .18 .36 24| 43 .12 .10 .11| 39 .02 .14 .03 | .60 .14 .35 20| .83 .35 49 41
Sparse-C| .82 .17 36 23| 44 .15 .11 .13| 41 .03 .15 05| .62 .15 41 22| 83 .35 .52 42
Sparse-IB| .84 .21 42 28| 46 .17 .15 .15| 43 .04 21 07| .62 .20 .33 25| .85 .37 .50 .43
LmvirepInk | 90 .26 .50 34| .56 .13 .17 15| .50 .04 .27 07| .67 .22 40 .28| 90 .28 .67 .39

Length Level 50% 30% 50% 50% 40%

Table 1: LimitepInk performs compatible with baselines in terms of end-task performance (Task, weighted average
F1) and human annotated rationale agreement (Precision, Recall, F1). All results are on test sets and are averaged
across five random seeds. For LimitepINk, we report results for the best performing length level.

For BERT-based models, which use subword-
based tokenization algorithms (e.g., WordPiece),
we assign each token’s importance score as its sub-
tokens’ maximum score to extract rationales during
model inference (see Figure 1C).

3 Model Performance Evaluation

We first validate LimiteEpINk on two common ratio-
nale evaluation metrics, including end-task perfor-
mance and human annotation agreement.

3.1 Experimental Setup

We evaluate our model on five text classification
datasets from the ERASER benchmark (DeYoung
et al., 2020). We design the identifier module
in LimitepInk as a BERT-based model, followed
by two linear layers with the ReLU function and
dropout technique. The temperature for Gumbel-
softmax approximation is fixed at 0.1. Also, we
define the classifier module as a BERT-based se-
quence classification model to predict labels. We
train five individual self-explaining models of dif-
ferent rationale lengths with training and validation
sets, where we set the rationale lengths as {10%,
20%, 30%, 40%, 50%} of all input text. Then we
select one out of the five models, which has the best
weighted average F1 score, to compare with cur-
rent baselines on end-task performance and human
annotation agreement on test sets. Note that we
use all models with five rationale lengths in human
evaluation described in Section 4.

Baselines. We compare LimitepInk with four
baselines. Full-Text consists of only the clas-
sifier module with full-text inputs. Sparse-N en-
forces shortest rationales by minimizing rationale
mask length (Lei et al., 2016; Bastings et al., 2019).
Sparse-C controls rationale length by penalizing
the mask when its length is less than a thresh-
old (Jain et al., 2020). Sparse-IB enables length
control by minimizing the KL-divergence between
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the generated mask with a prior distribution (Paran-
jape et al., 2020). See Appendix A.l1 for more
model and baseline details.

3.2 Evaluation Results

End-Task Performance. Following metrics
in DeYoung et al. (2020), we report the weighted
average F1 scores for end-task classification
performance. Among five LivitenINk models
with different rationale lengths, Table 1 reports
the model with the best end-task performance on
the test set. We observe that LimiTebINk performs
similarly to or better than the self-explaining
baselines in all five datasets. See ablation studies
in Appendix A.2.

Human-Annotated Rationale Agreement. We
calculate the alignment between generated ratio-
nales and human annotations collected in the
ERASER benchmark (DeYoung et al., 2020). As
also shown in Table 1, we report the Token-level
F1 (F1) metric along with corresponding Precision
(P) and Recall (R) scores. The results show that
LivitepInk can generate rationales that are consis-
tent with human annotations and comparable to
self-explaining baselines in all datasets.

4 Human Evaluation

Equipped with LiMiTEDINK, we next carry out hu-
man studies to investigate the effect of rationale
length on human understanding.

4.1 Study Design

Our goal is to quantify human performance on pre-
dicting the labels and confidence based solely on
the rationales with different lengths. To do so, we
control LiMITEDINK to extract rationales of differ-
ent lengths, and recruit Mechanical Turk (MTurk)
workers to provide predictions and confidence.

Dataset & rationale extraction. We focus on
sentiment analysis in user study, and randomly sam-
ple 100 reviews from the Movie Reviews (Zaidan



Part of Movie Review

pa— now he tries his hand at writing . ........ after you ' ve seen him in
fargo and reservoir dogs , .. "

Q1: Is the movie review Positive or Negative?

Positive

Q2: How Confident are you in your above selection?

| Negative |

| 5-very Contident | |4-Pretty Confident|| 3-Hesitating | [2-Not Gontident| | 1-Random Guess |

Figure 2: Key components of the User Interface in the
MTurk task HITs. Note that each HIT contains five
reviews with different rationale lengths.

(2) Each batch creates 10 HITs by permutating rationales’
method (Limitedink/Random) and length (0.1-0.5).

Limitedink Random

(1) Group
100 reviews
into batches.

5 Reviews

s N ~

iToolh i

- f i Hoo
—m\ [z e
\- [Eg =X i
N | L4 T~ 2]
100 5x20| | 5 R o102 (03] (ol [ No2ies) o
1";‘3 4 5 6 7";-9 10

One HIT for One HIT for

MTurk Worker Group 2 MTurk Worker Group 8

Figure 3: The human evaluation’s workflow. We (1) di-
vide 100 movie reviews into 20 batches and (2) produce
10 HITs from each batch for ten worker groups.

and Eisner, 2008) test set that have correct model
predictions. Then, we extract five rationales for
each review using LivitepInk, with lengths from
10% to 50%, with an increment of 10%.

Since human accuracy likely increases when par-
ticipants see more words (i.e., when the lengths of
rationales increase), we also create a Random ratio-
nale baseline, where we randomly select words of
the same rationale length on the same documents
(10% to 50%) while taking the continuity constraint
into consideration. More details of Random base-
line generation are in Appendix A.3.1.

Study Procedure. The study is completed in two
steps. First, we posted a qualification Human In-
telligence Tasks (HITs, $0.50 per assignment) on
MTurk to recruit 200 qualified workers.> Next,
the 200 recruited workers can participate the fask
HIT ($0.20 per assignment, 7 assignments posted)
which contains five distinct movie reviews, with
varying rationale lengths (10%-50%). In task HIT,
as key components shown in Figure 2, we only dis-
play the rationales and mask all other words with
ellipses of random length, such that participants
can not infer the actual review length. Then partic-

?In addition to our custom qualification used for worker
grouping, three built-in worker qualifications are used in all of
our HITs: HIT Approval Rate (>98%), Number of Approved
HITs (> 3000), and Locale (US Only) Qualification.
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Human Accuracy

Human Confidence
4,2 | me= Random

Random
m== Model

o
o

o

Accuracy
o«
(o)} ~N

10% 20% 30% 40% 50%
Rationale Length

10% 20% 30% 40% 50%

Figure 4: Human accuracy and confidence on predict-
ing model labels given rationales with different lengths.

ipants are asked to guess the sentiment of the full
review, and provide their confidence level based on
a five-point Likert Scale (Likert, 1932). The full
user interface is in Appendix A.3.2.

Participants recruiting and grouping. With
each review having ten distinct rationales (five from
LmvitepInk and five Random), if these rationale con-
ditions were randomly assigned, participants are
likely to see the same review repeatedly and grad-
ually see all the words. We carefully design our
study to eliminate such undesired learning effect.
More specifically, we group our 100 reviews into
20 batches, with five reviews in each batch (Step 1
in Figure 3). For each batch, we create five HITs
for LimitepInk and Random, respectively, such that
all the rationale lengths of five reviews are covered
by these 10 HITs (Step 2 in Figure 3). Further, we
make sure each participant is only assigned to one
unique HIT, so that each participant can only see
a review once. To do so, we randomly divide the
200 qualified workers into 10 worker groups (20
workers per group), and pair one worker group with
only one HIT in each batch. This way, each HIT
can only be accomplished by one worker group. As
our participant control is more strict than regular
data labeling tasks on MTurk, we keep the HITs
open for 6 days. 110 out of 200 distinct workers
participated in the main study, and they completed
1,169 of 1,400 assignments.

4.2 Results

We show the human prediction accuracy and con-
fidence results in Figure 4. We find that the
best explanations for human understanding are
largely not the shortest rationales (10% length
level): here, the human accuracy in predicting
model labels is lower than for the random base-
line (0.61 vs. 0.63), indicating that the shortest
rationales are not the best for human understand-
ing. There is a significant difference in human pre-
dicted labels (i.e., “positive”’=1,“negative”’=2) be-
tween LimitepInk (M=1.24,SD=0.71) and Random



length level (%) Negative Positive

& Extract. method P/R/F1 P/R/F1
10% LmvitepInk | 0.66/0.56//0.61 0.70/0.58 /0.64
¢ Random | 0.67/0.57/0.62 0.66/0.70 / 0.68
20% LvitenInk | 0.75/0.61/0.67 0.71/0.77/0.74
¢ Random | 0.69/0.60/0.64 0.68/0.74/0.71
30% LivrrepInk | 0.74/0.76 / 0.75 0.81/0.78/0.79
¢ Random | 0.72/0.61/0.66 0.72/0.78/0.75
40% LivitepInk | 0.84/0.76 /0.80 0.78 /0.85/0.81
7 Random | 0.79/0.63/0.70 0.65/0.79/0.71
509 LmvitepInk | 0.78/0.78/0.78 0.85/0.84 / 0.85
7 Random | 0.77/0.63/0.70 0.75/0.84/0.79

Table 2: Human performance (i.e., Precision / Recall /
F1 Score) on predicting model labels of each category
in the Movie Reviews dataset.

(M=1.32,SD=0.54); t(1169)=2.27, p=0.02. Ta-
ble 2 shows human performance for each category.

Additionally, notice that the slope of our model’s
accuracy consistently flattens as the rationale in-
creases, whereas the random baseline does not dis-
play any apparent trend and is obviously lower than
our model at higher length levels (e.g., 40%). We
hypothesize that this means our model is (1) indeed
learning to reveal useful rationales (rather than just
randomly displaying meaningless text), and (2) the
amount of information necessary for human un-
derstanding only starts to saturate at around 40%
of the full text. This creates a clear contrast with
prior work, where most studies extract 10-30% of
the text as the rationale on the same dataset (Jain
et al., 2020; Paranjape et al., 2020). The eventually
flattened slope potentially suggests a sweet spot
to balance human understanding on rationales and
sufficient model accuracy.

5 Discussion

By examining human prediction performance on
five levels of rationale lengths, we demonstrate that
the shortest rationales are largely not the best for
human understanding. We are aware that this work
has limitations. The findings are limited to Movie
Reviews dataset, and we only evaluate human per-
formance with rationales generated by the pro-
posed LivitepInk. Still, our findings challenge the
“shorter is better” assumption commonly adopted
in existing self-explaining methods. As a result, we
encourage future work to more cautiously define
the best rationales for human understanding, and
trade off between model accuracy and rationale
length. More concretely, we consider that ratio-
nale models should find the right balance between
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brevity and sufficiency. One promising direction
could be to clearly define the optimal human inter-
pretability in a measurable way and then learn to
adaptively select rationales with appropriate length.

6 Related Work

Self-explaining models. Self-explaining models,
which condition predictions on their rationales, are
considered more trustworthy than post-hoc expla-
nation techniques (Rajagopal et al., 2021). How-
ever, existing efforts often enforce minimal ratio-
nale length, which degrade the predictive perfor-
mance (Yu et al., 2019; Bastings et al., 2019; Jain
et al., 2020). Paranjape et al. (2020) improves this
by proposing an information bottleneck approach
to enable rationale length control at the sentence
level. In this paper, LimitepInk further enables
length control at the token level to allow more flex-
ibility needed for our human studies.
Human-grounded evaluation. A line of stud-
ies evaluated model-generated rationales by com-
paring them against human-annotated explana-
tions (Carton et al., 2020; Paranjape et al., 2020).
Some other studies collect feedback from users to
evaluate the explanations, such as asking people
to choose a preferred model (Ribeiro et al., 2016)
or to guess model predictions only based on ratio-
nales (Lertvittayakumjorn and Toni, 2019; Shen
and Huang, 2020).

7 Conclusion

To investigate if the shortest rationales are best un-
derstandable for humans, this work presents a self-
explaining model, LimitepINK, that achieves com-
parable performance with current self-explaining
baselines in terms of end-task performance and
human annotation agreement. We further use Lim-
ITEDINK to generate rationales for human studies
to examine how rationale length can affect human
understanding. Our results show that the shortest
rationales are largely not the best for human un-
derstanding. This would encourage a rethinking of
rationale methods to find the right balance between
brevity and sufficiency.
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9 Ethical Considerations

This work shows that the shortest rationales are
often not the best for human understanding. We
thus advocate for studying how users interact with
machine-generated rationales. However, we are
aware that using rationales to interpret model pre-
diction could pose some risks for users. Rationales
omit a significant portion of the contents (in our
case, 50% to 90% of the words in a movie review
are omitted), which could convey information in-
correctly or mislead users. Furthermore, machine-
learned rationales could encode some unwanted
biases (Chuang et al., 2021). We believe that such
risks should be explicitly communicated with users
in real-world applications.
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A Appendix

A.1 Model Details and Hyperparameters
A.1.1 Methodology Details

Concrete Relaxation of Subset Sampling Pro-
cess. Given the output logits of identifier, we
use Gumbel-softmax (Jang et al., 2017) to gen-
erate a concrete distribution as ¢ = [cq,...c,] ~
Concrete(idn(x)), represented as a one-hot vec-
tor over n features where the top important fea-
ture is 1. We then sample this process k times in
order to sample top-k important features, where
we obtain k concrete distributions as {c!, ..., ¢t}.
Next we define one n-dimensional random vec-
tor m to be the element-wise maximum of these k
concrete distributions along n features, denoted as
m = max{c] }l’:f Discarding the overlapping fea-
tures to keep the rest, we then use m as the k-hop
vector to approximately select the top-k important
features over document x.

Vector and sort regularization. We deploy a
vector and sort regularization on mask m (Fong
et al., 2019), where we sort the output mask m in
a increasing order and minimize the L; norm be-
tween m and a reference /71 consisting of n —k zeros
followed by k ones.

A.1.2 Model Training Details

Training and inference. During training, we se-
lect the Adam optimizer with the learning rate at 2e-
5 with no decay. We set hyperparameters in Equa-
tion5and2asd=1e—4,vi =05and v, = 0.3
and trained 6 epochs for all models. Furthermore,
we train LiMiTEDINK on a set of sparsity levels as
k ={10%,20%,30%,40%, 50%} and choose mod-
els with optimal predictive performance on valida-
tion sets.

A.1.3 Details of Self-Explaining Baselines

We compare our method with state-of-the-art self-
explaining baseline models.

Sparse-N (Minimization Norm). This method
learns the short mask with minimal Ly or L;
norm (Lei et al., 2016; Bastings et al., 2019), which
penalizes for the total number of selected words in
the explanation.

min Eyianoo L(es(@),y) + Almll (3
Sparse-C (Controlled Norm Minimization).
This method controls the mask sparsity through



a tunable predefined sparsity level @ (Chang et al.,
2020; Jain et al., 2020). The mask is penalized as
below as long as the sparsity level « is passed.

min B, janx)L(cls(z),y) + A max(0, HEN” —a)

4)
where N is the input length and ||m| denotes
mask penalty with L; norm.

Sparse IB (Controlled Sparsity with Informa-
tion Bottleneck). This method introduces a prior
probability of z, which approximates the marginal
p(m) of mask distribution; and p(mlx) is the para-
metric posterior distribution over m conditioned
on input x (Paranjape et al., 2020). The sparsity
control is achieved via the information loss term,
which reduces the KL divergence between the pos-
terior distribution p(m|x) that depends on x and a
prior distribution r(m) that is independent of x.

min E;ianx)L(cls(z), y) + AKL[p(m[x), r(m)]
(5)
A.2 Ablation Study on Model Components

We provide an ablation study on the Movie dataset
to evaluate each loss term’s influence on end-task
prediction performance, including Precision, Re-
call, and F1 scores. The result is shown in Table 3.

End-Task Prediction

Setups Precision Recall F1

No Sufficiency 0.25 0.50 0.34
No Continuity 0.82 0.81 0.81
No Sparsity 0.80 0.79  0.79
No Contextual 0.83 0.83 0.83
Our Model 091 0.90 0.90

Table 3: Ablation study of each module in our model
on Movie Review dataset.

A.3 Additional Details of Human Study

A.3.1 Generating Random Baselines

Human accuracy likely increases when participants
can see more words, i.e., when the lengths of ra-
tionales increase. If a rationale and a random text
span have the same number of words, the rationale
should help readers predict the label better. We
created a simple baseline that generated rationales
by randomly selecting words to form the rationales.
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We could control (1) how many words to select and
(2) how many disjointed rationales to produce. In
the study, we set these two numbers to be identical
to that of LimrtepInk at each length level.

In detail, given the rationale length k, we first got
the count of total tokens in rationale as #tokens = k.
Next, we computed the average number of rationale
segments m, which are generated by LimMITEDINK,
over the Movie dataset. We randomly selected m
spans with total tokens’ count as #tokens from the
full input texts, thus obtaining the random baselines.
We evenly separated 10 worker groups to finish five
random baseline HITs and LivitepInk HITs each.
We determined that good model rationales should
get higher human accuracy compared with same-
length random baselines.

A.3.2 Human Evaluation User Interface

We provide our designed user interfaces used in the
human study. Specifically, we show the interface
of the human study panel in Figure 5 (B). We also
provide the detailed instructions for workers to un-
derstand our task, the instruction inteface is shown
in Figure 6.



Review1l Review2 Review3 Review4 Review5

Worker Group 1 Our@10% Our@20% Our@30% Our@40% Our@50%
Worker Group 2 Our@20% Our@30% Our@40% Our@50% Our@10%
Worker Group 3 Our@30% Our@40% Our@50% Our@10% Our@20%
Worker Group 4 Our@40% Our@50% Our@10% Our@20% Our@30%
Worker Group 5 Our@50% Our@10% Our@20% Our@30% Our@40%

Worker Group 6 Random@10% Random@20% Random@30% Random@40% Random@50%
Worker Group 7 Random@20% Random@30% Random@40% Random@50% Random@10%
Worker Group8 Random@30% Random@40% Random@50% Random@10% Random@20%
Worker Group 9 Random@40% Random@50% Random@10% Random@20% Random@30%
Worker Group 10 Random@50% Random@10% Random@20% Random@30% Random@40%

(A) Worker Group Assignment

In this HIT, you will see parts of a movie review. Read it carefully, and:

(1) Based on the partial content you see, try your best to guess the original movie review is Positive or Negative toward the movie (i.e., the
Sentiment of the review), and

(2) Tell us how confident you are about the guess.

In this HIT, you will label five movie reviews .

Examples (Click to Show Examples)

Select Sentiment and Confidence of the Displayed Parts of Moview Review

Please select the sentiment label of the displayed parts of the movie review and provide your confidence on the selection.

Parts of the Movie Review 1

weseeeensenens recall hearing species 2 described as “ erotic . "i would love to know who used with that adjective for this -+ a woman '
s abdomen as an alien baby claws its way free , splat blood and gore in all directions . anyone turned on by that

Question1: is the movie review Positive or Negative? Please guess based on the parts of texts you see.

It's an Empty Input | (Empty reviews are usually caused by data processing errors)

D

tion2: How Confident are you in your above selection?

5 - Very Confident |_ the displayed texts show clear attitude, and reflects the core sentiment (like/dislike) of the full

review.

4 - Pretty Confident |- The displayed texts show attitude towards the movie, but not very clear to reflect the core

sentiment.

- The displayed texts seem positive/negative, but | cannot guess if it's representative of the full review.

2 - Not Confident |- The displayed texts are ambiguous. | am not confident on the attitude towrards the movie.

1- I Guess Randomly | - The displayed texts are too trivial and does not reflect on the larger themes.

(B) Worker Study Interface

Figure 5: (A) The design of the worker group assignment in our human study. (B) The worker interface of the
human study.
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Examples (Click to Hide Examples)

Here is a movie review example, with a Positive sentiment label as ground truth:

"' trees lounge is the directoral debut from one of my favorite actors | steve busce . he gave memorable performence in in the soup ,
fargo , and reservoir dogs . now he tries his hand at writing , directing and acting all in the same flick . the movie starts out awfully slow
with tommy [ busce ) hanging around a local bar the " trees lounge " and him pestering his brother . it ' s obvious he a loser . but as he
says "it' s betteri' m a loser and know i am, then being a loser and not thinking i am . " well put . the story starts to take off when his
uncle dies , and tommy , not having a job , decides to drive an ice cream truck . well , the movie starts to pick up with him finding a love
interest in a 17 year old girl named debbie ( chloe sevi ) and . . . i liked this movie alot even though it did not reach my expectation . after
you " ve seen him in fargo and reserveir dogs , you know he is capable of a better performence . i think his brother , michael , did an
excellent job for his debut performence . mr . busce is off to a good career as a director ! "

In the HIT, we will hide the sentiment label and highlight part of texts in this movie review. Then you'll be asked to:
(1) guess the review’s sentiment label given only highlighted content you see;
(2) tell us your confidence on the selection.

Here we provide examples explaining several different confidence levels for your reference.

Example-1:

" wisesn j liked this movie alot even though it did not reach my expectation . -+ i think his brother , michael , did an excellent job for
his debut performence . mr . busce is off to a good career as a director !"

You Selected Label:

Confidence:| 5 - Very Confident |- The displayed texts show clear attitude, and reflects the core sentiment (like/dislike) of the full

review.

Explanation: The displayed texts clearly show the writer's sentimental opinion on the movig, such as "i liked this movie alot”. You
could be Very Confident to select your sentiment label in this example.

Example-2:

"it ' s obvious he a loser . but as he says " it ' s better i ' m a loser and know i am , then being a loser and not thinking | am
e el the maovie starts to pick up with him finding a love interest in a 17 year old girl named debbie ( chloe sevi ) and .

You Selected Label:

Confidence:| 3 - Hesitating |- The displayed texts seem positive/negative, but | cannot guess if it's representative of the full review.

Explanation: The displayed texts seem positive [ negative, such as "finding a love interest in", "it ' s obvious he a loser . BUT they are
describing movie plot but not direct evidence on showing writer's sentimental opinions on this movie. You might be Hesitating to
select your sentiment label in this example.

Example-3:

" ......now he tries his hand at writing . ....... after you " ve seen him in fargo and reservoir dogs,..... "

You Selected Label:
Confidence:| 1-1Guess Randomly |- The displayed texts are too trivial and does not reflect on the larger themes.

Explanation: The displayed texts don't show clear sentimental information on this movie. You might randomly guess one label and
choose | Guess Randomly as your confidenct.

Figure 6: User Interface of the instruction in the human study.
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Abstract

Numerous analyses of reading time (RT) data
have been implemented—all in an effort to
better understand the cognitive processes
driving reading comprehension. However, data
measured on words at the end of a sentence—or
even at the end of a clause—is often omitted
due to the confounding factors introduced by
so-called “wrap-up effects,” which manifests
as a skewed distribution of RTs for these words.
Consequently, the understanding of the cog-
nitive processes that might be involved in these
wrap-up effects is limited. In this work, we
attempt to learn more about these processes by
examining the relationship between wrap-up ef-
fects and information-theoretic quantities, such
as word and context surprisals. We find that
the distribution of information in prior contexts
is often predictive of sentence- and clause-final
RTs (while not of sentence-medial RTs). This
lends support to several prior hypotheses about
the processes involved in wrap-up effects.

1 Introduction

Reading puts the unfolding of linguistic input in
the hands—or, really, the eyes—of the reader. Con-
sequently, it presents a unique opportunity to gain
a better understanding of how humans comprehend
written language. The rate at which humans choose
to read text (and process its information) should
be determined by their goal of understanding
it. Ergo, examining where a reader spends their
time should help us to understand the nature of
language comprehension processes themselves.
Indeed, studies analyzing reading times have been
employed to explore a number of psycholinguistic
theories (e.g., Smith and Levy, 2013; Futrell et al.,
2020; Van Schijndel and Linzen, 2021).

One behavior revealed by such studies is the
tendency for humans to spend more time' on
the last word of a sentence or clause. While the

"Longer reading times in self-paced reading studies and
longer fixation times in eye-tracking studies.
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existence of such wrap-up effects is well-known
(Just et al., 1982; Hill and Murray, 2000; Rayner
et al., 2000; Camblin et al., 2007), the cognitive
processes giving rise to them are still not fully
understood. This is likely (at least in part) due
to the dearth of analyses targeting naturalistic
sentence-final reading behavior. First, most studies
of online processing omit data from these words
to explicitly control for the confounding factors
wrap-up effects introduce (e.g., Smith and Levy,
2013; Goodkind and Bicknell, 2018). Second,
the few studies on wrap-up effects rely on small
datasets, none of which analyze naturalistic text
(Just and Carpenter, 1980; Rayner et al., 2000;
Kuperberg et al., 2011). This work addresses this
gap, using several large corpora of reading time
data. Specifically, we study whether information-
theoretic concepts (such as surprisal) provide
insights into the cognitive processes that occur
at a sentence’s boundary. Notedly, information-
theoretic approaches have been proven effective for
analyzing sentence-medial reading time behavior.

We follow the long line of work that has
connected information-theoretic measures and
psychometric data (Frank et al., 2015; Goodkind
and Bicknell, 2018; Wilcox et al., 2020; Meister
et al., 2021, inter alia), employing similar methods
to build models of sentence- and clause-final RTs.
Using surprisal estimates from state-of-the-art lan-
guage models, we search for a link between wrap-
up effects and the information content within a
sentence. We find that the distribution of surprisals
of prior context is often predictive of sentence- and
clause-final reading times (RTs), while not adding
significant predictive power to models of sentence-
medial RTs. This result suggests that the nature
of cognitive processes involved during the reading
of these boundary words may indeed be different
than those at other positions. Such findings lend
support to several prior hypotheses regarding
which processes may underlie wrap-up effects
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(e.g., the resolution of prior ambiguities), while
providing evidence against other speculations (e.g.,
that the time spent at sentence boundaries can be
quantified with a constant factor, independent of
the processing difficulty of the text itself).

2 The Process of Reading

Decades of research on reading behavior have
improved our understanding of the cognitive
processes involved in reading comprehension (Just
and Carpenter, 1980; Rayner and Clifton, 2009 ,
inter alia). Here, we will briefly describe overar-
ching themes that are relevant for understanding
wrap-up effects.

2.1 Incrementality and its Implications

It is widely accepted that language processing is
incremental in nature, i.e., readers process text
one word at a time (Hale, 2001, 2006; Rayner and
Clifton, 2009; Boston et al., 2011 , inter alia). Con-
sequently, much can be uncovered about reading
comprehension via studies that analyze cognitive
processing at the word-level. Many pyscholin-
guistic studies make use of this notion, taking
per-word RTs in self-paced reading (SPR) or eye-
tracking studies to be a direct reflection of the pro-
cessing load of that word (e.g., Smith and Levy,
2013; Van Schijndel and Linzen, 2021). This
RT-processing effort relationship then allows us
to identify relationships between a word’s pro-
cessing load and its attributes (e.g., surprisal or
length)—which in turn hints at the underlying cog-
nitive processes involved in comprehension. One
prominently studied attribute is word predictabil-
ity; a notion naturally quantified by surprisal (also
known as Shannon’s (1948) information content).
Formally, the surprisal of a word w is defined as
s(w) £ —logp(w | Wey), i.e., a unit’s negative
log-probability given the prior sentential context
w<;. Notedly, this operationalization provides a
way of quantifying how our prior expectations can
affect our ability to process a linguistic signal.
There are several hypothesis about the math-
ematical nature of the relationship between per-
word surprisal and processing load.> While there
has been much empirical proof that surprisal es-
timates serve as a good predictor of word-level
RTs (Smith and Levy, 2013; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020), the data observed

ZSurprisal theory (Hale, 2001), for instance, posits a linear
relation.
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from sentence-final words appears not to follow the
same relationship. Specifically, in comparison to
sentence-medial words, sentence- or clause-final
words are associated with increased RTs in self-
paced studies (Just et al., 1982; Hill and Murray,
2000) and both increased fixation and regression
times in eye-tracking studies (Rayner et al., 2000;
Camblin et al., 2007). Such behavior has also
been observed in controlled settings—for exam-
ple, Rayner et al. (1989) found that readers fixated
longer on a word when it ended a clause than when
the same word did not end a clause.

Such wide-spread experimental evidence sug-
gests sentence-final and sentence-medial reading
behaviors differ from each other, and that other
cognitive processes (besides standard word-level
processing) effort may be at play. Yet unfortunately,
these wrap-up effects have received relatively little
attention in the psycholinguistic community: Most
reading time studies simply exclude sentence-final
(or even clause-final) words from their analyses,
claiming that the (poorly-understood) effects are
confounding factors in understanding the reading
process (e.g., Frank et al., 2013, 2015; Wilcox
et al., 2020). Rather, we believe this data can
potentially provide new insights in their own right.

2.2  Wrap-up Effects

It remains unclear what exactly occurs in the mind
of the reader at the end of a sentence or clause.
Which cognitive processes are encompassed by the
term wrap-up effects? Several theories have been
posited. First, Just and Carpenter (1980) hypoth-
esize that wrap-up effects include actions such as
“the constructions of inter-clause relations.” Second,
Rayner et al. (2000) suggest they might involve
attempts to resolve previously postponed compre-
hension problems, which could have been deferred
in the hope that upcoming words would resolve
the problem. Third, Hirotani et al. (2006) posit the
hesitation when crossing clause boundaries is out
of efficiency (Jarvella, 1971); readers do not want
to have to return to the clause later, so they take the
extra time to make sure there are no inconsistencies
in the prior text.

While some prior hypotheses have been largely
dismissed (see Stowe et al., 2018 for a more
detailed summary) due to, e.g., the wide-spread
support of theories of incremental processing,
most others lack formal testing in naturalistic
reading studies. We attempt to address this gap.



Concretely, we posit the relationship between
text’s information-theoretic attributes and its
observed wrap-up times can provide an indication
of the presence (or lack) of several cognitive
processes that are potentially a part of sentence
wrap-up. For example, high-surprisal words in the
preceding context may correlate with the presence
of ambiguities in the text; they may also correlate
with complex linguistic relationships of the current
text with prior sentences—which are two driving
forces in the theories given above. Consequently,
in this work, we ask whether the reading behavior
observed at the end of a sentence or clause can be
described (at least partially) by the distribution of
information content in the preceding context,® as
this may give insights for several prior hypotheses
about wrap-up effects.

3 Language Models as Predictors of
Psychometric Data

Formally, a language model p is a probability dis-
tribution over natural language sentences. In the
case when p is locally normalized, which is the pre-
dominant case for today’s neural language models,

p is defined as the product of conditional probabil-

ity distributions: p(y) = Hl‘,ﬂl Pyt | y<t), where

each p(- | y<¢) is a distribution with support over
linguistic units y (typically words) from a set vocab-
ulary V, which includes a special end-of-sequence
token. Consequently, we can use p to estimate in-
dividual word probabilities. Model parameters are
typically estimated by minimizing the negative log-
likelihood of a corpus of natural language strings
C, i.e., minimizing £(p) = — > ¢ log p(y).

One widely embraced technique in information-
theoretic psycholinguistics is the use of these lan-
guage models to estimate the probabilities required
for computing surprisal (Hale, 2001; Demberg and
Keller, 2008; Mitchell et al., 2010; Fernandez Mon-
salve et al., 2012). It has even been observed that a
language model’s perplexity* correlates negatively
with the psychometric predictive power provided
by its surprisal estimates (Frank and Bod, 2011;
Goodkind and Bicknell, 2018; Wilcox et al., 2020).
If these language models keep improving at their
current fast pace (Radford et al., 2019; Brown et al.,

SImportantly, the research questions we ask are not con-
cerned with describing the full set of cognitive processes that
occur at the end of a clause or sentence—or even whether

there is a causal relationship between information content and
sentence- and clause-final RTs.

“Perplexity is a monotonic function of the average
surprisal of linguistic units in-context under a model.
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Figure 1: Distributions of residuals when predicting
either clause-final or non clause-final times using
our baseline linear models. Models are fit to (the
log-transform of) non clause-final average RTs. Outlier
times (according to log-normal distribution) are ex-
cluded. The top level datasets contain eye-tracking data
while the bottom contain SPR data. Full distributions of
RTs are shown in App. B, where we also show models
fit to regression times, rather than full reading times.

2020), exciting new results in computational psy-
cholinguistics may follow, connecting reading be-
havior to the statistics of natural language.

Predicting Reading Times. In the computa-
tional psycholinguistics literature, the RT-surprisal
relationship is typically studied using predictive
models: RTs are predicted using surprisal estimates
(along with other attributes such as number of char-
acters) for the current word. The predictive power
of these models, together with the structure of the
model itself (which defines a specific relationship
between RTs and surprisal), is then used as
evidence of the studied effect. While this paradigm
is successful in modeling sentence-medial RTs
(Smith and Levy, 2013; Goodkind and Bicknell,
2018; Wilcox et al., 2020), its effectiveness for
modeling sentence- and clause-final times is
largely unknown due to the omission of this data
from the majority of RT analyses.

A priori, we might expect per-word surprisal to
be a similarly powerful predictor of sentence and
clause-final RTs.> Yet in Fig. 1, we see that when
our baseline linear model (described more precisely
in §4) is fit to sentence-medial RTs, the residuals
for predictions of clause-final RTs appear to be
neither normally distributed nor centered around 0.
Further, these trends appear to be different for eye-
tracking and SPR data, where the latter are skewed
towards lower values for all datasets.® These re-

SSeveral works (e.g., Stowe et al., 2018) have argued the
cognitive processes involved in comprehension of clause-final
words are exactly the same as those for sentence-medial words.

The opposite is true for regression times in eye-tracking
data; see App. B.



sults provide further confirmation that clause-final
data does not adhere to the same relationship with
RT as sentence-medial data, a phenomenon that
may perhaps be accounted for by additional fac-
tors at play in the comprehension of clause-final
words. Thus, we ask whether taking into account
information from the entire prior context can give
us a better model of these clause-final RTs.

To this end, we operationalize the information
content INF in text w (of length T) as:’

(k=0) (D)

where w may be an entire sentence, or only its first
T words. Notably, the case of & = 0 returns 7T
under k£ = 1, we get the total information content
of w. For £ > 1, moments of high-surprisal will
disproportionately drive up the value of INF(*) (w).
Such words may indicate, e.g., moments of
ambiguity or uneven distributions of information
in text. Thus, how well INF(®) (w) (as a function of
k) predicts model sentence- and clause-final RTs
may indicate which attributes of prior text (if any)
can be linked to the additional cognitive processes
involved in wrap-up effects.

INER) (w) = 30T sy )

4 Experiments

Data. We use reading time data from 5 corpora
over 2 modalities: the Natural Stories (Futrell et al.,
2018), Brown (Smith and Levy, 2013), and UCL
(SP) (Frank et al., 2013) Corpora, which contain
SPR data, as well as the Provo (Luke and Chris-
tianson, 2018), Dundee (Kennedy et al., 2003) and
UCL (ET) (Frank et al., 2013) Corpora, which con-
tain eye movements during reading. All corpora are
in English. For eye-tracking data, we take reading
time to be the sum over all fixation times on that
word. We provide an analysis of regression (a.k.a.
go-past) time in App. B. We provide further details
regarding pre-processing in App. A.

Estimating Surprisal. We obtain surprisal esti-
mates from three language models: GPT-2 (Rad-
ford et al., 2019), TransformerXL (Dai et al., 2019)
and a 5-gram model, estimated using Modified
Kneser—Essen—Ney Smoothing (Ney et al., 1994).
We compute per-word surprisal as the sum of sub-
word surprisals, when applicable. Additionally,
punctuation is included in these estimates, although
see App. B for results omitting punctuation, which

"We note Meister et al. (2021) used similar operationaliza-

tions to test for evidence in support of the uniform information
density hypothesis.
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are qualitatively the same. More details are given
in App. A.

Evaluation. Following Wilcox et al. (2020) and
Meister et al. (2021), we quantify the predictive
power of a variable of interest (INF(*) (w) here) as
the mean difference in log-likelihood ALogLik of
a (held-out) data point when using a model with and
without that predictor. In other words, we train two
models to predict RT's—one with and one without
access to INF(*) (w)—the difference in their pre-
dictive power is ALogLik. A positive ALogLik
value indicates the model with this predictor fits the
observed data more closely than a model without
this predictor. We use 10-fold cross-validation to
compute ALogLik values so as to avoid overfitting,
taking the mean across the held-out folds as our
final metric. Our baseline model for predicting per-
word RTs contains predictors for surprisal, unigram
log-frequency, character length, and the interaction
of the latter two. These values, albeit computed on
the previous word, are also included to account for
spill-over effects (Smith and Levy, 2013). Surprisal
from two words back is included for SPR datasets.
Unless otherwise stated, GPT-2 estimates are used
for baseline surprisal estimates in all models.

Results. Here we explore the additional predic-
tive power that INF(*) gives us when modeling
clause-final RTs. In Fig. 2, we observe that often
the additional information provided by INF(*) (w)
indeed leads to better models of clause-final RTs.
In most cases, INF(¥) at some value of k& > 0 leads
to larger gains in predictive power than £ = 0.
Ergo, the information content of the preceding
text is more indicative of wrap-up behavior than
length alone. Further, while often within standard
error, INF(®) (w) at k > 1 provides more predictive
power than at k£ = 1 across the majority of datasets.
This indicates that unevenness in the distribution
of surprisal is stronger than the total surprisal con-
tent alone as a predictor of clause-final RTs. The
same experiments for sentence-medial words show
these quantities are less helpful when modeling
their RTs. Note that these effects hold above and
beyond the spill-over effects from the window im-
mediately preceding the sentence boundary. The
effect of the distribution of surprisal throughout the
sentence is stronger for eye-tracking data than for
SPR; further, the trends are even more pronounced
when measuring regression times for eye-tracking
data (see App. B).
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Figure 2: Mean ALogLik as a function of the exponent & in INF(*) for models of sentence and clause-final (top row)
and sentence-medial (bottom row) RTs using surprisal estimates from different language models. Shaded region
connects standard error estimates. Vertical intercepts at k = 0, 1 are for reference. We see that our information-
theoretic predictors contribute much less modeling power to the prediction of sentence-medial RTs in comparison to

sentence- and clause-final RTs.

Notably, we see some variation in trends across
datasets. Due to the nature of psycholinguistic
studies, it is natural to expect some variation due
to, e.g., data collection procedures or inaccuracies
from measurement devices. Another (perhaps more
influential) factor in the difference in trends comes
from the variation in dataset sizes. We see that
with the smaller datasets (e.g., UCL and Provo),
there may not be enough data to learn accurate
model parameters. This artifact may manifest as
the noisiness or a lack of a significant increase
in log-likelihood (on a held-out test set) over the
baseline that we observe in some cases.

When considering prior theories of wrap-up
processes, these results have several implications.
For example, they can be interpreted as supporting
and extending Rayner et al.’s (2000) hypothesis,
which suggests the extra time at sentence bound-
aries is spent resolving prior ambiguities. In this
case, the observed correlation between wrap-up
times and INF(*) (w) may potentially be linked to
two factors: (1) contextual ambiguities increasing
variation in per-word information content; and (2)
contextual ambiguities being resolved at clause
ends. On the other hand, these results provide
evidence against the hypothesis that the cognitive
processes occurring during the comprehension
of sentence-medial and clause-final words are the
same. Further, it also goes against Hirotani et al.’s
(2006) hypothesis (discussed in §2.2), as the dif-
ferences in sentence-medial and clause-final times
cannot be purely quantified by a constant factor.

24

5 Conclusion

We attempt to shed light on the nature of wrap-up
effects by exploring the relationship between
clause-final RTs and information-theoretic at-
tributes of text. We find that operationalizations of
the information contained in preceding context lead
to better predictions of these RTs, while not adding
significant predictive power for sentence-medial
RTs. This suggests that information-theoretic
attributes of text can shed light on the cognitive
processes happening during the comprehension of
clause-final words. Further, these processes may
indeed be different in nature than those required for
sentence-medial words. In short, our results pro-
vide evidence (either in support or against) about
several theories of the nature of wrap-up processes.
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A Experimental Setup

A.1 Data Pre-processing

We use the Moses decoder® tokenizer and punctua-
tion normalizer to pre-process all text data. Some
of the Hugging Face tokenizers for respective neu-
ral models performed additional tokenization; we
refer the reader to the library documentation for
more details. We determine clause-final words as
all those ending in punctuation. Capitalization was
kept intact albeit the lowercase version of words
were used in unigram probability estimates. We es-
timate unigram log-probabilities on WikiText-103
using the KenLM (Heafield, 2011) library with de-
fault hyperparameters. We removed outlier word-
level reading times (specifically those with a z-
score > 3 when the distribution was modeled as
log-linear).

A.2 Surprisal Estimates

We use pre-trained neural language models to com-
pute most surprisal estimates. For reproducibil-
ity, we employ the model checkpoints provided
by Hugging Face (Wolf et al., 2020). Specifi-
cally, for GPT-2, we use the default OpenAl ver-
sion (gpt2); for TransformerXL, we use a ver-
sion of the model (architecture described in Dai
et al. (2019)) that has been fine-tuned on WikiText-
103 (transfo-x1-wt103); for BERT, we use the
bert-base-cased version. Notably, BERT mod-
els the probability of a word given both prior
and later context, which means it can only give
us pseudo estimates of surprisal. Both GPT-2
and BERT use sub-word tokenization. We ad-
ditionally use surprisal estimates from a 5-gram
model trained on WikiText-103 using the KenLM
(Heafield, 2011) library with default hyperparame-
ters for Kneser—Essen—Ney smoothing.

8http: //www.statmt.org/moses/

B Additional Results
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Figure 3: Distributions of average RTs for clause-final
and non-clause-final words. Outlier times (according to
log-normal distribution) are excluded from averages for
both graphs. The top level datasets contain eye-tracking
data while the bottom contain SPR data.
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Figure 4: Version of Fig. 1 where surprisal estimates do
not include the surprisal assigned to punctuation, which
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timates. We see very little qualitative difference with
Fig. 1.

B.1 Regression Times Analysis
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Figure 5: Version of (a) Fig. 3 and (b) Fig. 1 for regres-
sion times for clause-final and non-clause-final words.
Only applicable for eye-tracking datasets
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Abstract

Argument pair extraction (APE) aims to au-
tomatically mine argument pairs from two in-
terrelated argumentative documents. Existing
studies typically identify argument pairs indi-
rectly by predicting sentence-level relations be-
tween two documents, neglecting the modeling
of the holistic argument-level interactions. To-
wards this issue, we propose to address APE
via a machine reading comprehension (MRC)
framework with two phases. The first phase
employs an argument mining (AM) query to
identify all arguments in two documents. The
second phase considers each identified argu-
ment as an APE query to extract its paired
arguments from another document, allowing
to better capture the argument-level interac-
tions. Also, this framework enables these two
phases to be jointly trained in a single MRC
model, thereby maximizing the mutual benefits
of them. Experimental results demonstrate that
our approach achieves the best performance,
outperforming the state-of-the-art method by
7.11% in F; score.

1 Introduction

As a salient part of argument mining (AM), the
analysis of dialogical argumentation has received
increasing research attention (Morio and Fujita,
2018; Chakrabarty et al., 2019; Ji et al., 2021;
Cheng et al., 2021; Yuan et al., 2021). Argument
pair extraction (APE), proposed by Cheng et al.
(2020), is a new task within this field that focuses
on extracting interactive argument pairs from two
interrelated documents (e.g., peer reviewer and re-
buttal). Figure 1 presents an example of APE where
two interrelated documents are segmented into ar-
guments and non-arguments at sentence level. Two
arguments from different documents that discuss
the same issues are regarded as an argument pair.
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Figure 1: A simplified example of APE task, where each
dashed line in the two documents denotes a sentence.

s} is the j-th sentence in document i, and arg’ is an

argument in the j-th argument pair from document <.
Sentences without colors indicate non-arguments, while
sentences covered by colors can form arguments. Two
arguments with the same color are regarded as an argu-
ment pair.

Previous works (Cheng et al., 2020, 2021) com-
monly address APE by decomposing it into two
sentence-level subtasks, i.e., a sequence labeling
task and a sentence relation classification task.
These methods identify arguments by sentence-
level sequence labeling and determine whether two
sentences belong to the same argument pair by
sentence relation classification. Afterwards, the
argument pairs are inferred indirectly by certain
rules combining the results of the two subtasks.
However, such a paradigm only considers sentence-
level relations, while the holistic argument-level
relations can not be well modeled.

In this paper, we argue that APE can be con-
sidered as a multi-turn machine reading compre-
hension (MRC) task with two phases, i.e., an AM
phase and an APE phase. Specifically, in the first
turn, a special AM query is employed to identify
all the arguments in the first document (AM phase).
Afterwards, in each subsequent turn, every identi-
fied argument is treated as an APE query to extract
its paired arguments from the second document
(APE phase). Similarly, this process can also be
performed in another direction, that is, using the
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arguments identified in the second document as
queries to extract the paired arguments from the
first document. We train these two phases jointly
in a single MRC model, allowing them to benefit
each other. By considering arguments as queries,
our proposed MRC framework can better capture
the interactions between each query argument and
the queried document, thus extracting the argument
pairs at the argument level. In addition, consider-
ing the long length of the documents, we utilize
Longformer (Beltagy et al., 2020) to model longer
contexts.

We evaluate our method on the large benchmark
dataset (Cheng et al., 2020). Results show that our
proposed method significantly outperforms the cur-
rent state-of-the-art method by 7.11% in F; score.

2 Related Work
2.1 Argument Mining

Argument mining aims to analyze the structure of
argumentation, and it contains various subtasks,
such as argument component identification (Moens
et al., 2007; Goudas et al., 2015; Ajjour et al.,
2017; Jo et al., 2019), argument relation predic-
tion (Nguyen and Litman, 2016; Cocarascu et al.,
2020; Jo et al., 2021), argumentation structure pars-
ing (Stab and Gurevych, 2017; Kuribayashi et al.,
2019; Morio et al., 2020; Bao et al., 2021), argu-
mentation strategy analysis (Khatib et al., 2018;
Morio et al., 2019), etc.

Most previous works mainly focus on monologi-
cal argumentation, while dialogical argumentation
(Morio and Fujita, 2018; Chakrabarty et al., 2019)
is relatively less emphasized. Recently, the anal-
ysis of dialogical argumentation has attracted in-
creasing attention in the field of argument mining.
Cheng et al. (2020) propose the APE task which
involves identifying arguments and extracting ar-
gument pairs in peer review and rebuttal. Ji et al.
(2021) identify interactive argument pairs in online
debate forums based on the discrete variational au-
toencoders. Cheng et al. (2021) address the APE
task based on a table-filling approach. Yuan et al.
(2021) construct a dialogical argumentation knowl-
edge graph for identifying argument pairs.

2.2 Machine Reading Comprehension

Machine reading comprehension (MRC) aims to
extract answer spans from a passage according to
a given query (Seo et al., 2017; Chen et al., 2017;
Devlin et al., 2019; Wen et al., 2021). Formulating
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NLP tasks as MRC tasks has been a rising trend
in recent years, such as dependency parsing (Gan
et al., 2021), relation extraction (Levy et al., 2017),
named entity recognition (Li et al., 2020), senti-
ment analysis (Chen et al., 2021; Mao et al., 2021).
Unlike previous studies above, we employ a MRC
framework to analyze the complex argumentative
relations between two documents with excessively
long length.

3 Methodology

3.1 Task Formulation

We assume that two interrelated documents D, =
(s‘f,sg,...,sga)_ and D, (sl{,sg,...,szb) are
given, where s denotes the j-th sentence in doc-
ument . We need to extract the collection of ar-
gument pairs P = {(arg{, argﬁ’)}‘ii'l, where arg
and argf respectively represent the arguments in
document D, and Dy, and they compose the i-th
argument pair. Note that each argument consists of
one or more consecutive sentences. For example,
argl = (Seiarts Setarts1s -+ Seng) Where start and
end denote the start and end sentence index.

To frame APE as a multi-turn MRC task, two
types of queries are constructed, i.e., the argument
mining (AM) query and the argument pair extrac-
tion (APE) query. Intuitively, we could consider
the process of extracting argument pairs from the
perspective of two directions, i.e., D, — D; and
Dy — D,. For the D, — D, direction, we first
construct an AM query using a special token whose
corresponding answers are all the arguments in
document D,. After recognizing all arguments
through the AM query, each recognized argument
is considered as an APE query whose correspond-
ing answers are its paired arguments in document
Dy. Similarly, for the D, — D, direction, we first
query document Dj, with the AM query, and then
generate the APE queries for document D,. Fi-
nally, the argument pairs can be derived by fusing
the answer results of all APE queries.

3.2 MRC Framework
3.2.1 Encoder

Since APE is a document-level task with exces-
sively long text, we adopt Longformer to capture
contextual information over longer distances. For
brevity, we only describe the MRC process in the
D, — D, direction below, and the D, — D,
direction can be performed similarly.



Formally, we use a special token “[AM]” to rep-
resent the AM query ¢®™, which aims to identify
all the arguments A% = {argg}!l::l‘ in document
D, where argj, indicates the k-th argument in D,.
Then, each identified argument argy is considered

as an APE query ¢, ie., ¢ = arg} =
(sf;;];rt, s sgfd). Note that we use gold arguments

as APE queries during training.

With these queries, we first concatenate the AM
query ¢*™ and the document D, as an input se-
quence for AM:

Jom —

(s, g™, [/, [s], 51, 55, ., sqa, [/5])
()

Also, we concatenate each APE query ¢, """

and the document D, to obtain multiple input se-

quences for APE:

Jope _

k [/SL &]75?’33"“>Szb7[/sn

2

where [s] and [/s] are special tokens of Longformer.

([s], ¢,

Subsequently, for each sequence above, we feed
it into Longformer to get the hidden representation
of each token in the input document. Specifically,
to enable Longformer to better learn argument-
specific representations, we add global attention
to the tokens of the query. Afterwards, we de-
rive the hidden representation of each sentence
through mean pooling on token representations in
this sentence. Further, to better model the long-
term dependency among sentences, the hidden rep-
resentations of sentences are fed into LSTM to de-
rive the contextual sentence representation matrix
H = (hy,hy, ..., h,).

3.2.2 Answer Span Prediction

For each turn, one or more answer spans will be
extracted as arguments. Note that, in each direction,
the first turn aims to extract all arguments, while
the following turns aim to extract arguments that
can form pairs with the query argument.

Specifically, inspired by Li et al. (2020), we fed
H into two binary classifiers to predict the start and
end sentence positions of arguments. After obtain-
ing all start and end positions, we further employ
another binary classifier to determine whether each
start and end position pair (matched by Cartesian
product) forms an answer span. Note that the input
of this span classifier is the concatenation of the
start and end sentence representations from H.
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3.2.3 Training

During training, the three classifiers described in
Section 3.2.2 yield three cross-entropy losses, i.e.,
a start loss, an end loss, and a span loss. We simply
sum these losses up as the training objective of our
model. In addition, the AM phrase and the APE
phrase are trained jointly in a single MRC model.

3.2.4 Inference

During inference, the D, — Dy, direction uses the
trained MRC model to first identify all the argu-
ments in D, by the AM query and then extract all
the argument pairs in Dy by the APE queries. Sim-
ilarly, the Dy — D, direction can be performed in
the same manner by simply exchanging the order
of D, and D;. Each APE query in both directions
yields one or more argument pairs, where each ar-
gument pair contains the query argument and one
extracted argument. We simply merge all argument
pairs extracted by all APE queries into a union set
to obtain the final inference results.

4 Experiments

4.1 Experimental setup
4.1.1 Dataset

Our experiments are conducted on the large APE
benchmark dataset, namely the Review-Rebuttal
(RR) dataset (Cheng et al., 2020), which contains
4,764 pairs of review-rebuttal passages of ICLR.
Following the setup of (Cheng et al., 2021), we
also evaluate our method on two versions of the
train/dev/test (8:1:1) split, i.e., RR-Passage-v1 and
RR-Submission-v2. Note that in our method, we
view review passage and rebuttal passage as docu-
ment D, and document Dy, respectively.

4.1.2 Implementation Details

We adopt Longformer-base-4096 ! as base encoder,
and we use sliding window attention with the win-
dow size of 512. We train our model 6 epochs with
a batch size of 4. AdamW (Kingma and Ba, 2015)
is used as the optimizer, and the learning rates for
Longformer and other layers are le-5 and le-3.2
The evaluation metrics contain two aspects,
namely AM and APE. Different from (Cheng et al.,
2021, 2020), sentence pairing is not included as a
metric because we extract argument pairs directly.

1https://hquingface.co/allenai/
longformer-base—-4096

2Qur source code is available at https://github.
com/HLT-HITSZ/MRC_APE



Argument Mining

Argument Pair Extraction

Data Methods Pre. Rec. Fi Pre. Rec. Fi
PL-H-LSTM-CRF  67.02 6849 67.75 19.74 19.13 19.43
MT-H-LSTM-CRF 70.74 69.46 70.09 27.24 26.00 26.61

RR-Submission-v2 ~MLMC 69.53 7327 7135 37.15 29.38 32.81
MRC-APE-Bert 7336 68.35 70.77 4226 34.06 37.72
MRC-APE-Sep. 7245 71.58 72.01 41.09 36.99 38.93
MRC-APE (Ours) 71.83 73.05 7243 4183 38.17 39.92
PL-H-LSTM-CRF  73.10 67.65 7027 21.24 19.30 20.22
MT-H-LSTM-CRF 71.85 71.01 7143 30.08 29.55 29.81

RR-Passage-v1 MLMC 66.79 72.17 69.38 40.27 29.53 34.07
MRC-APE-Bert 66.81 69.84 68.29 3470 35.53 35.11
MRC-APE-Sep. 7527 6790 71.39 36.63 40.05 38.26
MRC-APE (Ours) 76.39 70.62 73.39 37.70 44.00 40.61

Table 1: Main results on RR-Submission-v2 and RR-Passage-v1 (%). The best scores are in bold.

We select the best parameters based on the perfor-
mance (i.e., average F; scores of AM and APE)
on the dev set. All scores are averaged across 5
distinct trials using different random seeds.

4.1.3 Baselines

We compare our model with several baselines. PL-
H-LSTM-CREF (Cheng et al., 2020) independently
trains an argument mining task and a sentence pair-
ing task, while MT-H-LSTM-CRF (Cheng et al.,
2020) trains two subtasks in a multi-task frame-
work. MLMC (Cheng et al., 2021) is an attention-
guided model based on a table-filling approach,
which is the current state-of-the-art method.

Furthermore, we implement two additional base-
lines. For a fair comparison with MLMC, MRC-
APE-Bert replaces Longformer with Bert, where
documents with excessively long length are splited
into several segments. Instead of jointly training
AM and APE phases, MRC-APE-Sep. trains the
two phases separately.

4.2 Results and Analysis
4.2.1

As shown in Table 1, our model achieves the best
performance on both versions of the RR dataset.
Concretely, on RR-Submission-v2, our model sig-
nificantly outperforms the current state-of-the-art
model MLMC by at least 7.11% in APE F; score.
On RR-Passage-v1l, our model obtains at least
a 6.54% higher APE F; score than the MLMC.
Also, our model achieves the best performance on
AM. Furthermore, without applying Longformer
as the base encoder, MRC-APE-Bert still outper-
forms MLMC in APE F; score, demonstrating
that our improvement is not only brought by Long-
former. However, for the AM task, MAC-APE-Bert

Main Results
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APE
Method Pre. Rec. Fi  A(F))
MRC-APE (Ours) 4183 3817 3992 -
wio Dy — D, 4947 3133 3836 156
Wwo Do — Dy 4668 2602 3341 651
w/o LSTM 4498 3451 3906 086
Ww/o GA 3820 3066 3402 5.90

Table 2: The results of ablation experiments on RR-
Submission-v2 (%). The best scores are in bold. w/o
GA indicates that the global attention is not included in
Longformer.

achieves slightly lower F; score than MLMC. The
reason may be that, in MLMC, the predictions of
the AM task are influenced by the APE task through
a complex attention interaction mechanism. How-
ever, our model does not require such a complex
design and can achieve much better results on the
APE task. Besides, our MRC-APE achieves better
results than MRC-APE-Sep. on both AM and APE
tasks, indicating that jointly training two phases in
a single MRC model could maximize the mutual
benefits of the two phases.

In addition, to analyze the error propagation
from the first phase to the second phase, we use the
true label of AM task to predict APE task. Under
this setting, our model can achieve around 59.44%
F; score for APE task, showing effectiveness in
identifying argument pairs.

4.2.2 Ablation Study

The ablation study results are shown in Table 2.
It can be observed that using two directions con-
tributes greatly to our method. Also, using the
arguments recognized in D, to extract the paired
arguments in Dy, is more critical in the RR dataset,
removing it causes a 6.51% decrease in APE F;
score. Without the LSTM to capture the long-



term dependency among sentences, the APE F
score decreases by 0.86%. Furthermore, the perfor-
mance drops heavily without the global attention,
because it enables more interactions between the
query argument and the queried document, thus
better argument-specific representations could be
learned.

5 Conclusion

In this paper, we propose to frame the argument
pair extraction (APE) task as a machine reading
comprehension (MRC) task. Our MRC framework
addresses APE through two phases with two types
of queries, that is, argument mining (AM) query
and argument pair extraction (APE) query. Our
proposed method can better model the argument-
level interactions, thus facilitating the extraction
of argument pairs. Experimental results on a large
benchmark dataset demonstrate that our proposed
method achieves state-of-the-art performance.
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Abstract

When generating natural language from neural
probabilistic models, high probability does
not always coincide with high quality: It
has often been observed that mode-seeking
decoding methods, i.e., those that produce
high-probability text under the model, lead to
unnatural language. On the other hand, the
lower-probability text generated by stochastic
methods is perceived as more human-like.
In this note, we offer an explanation for this
phenomenon by analyzing language gener-
ation through an information-theoretic lens.
Specifically, we posit that human-like language
should contain an amount of information
(quantified as negative log-probability) that
is close to the entropy of the distribution over
natural strings. Further, we posit that language
with substantially more (or less) information is
undesirable. We provide preliminary empirical
evidence in favor of this hypothesis; quality
ratings of both human and machine-generated
text—covering multiple tasks and common
decoding strategies—suggest high-quality text
has an information content significantly closer
to the entropy than we would expect by chance.

1 Introduction

Today’s probabilistic neural language models are
often trained on millions—if not billions—of lines
of human text; thus, at least at an intuitive level,
we would expect high-probability generations
to be human-like. Yet the high-quality! texts
these models have become famous for producing
(Brown et al., 2020; Clark et al., 2021) are usually
not those assigned the highest probability by the
model (Fan et al., 2018; Holtzman et al., 2020;
Basu et al., 2021; DelLucia et al., 2021). Rather,
the relationship between probability and quality

'We assume that “human-like” is a (necessary but not
sufficient) prerequisite for “high-quality” in the context of
natural language strings.
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appears to have an inflection point,” i.e., quality
and probability are positively correlated only until
a certain threshold, after which the correlation
becomes negative. While the existence of such a
trend has received informal explanations (see, e.g.,
Ippolito et al. (2019) and Zhang et al. (2021) for a
qualitative discussion about the trade-off between
diversity and quality), it lacks a more fundamental
understanding. Why does the lower probability text
produced by stochastic decoding methods—such
as nucleus or top-k sampling—outperform text gen-
erated using probability-maximizing approaches?
In this note, we take an information-theoretic
approach in an attempt to answer this question.

In information theory, probability has another
interpretation: its negative log quantifies in-
formation content. In the context of natural
language, the notion of information content is
intuitive; humans use strings as a means to convey
information. Further, less predictable text, i.e., text
which would be harder for us to anticipate, conveys
more information. If we assume that the goal of
human communication is to transmit messages
efficiently and reliably (Gibson et al., 2019), we
may predict that these strings’ information content
should concentrate inside a specific interval. At
one extreme, strings with more-than-expected
information may be hard to process, and thus
ought to be disfavored when producing language.’
At the other extreme, low-information strings may
be seen as boring and uninformative.

Collectively, these concepts lead us to propose
the expected information hypothesis: Text
perceived as human-like should have an infor-
mation content within a small interval around
the expected information—i.e., the entropy—of
natural language strings. Such a hypothesis offers

The inflection point is empirically demonstrated in our
App. B or in Fig. 1 of Zhang et al. (2021).

*Many works in psycholinguistics have shown a direct
relationship between information content and processing effort
(Smith and Levy, 2013; Wilcox et al., 2020, inter alia).
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an intuitive explanation for the trends observed
in natural language generation (NLG), i.e., why
desirable text seems to exist not always at the
high end of the probability spectrum but around a
certain inflection point.* Moreover, it also gives us
a testable hypothesis: given a language generation
model ¢ whose entropy we can empirically
estimate, we can evaluate whether high-quality
text indeed has an information content that falls
within an interval around this quantity.

To test our hypothesis, we perform an analysis
comparing human and model-generated text,
investigating multiple common decoding strategies
and NLG tasks. Specifically, our analysis focuses
exclusively on English text. We indeed observe
that the information content of highly ranked text
(as judged by humans) often falls within a standard
deviation of model entropy; there is statistically
significant evidence that this is not due to chance.
Further, the best-performing decoding methods
appear to select strings with an information content
within this interval. We take these observations as
empirical support for our hypothesis, helping to
explain the probability—quality paradox observed
in language generation.

2 Probabilistic Language Generators

In this work, we focus on probabilistic models
for language generation tasks. Formally, these
models are probability distributions g over natural
language strings y € ), where ) is the (countably
infinite) set consisting of all possible strings that
can be constructed from a set vocabulary V:

Y= {BOSovoEOS | v eV} (1

Here, BOS and EOS stand for special reserved
beginning- and end-of-string tokens, respectively,
and V* denotes the Kleene closure of V. In
practice, we limit the set of strings we consider to
Yn C Y for some maximum sequence length N.
Note that ¢ may be a conditional model. For
instance, we may model ¢(- | x) where x is an
input text, as in the case of machine translation, or
an input image, as in the case of image captioning.
However, for notational brevity, we omit this
explicit dependence in most of our subsequent
analyses. In order to estimate g, it is standard
practice to maximize the log-probability of a
4Similar ideas have been used to improve language models

and language generation before (Meister et al., 2020; Wei
et al., 2021).
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training corpus C under the model with respect
to the model’s parameters 8. This is equivalent to
minimizing its negative log-probability:

L(6;C) = = > logq(y)

yeC

2

There are many different decision rules one can em-
ploy for generating natural language strings from a
model g; such sets of rules are generally referred to
as decoding strategies; see Wiher et al. (2022) for
an in-depth review. Given the probabilistic nature
of the models we consider, an intuitive strategy for
decoding would be to choose the string with the
highest probability under g, an approach referred
to as maximum-a-posteriori (MAP) decoding.” Yet
recent research has shown that solutions to MAP
decoding—or, even more generally, to heuristic
mode-seeking methods such as beam search—are
often not high-quality, even in state-of-the-art NLG
models. For example, in the domain of machine
translation, the most probable string under the
model is often the empty string (Stahlberg and
Byrne, 2019). Similarly, in the domain of open-
ended generation, mode-seeking methods produce
dull and generic text (Holtzman et al., 2020).

Where maximization has failed, authors have
turned to stochastic methods, taking random
samples from g. While the resulting text is often
assigned much lower probability than the mode,
it can be qualitatively much better. This peculiarity
has puzzled the language generation community
for the last few years, with only qualitative
intuitions being offered as explanation. This paper
in turn offers a quantitative explanation.

3 Language as Communication

While many aspects of natural language may not
perfectly adhere to Shannon’s mathematical theory
of communication, there are several characteristics
of human language that can fruitfully be described
using an information-theoretic framework.® Here
we employ this framework for explaining recent
phenomena observed in probabilistic NLG.

>Note that MAP decoding is somewhat of a misnomer
since we are not maximizing over a Bayesian posterior.
Nonetheless, the term has become commonplace in the lan-
guage generation literature.

®A large body of work has explored the extent to which
attributes of human languages—such as word lengths or
phoneme distributions—can be explained as information-
theoretic design features (Gibson et al., 2019). Surprisal the-
ory, for instance, directly relates human language processing
difficulty to information content (Hale, 2001).
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We can precisely compute the information content
of a string given the true (perhaps conditional)
probability distribution p over natural language
strings. Fortunately, this is the exact distribution
our language generation models in §2 are trained to
approximate.” Assuming q approximates p well (as
quantified by metrics such as perplexity), we may
thus use it to estimate such attributes of natural
language strings. In this work, we will measure
the amount of information a specific realization
y contains, which we denote 1(y) E _log q(y),
as well as the expected amount of information
arandom y € )Yy drawn from ¢ contains, also
termed the entropy of ¢:

Measuring Information

> aly)loggly) @)

YEYVN

Note that Pimentel et al. (2021b, Theorem 2) prove
that, as long as the probability of EOS under q is
bounded below by some € > 0, then the entropy of
q is finite. In our case we restrict ¢ to a finite subset
Y~ of Y, which also implies that Eq. (3) is finite.

3.2 The Expected Information Hypothesis

Language is used as a means for transferring
information. This property of language has in fact
motivated several theories of language evolution;
many have posited, for instance, that natural
language has developed to optimize for reliable
and efficient data communication, subject to
cognitive resources (Zipf, 1949; Hockett, 1960;
Hawkins, 2004; Piantadosi et al., 2011). The
above theories arguably imply that humans tend
to produce natural language strings with a certain
amount of information; they also imply that, on the
receiving end of communication, humans would
expect similar strings. We argue that this amount
is intuitively close to the language’s entropy, i.e.,
close to the average string’s information content.

Expected Information Hypothesis. Text per-
ceived as human-like typically encodes an amount
of information close to the expected information
content of natural language strings, i.e., in the in-
terval [H(p) — e, H(p) + €] for a natural language

"To see this, recall that minimizing the objective in Eq. (2)
is (up to an additive constant) equivalent to minimizing
the Kullback—Leibler divergence—an information-theoretic
quantity that measures the amount of information lost when
approximating one probability distribution with another—
between the empirical distribution p and our model q.
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string distribution p and some ¢.® Text that falls out-
side of this region is likely perceived as unnatural.

This viewpoint can be applied to the problem of
decoding neural text generators. In the context of
a model ¢ of the distribution p, this implies that—
when ¢ is a good approximation—human-like text
should typically have a negative log-probability
close to the entropy of ¢. In §4, we provide
empirical evidence for this hypothesis.

Relationship to the typical set. The set of
strings that we discuss has an intuitive relationship
to the typical set (Shannon, 1948), an information-
theoretic concept defined for stationary ergodic
stochastic processes. However, generation from
standard neural probabilistic language models can-
not be framed as such a process.” While we cannot
utilize the formal mathematical underpinnings of
typicality, the connection can still be useful for un-
derstanding why strings with a given information
content exhibit certain characteristics. An overview
of the concept is in App. A for the interested reader;
also see Dieleman (2020) for further insights on
typicality in the context of generative models.

4 Experiments

Our experiments present an analysis of the distri-
bution of information content in text generated by
both humans and probabilistic models. Specifically,
we look at the relationship between information
content and quality—as measured by human judg-
ments. We perform experiments on two natural
language generation tasks: abstractive summariza-
tion and story generation. We present the results
for story generation here, while the results for sum-
marization can be found in App. B due to space
constraints. A recreation of the probability versus
quality plots of Zhang et al. (2021) can also be
found in App. B.

We use the following Monte Carlo estimator for
the entropy, i.e., expected information content, of

8While we do not offer a concrete explanation of why
distributions over natural language strings have a particular
entropy, we posit that it is determined by cognitive constraints,
as observed with other phenomena in natural language (Coupé
et al., 2019; Pimentel et al., 2021a).

°Specifically, most neural language models are neither
stationary (due to their ability to encode arbitrarily long se-
quences; Welleck et al. 2020) nor ergodic (because of the ab-
sorbing nature of the EOS state). This implies that we cannot
guarantee the existence of an entropy rate, which is necessary
to define the typical set.
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Figure 1: The distribution over information 1(y) values
of: MODEL, the model, as estimated using samples
from q; REFERENCE, the reference strings; TOP 1 and
BOTTOM 1, model-generated strings ranked first and last
(respectively) among all decoding strategies by human
annotators. The latter 3 are all w.r.t. a held-out test
set. Same graph is reproduced for individual decoding
strategies in App. B.

our model ¢:

—logq(y™) “4)

M:

m:l

where we sample y (™) i q. Algorithmically,
taking these samples may be done in linear time
using ancestral sampling. All computations are
performed with the test sets of respective datasets.
Note that for both abstractive summarization and
story generation, where we condition on some input
x, we must compute the conditional entropy for
each input, i.e., using ¢(- | x) instead of ¢(-). For
each x, we take M = 100 to estimate H(q(- | x)).

4.1 Setup

Models and Data. We only conduct experiments
on the English language. For story generation, we
fine-tune GPT-2 (medium) (Radford et al., 2019)
(checkpoint made available by OpenAl) on the
WRITINGPROMPTS dataset (Fan et al., 2018). For
abstractive summarization, we use BART (Lewis
et al., 2020), fine-tuned on the CNN/DAILYMAIL
dataset (Nallapati et al., 2016). We rely on the
open-sourced code-base from the HuggingFace
framework (Wolf et al., 2020) for reproducibility.

Decoding Strategies. We explore text generated
according to a number of different decoding strate-
gies. Unless otherwise stated, we use the imple-
mentation provided by Hugging Face for each of
the decoding algorithms. Along with standard an-
cestral sampling, we experiment with the following
six decoding strategies:
* greedy search;
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Figure 2: The distribution of the difference in total in-
formation content for (1) test-set references and (2) top-
ranked model-generated strings from the (conditional)
entropy of the model from which they were generated.

* beam search with beam sizes ¥ = 5 and
k = 10;

* diverse beam search (Vijayakumar et al.,
2016) with Hamming distance as a dissimilar-
ity function and A = 0.7 and G = k = 5;'°

* ancestral sampling;

* top-k sampling (Fan et al., 2018) with k =
30;

* nucleus sampling (Holtzman et al., 2020)
with p = 0.85;!!

* minimum Bayes risk decoding (MBR;
Eikema and Aziz 2020)'? with 32 Monte
Carlo samples'? from ¢ and BEER (Stanojevi¢
and Sima’an, 2014) as the utility function.

Human Evaluations. We use the prolific
platform to obtain human judgments of text
quality (according to 2 criteria per task) from 5
different annotators on 200 examples per decoding
strategy—per task. This gives us a total of > 3000
annotated examples. We largely follow the
guidelines recommended by van der Lee et al.
(2021) in setting up our evaluations: For abstrac-
tive summarization, we ask annotators to rate
quality and accuracy while for story generation,
annotators rate fluency and naturalness. More
details on our setup can be found in App. B.1.

4.2 Results

In Fig. 1, we plot the distribution of information
content assigned by ¢ to four different sets of
strings: our reference (human-generated) text, the

19The choice of dissimilarity function and hyperparameters
(A, G, k) is based on the recommendations from the original
work.

""This choice is based on experiments in (DeLucia et al.,
2021) that suggest a parameter range p € [0.7,0.9].

12We use the github.com/Roxot/mbr-nmt framework.

3The number of Monte Carlo samples was chosen based
on the batch size constraint.
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Figure 3: Human scores for strings (including both
reference text and model-generated text) within 1 std of
model entropy and outside of this interval. There is a
statistically significant difference in means (p < 0.001).

top and bottom ranked (according to human an-
notators) strings generated from ¢ via our differ-
ent decoding strategies,'* and strings sampled i.i.d.
from ¢. Note that the latter should represent the
distribution of negative log-probabilities assigned
to strings by the model. We see that both the refer-
ences and the top-ranked model-generated strings—
both of which we assume are of relatively high
quality—contain an amount of information clus-
tered around the (estimated) model entropy. On the
other hand, the distribution of the information con-
tent of poorly rated strings is skewed towards much
lower values. The same trends hold when look-
ing at information normalized by string length, i.e.,
1(y)/|y| (see App. B), demonstrating these trends
are not purely an artifact of string length. We note
that in our human evaluations, the reference string
was ranked first in 47% of cases and it was tied
for first in an additional 16% of the cases. This
suggests that the quality of the reference strings is
on par with—if not higher than—the set of “top 1”
model-generated strings.

Fig. 2 shows the distribution of deviations of
strings’ information content from the model en-
tropy; !> results are shown for both reference strings
and top-ranked model-generated strings. Because
these values are distributed quite evenly around 0,
we take this as additional evidence that high-quality
text usually has information content close to H(q).
Further, the shapes of these curves motivate us to
perform our next set of tests using € = o, the stan-
dard deviation of information values under ¢.'°

We employ statistical hypothesis testing to
see if the percentage of high-quality strings
whose information content falls in the interval

14Specifically, for each input, we generate a single string
according to each decoding strategy. We then rank these
strings according to scores from human annotators.

SNote that this is not simply Fig. 1 shifted by a constant,
as deviations are computed w.r.t. input-dependent conditional
entropy estimates, i.e., ﬁ(q( | x)).

'6Similarly to our estimation of H(g) in Eq. (3), o can be
estimated from the distribution of values of 1(y) sampled from
the model.
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[H(q) — o, H(q) + o] is greater than chance.
For each input x (i.e., either a story prompt
or article), we compute the information con-
tent of the reference and top-3 human-ranked
strings. We then compute the percentage
of items (among these four) that fall within
[H(q(- | x)) — o, H(q(- | x)) + o]. We compare
this percentage to the percentage of strings sampled
directly from ¢(- | x) that falls within this interval.
The former should (in expectation) be greater than
the latter if the probability of high-quality strings
having information content within this interval is
greater than chance. Specifically, we test this using
a paired, unequal-variance t-test, where samples
with the same input are paired. At significance
level o = 0.01, we reject our null hypothesis—i.e.,
we reject that the percentage of highly rated strings
(reference plus top-3 human-ranked strings) that
fall within this interval is equal to (or less than)
what we should expect by chance. Further, using
a simple unpaired ¢-test, we find that the mean
human score of strings (across all decoding strate-
gies) within this region is significantly higher than
those outside of this region. This characteristic is
visualized in Fig. 3, where we plot the distributions
of human quality ratings for strings inside and
outside of this interval. We include a version of
Fig. 3 further broken down by whether strings fall
above or below this interval in App. B.

Additional plots reinforcing these observations
can be found in App. B. Also see Meister et al.
(2022) for follow-up experiments to this work.

5 Conclusion

In this work, we present the expected information
hypothesis, which states that human-like strings
typically have negative log-probability close to the
expected information content of the probabilistic
model from which they were generated. We use
this hypothesis to explain why high-quality text
seems to exist not necessarily at the high end of
the probability spectrum but, rather, close to the en-
tropy of the model. We provide empirical evidence
in support of our hypothesis in an analysis of both
human and machine-generated text, demonstrating
that, overwhelmingly, high-quality text indeed has
information content in the proposed region.

Ethics Statement

In order to complete our human evaluation, we
used a crowdsourcing platform. For each task, we



estimated the amount of time we expected the task
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eration. Language models have been used for the
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A The Typical Set

Let us imagine flipping /V biased coins; specifically, let X ~ p be an indicator random variable that takes
values H and T. Take p(X =H) = 0.6 and p(X =T) = 0.4. Flipping N biased coins is then equivalent to
taking N i.i.d. samples z,, ~ p. For reasonably large N, what might you expect the sequence x1, ...,z N
to look like? Few people would answer “all heads,” even though this is technically the highest probability
sequence. Rather, intuition tells you: an expected sequence would be one comprised of approximately
60% heads and 40% tails.

The samples that fall into the latter category have a distinctive characteristic: they contain a near-average

amount of information w.r.t the support of the distribution over Xy, ..., X, where the information
content of a realization z1, ...,z is defined as its negative log-probability. More formally, the (weakly)
(e, N)-typical set AéN) for a chosen € > 0 is the set of assignments x1, ...,y to random variables

= X1,..., X such that
o~ NH®I) < p(y, ... ay) < 27 NHE)=2)

where H(p) £ — 3" . P(x)log p(x) is the entropy—or equivalently, the expected value of the information
content—of the random variable X. Under this definition we can prove that, for every € > 0, there exists an
Ny such that for all N > Ny, we have that the (¢, V)-typical set contains at least (1 — ¢) of the probability
mass of the joint distribution over Y The concept of the typical set also generalizes to stochastic processes
when we can actually compute their average information rate—or equivalently, their entropy rate.

B Experimental Design

B.1 Human Evaluations

For story generation and abstractive summarization, the raters are first presented with a news article/prompt.
Next, they are presented, in random order, with the corresponding reference and the summaries/stories
generated by different decoders. For each of two rating criteria, a score from O to 7 is assigned. For story
generation the criteria are FLUENCY and NATURALNESS while for abstractive summarization QUALITY
and ACCURACY are used. We provide the following short descriptions of the criteria to the raters:

FLUENCY: How fluent is the English text?
NATURALNESS: Does the text seem to be natural English text?
QUALITY: How high is the overall quality of the text?

ACCURACY: How well does the summary summarize the article?

After we obtain the ratings, we reject ratings that have not been filled out with care. Specifically, a rater is
rejected if he assigns high scores to multiple examples that do not fulfill the specified criteria at all. If a
rater has been rejected, we obtain a fresh set of ratings from a new rater.

C Additional Figures

We provide several additional results, looking further into the relationship between text information
content and perceived quality. We see that in general, the distribution of information content of reference
strings is quite close to that of the model. While the distribution of information content of top 1 ranked
strings is also closer to the model distribution than many of the individual decoding strategies, the overlap
is not as high as for reference strings.
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Figure 4: Human scores for strings (including both ref-
erence text and model-generated text) within 1 std of
model entropy and above/below this interval. Note that
“above” corresponds to text that has lower probability
than the specified interval; due to the nature of the de-
coding strategies explored in this work, which all to
some extent (except for ancestral sampling) dispropor-
tionately favor higher probability strings, only < 5%
of all strings evaluated fall into the “above” category.
Thus, we do not have a representative evaluation of this
region of the probability space. However, it is often ob-
served that extremely low-probability strings are usually
incoherent or nonsensical.
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Figure 5: For story generation, median human scores
(averaged across the two criterion) versus information,
grouped by intervals; bars represent std. We normalize
I(y) by length to mimic setup of Zhang et al. (2021),
which controls for length during generation. As with
Zhang et al. (2021), we see an inflection point in
the relationship along the information (equivalently,
negative log-probability) axis.
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Figure 6: For abstractive summarization, the distribu-
tion over information 1(y) values of: (model) the model,
as estimated using samples from ¢; (reference) the ref-
erence strings; model-generated strings ranked (top 1)
first and (bottom 1) last among all decoding strategies
by human annotators. The latter 3 are all w.r.t. a held-
out test set.
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Figure 7: For abstractive summarization, the distribution
of the difference in total information content for (1)
test-set references and (2) top-ranked model-generated
strings from the entropy of the model from which they
were generated.
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Figure 8: For story generation, the distribution over
information (I1(y)) values normalized by length of:
(model) the model, as estimated using samples from
q; (reference) the reference strings; model-generated
strings ranked (top 1) first and (bottom 1) last among all
decoding strategies by human annotators. The latter 3
are all w.r.t. a held-out test set.
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Figure 9: The distribution over information (1(y)) values for strings generated under different decoding strategies
for story generation (top) and abstractive summarization (bottom). Inputs are taken from a held-out test set.
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Abstract

Discovering Out-of-Domain(OOD) intents is
essential for developing new skills in a task-
oriented dialogue system. The key challenge is
how to transfer prior IND knowledge to OOD
clustering. Different from existing work based
on shared intent representation, we propose a
novel disentangled knowledge transfer method
via a unified multi-head contrastive learning
framework. We aim to bridge the gap between
IND pre-training and OOD clustering. Experi-
ments and analysis on two benchmark datasets
show the effectiveness of our method. !

1 Introduction

Out-of-domain (OOD) intent discovery aims to
group new unknown intents into different clusters,
which helps improve the dialogue system for future
development. Compared to existing text clustering
tasks, OOD discovery considers how to leverage
the prior knowledge of known in-domain (IND)
intents to enhance discovering unknown OOD in-
tents, which makes it challenging to directly apply
existing clustering algorithms (MacQueen, 1967;
Xie et al., 2016; Chang et al., 2017; Caron et al.,
2018) to the OOD discovery task.

Previous unsupervised OOD discovery models
(Hakkani-Tiir et al., 2015; Padmasundari and Ban-
galore, 2018; Shi et al., 2018) only model OOD
data but ignore prior knowledge of in-domain data
thus suffer from poor performance. Therefore, re-
cent work (Lin et al., 2020; Zhang et al., 2021) fo-
cus more on the semi-supervised setting where they
firstly pre-train an in-domain intent classifier then
perform clustering algorithms on extracted OOD
intent representations by the pre-trained IND intent
classifier. For example, Lin et al. (2020) firstly
pre-trains a BERT-based (Devlin et al., 2019) IND

*The first three authors contribute equally. Weiran Xu is
the corresponding author.

"We release our code at https://github.com/
myt517/DKT.
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Figure 1: Comparison between baselines and our pro-

posed DKT model.

intent classifier then uses intent representations to
perform a pairwise clustering algorithm (Chang
et al., 2017). Further, Zhang et al. (2021) proposes
an iterative clustering method, DeepAligned, to
obtain pseudo supervised signals using K-means
(MacQueen, 1967). However, all of these meth-
ods ignore the matching between IND pre-training
stage and OOD clustering stage because they for-
mulate IND pre-training as the classification task
while OOD clustering as the text clustering task.
The different learning objectives make it hard to
transfer prior IND knowledge to OOD. Besides,
previous work only transfer a single intent repre-
sentation from the pre-trained IND classifier to
OOD clustering. Considering the entanglement of
the intent representation, simply transferring IND
features may harm OOD clustering. For example,
there exist two levels of intent features, instance-
level and class-level knowledge in the pre-trained
IND classifier. Decoupling different levels of intent
features helps better knowledge transferability.

To solve the issues, we propose a novel
Disentangled Knowledge Transfer method (DKT)
via a unified multi-head contrastive learning frame-
work to transfer disentangled IND intent repre-
sentations to OOD clustering. The main intuition
is how to perform better knowledge transfer. As
shown in Fig 1, we decouple the pre-trained intent
representations into two independent subspaces,
instance-level and class(cluster)-level using a uni-

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
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fied contrastive learning framework. Different from
existing OOD discovery work, we equip the tradi-
tional IND pre-training stage with a similar con-
trastive objective as the clustering stage. Specifi-
cally, we firstly learn intent features using a con-
text encoder like BERT, then add two independent
transformation heads (instance-level head f and
class-level head g) on top of BERT. In the IND
pre-training stage, we use the head f to perform su-
pervised instance-level contrastive learning (Chen
et al., 2020; Khosla et al., 2020; Gunel et al., 2021;
Zeng et al., 2021) and the head g to compute tra-
ditional classification loss like cross-entropy. In
the OOD clustering stage, we employ similar ob-
jectives for these two heads where f is still used
for instance-level contrastive learning and g is used
to perform class(cluster)-level contrastive learning
(Lietal., 2021). We leave the details in the follow-
ing Section 2. Using the unified contrastive objec-
tives for pre-training and clustering bridges the gap
between the two stages. Besides, the two indepen-
dent heads decouple the instance- and cluster-level
contrastive learning to learn disentangled intent
representations for better knowledge transfer. Sec-
tion 4 demonstrates the effectiveness of multi-head
disentanglement.

Our contributions are three-fold: (1) We propose
a novel disentangled knowledge transfer method
for OOD discovery to better leverage prior IND
knowledge. (2) We propose a unified multi-
head contrastive learning framework to bridge the
gap between IND pre-training and OOD cluster-
ing. (3) Experiments and analysis on two bench-
mark datasets demonstrate the effectiveness of our
method for OOD discovery.

2 Approach

Problem Formulation Given a set of labeled in-
domain data (X7np, Yrnp) and unlabeled OOD
data (Xoop,Yoop), OOD discovery aims to clus-
ter OOD groups from unlabeled OOD data using
prior knowledge from labeled IND data. Note that
IND data has no overlapping with OOD data. Gen-
erally, OOD discovery includes two stages, IND
pre-training which aims to obtain a decent intent
representation via labeled IND data, and OOD clus-
tering which aims to group OOD intents into dif-
ferent clusters.

Overall Architecture Fig 2 shows the overall
architecture of our proposed DKT model. We
firstly use the same BERT (Devlin et al., 2019)
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Figure 2: The overall architecture of our DKT.

backbone to extract intent representations as the
previous work DeepAligned (Zhang et al., 2021).
Then we decouple the intent representations into
two independent subspaces and use a unified con-
trastive learning framework to perform both IND
pre-training and OOD clustering.

IND Pre-training Different from existing meth-
ods that regard IND pre-training as a single intent
classification task, we formulate it as an instance-
wise discriminative task and a class-wise classifi-
cation task via contrastive learning. Given an IND
intent example x;, we firstly obtain its intent repre-
sentation z; using a BERT encoder and a pooling
layer.> Then we use two independent transforma-
tion heads f and g to get two disentangled latent
vectors f; = f(z;) and g; = g(z;).> On top of the
instance-level head f, we perform supervised con-
trastive learning (SCL) (Khosla et al., 2020; Zeng

et al., 2021) as follows:
al 1
Lscr = Zz; _Nyi 1 ]Z; 1i¢j1yi=yj

el fif)
& N
> k=1 Lizpexp (fi- fr/T)

where N, is the total number of examples in the
batch that have the same label as gy; and 1 is an
indicator function. Following Gao et al. (2021);
Yan et al. (2021), we employ simple dropout (Sri-
vastava et al., 2014) as data augmentation. SCL
can model instance-wise semantic similarities by
pulling together IND intents belonging to the same
class while pushing apart samples from different

N

*For a fair comparison, we use the same BERT-based back-
bone as previous work. We leave the details to Section 3.4.

*In the experiments, we use two separate two-layer non-
linear MLPs for head f and g. For simplicity, we set both the
input dimension and output dim to 768, same as the hidden
state dim of BERT-base.



Models CLINC-10% CLINC-20% CLINC-30% Banking
ACC ARI NMI | ACC ARI NMI | ACC ARI NMI | ACC ARI NMI
K-means 58.67 4381 67.77 | 48.89 3090 64.68 | 42.22 23.65 60.55 | 32.81 830 17.30
Unsup. DeepCluster | 53.15 37.80 62.31 | 47.73 3455 6591 | 33.96 1889 56.21 |29.81 7.79 17.34
DeepAligned | 62.66 47.60 71.50 | 48.24 34.49 66.24 | 39.02 24.50 61.16 | 36.56 12.57 21.84
DKT(ours) 7422 61.37 76.67 | 57.56 44.94 72.40 | 50.07 3553 69.81 | 40.00 18.20 30.10
PTK-means | 70.22 50.39 73.92 | 57.56 37.02 72.71 | 61.63 40.96 7590 | 55.00 36.18 53.75
DeepCluster | 78.13 6831 82.87 | 83.42 76.18 89.33 | 78.09 71.05 88.70 | 60.59 41.88 55.22
Semi-sup. | CDAC+ 88.00 75.18 88.33 | 84.89 7598 89.96 | 73.04 64.44 87.90 | 77.50 60.53 71.14
DeepAligned | 95.11 89.81 94.13 | 93.80 90.22 95.83 | 91.56 86.58 9491 | 77.78 66.95 76.91
DKT/(ours) 97.78 95.16 96.97 | 96.89 93.69 96.94 | 94.96 90.25 9594 | 84.69 71.11 76.92

Table 1: Performance comparison on two datasets. We randomly sample 10%, 20% and 30% of all classes as OOD
types for CLINC, 10% for Banking. We evaluate both unsupervised and semi-supervised methods. Unsup DKT
denotes DKT w/o IND pre-training. Results are averaged over three random runs. (p < 0.05 under t-test)

classes. Therefore, SCL helps maximize inter-class
variance and minimize intra-class variance, further
improves OOD clustering. On top of the class-level
head g, we use a cross-entropy classification loss to
learn class(cluster)-wise distinction. Section 4 con-
firms both the objectives improve the performance
and SCL has a larger effect.

OOD Clustering The key challenge of OOD
clustering is how to learn intent representations
and cluster assignments. Previous state-of-the-art
model DeepAligned (Zhang et al., 2021) iteratively
repeats the two stages which results in poor cluster-
ing efficiency and accuracy. Thus, we propose an
end-to-end contrastive clustering method (Li et al.,
2021) to jointly learn representations and cluster
assignments. Specifically, given an OOD example
xi, we firstly use the pre-trained BERT encoder
and transformation heads to get OOD intent latent
vectors f; and g;. Then, on top of the instance-
level head f, we perform instance-level contrastive
learning(ILCL) (Chen et al., 2020) as follows:

exp (sim (fi, f5) /7)

Soh) L exp (sim (fis fi) /7)
where f; denotes the dropout-augmented OOD
sample and 7 denotes temperature *. On top of
the cluster-level head g, we perform contrastive
clustering following Li et al. (2021) . Specifically,
given an OOD cluster-level latent vector g;, we
firstly project it to a vector with dimension K which
equals to the pre-defined cluster number.> Suppose
we input a batch of OOD samples so we can get
a feature matrix of N x K. Then we regard i-th
column of the matrix as the i-th cluster represen-
tation g; and construct cluster-level CL(CLCL) as

ins
i

= —log

“we set it to 0.5 in the experiments.
>In this paper, we focus on the fixed cluster number K
setting and leave estimating K to future work.
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follows:
exp (sim (yi, y;) /7)

S ol Lpzq exp (sim (y;, yi) /7)

where y; is the dropout-augmented cluster rep-
resentation of y; and sim denotes cosine distance.
Following Li et al. (2021), we also add a regular-
ization item to avoid the trivial solution that most
instances are assigned to the single cluster. For
training, we simply add the above objectives in the
experiments. For inference, we only use the cluster-
level contrastive head and compute the argmax to
get the cluster results without additional K-means.
Generally, the instance-CL focuses on distinguish-
ing different intent samples while the cluster-CL
identifies distinct OOD categories. Combining the
two stages, our proposed unified contrastive learn-
ing framework can effectively bridge the gap be-
tween IND pre-training and OOD clustering.

Efl]“ = —log

3 Experiment

3.1 Datasets

We show the detailed statistics of CLINC(Larson
et al.,, 2019) and BANKING(Casanueva et al.,
2020) datasets in Table 2. CLINC contains 22,500
queries covering 150 intents and Banking contains
13,083 customer service queries with 77 intents. To
construct IND/OOD data, we ramdomly divided
the two datasets in three ramdom runs, according
to the specified OOD ratio(10%, 20%, 30% for
CLINC, 10% for Banking), and the rest is IND
data. Note that we only use the IND data for pre-
training and use OOD data for clustering. To avoid
the randomness of splitting IND/OOD, we average
results over three random runs. For each run, all
the models use the same divided dataset. Differ-
ent from previous work Zhang et al. (2021), we
assume that the unlabeled data only contains OOD
data instead of a mixture of IND and OOD, aiming
to fairly evaluate the OOD clustering performance.



Dataset

CLINC
BANKING

Classes  Training

150 18,000
71 9,003

Table 2: Statistics of CLINC and BANKING datasets.

Validation ~ Test Vocabulary Length (max / mean)

2,250 2,250 7,283 28/8.31
1,000 3,080 5,028 79/11.91

In real scenarios, we can use OOD detection mod-
els (Xu et al., 2020; Zeng et al., 2021) to collect
high-quality OOD data for OOD intent discovery.

3.2 Baselines

We mainly compare our method with semi-
supervised baselines: PTK-means (k-means with
IND pre-training), DeepCluster (Caron et al., 2018)
and two state-of-the-art OOD discovery methods
CDAC+ (Lin et al., 2020) and DeepAligned (Zhang
et al., 2021). We also report the unsupervised re-
sults (without IND pretraining) of these methods
for a comprehensive comparison. For fairness, we
use the same BERT backbone as the baselines. We
leave the detailed baselines in the appendix A.1.

3.3 Evaluation Metrics

We adopt three widely used metrics to evaluate the
clustering results: Accuracy (ACC), Normalized
Mutual Information (NMI), and Adjusted Rand
Index (ARI). To calculate ACC, we use the Hun-
garian algorithm (Kuhn, 1955) to obtain the map-
ping between the predicted classes and ground-
truth classes.

3.4 Implementation Details

For a fair comparison with previous work, we use
the pre-trained BERT model (bert-base-uncased ©,
with 12-layer transformer) as our network back-
bone, and add a pooling layer to get intent repre-
sentation(dimension=768). Moreover, we freeze
all but the last transformer layer parameters to
achieve better performance with BERT backbone,
and speed up the training procedure as suggested
in (Zhang et al., 2021). During the pre-training
phase, the training batch size is 128, and during
the clustering phase, the training batch size is 512
for CLINC-10%, CLINC-30%, Banking-10%, and
400 for CLINC-20%. The learning rate is Se-5 in
the pre-training phase and 0.0003 in the cluster-
ing phase. Notably, We use dropout (Gao et al.,
2021) to construct augmented examples for con-
trastive learning with dropout rate 0.1. For the
instance-level contrastive head, the dimensionality
of the row space is set to 128, and the tempera-
tures of SCL and instance-level CL are 0.5. As

Shttps://github.com/google-research/bert
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for the cluster-level contrastive head, the dimen-
sionality of the column space is naturally set to
the number of IND classes/OOD clusters, and the
cluster-level temperature parameter 7= 1.0 is used
for all datasets. We use SC of validation OOD data
(still unlabeled data) to choose the best checkpoint.
The pre-training stage of our model lasts about
30 minutes and clustering runs for 10 minutes on
CLINC-10%, both using a single Tesla T4 GPU(16
GB of memory).

3.5 Main Results

Table 1 shows the performance comparison of dif-
ferent models on two datasets. Under both un-
supervised and semi-supervised settings, our pro-
posed DKT consistently outperforms all the base-
lines. In this paper, we mainly focus on the lat-
ter setting. For the Semi-sup setting on CLINC-
10%, DKT outperforms the previous state-of-the-
art DeepAligned by 2.67%(ACC), 5.35%(ARI),
2.84%(NMI). Similar improvements are observed
on other datasets. The results prove the effective-
ness of our proposed disentangled knowledge trans-
fer for OOD discovery. Comparing Unsup DKT
with Semi-sup DKT, the latter significantly outper-
forms the former by 23.56%(ACC), 33.79%(ARI),
20.30%(NMI), which demonstrates the effective-
ness of IND pre-training(see details in appendix
A2).

4 Qualitative Analysis

Effect of Disentangled Intent Representations
Tab 3 shows performance comparison of DKT and
KT under two settings. We find Disentangled KT
significantly outperforms KT both on two settings,
which proves the effectiveness of representation
disentanglement for knowledge transfer.
Visualization To confirm the effectiveness of DKT,
we perform OOD intent representation visualiza-
tion of DeepAligned, KT and DKT in Fig 3. Note
that we use the same representation following the
pooling layer for fair comparison. We find both
DeepAligned and KT have some mixed OOD clus-
ters while DKT forms clearly separate decision
boundaries between clusters, which shows our pro-
posed DKT obtains discriminative OOD representa-
tions for OOD discovery. Besides, Section 4 further
explore the effect of different layer and representa-
tions after MLP g gets the best performance.
Error Analysis We further analyze the error cases
of DeepAligned and DKT in Fig 5. We find that for
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Figure 5: Confusion matrix for the clustering results
of DeepAligned and DKT on CLINC-10%. The per-
centage values along the diagonal represent how many
samples are correctly clustered into the corresponding
class. The larger the number, the deeper the color.

similar OOD intents, DeepAligned is probably con-
fused but our DKT can effectively distinguish them.
For example, DeepAligned incorrectly groups ac-
cept_reservation intents into cancel_reservation
(14% error rate) vs DKT(7%), which proves DKT
helps separate semantically similar OOD intents.

Ablation Study To understand the effect of differ-
ent objectives of DKT, we perform abalation study
in Tab 4 by removing each loss. Results show all
the losses contribute to the performance especially
SCL, ILCL and CLCL, which confirms the effec-
tiveness of our unified contrastive framework.

Intent Representations at Different Layers In
order to further explore the effectiveness of disen-
tangled representation, we visualize the output vec-
tors of instance-level head and cluster-level head
and compare them with the output vector after

50

Models

ACC

ARI

NMI

KT

Unsup. DKT

68.89
74.22

56.33
61.37

73.93
76.67

KT

Semi-sup. DKT

95.11
97.78

90.23

95.16

94.53
96.97

Table 3: Effect of disentangled intent representations.

Models ACC | ARI | NMI
DKT 97.78 | 95.16 | 96.97
-w/o SCL 92.26 | 86.33 | 92.62
-w/o CE 95.16 | 90.61 | 94.80
-w/o ILCL | 90.93 | 85.43 | 92.07
-w/o CLCL | 90.36 | 82.91 | 90.55
Table 4: Effect of different learning objectives.

BERT + pooling in Fig 4. We can find that the
output obtained by instance-level head forms a nar-
row and long cluster distribution, while the output
obtained by cluster-level head forms a more com-
pact and uniform cluster distribution. We argue
that this reflects the effect of decoupling, that is,
instance-level head decouples the uniqueness of
each sample, and cluster-level head decouples the
category characteristics of each sample.

5 Conclusion

In this paper, we propose a novel disentangled
knowledge transfer method (DKT) via a unified
multi-head contrastive learning framework to trans-
fer disentangled IND intent representations to OOD
clustering. Experiments and analysis on two bench-
marks demonstrate the effectiveness of DKT for
OOD discovery. We hope to explore more self-
supervised representation learning methods for
OOD discovery in the future.
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Broader Impact

Task-oriented dialogue systems have demonstrated
remarkable performance across a wide range of
applications, with the promise of a significant posi-
tive impact on human production mode and lifeway.
Intent classification is an important component of
Task-oriented dialogue system. The existing intent
classification models follow a closed set assump-
tion and can only identify a limited number of pre-
defined intent types. However, the real world is
open. During the online deployment of dialogue
system, out-of-domain (OOD) or unknown intents
will appear continually. Recently, out-of-domain in-
tent detection task has been widely studied, which
can be used to collect these new intent data. The
OOD intent discovery task studied in this paper is
to make further use of these new intent data. It
aims to cluster these OOD samples according to in-
tents, so as to mine new intent types automatically,
guide the future development of the system, and
expand the classification ability of intent classifica-
tion models.
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A Appendix

A.1 Baselines

The details of baselines are as follows:

* PTK-means A method based on k-means
with IND pre-training. And the IND pre-
training objectives uses CE + SCL proposed
in this paper.

DeepCluster An iterative clustering algo-
rithm proposed by (Caron et al., 2018), in each
iteration, firstly, k-means is used to assign
pseudo label to the unlabeled samples, and
then the cross-entropy objective is used for
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Figure 6: Effect of IND Data.

0.2

representation learning. The cluster header pa-
rameters need to be reinitialized during each
iteration. In the semi-supervised setting, we
use the same IND pre- training objective as
DeepAligned (Zhang et al., 2021)

CDACH+ The first work of new intent discov-
ery proposed by (Lin et al., 2020), and it firstly
pre-trains a BERT-based (Devlin et al., 2019)
in-domain intent classifier then uses intent rep-
resentations to calculate the similarity of OOD
intent pairs as weak supervised signals.

DeepAligned The second work of new intent
discovery proposed by (Zhang et al., 2021).1t
is an improved version of DeepCluster. It
designed a pseudo label alignment strategy to
produce aligned cluster assignments for better
representation learning.

A.2 Effect of IND Data

We analyze the effect of IND data for OOD dis-
covery from two perspectives, the number of IND
classes and samples per class. Figure 6(a) shows
the trend of the number of different IND classes,
and Figure 6(b) shows the trend of the number of
different samples in each class. Results show DKT
outperforms baselines under all settings and gets
the smallest varying degrees of performance drop,
which proves the robustness and stability of our
method.

A.3 Visualization at Different Training
Epochs

To see the evolution of our method in the training
process, we show a visualization at four different
timestamps throughout the training process in Fig
7. Results show representation vector of different
intent classes are mixed in the beginning and clus-
ter assignments become increasingly visible and
distinct as the training process goes.
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Abstract

Natural language applied to natural 2D im-
ages describes a fundamentally 3D world.
We present the Voxel-informed Language
Grounder (VLG), a language grounding model
that leverages 3D geometric information in
the form of voxel maps derived from the vi-
sual input using a volumetric reconstruction
model. We show that VLG significantly im-
proves grounding accuracy on SNARE (Thoma-
son et al., 2021), an object reference game task.
At the time of writing, VLG holds the top place
on the SNARE leaderboard,' achieving SOTA
results with a 2.0% absolute improvement.

1 Introduction

Embodied robotic agents hold great potential for
providing assistive technologies in home environ-
ments (Pineau et al., 2003), and natural language
provides an intuitive interface for users to interact
with such systems (Andreas et al., 2020). For these
systems to be effective, they must be able to re-
liably ground language in perception (Bisk et al.,
2020; Bender and Koller, 2020).

Despite typically being paired with 2D images,
natural language that is grounded in vision de-
scribes a fundamentally 3D world. For example,
consider the grounding task in Figure 1, where the
agent must select a target chair against a distrac-
tor given the description “the swivel chair with 6
wheels.” Although the agent is provided with multi-
ple images revealing all of the wheels on each chair,
it must be able to properly aggregate information
across images to successfully differentiate them,
something that requires reasoning about their 3D
geometry at some level.

In this work, we show how language grounding
performance may be improved by leveraging 3D
prior knowledge. Our model, Voxel-informed Lan-
guage Grounder (VLG), extracts 3D voxel maps us-
ing a pre-trained volumetric reconstruction model,

"https://github.com/snaredataset/snareleaderboard
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Figure 1: Voxel-informed Language Grounder.
Our VLG model leverages explicit 3D information by
inferring volumetric voxel maps from input images,
allowing the agent to reason jointly over the geomet-
ric and visual properties of objects when grounding.

which it fuses with multimodal features from a
large-scale vision and language model in order to
reason jointly over the visual and 3D geometric
properties of objects.

We focus our investigation within the context
of SNARE (Thomason et al., 2021), an object ref-
erence game where an agent must ground natural
language describing common household objects
by their geometric and visual properties, showing
that grounding accuracy significantly improves by
incorporating information from predicted 3D vol-
umes of objects. At the time of writing, VLG
achieves SOTA performance on SNARE, attain-
ing an absolute improvement of 2.0% over the next
closest baseline. Code to replicate our results is
publicly available.?

2 Related Work

Prior work has studied deriving structured represen-
tations from images to scaffold language ground-
ing. However, a majority of systems use represen-
tations such as 2D regions of interest (Anderson
et al., 2018; Wang et al., 2020) or symbolic graph-

Zhttps://github.com/rcorona/voxel_informed_language_
grounding
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based representations (Hudson and Manning, 2019;
Kulkarni et al., 2013), which do not encode 3D
properties of objects.

Most prior work tying language to 3D repre-
sentations has largely focused on generating 3D
structures conditioned on language, rather than us-
ing them as intermediate representations for lan-
guage grounding as we do here. Specifically, prior
work has performed language conditioned gen-
eration at the scene (Chang et al., 2014, 2015a),
pose (Ahuja and Morency, 2019; Lin et al., 2018),
or object (Chen et al., 2018) level. More recently,
a line of work has explored referring expression
grounding in 3D by mapping referring expressions
of objects to 3D bounding boxes localizing them
in point clouds of indoor scenes (Achlioptas et al.,
2020; Chen et al., 2020; Zhao et al., 2021; Roh
et al., 2022). Standard approaches follow a two-
tiered process where an object proposal system will
first provide bounding boxes for candidate objects,
and a scoring module will then compute a compat-
ibility score between each box and the referring
expression in order to ground it. At a more granu-
lar level, Koo et al. (2021) learn alignments from
language to object parts by training agents on a
reference game over point cloud representations of
objects.

In contrast, in this work we focus on augmenting
language grounding over 2D RGB images using
structured 3D representations derived from them.
For the task of visual language navigation, prior
work has shown how a persistent 3D semantic map
may be used as an intermediate representation to
aid in selecting navigational waypoints (Chaplot
et al., 2020; Blukis et al., 2021). The semantic
maps, however, represent entire scenes with indi-
vidual voxels representing object categories, rather
than their geometry. In this work, we show how
a more granular occupancy map representing ob-
jects” geometry can improve language grounding
performance.

Closest to our work is that of Prabhudesai et al.
(2020), which presents a method for mapping
language to 3D features within scenes from the
CLEVR (Johnson et al., 2017) dataset. Their sys-
tem generates 3D feature maps inferred from im-
ages and then grounds language directly to 3D
bounding boxes or coordinates. Their method as-
sumes, however, that dependency parse trees are
provided for the natural language inputs, and it is
trained with supervised alignments between noun
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phrases and the 3D representations, which VLG
does not require.

3 Voxel-informed Language Grounder

We consider a task where an agent must cor-
rectly predict a target object v' against a dis-
tractor v given a natural language description
wt = {wy,...,wy,} of the target. For each ob-
ject, the agent is provided with n 2D views v =
{w1, .0,z }, 7y € RWXH,

An agent for this task is represented by a scor-
ing function s(v, w) € [0, 1], computing the com-
patibility between the target description and the
2D views of each object, and is used to select the
maximally scoring candidate. We first use uni-
modal encoders to encode the language description
into e,, = h(w) and the object view images into
a single aggregate visual embedding e, = g(v)
before fusing them with a visiolinguistic module
evw = fow ([€v;ew]). Prior approaches to this
problem (Thomason et al., 2021) directly input this
fused representation to a scoring module to pro-
duce a score s(€eyy,). They do not explicitly reason
about the 3D properties of the observed objects,
requiring the models to learn them implicitly.

In contrast, our Voxel-informed Language
Grounder augments the scoring function s with
explicit 3D volumetric information e, = o(v) ex-
tracted from a pre-trained multiview reconstruc-
tion model. The volumetric information (in the
form of a factorization of a voxel occupancy map
in RW>HxDy s first fused into a joint representa-
tion with the language using a multimodal voxel-
language module ey, = fou([€0; €w]). The scor-
ing function then produces a score based on all
three modalities s([€yw; €ow))-

3.1 Model Architecture

VLG (Figure 2) consists of two branches: a
visiolinguistic module for fusing language and
2D RGB features, and a voxel-language module
for fusing language with 3D volumetric features.
A scoring function is then used to reason jointly
over the output of the two branches, producing a
compatibility score.

Visiolinguistic Module. The architecture of
our visiolinguistic module f,,, (left panel, Figure
2) largely mirrors the architecture of MATCH
from Thomason et al. (2021). A pre-trained
CLIP-ViT (Radford et al., 2021) model is used to
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Figure 2: VLG Architecture. (Left) Our VLG model consists of a visiolinguistic module which produces a
joint embedding for text and images using CLIP (Radford et al., 2021) and a voxel-language module for jointly
embedding language and volumetric maps. (Right) The voxel-language module uses a cross modal transformer to
fuse word embeddings from CLIP with voxel map factors extracted from LegoFormer (Yagubbayli et al., 2021).
During training, gradients only flow through solid lines.

encode the language description and view images
into vectors in R%'2. The image embeddings are
max-pooled and concatenated to the description
embedding before being passed into an MLP
which generates a fused representation.

Voxel-Language Module. We use represen-
tations extracted from a ShapeNet (Chang
et al., 2015b; Wu et al., 2015) pre-trained Lego-
FormerM (Yagubbayli et al., 2021), a multi-view
3D volumetric reconstruction model, as input to
our voxel-language module f,,. LegoFormer
is a transformer (Vaswani et al., 2017) based
model whose decoder generates volumetric maps
factorized into 12 parts. Each object factor is
represented by a set of three vectors z, 1, z € R3?,
which we concatenate to use as input tokens for
our voxel-language module. A triple cross-product
over z,y, z may be used to recover a 3D volume
V € R32%32x32 for each factor. The full volume
for the object is generated by aggregating the
factor volumes through a sum operation. For more
details on LegoFormer, we refer the reader to
Yagubbayli et al. (2021). We use a cross-modal
transformer (Vaswani et al., 2017) encoder to
fuse the language and object factors (Figure 2,
right). The cross-modal transformer takes as
input language tokens, in the form of CLIP word
embeddings, and the 12 object factors output
by the LegoFormer decoder, which contain the
inferred geometric occupancy information of
the object. We use a CLS token as an aggregate
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representation of the language and object factors.

Scoring Function. The scoring function is
represented by an MLP which takes as input the
concatenation of the visiolinguistic module output
and the cross-modal transformer’s CLS token.

4 Language Grounding Evaluation

Evaluation. We test our method on the SNARE
benchmark (Thomason et al., 2021). SNARE
is a language grounding dataset which augments
ACRONYM (Eppner et al., 2021), a grasping
dataset built off of ShapeNetSem (Savva et al.,
2015; Chang et al., 2015a), with natural language
annotations of objects.

SNARE presents an object reference game where
an agent must correctly guess a target object against
a distractor. In each instance of the game, the agent
is provided with a language description of the tar-
get as well as multiple 2D views of each object.
SNARE differentiates between visual and blind-
folded object descriptions. Visual descriptions pri-
marily include attributes such as name, shape, and
color (e.g. “classic armchair with white seat”). In
contrast, blindfolded descriptions include attributes
such as shape and parts (e.g. “oval back and verti-
cal legs”). The train/validation/test sets were gener-
ated by splitting over (207 / 7 / 48) ShapeNetSem
object categories, respectively containing (6,153 /
371/ 1,357) unique object instances and (39,104
/2,304 / 8,751) object pairings with referring ex-
pressions. Renderings are provided for each object



VALIDATION TEST

Model Visual Blind All Visual Blind All
VILBERT 89.5 76.6 83.1 80.2 73.0 76.6
MATCH 89.2(0.9) 75.2(0.7) 822(0.4) | 83.9(0.5 68.7(0.9) 76.5(0.5)
MATCH* 90.6 (0.4) 75.7(1.2) 83.2(0.8) - - -
LAGOR 89.8(0.4) 75.3(0.7) 82.6(0.4) | 84.3(0.4) 69.4(0.5) 77.0(0.5)
LAGOR* 89.8 (0.5) 75.0(0.4) 82.5(0.1) - - -

VLG (Ours) | 91.2(0.4) 78.470.7) 84.970.3) | 86.0 71.7 79.0

Table 1: SNARE Benchmark Performance. Object reference game accuracy on the SNARE task across validation
and test sets. Performance on models with an asterisk are our replications of the baselines in Thomason et al. (2021).
Standard deviations over 3 seeds are shown in parentheses. MATCH corresponds to the max-pool variant from
Thomason et al. (2021) since no test set results are provided for the mean-pool variant. Our VLG model achieves
the best overall performance. Due to leaderboard submission restrictions, we were not able to get test set results for
the MATCH* and LAGOR* replications. { denotes statistical significance with p < 0.1.

instance over 8 canonical viewing angles.

Because ShapeNet and ShapeNetSem represent
different splits of the broader ShapeNet database,
we pre-train the LegoFormerM model on a modi-
fied dataset to avoid dataset leakage. Specifically,
any objects which appear in both datasets are re-
assigned within the pre-training dataset used to
train LegoFormerM to match its split assignment
from SNARE.

ShapeNetSem images are resized to 224 x 224
when inputting them to LegoFormerM in order to
match its ShapeNet pre-training conditions.

Baselines. = We compare VLG against the
set of models provided with SNARE.> All
SNARE baselines except VILBERT use a CLIP
ViT-B/32 (Radford et al., 2021) backbone for
encoding both images and language descriptions:

MATCH first uses CLIP-ViT to embed the
language description as well as each of the 8
view images. Next, the view embeddings are
mean-pooled and concatenated to the descrip-
tion embedding. Finally, a learned MLP is
used over the concatenated feature vector in
order to produce a final compatibility score.

VILBERT fine-tunes a 12-in-1 (Lu et al.,
2020) pre-trained ViLBERT(Lu et al., 2019)
as the backbone for MATCH instead of using
CLIP-ViT. Each object is presented to ViL-
BERT in the form of a single tiled image con-
taining all 14 views from ShapeNetSem, in-
stead of just the canonical 8 presented in the
standard task. VILBERT tokenizes images by

3https://github.com/snaredataset/snare
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extracting features from image regions, with
the ground truth bounding boxes for each re-
gion (i.e. view) being provided. Because this
baseline is not open-source, we report the orig-
inal numbers from Thomason et al. (2021).

LAGOR (Language Grounding through
Object Rotation) fine-tunes a pre-trained
MATCH module and is additionally regular-
ized through the auxiliary task of predicting
the canonical viewing angle of individual view
images, which it predicts using an added out-
put MLP head. Following Thomason et al.
(2021), the LAGOR baseline is only provided
with 2 random views of each object both dur-
ing training and inference.

For more details on the baseline models, we
refer the reader to Thomason et al. (2021).

Training Details.  Apart from the dataset
split re-assignments mentioned in Section 4, we
use the code* and hyperparameters presented
by Yagubbayli et al. (2021) to train LegoFormerM.

For training on SNARE, we follow Thomason
et al. (2021) and train all models with a smoothed
binary cross-entropy loss (Achlioptas et al., 2019).

We train each model for 75 epochs, reporting per-
formance of the best performing checkpoint on the
validation set. For our replication of the SNARE
MATCH and LAGOR baselines, we use the code
and hyperparameters provided by Thomason et al.
(2021). For all variants of our VLG model we
use the AdamW (Loshchilov and Hutter, 2017) op-
timizer with a learning rate of le-3 and a linear
learning rate warmup of 10K steps.

*https://github.com/faridyagubbayli/LegoFormer



Model | Visual  Blind All
VGG16 [91.4 (0.5) 76.5(0.9) 84.0(0.2)
MLP |91.1(0.8) 77.9 (0.9) 84.6(0.1)

no-CLIP | 71.0 (0.6) 65.8 (0.7) 68.4(0.1)
VLG |91.2(0.4) 78.4(0.7) 84.9(0.3)

Table 2: Ablation Study. SNARE reference game accu-
racy across ablations of our model on the validation set.
We show performance when replacing LegoformerM
object factors with VGG16 features, replacing the cross-
modal transformer with an MLP, and when foregoing
the use of CLIP features (no-CLIP).

5 Results

We present test set performance for VLG and the
SNARE baselines reported by Thomason et al.
(2021). We also present average performance for
trained models over 3 seeds with standard devia-
tions on the validation set.

5.1 Comparison to SOTA

In Table 1 we can observe reference game perfor-
mance for all models. VLG achieves SOTA perfor-
mance with an absolute improvement on the test
set of 2.0% over LAGOR, the next best leaderboard
model. Although there is a general improvement
of 1.7% in visual reference grounding, there is an
improvement of 2.3% in blindfolded (denoted as
Blind in tables to conserve space) reference ground-
ing. This suggests that the injected 3D information
provides a greater boost for disambiguating be-
tween examples referring to geometric properties
of target objects. VLG generally improves over all
baselines and conditions for blindfolded examples,
with the exception of VILBERT, which may be due
to the additional information VILBERT receives
in the form of 14 viewing angles of each object
instead of 8.

Improvements on the Blind and All conditions
of the validation set are statistically significant with
p < 0.1 under a Welch’s two-tailed ¢-test.

5.2 Ablation Study

We present a variety of ablations on the validation
set to investigate the contributions of each piece of
our model. All results can be observed in Table 2.

VGG16 Embeddings. LegoFormer uses an
ImageNet (Deng et al, 2009) pre-trained
VGG16 (Simonyan and Zisserman, 2014) as a
backbone for extracting visual representations,
which is a different dataset and pre-training task
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than what the CLIP-ViT image encoder is trained
on. This presents a confounding factor which
we ablate by performing an experiment feeding
our model’s scoring function VGG16 features
directly instead of LegoFormer object factors
(VGG16 in Table 2). Despite getting comparable
results to VGG16 on visual reference grounding,
VLG provides a clear improvement in blindfolded
(and therefore overall) reference performance,
suggesting that the extracted 3D information is
useful for grounding more geometrically based
language descriptions, with the VGG16 features
being largely redundant in terms of visual signal.

Architecture. We ablate the contribution of
our cross-modal transformer branch by comparing
it against an MLP mirroring the structure of the
SNARE MATCH baseline. This model (MLP in
Table 2) max-pools the LegoFormer object factors
and concatenates the result to the CLIP visual
and language features before passing them to an
MLP scoring function. The MLP model overall
outperforms the SNARE baselines from Table 1,
highlighting the usefulness of the 3D information
for grounding, but does not result in as large an
improvement as the cross-modal transformer. This
suggests that the transformer is better able at
integrating information from the multi-view input.

CLIP Visual Embeddings. Finally, we evaluate
the contribution of the visiolinguistic branch of
the model by removing it and only using the
cross-modal transformer over language and object
factors. As may be observed, there is a large drop
in performance (16.5% overall), particularly for
visual references (20.2%). These results suggest
that maintaining visual information such as color
and texture is critical for performing well on this
task, since the LegoFormer outputs contain only
volumetric occupancy information.

6 Discussion

We have presented the Voxel-informed Language
Grounder (VLG), a model which leverages explicit
3D information from predicted volumetric voxel
maps to improve language grounding performance.
VLG achieves SOTA results on SNARE, and ab-
lations demonstrate the effectiveness of using this
3D information for grounding. We hope this paper
may inspire future work on integrating structured
3D representations into language grounding tasks.



Acknowledgements

We would like to thank Karttikeya Mangalam and
Nikita Kitaev for their helpful advice and discus-
sions on transformer models. Mohit Shridhar and
Jesse Thomason for their help with setting up
SNARE. And thanks to the anonymous review-
ers for their constructive feedback. This work was
supported by DARPA under the SemaFor program
(HR00112020054). The content does not neces-
sarily reflect the position or the policy of the gov-
ernment, and no official endorsement should be
inferred. RC is supported by an NSF Graduate
Research Fellowship.

References

Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mo-
hamed Elhoseiny, and Leonidas J. Guibas. 2020.
ReferIt3D: Neural listeners for fine-grained 3d object
identification in real-world scenes. In /6th European
Conference on Computer Vision (ECCV).

Panos Achlioptas, Judy Fan, Robert Hawkins, Noah
Goodman, and Leonidas J Guibas. 2019. Shapeglot:
Learning language for shape differentiation. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8938—-8947.

Chaitanya Ahuja and Louis-Philippe Morency. 2019.
Language2pose: Natural language grounded pose
forecasting. In 2019 International Conference on 3D
Vision (3DV), pages 719-728. IEEE.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 6077-6086.

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-

actions of the Association for Computational Linguis-
tics, 8:556-571.

Emily M Bender and Alexander Koller. 2020. Climbing
towards nlu: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5185-5198.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, et al. 2020. Experience grounds language.
arXiv preprint arXiv:2004.10151.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. 2021. A persistent spatial semantic

59

representation for high-level natural language instruc-
tion execution. arXiv preprint arXiv:2107.05612.

Angel Chang, Manolis Savva, and Christopher D Man-
ning. 2014. Learning spatial knowledge for text to 3d
scene generation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2028-2038.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. 2015a.
Shapenet: An information-rich 3d model repository.
Cite arxiv:1512.03012.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. 2015b.
ShapeNet: An Information-Rich 3D Model Repos-
itory. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toy-
ota Technological Institute at Chicago.

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi,
Abhinav Gupta, and Russ R Salakhutdinov. 2020.
Object goal navigation using goal-oriented semantic
exploration. Advances in Neural Information Pro-
cessing Systems, 33.

Dave Zhenyu Chen, Angel X Chang, and Matthias
NieBner. 2020. Scanrefer: 3d object localization
in rgb-d scans using natural language. In Com-
puter Vision—-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XX 16, pages 202-221. Springer.

Kevin Chen, Christopher B Choy, Manolis Savva,
Angel X Chang, Thomas Funkhouser, and Silvio
Savarese. 2018. Text2shape: Generating shapes from
natural language by learning joint embeddings. In
Asian Conference on Computer Vision, pages 100—

116. Springer.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248-255. leee.

Clemens Eppner, Arsalan Mousavian, and Dieter Fox.
2021. Acronym: A large-scale grasp dataset based on
simulation. In 2021 IEEFE International Conference
on Robotics and Automation (ICRA), pages 6222—
6227. IEEE.

Drew A Hudson and Christopher D Manning. 2019.
Learning by abstraction: The neural state machine.
arXiv preprint arXiv:1907.03950.

Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. 2017. Clevr: A diagnostic dataset
for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference



on computer vision and pattern recognition, pages

2901-2910.

Juil Koo, Ian Huang, Panos Achlioptas, Leonidas
Guibas, and Minhyuk Sung. 2021. Partglot: Learn-
ing shape part segmentation from language reference
games. arXiv preprint arXiv:2112.06390.

Girish Kulkarni, Visruth Premraj, Vicente Ordonez, Sag-
nik Dhar, Siming Li, Yejin Choi, Alexander C Berg,
and Tamara L Berg. 2013. Babytalk: Understand-
ing and generating simple image descriptions. /[EEE
transactions on pattern analysis and machine intelli-
gence, 35(12):2891-2903.

Angela S Lin, Lemeng Wu, Rodolfo Corona, Kevin
Tai, Qixing Huang, and Raymond J Mooney. 2018.
Generating animated videos of human activities from
natural language descriptions. Learning, 2018:1.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
arXiv preprint arXiv:1908.02265.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi
Parikh, and Stefan Lee. 2020. 12-in-1: Multi-task
vision and language representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10437-10446.

Joelle Pineau, Michael Montemerlo, Martha Pollack,
Nicholas Roy, and Sebastian Thrun. 2003. Towards
robotic assistants in nursing homes: Challenges and
results. Robotics and autonomous systems, 42(3-
4):271-281.

Mihir Prabhudesai, Hsiao-Yu Fish Tung, Syed Ashar
Javed, Maximilian Sieb, Adam W Harley, and Kate-
rina Fragkiadaki. 2020. Embodied language ground-
ing with 3d visual feature representations. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2220-2229.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models

from natural language supervision. arXiv preprint
arXiv:2103.00020.

Junha Roh, Karthik Desingh, Ali Farhadi, and Dieter
Fox. 2022. Languagerefer: Spatial-language model
for 3d visual grounding. In Conference on Robot
Learning, pages 1046-1056. PMLR.

Manolis Savva, Angel X. Chang, and Pat Hanra-
han. 2015. Semantically-Enriched 3D Models for
Common-sense Knowledge. CVPR 2015 Workshop
on Functionality, Physics, Intentionality and Causal-

ity.

60

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv: 1409.1556.

Jesse Thomason, Mohit Shridhar, Yonatan Bisk, Chris
Paxton, and Luke Zettlemoyer. 2021. Language
grounding with 3d objects. In 5th Annual Confer-
ence on Robot Learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Ruocheng Wang, Jiayuan Mao, Samuel J Gershman,
and Jiajun Wu. 2020. Language-mediated, object-
centric representation learning. arXiv preprint
arXiv:2012.15814.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
2015. 3d shapenets: A deep representation for vol-
umetric shapes. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 1912-1920.

Farid Yagubbayli, Alessio Tonioni, and Federico
Tombari. 2021. Legoformer: Transformers for
block-by-block multi-view 3d reconstruction. arXiv
preprint arXiv:2106.12102.

Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu.
2021. 3dvg-transformer: Relation modeling for vi-
sual grounding on point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 2928-2937.



P-Tuning: Prompt Tuning Can Be
Comparable to Fine-tuning Across Scales and Tasks

Xiao Liu'?*, Kaixuan Ji'*, Yicheng Fu'*, Weng Lam Tam', Zhengxiao Du'?,
Zhilin Yang'>', Jie Tang"%f

'Tsinghua University, KEG

2Beijing Academy of Artificial Intelligence (BAAI)

3Shanghai Qi Zhi Institute
{liuxiao2l, jkx19, fycl9}@mails.tsinghua.edu.cn

Abstract

Prompt tuning, which only tunes continuous
prompts with a frozen language model, sub-
stantially reduces per-task storage and mem-
ory usage at training. However, in the con-
text of NLU, prior work reveals that prompt
tuning does not perform well for normal-sized
pretrained models. We also find that existing
methods of prompt tuning cannot handle hard
sequence labeling tasks, indicating a lack of
universality. We present a novel empirical find-
ing that properly optimized prompt tuning can
be universally effective across a wide range of
model scales and NLU tasks. It matches the per-
formance of finetuning while having only 0.1%-
3% tuned parameters. Our method P-Tuning
v2 is an implementation of Deep Prompt Tun-
ing (Li and Liang, 2021; Qin and Eisner, 2021)
optimized and adapted for NLU. Given the uni-
versality and simplicity of P-Tuning v2, we be-
lieve it can serve as an alternative to finetuning
and a strong baseline for future research.’

1 Introduction

Pretrained language models (Radford et al., 2019;
Devlin et al., 2018; Yang et al., 2019; Raffel et al.,
2019) improve performance on a wide range of
natural language understanding (NLU) tasks. A
widely-used method, fine-tuning, updates the en-
tire set of model parameters for a target task.
While fine-tuning obtains good performance, it is
memory-consuming during training because gradi-
ents and optimizer states for all parameters must be
stored. Moreover, keeping a copy of model param-
eters for each task during inference is inconvenient
since pre-trained models are usually large.
Prompting, on the other hand, freezes all param-
eters of a pre-trained model and uses a natural lan-
guage prompt to query a language model (Brown
t corresponding to: Zhilin Yang (zhiliny @tsinghua.edu.cn)

and Jie Tang (jietang @tsinghua.edu.cn)
* indicates equal contribution.

'Our code and data are released at https://github.
com/THUDM/P-tuning-v2.
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®Fine-tuning m Lester et al. & P-tuning P-tuning v2
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Figure 1: Average scores on RTE, BoolQQ and CB of
SuperGLUE dev. With 0.1% task-specific parameters,
P-tuning v2 can match fine-tuning across wide scales
of pre-trained models, while Lester et al. (2021) & P-
tuning can make it conditionally at 10B scale.

et al., 2020). For example, for sentiment analy-
sis, we can concatenate a sample (e.g., "Amazing
movie!") with a prompt “This movie is [MASK]”
and ask the pre-trained language model to predict
the probabilities of masked token being “good” and
“bad” to decide the sample’s label. Prompting re-
quires no training at all and stores one single copy
of model parameters. However, discrete prompt-
ing (Shin et al., 2020; Gao et al., 2020) can lead to
suboptimal performance in many cases compared
to fine-tuning.

Prompt tuning’ is an idea of tuning only the
continuous prompts. Specifically, Liu et al. (2021);
Lester et al. (2021) proposed to add trainable
continuous embeddings (also called continuous
prompts) to the original sequence of input word
embeddings. Only the continuous prompts are up-
dated during training. While prompt tuning im-
proves over prompting on many tasks (Liu et al.,
2021; Lester et al., 2021; Zhong et al., 2021), it still
underperforms fine-tuning when the model size is
not large, specifically less than 10 billion parame-
ters (Lester et al., 2021). Moreover, as shown in
our experiments, prompt tuning performs poorly
compared to fine-tuning on several hard sequence
labeling tasks such as extractive question answer-
ing (Cf. Section 4.2).

2We use “prompt tuning” to refer to a class of methods rather
than a particular method.
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Our main contribution in this paper is a novel
empirical finding that properly optimized prompt
tuning can be comparable to fine-tuning universally
across various model scales and NLU tasks. In con-
trast to observations in prior work, our discovery
reveals the universality and potential of prompt
tuning for NLU.

Technically, our approach P-tuning v2 is not con-
ceptually novel. It can be viewed as an optimized
and adapted implementation of Deep Prompt Tun-
ing (Li and Liang, 2021; Qin and Eisner, 2021)
designed for generation and knowledge probing.
The most significant improvement originates from
appling continuous prompts for every layer of the
pretrained model, instead of the mere input layer.
Deep prompt tuning increases the capacity of con-
tinuous prompts and closes the gap to fine-tuning
across various settings, especially for small models
and hard tasks. Moreover, we present a series of
critical details of optimization and implementation
to ensure finetuning-comparable performance.

Experimental results show that P-tuning v2
matches the performance of fine-tuning at differ-
ent model scales ranging from 300M to 10B pa-
rameters and on various hard sequence tagging
tasks such as extractive question answering and
named entity recognition. P-tuning v2 has 0.1%
to 3% trainable parameters per task compared to
fine-tuning, which substantially reduces training
time memory cost and per-task storage cost.

2 Preliminaries

NLU Tasks. In this work, we categorize NLU
challenges into two families: simple classification
tasks and hard sequence labeling tasks.> Simple
classification tasks involve classification over a la-
bel space. Most datasets from GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) are in
this category. Hard sequence labeling tasks involve
classification over a sequence of tokens, such as
named entity recognition and extractive question
answering.

Prompt Tuning. Let V be the vocabulary of
a language model M and let e be the em-
bedding layer of M. In the case of discrete
prompting (Schick and Schiitze, 2020), prompt
tokens {"It", "is", "[MASK]"} C V can be

is
used to classify a movie review. For exam-

3Note that the notions of “simple” and “hard” are specific to
prompt tuning, because we find sequence labeling tasks are
more challenging for prompt tuning.
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ple, given the input text x ="Amazing movie!",
the input embedding sequence is formulated as
[e(x),e("It"),e("is"), e("[MASK]")].

Lester et al. (2021) and Liu et al. (2021) in-
troduce trainable continuous prompts as a sub-
stitution to natural language prompts for NLU
with the parameters of pretrained language mod-
els frozen. Given the trainable continuous embed-
dings [hg, ..., h;], the input embedding sequence
is written as [e(x), ho, ..., h;, ("[MASK]")], as il-
lustrated in Figure 2. Prompt tuning has been
proved to be comparable to fine-tuning on 10-
billion-parameter models on simple classification
tasks (Lester et al., 2021; Kim et al., 2021; Liu
et al., 2021).

3 P-Tuning v2

3.1 Lack of Universality

Lester et al. (2021); Liu et al. (2021) have been
proved quite effective in many NLP applica-
tions (Wang et al., 2021a,b; Chen et al., 2021;
Zheng et al., 2021; Min et al., 2021), but still fall
short at replacing fine-tuning due to lack of univer-
sality, as discussed below.

Lack of universality across scales. Lester et al.
(2021) shows that prompt tuning can be comparable
to fine-tuning when the model scales to over 10 bil-
lion parameters. However, for medium-sized mod-
els (from 100M to 1B) that are widely used, prompt
tuning performs much worse than fine-tuning.

Lack of universality across tasks. Though Lester
et al. (2021); Liu et al. (2021) have shown superior-
ity on some of the NLU benchmarks, the effective-
ness of prompt tuning on hard sequence tagging
tasks is not verified. Sequence tagging predicts a se-
quence of labels for each input token, which can be
harder and incompatible with verbalizers (Schick
and Schiitze, 2020). In our experiments (Cf. Sec-
tion 4.2 and Table 3), we show that Lester et al.
(2021); Liu et al. (2021) perform poorly on typical
sequence tagging tasks compared to fine-tuning.
Considering these challenges, we propose P-
tuning v2, which adapts deep prompt tuning (Li
and Liang, 2021; Qin and Eisner, 2021) as a uni-
versal solution across scales and NLU tasks.

3.2 Deep Prompt Tuning

In (Lester et al., 2021) and (Liu et al., 2021), con-
tinuous prompts are only inserted into the input
embedding sequence (Cf. Figure 2 (a)). This leads
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(a) Lester et al. & P-tuning (Frozen, 10-billion-scale, simple tasks)

_________________________

(b) P-tuning v2 (Frozen, most scales, most tasks)

Figure 2: From Lester et al. (2021) & P-tuning to P-tuning v2. Orange blocks (i.e., hg, ..., h;) refer to trainable
prompt embeddings; blue blocks are embeddings stored or computed by frozen pre-trained language models.

to two challenges. First, the number of tunable
parameters is limited due to the constraints of se-
quence length. Second, the input embeddings have
relatively indirect impact on model predictions.
To address these challenges, P-tuning v2 em-
ploys the idea of deep prompt tuning (Li and Liang,
2021; Qin and Eisner, 2021). As illustrated in Fig-
ure 2, prompts in different layers are added as pre-
fix tokens. On one hand, P-tuning v2 have more
tunable task-specific parameters (from 0.01% to
0.1%-3%) to allow more per-task capacity while be-
ing parameter-efficient; on the other hand, prompts
added to deeper layers have more direct impact on
model predictions (see analysis in Appendix B).

3.3 Optimization and Implementation

There are a few useful details of optimization and
implementation for achieving the best performance.

Reparameterization. Prior works usually leverage
a reparameterization encoder such as an MLP (Li
and Liang, 2021; Liu et al., 2021) to transform train-
able embeddings. However, for NLU, we discover
that its usefulness depends on tasks and datasets.
For some datasets (e.g., RTE and CoNLL04), MLP
brings a consistent improvement; for the others,
MLP leads to minimal or even negative effects on
the results (e.g., BoolQ and CoNLL12). See Ap-
pendix B for more analysis.

Prompt Length. The prompt length plays a crit-
ical role in P-Tuning v2. We find that different
NLU tasks usually achieve their best performance
with different prompt lengths (Cf. Appendix B).
Generally, simple classification tasks prefer shorter
prompts (less than 20); hard sequence labeling
tasks prefer longer ones (around 100).

Multi-task Learning. Multi-task learning jointly
optimizes multiple tasks with shared continuous
prompts before fine-tuning for individual tasks.
Multi-task is optional for P-Tuning v2 but can be
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Method Task p;?:;n_ le;p Df;sll? _ vljr%.
?Liﬁné? §1., 2021) llfIIliU LSTM T
PSS, MU - - -
?Ifiig Eﬁgi 2021) NG MLP Yoo
(S&Tﬁ Bisner 2021) KP A
f(-)tllllrr:)ng v2 g;q[%ag (depends) v v o

Table 1: Conceptual comparison between P-tuning v2
and existing Prompt Tuning approaches (KP: Knowl-
edge Probe; SeqTag: Sequence Tagging; Re-param.:
Reparameterization; No verb.: No verbalizer).

used for further boost performance by providing a
better initialization (Gu et al., 2021).

Classification Head. Using a language modeling
head to predict verbalizers (Schick and Schiitze,
2020) has been central for prompt tuning (Liu et al.,
2021), but we find it unnecessary in a full-data
setting and incompatible with sequence labeling.
P-tuning v2 instead applies a randomly-initialized
classification head on top of the tokens as in BERT
(Devlin et al., 2018) (Cf. Figure 2).

To clarify P-tuning v2’s major contribution, we
present a conceptual comparison to existing prompt
tuning approaches in Table 1.

4 Experiments

We conduct extensive experiments over different
commonly-used pre-trained models and NLU tasks
to verify the effectiveness of P-tuning v2. In this
work, all methods except for fine-tuning are con-
ducted with frozen language model backbones,
which accords with (Lester et al., 2021)’s setting
but differs from (Liu et al., 2021)’s tuned setting.
Ratios of task-specific parameters (e.g., 0.1%) are



#Size BoolQ CB COPA MultiRC (Fla)

FT PT PI2 FT PT P2 FT PT P2 FT PT PI2
BERT ag0 335M 777 672 758 946 804 946 69.0 550 73.0 705 59.6 70.6
ROBERTaj.qe  355M 869 623 848 982 714 100 940 630 930 857 599 825
GLM,arge 2B 883 797 870 964 764 964 93.0 920 91.0 841 775 844
GLMxiarge 10B 88.7 888 888 987 982 964 980 98.0 98.0 881 86.1 88.1

#Size ReCoRD (F1) RTE WiC WSC

FT PT PT2 FI PT P2 FT PT P2 FT PT PT2
BERT . gc 335M 706 442 728 704 535 783 749 630 751 683 644 683
RoBERTaj.ge  355M 89.0 463 893 866 588 895 756 569 734 635 644 635
GLMjarge 2B 918 827 919 903 856 903 741 710 720 952 875 923
GLM large 10B 944 878 925 931 899 931 757 718 740 952 942 933

Table 2: Results on SuperGLUE development set. P-

tuning v2 significantly surpasses P-tuning & Lester et al.

(2021) on models smaller than 10B, and matches the performance of fine-tuning across different model scales. (FT:

fine-tuning; PT: Lester et al. (2021) & P-tuning; PT-2:

P-tuning v2; bold: the best; underline: the second best).

#Size CoNLLO03 OntoNotes 5.0 CoNLL04
FT PT PT2 MPT2 FT PT PI2 MPT2 FT PT PL2 MPT2
BERT g0 335M 92.8 819 902 91.0 892 746 864 863 85.6 73.6 845 86.6
ROBERTaj.;e 355M 92.6 86.1 928 92.8 89.8 80.8 89.8 89.8 88.8 762 884  90.6
DeBERTayiarze 750M 931 902 931  93.1 90.4 85.1 904 905 89.1 824 865 90.1
SQUAD 1.1 dev (EM / F1) SQUAD 2.0 dev (EM / F1)
#Size T pp PT PT-2 MPT-2 FT PT PT-2 MPT-2
BERT :ge 335M 84.2 91.1 1.0 8.5 77.8 86.0 82.3 89.6 78.7 81.9 502 502 69.7 73.5 72.7 75.9
ROBERTajze 355M 88.9 94.6 12 120 88.5 944 83.0 94.1 86.5 89.4 502 502 82.1 855 83.4 86.7
DeBERTay1arge 750M 90.1 955 2.4 19.0 90.4 957 89.6 954 883 91.1 50.2 50.2 88.4 91.1 88.1 90.8
#Size CoNLLI2 CoNLLO5 WSJ CoNLLO5 Brown
FT PT PT2 MPL2 FT PT PT2 MPT2 FT PT PL2 MPT2
BERT arge 335M 84.9 64.5. 832  85.1 885 760 863 885 827 700 80.7 83.1
ROBERTan.;e 355M 86.5 672 846 862 902 768 892  90.0 856 70.7 843 857
DeBERTaymge 750M 865 74.1 857  87.1 912 823 90.6 91.2 86.9 777 863 87.0

Table 3: Results on Named Entity Recognition (NER),

Question Answering (Extractive QA), and Semantic Role

Labeling (SRL). All metrics in NER and SRL are micro-f1 score. (FT: fine-tuning; PT: P-tuning & Lester et al.
(2021); PT-2: P-tuning v2; MPT-2: Multi-task P-tuning v2; bold: the best; underline: the second best).

derived from comparing continuous prompts’ pa-
rameters with transformers’ parameters. Another
thing to notice is that our experiments are all con-
ducted in the fully-supervised setting rather than
few-shot setting.

NLU Tasks. First, we include datasets from Su-
perGLUE (Wang et al., 2019) to test P-tuning v2’s
general NLU ability. Additionally, we introduce a
suite of sequence labeling tasks, including named
entity recognition (Sang and De Meulder, 2003;
Weischedel et al., 2013; Carreras and Marquez,
2004), extractive Question Answering (Rajpurkar
et al., 2016), and semantic role labeling (Carreras
and Marquez, 2005; Pradhan et al., 2012)).

Pre-trained Models. We include BERT-large (De-
vlin et al., 2018), RoBERTa-large (Liu et al.,
2019), DeBERTa-xlarge (He et al., 2020), GLM-
xlarge/xxlarge (Du et al., 2021) for evaluation.
They are all bidirectional models designed for NLU
tasks, covering a wide range of sizes from about
300M to 10B.

Multitask Learning. For the multi-task setting,
we combine the training sets of the datasets in each
task type (e.g., combing all training sets of seman-
tic role labeling). We use separate linear classi-
fiers for each dataset while sharing the continuous
prompts (Cf. Appendix A).
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SST-2

96.3
95.8

RTE BoolQ CB

884 848 964
86.6 84.6 94.6

CLS & linear head
Verbalizer & LM head

Table 4: Comparison between [CLS] label with linear
head and verbalizer with LM head on RoBERTa-large.

4.1 P-tuning v2: Across Scales

Table 2 presents P-tuning v2’s performances across
model scales. In SuperGLUE, performances of
Lester et al. (2021) and P-tuning at smaller scales
can be quite poor. On the contrary, P-tuning v2
matches the fine-tuning performance in all the tasks
at a smaller scale. P-tuning v2 even significantly
outperforms fine-tuning on RTE.

In terms of larger scales (2B to 10B) with
GLM (Du et al., 2021), the gap between Lester
et al. (2021); Liu et al. (2021) and fine-tuning is
gradually narrowed down. On 10B scale, we have
a similar observation as Lester et al. (2021) re-
ports, that prompt tuning becomes competitive to
fine-tuning. That said, P-tuning v2 is always com-
parable to fine-tuning at all scales but with only
0.1% task-specific parameters needed comparing
to fine-tuning.

4.2 P-tuning v2: Across Tasks

From Table 3, we observe that P-tuning v2 can be
generally comparable to fine-tuning on all tasks. P-
tuning and Lester et al. (2021) show much poorer
performance, especially on QA, which might be the
most challenging of the three tasks. We also notice
that there are some abnormal results of Lester et al.
(2021) and P-tuning on SQuAD 2.0. This is prob-
ably because SQuAD 2.0 contains unanswerable
questions, which causes optimization challenges
for single-layer prompt tuning. Multi-task learn-
ing generally brings significant improvements to
P-Tuning v2 over most tasks except for QA.

4.3 Ablation Study

Verbalizer with LM head v.s. [CLS] label with
linear head. Verbalizer with LM head has been a
central component in previous prompt tuning ap-
proaches. However, for P-tuning v2 in a supervised
setting, it is affordable to tune a linear head with
about several thousand parameters. We present our
comparison in Table 4, where we keep other hyper-
parameters and only change [CLS] label with linear
head to verbalizer with LM head. Here, for simplic-
ity, we use “true” and “false” for SST-2, RTE and
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Figure 3: Ablation study on prompt depth using BERT-
large. “[x-y]" refers to the layer-interval we add contin-
uous prompts (e.g., “21-24” means we are add prompts
to transformer layers from 21 to 24). Same amount of
continuous prompts added to deeper transformer layers
(i.e., more close to the output layer) can yield a better
performance than those added to beginning layers.

BoolQ; “true”, “false” and “neutral” for CB. Re-
sults indicate that there is no significant difference
between performances of verbalizer and [CLS].

Prompt depth. The main difference between
Lester et al. (2021); (Liu et al., 2021) and P-tuning
v2 is the multi-layer continuous prompts. To ver-
ify its exact influence, given a certain number of &k
layers to add prompts, we select them in both as-
cending and descending order to add prompts; for
the rest layers, we left them untouched. As shown
in Figure 3, with the same amount of parameters
(i.e., num of transformer layers to add prompts),
adding them in the descending order is always bet-
ter than in the ascending order. In the RTE case,
only adding prompts to layers 17-24 can yield a
very close performance to all layers.

5 Conclusions

We present P-tuning v2, a prompt tuning method.
Despite its relatively limited technical novelty, it
contributes to a novel finding that prompt tuning
can be comparable to fine-tuning universally across
scales (from 330M to 10B parameters) and tasks.
With high accuracy and parameter efficiency, P-
Tuning v2 can be a potential alternative for fine-
tuning and a strong baseline for future work.
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A Problem Formulation on Sequence
Tagging

Name entity recognition (NER). NER aims to
predict all spans of words that represent some
given classes of entity with a sentence. We
adopted CoNLLO3 (Sang and De Meulder, 2003),
OntoNotes 5.0 (Weischedel et al., 2013) and
CoNLLO04 (Carreras and Marquez, 2004). For
CoNLLO03 and CoNLL04, we trained our model on
the standard train-develop-test split. For OntoNotes
5.0, we use the same train, develop, test split as (Xu
et al., 2021). All the datasets are labeled in IOB2
format. We use sequence tagging to solve NER
tasks by assigning labels marking the beginning
and inside some classes of entity. The language
models generate a representation for each token,
and we use a linear classifier to predict the labels.
We use the official scripts to evaluate the results.
For the multi-task setting, we combine the training
set of the three datasets for pre-training. We use
different linear classifiers for each dataset while
sharing the continuous prompts.

(Extractive) Question Answering (QA). Extrac-
tive QA is designed to extract the answer from the
context given the context and a question. We use
SQuAD (Rajpurkar et al., 2016) 1.1 and 2.0, in
which each answer is within a continuous span of
the context. Following tradition, we formulate the
problem as sequence tagging by assigning one of
the two labels: ‘start’ or ‘end’ to each token and at
last selecting the span of the most confident start-
end pair as the extracted answer. If the probability
of the most confident pair is lower than a threshold,
the model will assume the question unanswerable.
For the multi-task setting, our training set for pre-
training combines the training sets of SQuAD 1.1
and 2.0. When pre-training, we assume that all the
questions, regardless of their origin, are possibly
unanswerable.

Semantic Role Labeling (SRL). SRL assigns la-
bels to words or phrases in a sentence that indicate
their semantic roles in the sentence. We evaluate
P-tuning v2 on CoNLLO5 (Carreras and Marquez,
2005) and CoNLL12 (Pradhan et al., 2012). Since a
sentence can have multiple verbs, we add the target
verb token to the end of each sentence to help recog-
nize which verb is used for prediction. We classify
each word with a linear classifier based on the cor-
responding semantic role representation. For multi-
task setting, the pre-train training set is a combina-
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Figure 4: Ablation study on prompt length and reparamerization using RoBERTa-large. The conclusion can be very
different given certain NLU task and dataset. (MQA: Multiple-choice QA)

tion of the training set of CoNLLOS5 (Carreras and
Marquez, 2005), CoNLL12 (Pradhan et al., 2012)
and propbank-release (a common extend data used
for training SRL). The multi-task training strategy
is similar to NER.

B More Ablation Study

Due to the page limit, we present hyper-parameters
and architecture designs ablations regarding repa-
rameterization and prompt length in this section.

Embedding v.s. MLP reparameterization. In
both prefix-tuning (Li and Liang, 2021) and P-
tuning (Liu et al., 2021), authors discover the repa-
rameterization to be useful in improving training
speed, robustness and performance. However, we
conduct experiments to show that the reparameteri-
zation effect is inconsistent across different NLU
tasks and datasets.

As shown in Figure 4, in RTE and CoNLLO04,
MLP reparameterization generally indicates better
performance than embedding for almost all prompt
lengths. However, in BoolQ, MLP and embed-
ding’s results are competitive; in CoNLL12, the
embedding consistently outperforms MLP.

Prompt Length. Prompt length is yet another influ-
ential hyper-parameter for P-tuning v2, and its op-
timal value varies from task to task. From Figure 4,
we observe that for simple NLU tasks, usually, a
shorter prompt is enough for the best performance;
for hard sequence tasks, usually, a longer prompt
than 100 would be helpful.

We also discover that reparameterization has a
close bond with optimal prompt length. For exam-
ple, in RTE, CoNLL04, and BoolQ, MLP reparam-
eterization achieves its optimal result earlier than
embedding. This conclusion may contribute some
thoughts on P-tuning’s optimization properties.

68



On Efficiently Acquiring Annotations for Multilingual Models

Joel Ruben Antony Moniz*, Barun Patra*

{jramoniz,

barunpatra95}@gmail.com

Matthew R. Gormley
Carnegie Mellon University
mgormley@cs.cmu.edu

Abstract

When tasked with supporting multiple lan-
guages for a given problem, two approaches
have arisen: training a model for each language
with the annotation budget divided equally
among them, and training on a high-resource
language followed by zero-shot transfer to the
remaining languages. In this work, we show
that the strategy of joint learning across multi-
ple languages using a single model performs
substantially better than the aforementioned al-
ternatives. We also demonstrate that active
learning provides additional, complementary
benefits. We show that this simple approach
enables the model to be data efficient by allow-
ing it to arbitrate its annotation budget to query
languages it is less certain on. We illustrate
the effectiveness of our proposed method on a
diverse set of tasks: a classification task with
4 languages, a sequence tagging task with 4
languages and a dependency parsing task with
5 languages. Our proposed method, whilst sim-
ple, substantially outperforms the other viable
alternatives for building a model in a multilin-
gual setting under constrained budgets.

1 Introduction

While neural networks have become the de-facto
method of tackling NLP tasks, they often require
a lot of annotated data to do so. This task of data
annotation is especially challenging while build-
ing systems aimed at serving numerous languages.
Motivated by this, in this paper, we tackle the fol-
lowing problem:

Given the requirement of building systems for
an NLP task in a multilingual setting with a fixed
annotation budget, how can we efficiently acquire
annotations to perform the task well across multi-
ple languages?

The traditional approach to this problem has
been building a separate model to serve each lan-
guage. In this scenario, the annotation budget

*Equal Contribution
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is split equally for all languages, and a model
is trained for each one separately. Recently, an-
other direction that has gained popularity has been
leveraging multilingual pre-trained language mod-
els (MPLMs) which inherently map multiple lan-
guages to a common embedding space (Devlin
et al., 2019; Conneau et al., 2020). The popular
method for leveraging these models has been lever-
aging their zero-shot transfer ability: training on
an English-only corpus for the task, and then using
the models zero-shot for the other languages.

Another orthogonal line of work aimed at build-
ing models under a constrained budget has been
active learning (AL) (Shen et al., 2018; Ein-Dor
et al., 2020). While this has shown to improve
annotation efficiency, the predominant approach
has been to train one model per language, using
the (language specific) model for AL (Shen et al.,
2018; Erdmann et al., 2019).

In this work, we show that a single MPLM
trained on all languages simultaneously performs
much better than training independent models for
specific languages for a fixed total annotation bud-
get. Further, while the benefits of using AL in con-
junction with MPLMSs has been studied for a mono-
lingual setup (Ein-Dor et al., 2020), we show that
AL also yields benefits in the multilingual setup.
Concretely, we show that an AL acquisition on
a single language helps improve zero-shot perfor-
mance on all other languages, regardless of the
language of the seed data. Furthermore, we show
that AL also yields benefits for our proposed single
model scenario. We demonstrate that our results
are consistent on 3 different tasks across multiple
languages: classification, sequence tagging and
dependency parsing. Our approach removes the
requirement of maintaining n different models, and
uses 1/n'" the parameters than when independent
models are trained. Our analysis reveals that the
model arbitrates between different languages based
on its performance to form a multilingual curricu-
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lum.

We release our code at https://github.
com/codedecde/SMAL.

2 Related Work

Effective utilization of annotation budgets has been
the area of focus for numerous active learning
works, showing improvements for different tasks
like POS tagging (Ringger et al., 2007), sentiment
analysis (Karlos et al., 2012; Li et al., 2013; Brew
et al., 2010; Ju and Li, 2012), syntactic parsing
(Duong et al., 2018), and named entity recognition
(Settles and Craven, 2008; Shen et al., 2018). The
focus of most of these works, however, has been
on learning for a single language (often English).
Prior work on AL that uses a multilingual setup
or cross-lingual information sharing and that goes
beyond training a separate model for each language
has thus been limited. The closest work where mul-
tiple languages influence each other’s acquisition is
that of Qian et al. (2014); however, they still train
a separate model for each language.

For transfer to multiple languages, recent ad-
vances in building MPLMs (Devlin et al., 2019;
Conneau et al., 2020; Liu et al., 2020; Xue et al.,
2020) have been extremely effective, especially in
zero-shot transfer (Pires et al., 2019; Liu et al.,
2020). Ein-Dor et al. (2020) studied the data-
effectiveness of these models when used in con-
junction with AL, but, as with other AL work, with
a single language focus. Finally, Lauscher et al.
(2020) studied the effectiveness of the zero-shot
setup, showing that adding a few examples to a
model trained on English improves performance
over zero-shot transfer. However, this assumes the
availability of a full English task-specific corpus.

3 Methodology

3.1 Task Specific Models

We use the multilingual-BERT-cased model
(mBERT) as the base model for all the tasks. We
use the standard training methodology for the tasks:
For classification, we use a single layer over the
[CLS] embedding. For sequence tagging, we use
a single layer for each word to predict its tag. For
dependency parsing, we follow Kondratyuk and
Straka (2019) and use mBERT embeddings with
the graph-based bi-affine attention parser (Dozat
and Manning, 2017); refer Appendix A for details.
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3.2 Budget Allocation Settings

To understand data acquisition in a multilingual
setting, we consider multilingual datasets in the
3 tasks. For each task ¢, let £ be the set of lan-
guages (n = |L]). We then define s; to be the seed
size, b to be the total annotation budget and v; to
be total number of annotated validation examples
available to t. We compare our proposed Single
Model Acquisition (SMA) setup to two baseline
settings— Monolingual Acquisition (MonoA) and
Multi Model Acquisition (MMA):

MonoA In this setting, the seed data as well as
the validation data (s, v¢) is acquired from a single
language. Further, the entire annotation budget (b;)
is assigned to the same language. We evaluate the
test data performance on that language and on the
other n — 1 languages in a zero-shot setting.

MMA For this setting, we train n individual mod-
els, one for each language. Each model starts with
a seed of s;/n, a validation set of v;/n, and is as-
signed an acquisition budget of b;/n. At test time,
we evaluate the performance of the model on the
language it was trained with.

SMA For this setting, we consider a single model
for which both training and acquisition is done on
all n languages simultaneously. The seed data and
the validation set comprises of a random subset
drawn from data corresponding to all languages.
The whole of s, by and v, are thus assigned to this
single model. We compute the performance on the
test data of each of the languages.

3.3 Active Learning Acquisition Strategies

The field of active AL tends not to reveal explicit
winners—though there is a general consensus that
AL does indeed outperform passive learning (Set-
tles, 2009). Thus, we adopt the simplest confidence
based strategies to demonstrate their efficacy for
each task : Least Confidence (LC) for classification,
Maximum Normalized Log Probability (MNLP)
(Shen et al., 2018) for sequence tagging, and nor-
malized log probability of decoded tree (NLPDT)
(Li et al., 2016) for dependency parsing

Maximum Normalized Log Probability (MNLP)
This strategy chooses instances for which the log
probability of the model prediction, normalized by
sequence length, is the lowest. This AL strategy
has been shown to be extremely effective for NER



(Shen et al., 2018) and hence we adopt it in our
setting.

Least Confidence (LC) This strategy chooses
those instances for which the model confidence cor-
responding to the predicted class is the least. This
acquisition strategy has been commonly applied in
classification tasks, and although simple, has been
consistently shown to often perform extremely well
(Settles, 2009); consequently, we adopt it in our
setting.

Normalized Log Probability of the Decoded
Tree (NLPDT) This strategy selects the instances
with the minimum log probability of the de-
coded tree generated d* as generated by the Chu-
Liu/Edmonds algorithm (refer A for additional de-
tails). Following (Li et al., 2016), we also normal-
ize this score by the number of tokens N !

To the best of our knowledge, this is the first
work to explore an AL-augmented single model for
multiple languages.

4 [Experiments

4.1 Dataset Details

Classification We consider Sentiment Analysis,
using the Amazon Reviews dataset (Prettenhofer
and Stein, 2010). The dataset consists of reviews
and their binary sentiments for 4 languages: En-
glish (en), French (fr), Japanese (ja), German (de).

Sequence Tagging We choose Named Entity
Recognition, and use the CoNLL02/03 datasets
(Sang, 2002; Tjong Kim Sang and De Meulder,
2003) with 4 languages: English (en), Spanish (es),
German (de) and Dutch (nl), and 4 named entities:
Location, Person, Organization and Miscellaneous.

Dependency Parsing We use a subset of tree-
banks with 5 languages (English (en), Spanish (es),
German (de), Dutch (nl), Japanese (ja)) from the
full Universal Dependencies v2.3 corpus (Nivre
et al., 2018); a total of 11 treebanks.

4.2 Experimental Settings

For each experiment, we run 4 training rounds: one
training on initial seed data, followed by 3 acqui-
sition rounds. We set s;=b;=v; in all cases. For

"We also tried normalizing by N2, as well as a globally
normalized probability of d* (probability of the tree over all
possible valid trees, with the partition function computed using
the Matrix Tree Theorem (Koo et al., 2007; Smith and Smith,
2007)), but found both to perform worse.
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classification, we set s;=300 sentences. For NER
and Dependency Parsing, we use s;=~10k and
s¢=~17.5k tokens respectively (refer Appendix
B). We report accuracy for classification, F1-Score
for the NER, and unlabeled and labeled attachment
scores (UAS and LAS) for dependency parsing.
For each task, we run the 3 settings (§3.2) across
multiple languages. For each setting, we also train
an AL model with a task-specific acquisition func-
tion (§3.3). In addition, we train both the SMA and
MMA with all available data, i.e., we use all data
to train one model for all languages and one model
per language respectively. We report an average of
5 runs for each experiment. Refer Appendix C for
hyperparameters and training details.

5 Results and Analysis

Model Performance Figure 1 shows the perfor-
mance of NER on Spanish (refer Appendix G for
the plots of all other languages and tasks). Al-
though acquiring data independently per language
(MMA) performs well, SMA outperforms MMA.
Unsurprisingly, MonoA with es performs the best
in the category, since it allocates its entire budget
to acquiring es data; it thus forms an upper-bound
of the model performance. However, SMA out-
performs MonoA when its seed language and in-
ference language differ. Finally, AL consistently
provides gains over random acquisition.

To analyze the performance across all languages,
we present the performance for each round of ac-
quisition, aggregated across all languages for Clas-
sification (Figure 2) (refer Appendix G for De-
pendency Parsing and NER plots). Here, SMA
consistently outperforms MMA for every round of
acquisition because MMA suffers from a poorly
utilized budget, potentially wasting annotation bud-
get on languages where the task is easier. In con-
trast, SMA improves budget utilization while also
benefiting from cross-lingual information. Finally,
SMA, by virtue of performing well irrespective of
language, consistently outperforms MonoA.

For a concise overview, we present the aggregate
metrics across all rounds for each task in Table 1.
We observe that SMA does much better compared
to its counterparts; both with and without AL. We
also observe these models to be extremely data ef-
ficient: with AL, a model with access to less than
5% of the data achieves a (relative) performance
of around 88% accuracy (for classification), 95.5%
F1-score (for NER) and 93.5% LAS (for depen-
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Figure 1: Performance across different rounds for
one task (NER) and one language (es). Note that
SMA + AL out-performs MMA + AL. It also out-
performs all MonoA baselines except MonoA[es],
which is the language specific upper bound. Here
MNLP is the AL method adopted for NER.

dency parsing) when compared to a model trained
with all available data (see Table 2 for full data
performance). Further, along with its superior per-
formance, SMA also affords substantial parameter
savings: requiring only a single model, compared
to a number of models linear in n (thereby using
n% parameters compared to MMA).

Dataset Metric |AL|MMA |[SMA

NER Span-F1 | O] -1 [ 791

| 77.3 | 80.5

Classification | Accuracy ()] 67.7 | 738

(+)| 69.3 | 74.0

UAS (-) | 84.8 | 86.0

Dependency (+)| 845 | 86.3
Parsin -

g LAS (-)| 78.0 | 77.8

(+)| 77.8 | 79.7

Table 1: Average results across all rounds (5%, 10%,
15% and 20% data) and all languages. (+) and (-) indi-
cate with and without AL respectively. Bold highlights
best performance for a task.

MM Full vs SM Full To analyze how effectively
a single model performs on the languages in ques-
tion despite using 1/n'" the parameters, we train
a single model on all data and compare it with
n language-specific models, where each of the n
models has the same number of parameters as the
single model; this also serves as an upper-bound
for our AL experiments. Table 2 shows that having
a single model does not adversely impact perfor-
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Figure 2: Performance aggregated across all lan-
guages for one task (classification) at every round
of acquisition. As can be seen, SMA + AL outper-
forms all other baselines. Note that SMA and MMA
both out-perform MonoA. This is because MonoA
does not perform as well when the language is dif-
ferent than that for which data was acquired. Here,
LC is the AL method adopted for classification.

mance. A more detailed discussion is present in
Appendix D.

. MM SM
Dataset Metric Full Full
NER Span-F1 87.4 87.2
Classification | Accuracy | 86.0 87.0
Dependency UAS 91.3 91.3
Parsing LAS 87.1 87.1

Table 2: Performance with all data for both SM and
MM. Here, SM is a single model trained on all lan-
guages, while MM represents average performance over
all languages of one model per language. The compa-
rable performance indicates that models have enough
capacity to represent languages in consideration.

The effectiveness of AL in MonoA We consis-
tently observe AL in the source language improv-
ing performance across all languages, irrespective
of whether inference is being run for the source lan-
guage or zero-shot on a different target language,
both for NER and classification (Table 3). We hy-
pothesize that the model selects semantically diffi-
cult or ambiguous examples that generalize across
languages by virtue of mBERT’s shared embed-
ding representation. To the best of our knowledge,
this work is the first to demonstrate that AL can
improve the data efficiency of both classification
and NER in a zero-shot inference setup.

In the case of dependency parsing, we observe
mixed results when the source and target languages



differ. We hypothesize that this is because depen-
dency parsing is a syntactic problem, making it
more language specific, and zero-shot inference
inherently harder. This is in contrast with both
classification and NER, which are more semantic,
making hard examples more generalizable across
languages. Refer Appendix E for more details.

Dataset Metric‘ AL MonoA
Source | en | es | nl de
NER R
Span-F1 ) 71.3164.3/68.8 68.8
+) 72.1|64.3|70.8| 70.3
) Source | en | fr | ja de
Classifi-
cation Acc ) 71.9|72.5|69.1 66.2
(+) 72.9(72.1170.3 68.0
ource | en | es | nl | de ja
Depend- UAS ) 76.4|72.9|73.9(72.9|44.3
ency +) 76.973.0|74.0|73.4|44.2
Parsing LAS “) 67.2162.3/62.8(61.8|31.8
+) 67.5|62.4|62.7162.3]/30.8

Table 3: Average results across all rounds (5%, 10%,
15% and 20% data) and all languages for MonoAL.
Source indicates the language of data acquisition and
for all other languages, inference is zero-shot. As can
be seen, AL usually helps in the zero-shot setup.

What does SMA+AL acquire? One advantage
of the SMA+AL setup is that the model can ar-
bitrate between allocating its acquisition budget
across different languages as training progresses.
This is in contrast with training one model per lan-
guage, where the models for languages with a high
performance waste the overall budget by acquiring
more than necessary, while models on languages
where performance isn’t as good under-acquire.

To investigate this, for each language and each
round, we plot the relative difference (%) between
cumulative tokens acquired by the SMA+AL model
for that language, and the tokens acquired in ex-
pectation if acquisition was done randomly (refer
Appendix F for more details). For each language,
we also plot the relative performance difference of
the language at that round compared to the perfor-
mance when 100% data is available.

Figure 3 reveals the added benefit of SMA+AL
for data acquisition for NER (refer Appendix F
for other tasks): a single model can arbitrate be-
tween instances across languages automatically.
The model initially acquires data from the high
resource language (English). But as the training
proceeds, the model favors acquiring data from
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Figure 3: Acquisiton Curriculum for NER. The bars
(left y-axis) represent the relative fraction of cumula-
tive tokens acquired per language compared to random
sampling. The lines (right y-axis) show the difference
of performance of the language when compared to its
100% data performance (MM). Notice that the model
tends to favor acquiring data from languages that under-
perform compared to their 100% counterpart (here, es
and de). This in turn helps the model to arbitrate its ac-
quisitions so as to achieve similar performance (relative
to 100% performance) across all languages (indicated
by the convergence of the line plots).

languages it is uncertain about (Spanish and Ger-
man). This “multilingual curriculum” thus allows
the model to be more effective in its use of the
annotation budget. We find SMA+AL eventually
achieves a similar relative difference from 100%
data performance for all languages consistently
across tasks as a consequence.

6 Conclusion

In this work, we consider the problem of efficiently
building models that solve a task across multiple
languages. We show that, contrary to traditional ap-
proaches, a single model arbitrating between mul-
tiple languages for data acquisition considerably
improves performance in a constrained budget sce-
nario, with AL providing additional benefits.
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A Task Specific Details

In this section, we elaborate on the task specific
adaptations:

Classification: As is common practice, we use
a single linear layer over [CLS] embeddings gen-
erated by the BERT model to generate logits for
the classification task, and the model is trained to
minimize the cross-entropy loss.

Sequence Tagging: We apply a linear layer to the
word embeddings’ generated by the BERT model
to generate the tag logits, and the model is trained
to minimize the negative log-likelihood of the ob-
served tags.

Dependency Parsing: We use a graph-based bi-
affine attention parser introduced in (Dozat and
Manning, 2017). Following (Kondratyuk and
Straka, 2019), we use the output of the last BERT
layer in place of the embeddings generated by
the Bi-LSTM layers. These embeddings are then
concatenated with the POS embeddings. A head
feed-forward network and a child feed-forward
network then generate embeddings for each head
and dependant word of a dependency respectively.
This is combined with a biaffine attention mod-
ule to generate a probability distribution for each
word to predict its head, as well as a bilinear
layer to predict the label for each dependency re-
lationship. Let TG = {(h(@j), d(i,j)7 l(i,j) ’h(@j) —
d(; jy withlabel [(; ;y} be the i*" gold dependency
tree in the dataset. The model is then trained to
maximize the log probability of the gold tree as :

max > > log (P(h; jld,5))
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+log (P(l(i 4yl — diig)))

During inference, the best dependency parse is
generated by decoding with Chu-Liuv/Edmonds al-
gorithm (Chu, 1965; Edmonds, 1967).

For all the models mentioned above, all layers
of mBERT are fine-tuned during training.
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B Dataset statistics

We report the detailed dataset statistics in Table 4.
Note that the seed was chosen to be roughly 5% of
the size of the English training data, shown in the
rightmost column of the table.

Following (Devlin et al., 2019), for words generating mul-
tiple wordpieces, we use the embedding of the first wordpiece.
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C Experimental Details

Hyperparameters All experiments performed
in this paper are averaged over 5 runs. For each
experiment, we perform an LR search over (1e-5,
2e-5, 3e-5, 4e-5 and 5e-5), and choose the best LR
according to the performance on the appropriate
validation (sub)set, as recommended in (Devlin
et al., 2019). In all experiments, we set the batch
size to 32 and use an Adam (Kingma and Ba, 2015)
optimizer. Each round of training is run with a
patience of 25 epochs, for at most 75 epochs in
total.

Data Preprocessing To avoid out-of-memory is-
sues on the GPU, we pre-process the data so that
the examples in the train set of length larger than
175 and with larger than 256 word-pieces are fil-
tered out for the NER. For classification, we simply
truncate all instances at 256 word-pieces. We also
de-duplicate the train set, to ensure that during all
AL acquisition stages, no duplicates are selected at
any point.

Code All code used in this work was imple-
mented using Python, PyTorch and AllenNLP
(Gardner et al., 2018), using pre-trained models
released by HuggingFace (Wolf et al., 2020).

D SM Full vs MM Full Performance

Given that the SMA setup uses 1/n" the number
of parameters, an interesting question is whether
fewer parameters leads to a loss in any expressive
power for the single model, which might potentially
lead to poorer performance (curse of multilingual-
ity (Conneau et al., 2020)). To answer this question,
we train a single model on all data and compare
it with n language-specific models, where each of
the n models has the same number of parameters
as the single model.

From the 100% (rightmost) columns of Table
2, we find that having a single model does not ad-
versely impact performance and these trends hold
irrespective of whether all the languages in the task
are etymologically close (as in NER) or distant (ja
for classification and dependency parsing). This
might not be the case when there are a large number
of languages, however; investigating how well this
observation scales with the number of languages
would be an interesting line of future work.



Task Budget Type N lll?l Tokens / Instances AL Details Num en train
Train Val. Test Seed Val. Budget

NER Token 875k 193k 219k 10k 10k 10k 200k

Classification Instance 19k Sk 24k 300 300 300 6k

Dependency Parsing Token 1.88M 196k 189k 17.5k 17.5k 17.5k 350k

Table 4: Aggregate statistics of datasets per task.

E Active Learning for the MonoA Setup

An interesting observation from Table 3 is that AL
in the source language helps improve performance
across all languages, irrespective of whether the
inference is being run for the source language in
question or zero-shot on a different target language
without any training. We observe this to be the
case consistently for both the NER and the clas-
sification tasks (refer Figure 4), regardless of the
source language. We hypothesize that this is be-
cause the model selects semantically difficult or
ambiguous examples that generalize across lan-
guages by virtue of mBERT’s shared embedding
representation, in contrast with random selection
where easy examples the model can already tackle
might be selected. We observe this even in the case
of etymologically distant languages, such as when
the model is trained in English and zero-shot in-
ference is done in Japanese (or vice versa). Thus,
the AL selection does not overfit on the specific
language in question, instead choosing difficult but
generalizable examples.

We observe mixed results for the MonoA setup
for dependency parsing: AL improves substantially
over Random when the target language and the
source language are the same; however, when they
differ, the results are mixed. We hypothesize that
this discrepancy is a consequence of dependency
parsing being a syntactic problem, making it more
language specific, in turn making zero-shot an in-
herently harder problem. This is in contrast with
both classification and NER, which are more se-
mantic tasks. Consequently, hard examples for
the latter tasks might be more generalizable across
languages, resulting in their improved AL p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>