This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Most large language models are multilingual instruction executors. Prior studies suggested that English instructions are more effective than target-language instructions even for non-English tasks; however, these studies often use datasets and instructions translated from English, which introduce biases known as translationese, hindering an unbiased comparison. To address this issue, we conduct a fair comparison between English and target-language instructions by eliminating translationese effects. Contrary to previous studies, our experiments across several tasks reveal that the advantage of adopting English instructions is not overwhelming. Additionally, we report on the features of generated texts and the instruction-following abilities when using respective instructions.
In machine translation quality estimation (QE), translation quality is evaluated automatically without the need for reference translations. This paper describes our contribution to the sentence-level subtask of Task 1 at the Ninth Machine Translation Conference (WMT24), which predicts quality scores for neural MT outputs without reference translations. We fine-tune GPT-4o mini, a large-scale language model (LLM), with limited data for QE.We report results for the direct assessment (DA) method for four language pairs: English-Gujarati (En-Gu), English-Hindi (En-Hi), English-Tamil (En-Ta), and English-Telugu (En-Te).Experiments under zero-shot, few-shot prompting, and fine-tuning settings revealed significantly low performance in the zero-shot, while fine-tuning achieved accuracy comparable to last year’s best scores. Our system demonstrated the effectiveness of this approach in low-resource language QE, securing 1st place in both En-Gu and En-Hi, and 4th place in En-Ta and En-Te.
In this study, we propose using the GPT-3 as a query generator for the backend of CLIP as an implicit word sense disambiguation (WSD) component for the SemEval 2023 shared task Visual Word Sense Disambiguation (VWSD). We confirmed previous findings — human-like prompts adapted for WSD with quotes benefit both CLIP and GPT-3, whereas plain phrases or poorly templated prompts give the worst results.
We extend a pair of continuous combinator-based constituency parsers (one binary and one multi-branching) into a discontinuous pair. Our parsers iteratively compose constituent vectors from word embeddings without any grammar constraints. Their empirical complexities are subquadratic. Our extension includes 1) a swap action for the orientation-based binary model and 2) biaffine attention for the chunker-based multi-branching model. In tests conducted with the Discontinuous Penn Treebank and TIGER Treebank, we achieved state-of-the-art discontinuous accuracy with a significant speed advantage.