2025
pdf
bib
abs
A Combinatorial Approach to Neural Emergent Communication
Zheyuan Zhang
Proceedings of the 31st International Conference on Computational Linguistics
Substantial research on deep learning-based emergent communication uses the referential game framework, specifically the Lewis signaling game, however we argue that successful communication in this game typically only need one or two symbols for target image classification because of a sampling pitfall in the training data. To address this issue, we provide a theoretical analysis and introduce a combinatorial algorithm SolveMinSym (SMS) to solve the symbolic complexity for classification, which is the minimum number of symbols in the message for successful communication. We use the SMS algorithm to create datasets with different symbolic complexity to empirically show that data with higher symbolic complexity increases the number of effective symbols in the emergent language.
pdf
bib
abs
Can LLMs Convert Graphs to Text-Attributed Graphs?
Zehong Wang
|
Sidney Liu
|
Zheyuan Zhang
|
Tianyi Ma
|
Chuxu Zhang
|
Yanfang Ye
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Graphs are ubiquitous structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. To model graph-structured data, graph neural networks (GNNs) have become a popular tool. However, existing GNN architectures encounter challenges in cross-graph learning where multiple graphs have different feature spaces. To address this, recent approaches introduce text-attributed graphs (TAGs), where each node is associated with a textual description, which can be projected into a unified feature space using textual encoders. While promising, this method relies heavily on the availability of text-attributed graph data, which is difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), leveraging large language models (LLMs) to convert existing graphs into text-attributed graphs. The key idea is to integrate topological information into LLMs to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating its applicability. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.
pdf
bib
abs
Simulating Classroom Education with LLM-Empowered Agents
Zheyuan Zhang
|
Daniel Zhang-Li
|
Jifan Yu
|
Linlu Gong
|
Jinchang Zhou
|
Zhanxin Hao
|
Jianxiao Jiang
|
Jie Cao
|
Huiqin Liu
|
Zhiyuan Liu
|
Lei Hou
|
Juanzi Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLMs) have been applied across various intelligent educational tasks to assist teaching. While preliminary studies have focused on task-specific, independent LLM-empowered agents, the potential of LLMs within a multi-agent collaborative framework for classroom simulation with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation teaching framework. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Using the Flanders Interactive Analysis System and Community of Inquiry theoretical frameworks from educational analysis, we demonstrate that LLMs can simulate a dynamic learning environment for users with active teacher-student and student-student interactions. We also observe group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching. Our implementation and service can be found at https://github.com/THU-MAIC/SimClass.
2024
pdf
bib
abs
EmoBench: Evaluating the Emotional Intelligence of Large Language Models
Sahand Sabour
|
Siyang Liu
|
Zheyuan Zhang
|
June Liu
|
Jinfeng Zhou
|
Alvionna Sunaryo
|
Tatia Lee
|
Rada Mihalcea
|
Minlie Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion management and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data are publicly available at https://github.com/Sahandfer/EmoBench.
pdf
bib
Eliciting In-Context Learning in Vision-Language Models for Videos Through Curated Data Distributional Properties
Keunwoo Peter Yu
|
Zheyuan Zhang
|
Fengyuan Hu
|
Shane Storks
|
Joyce Chai
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
2023
pdf
bib
abs
From Heuristic to Analytic: Cognitively Motivated Strategies for Coherent Physical Commonsense Reasoning
Zheyuan Zhang
|
Shane Storks
|
Fengyuan Hu
|
Sungryull Sohn
|
Moontae Lee
|
Honglak Lee
|
Joyce Chai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Pre-trained language models (PLMs) have shown impressive performance in various language tasks. However, they are prone to spurious correlations, and often generate illusory information. In real-world applications, PLMs should justify decisions with formalized, coherent reasoning chains, but this challenge remains under-explored. Cognitive psychology theorizes that humans are capable of utilizing fast and intuitive *heuristic* thinking to make decisions based on past experience, then rationalizing the decisions through slower and deliberative *analytic* reasoning. We incorporate these interlinked dual processes in fine-tuning and in-context learning with PLMs, applying them to two language understanding tasks that require coherent physical commonsense reasoning. We show that our proposed Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions, yielding state-of-the-art results on Tiered Reasoning for Intuitive Physics (TRIP). We also find that this improved coherence is a direct result of more faithful attention to relevant language context in each step of reasoning. Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
pdf
bib
abs
Exploring the Cognitive Knowledge Structure of Large Language Models: An Educational Diagnostic Assessment Approach
Zheyuan Zhang
|
Jifan Yu
|
Juanzi Li
|
Lei Hou
Findings of the Association for Computational Linguistics: EMNLP 2023
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence. Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains. However, cognitive research on the overall knowledge structure of LLMs is still lacking. In this paper, based on educational diagnostic assessment method, we conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom Taxonomy. We aim to reveal the knowledge structures of LLMs and gain insights of their cognitive capabilities. This research emphasizes the significance of investigating LLMs’ knowledge and understanding the disparate cognitive patterns of LLMs. By shedding light on models’ knowledge, researchers can advance development and utilization of LLMs in a more informed and effective manner.