This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Open domain question answering systems frequently rely on information retrieved from large collections of text (such as the Web) to answer questions. However, such collections of text often contain conflicting information, and indiscriminately depending on this information may result in untruthful and inaccurate answers. To understand the gravity of this problem, we collect a human-annotated dataset, Question Answering with Conflicting Contexts (QACC), and find that as much as 25% of unambiguous, open domain questions can lead to conflicting contexts when retrieved using Google Search. We evaluate and benchmark three powerful Large Language Models (LLMs) with our dataset QACC and demonstrate their limitations in effectively addressing questions with conflicting information. To explore how humans reason through conflicting contexts, we request our annotators to provide explanations for their selections of correct answers. We demonstrate that by finetuning LLMs to explain their answers, we can introduce richer information into their training that guide them through the process of reasoning with conflicting contexts. We publicly release our dataset and code to promote research along this line.
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, they are prone to contextual hallucination, generating information that is either unsubstantiated or contradictory to the given context. Although many studies have investigated contextual hallucinations in LLMs, addressing them in long-context inputs remains an open problem. In this work, we take an initial step toward solving this problem by constructing a dataset specifically designed for long-context hallucination detection. Furthermore, we propose a novel architecture that enables pre-trained encoder models, such as BERT, to process long contexts and effectively detect contextual hallucinations through a decomposition and aggregation mechanism. Our experimental results show that the proposed architecture significantly outperforms previous models of similar size as well as LLM-based models across various metrics, while providing substantially faster inference. We publicly release our dataset and code to promote research along the same line.
Granular events, instantiated in a document by predicates, can usually be grouped into more general events, called complex events. Together, they capture the major content of the document. Recent work grouped granular events by defining event regions, filtering out sentences that are irrelevant to the main content. However, this approach assumes that a given complex event is always described in consecutive sentences, which does not always hold in practice. In this paper, we introduce the task of complex event identification. We address this task as a pipeline, first predicting whether two granular events mentioned in the text belong to the same complex event, independently of their position in the text, and then using this to cluster them into complex events. Due to the difficulty of predicting whether two granular events belong to the same complex event in isolation, we propose a context-augmented representation learning approach CONTEXTRL that adds additional context to better model the pairwise relation between granular events. We show that our approach outperforms strong baselines on the complex event identification task and further present a promising case study exploring the effectiveness of using complex events as input for document-level argument extraction.
Existing approaches for the Table-to-Text task suffer from issues such as missing information, hallucination and repetition. Many approaches to this problem use Reinforcement Learning (RL), which maximizes a single manually defined reward, such as BLEU. In this work, we instead pose the Table-to-Text task as Inverse Reinforcement Learning (IRL) problem. We explore using multiple interpretable unsupervised reward components that are combined linearly to form a composite reward function. The composite reward function and the description generator are learned jointly. We find that IRL outperforms strong RL baselines marginally. We further study the generalization of learned IRL rewards in scenarios involving domain adaptation. Our experiments reveal significant challenges in using IRL for this task.