Zexuan Qiu


2025

pdf bib
Entropy-Based Decoding for Retrieval-Augmented Large Language Models
Zexuan Qiu | Zijing Ou | Bin Wu | Jingjing Li | Aiwei Liu | Irwin King
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Augmenting Large Language Models (LLMs) with retrieved external knowledge has proven effective in improving the factual accuracy of generated responses. Despite their success, retrieval-augmented LLMs still face the distractibility issue, where the generated responses are negatively influenced by noise from both external and internal knowledge sources. In this paper, we introduce a novel, training-free decoding method guided by entropy considerations to mitigate this issue. Our approach utilizes entropy-based document-parallel ensemble decoding to prioritize low-entropy distributions from retrieved documents, thereby enhancing the extraction of relevant information of context. Additionally, it incorporates a contrastive decoding mechanism that contrasts the obtained low-entropy ensemble distribution with the high-entropy distribution derived from the model’s internal knowledge across layers, which ensures a greater emphasis on reliable external information. Extensive experiments on open-domain question answering datasets demonstrate the superiority of our method.

2024

pdf bib
CLongEval: A Chinese Benchmark for Evaluating Long-Context Large Language Models
Zexuan Qiu | Jingjing Li | Shijue Huang | Xiaoqi Jiao | Wanjun Zhong | Irwin King
Findings of the Association for Computational Linguistics: EMNLP 2024

Developing Large Language Models (LLMs) with robust long-context capabilities has been the recent research focus, resulting in the emergence of long-context LLMs proficient in Chinese. However, the evaluation of these models remains underdeveloped due to a lack of benchmarks. To address this gap, we present CLongEval, a comprehensive Chinese benchmark for evaluating long-context LLMs. CLongEval is characterized by three key features: (1) Sufficient data volume, comprising 7 distinct tasks and 7,267 examples; (2) Broad applicability, accommodating to models with context windows size from 1K to 100K; (3) High quality, with over 2,000 manually annotated question-answer pairs in addition to the automatically constructed labels. With CLongEval, we undertake a comprehensive assessment of 6 open-source long-context LLMs and 2 leading commercial counterparts that feature both long-context abilities and proficiency in Chinese. We also provide in-depth analysis based on the empirical results, trying to shed light on the critical capabilities that present challenges in long-context settings. The dataset, evaluation scripts, and model outputs will be released.

2022

pdf bib
Efficient Document Retrieval by End-to-End Refining and Quantizing BERT Embedding with Contrastive Product Quantization
Zexuan Qiu | Qinliang Su | Jianxing Yu | Shijing Si
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Efficient document retrieval heavily relies on the technique of semantic hashing, which learns a binary code for every document and employs Hamming distance to evaluate document distances. However, existing semantic hashing methods are mostly established on outdated TFIDF features, which obviously do not contain lots of important semantic information about documents. Furthermore, the Hamming distance can only be equal to one of several integer values, significantly limiting its representational ability for document distances. To address these issues, in this paper, we propose to leverage BERT embeddings to perform efficient retrieval based on the product quantization technique, which will assign for every document a real-valued codeword from the codebook, instead of a binary code as in semantic hashing. Specifically, we first transform the original BERT embeddings via a learnable mapping and feed the transformed embedding into a probabilistic product quantization module to output the assigned codeword. The refining and quantizing modules can be optimized in an end-to-end manner by minimizing the probabilistic contrastive loss. A mutual information maximization based method is further proposed to improve the representativeness of codewords, so that documents can be quantized more accurately. Extensive experiments conducted on three benchmarks demonstrate that our proposed method significantly outperforms current state-of-the-art baselines.