Yuto Nishida


2025

pdf bib
Long-Tail Crisis in Nearest Neighbor Language Models
Yuto Nishida | Makoto Morishita | Hiroyuki Deguchi | Hidetaka Kamigaito | Taro Watanabe
Findings of the Association for Computational Linguistics: NAACL 2025

The k-nearest-neighbor language model (kNN-LM), one of the retrieval-augmented language models, improves the perplexity for given text by directly accessing a large datastore built from any text data during inference.A widely held hypothesis for the success of kNN-LM is that its explicit memory, i.e., the datastore, enhances predictions for long-tail phenomena.However, prior works have primarily shown its ability to retrieve long-tail contexts, leaving the model’s performance remain underexplored in estimating the probabilities of long-tail target tokens during inference.In this paper, we investigate the behavior of kNN-LM on low-frequency tokens, examining prediction probability, retrieval accuracy, and token distribution in the datastore.Our experimental results reveal that kNN-LM does not improve prediction performance for low-frequency tokens but mainly benefits high-frequency tokens regardless of long-tail contexts in the datastore.

pdf bib
How to Make the Most of LLMs’ Grammatical Knowledge for Acceptability Judgments
Yusuke Ide | Yuto Nishida | Justin Vasselli | Miyu Oba | Yusuke Sakai | Hidetaka Kamigaito | Taro Watanabe
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The grammatical knowledge of language models (LMs) is often measured using a benchmark of linguistic minimal pairs, where LMs are presented with a pair of acceptable and unacceptable sentences and required to judge which is more acceptable. Conventional approaches compare sentence probabilities directly, but large language models (LLMs) provide nuanced evaluation methods using prompts and templates. We therefore investigate how to derive the most accurate acceptability judgments from LLMs to comprehensively evaluate their grammatical knowledge. Through extensive experiments in both English and Chinese, we compare nine judgment methods and demonstrate that two of them, in-template LP (a probability readout method) and Yes/No probability computing (a prompting-based method), achieve higher accuracy than the conventional approach. Our analysis reveals that the top two methods excel in different linguistic phenomena, suggesting they access different aspects of the LLMs’ grammatical knowledge. We find that ensembling the two methods achieves even higher accuracy. Consequently, we recommend these techniques, either individually or ensembled, as more effective alternatives to conventional approaches for assessing grammatical knowledge in LLMs.

2024

pdf bib
Generating Diverse Translation with Perturbed kNN-MT
Yuto Nishida | Makoto Morishita | Hidetaka Kamigaito | Taro Watanabe
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Generating multiple translation candidates would enable users to choose the one that satisfies their needs.Although there has been work on diversified generation, there exists room for improving the diversity mainly because the previous methods do not address the overcorrection problem—the model underestimates a prediction that is largely different from the training data, even if that prediction is likely.This paper proposes methods that generate more diverse translations by introducing perturbed k-nearest neighbor machine translation (kNN-MT).Our methods expand the search space of kNN-MT and help incorporate diverse words into candidates by addressing the overcorrection problem.Our experiments show that the proposed methods drastically improve candidate diversity and control the degree of diversity by tuning the perturbation’s magnitude.

2023

pdf bib
NAIST-NICT WMT’23 General MT Task Submission
Hiroyuki Deguchi | Kenji Imamura | Yuto Nishida | Yusuke Sakai | Justin Vasselli | Taro Watanabe
Proceedings of the Eighth Conference on Machine Translation

In this paper, we describe our NAIST-NICT submission to the WMT’23 English ↔ Japanese general machine translation task. Our system generates diverse translation candidates and reranks them using a two-stage reranking system to find the best translation. First, we generated 50 candidates each from 18 translation methods using a variety of techniques to increase the diversity of the translation candidates. We trained seven models per language direction using various combinations of hyperparameters. From these models we used various decoding algorithms, ensembling the models, and using kNN-MT (Khandelwal et al., 2021). We processed the 900 translation candidates through a two-stage reranking system to find the most promising candidate. In the first step, we compared 50 candidates from each translation method using DrNMT (Lee et al., 2021) and returned the candidate with the best score. We ranked the final 18 candidates using COMET-MBR (Fernandes et al., 2022) and returned the best score as the system output. We found that generating diverse translation candidates improved translation quality using the well-designed reranker model.

2022

pdf bib
NAIST-NICT-TIT WMT22 General MT Task Submission
Hiroyuki Deguchi | Kenji Imamura | Masahiro Kaneko | Yuto Nishida | Yusuke Sakai | Justin Vasselli | Huy Hien Vu | Taro Watanabe
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we describe our NAIST-NICT-TIT submission to the WMT22 general machine translation task. We participated in this task for the English ↔ Japanese language pair. Our system is characterized as an ensemble of Transformer big models, k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021), and reranking.In our translation system, we construct the datastore for kNN-MT from back-translated monolingual data and integrate kNN-MT into the ensemble model. We designed a reranking system to select a translation from the n-best translation candidates generated by the translation system. We also use a context-aware model to improve the document-level consistency of the translation.