Yujia Xie
2025
Developing a Reliable, Fast, General-Purpose Hallucination Detection and Mitigation Service
Song Wang
|
Xun Wang
|
Jie Mei
|
Yujia Xie
|
Si-Qing Chen
|
Wayne Xiong
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
Hallucination, a phenomenon where large language models (LLMs) produce output that is factually incorrect or unrelated to the input, is a major challenge for LLM applications that require accuracy and dependability. In this paper, we introduce a reliable and high-speed production system aimed at detecting and rectifying the hallucination issue within LLMs. Our system encompasses named entity recognition (NER), natural language inference (NLI), span-based detection (SBD), and an intricate decision tree-based process to reliably detect a wide range of hallucinations in LLM responses. Furthermore, we have crafted a rewriting mechanism that maintains an optimal mix of precision, response time, and cost-effectiveness. We detail the core elements of our framework and underscore the paramount challenges tied to response time, availability, and performance metrics, which are crucial for real-world deployment of these technologies. Our extensive evaluation, utilizing offline data and live production traffic, confirms the efficacy of our proposed framework and service.
2024
Personalized Abstractive Summarization by Tri-agent Generation Pipeline
Wen Xiao
|
Yujia Xie
|
Giuseppe Carenini
|
Pengcheng He
Findings of the Association for Computational Linguistics: EACL 2024
Tailoring outputs from large language models, like ChatGPT, to implicit user preferences remains a challenge despite their impressive generative capabilities. In this paper, we propose a tri-agent generation pipeline comprising a generator, an instructor, and an editor to enhance output personalization. The generator produces an initial output, the instructor automatically generates editing instructions based on user preferences, and the editor refines the output to align with those preferences. The inference-only large language model (ChatGPT) serves as both the generator and editor, with a smaller model acting as the instructor to guide output generation. We train the instructor using editor-steered reinforcement learning, leveraging feedback from a large-scale editor model to optimize instruction generation. Experimental results on two abstractive summarization datasets demonstrate the effectiveness of our approach in generating outputs that better meet user expectations.
Search
Fix data
Co-authors
- Giuseppe Carenini 1
- Si-Qing Chen 1
- Pengcheng He 1
- Jie Mei 1
- Song Wang 1
- show all...