Yu Kang


2025

pdf bib
UFO: A UI-Focused Agent for Windows OS Interaction
Chaoyun Zhang | Liqun Li | Shilin He | Xu Zhang | Bo Qiao | Si Qin | Minghua Ma | Yu Kang | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang | Qi Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We introduce UFO, a UI-Fcused agent designed to fulfill user requests tailored to Windows OS applications by observing and analyzing the GUI and control information of these applications. UFO utilizes a hierarchical dual-agent framework that decomposes user requests using a divide-and-conquer approach, enabling seamless navigation and addressing sub-tasks across multiple applications. It also incorporates a control interaction module tailored for Windows OS, which detects control elements effectively and allows for fully automated execution. As a result, UFO simplifies complex and time-consuming processes into tasks that can be completed with natural language commands.We conducted testing of UFO across 9 popular Windows applications, encompassing a variety of scenarios. The results derived from both quantitative metrics and real-case studies, underscore the superior effectiveness of UFOin fulfilling user requests. To the best of our knowledge, UFO stands as the first UI agent specifically tailored for task completion within the Windows OS.

2021

pdf bib
CTAL: Pre-training Cross-modal Transformer for Audio-and-Language Representations
Hang Li | Wenbiao Ding | Yu Kang | Tianqiao Liu | Zhongqin Wu | Zitao Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Existing audio-language task-specific predictive approaches focus on building complicated late-fusion mechanisms. However, these models are facing challenges of overfitting with limited labels and low model generalization abilities. In this paper, we present a Cross-modal Transformer for Audio-and-Language, i.e., CTAL, which aims to learn the intra-modality and inter-modality connections between audio and language through two proxy tasks on a large amount of audio-and-language pairs: masked language modeling and masked cross-modal acoustic modeling. After fine-tuning our pre-trained model on multiple downstream audio-and-language tasks, we observe significant improvements across various tasks, such as, emotion classification, sentiment analysis, and speaker verification. On this basis, we further propose a specially-designed fusion mechanism that can be used in fine-tuning phase, which allows our pre-trained model to achieve better performance. Lastly, we demonstrate detailed ablation studies to prove that both our novel cross-modality fusion component and audio-language pre-training methods significantly contribute to the promising results. The code and pre-trained models are available at https://github.com/tal-ai/CTAL_EMNLP2021.