Yongxin Huang


2025

pdf bib
Enabling Natural Zero-Shot Prompting on Encoder Models via Statement-Tuning
Ahmed Elshabrawy | Yongxin Huang | Iryna Gurevych | Alham Fikri Aji
Findings of the Association for Computational Linguistics: NAACL 2025

While Large Language Models (LLMs) exhibit remarkable capabilities in zero-shot and few-shot scenarios, they often require computationally prohibitive sizes. Conversely, smaller Masked Language Models (MLMs) like BERT and RoBERTa achieve state-of-the-art results through fine-tuning but struggle with extending to few-shot and zero-shot settings due to their architectural constraints. Hence, we propose Statement-Tuning, a technique that models discriminative tasks as a set of finite statements and trains an encoder model to discriminate between the potential statements to determine the label. We do Statement-Tuning on multiple tasks to enable cross-task generalization. Experimental results demonstrate that Statement-Tuning achieves competitive performance compared to state-of-the-art LLMs with significantly fewer parameters. Furthermore, we compare with previous encoder-based methodology and show that our method is more accurate and more robust to spurious patterns. Moreover, the study investigates the impact of several design choices on few-shot and zero-shot generalization, revealing that Statement-Tuning can achieve strong performance with modest training data and benefits from task and statement diversity for unseen task generalizability. We release all the code used to generate statement data, train and evaluate our Statement-Tuned models.

2023

pdf bib
AdaSent: Efficient Domain-Adapted Sentence Embeddings for Few-Shot Classification
Yongxin Huang | Kexin Wang | Sourav Dutta | Raj Patel | Goran Glavaš | Iryna Gurevych
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent work has found that few-shot sentence classification based on pre-trained Sentence Encoders (SEs) is efficient, robust, and effective. In this work, we investigate strategies for domain-specialization in the context of few-shot sentence classification with SEs. We first establish that unsupervised Domain-Adaptive Pre-Training (DAPT) of a base Pre-trained Language Model (PLM) (i.e., not an SE) substantially improves the accuracy of few-shot sentence classification by up to 8.4 points. However, applying DAPT on SEs, on the one hand, disrupts the effects of their (general-domain) Sentence Embedding Pre-Training (SEPT). On the other hand, applying general-domain SEPT on top of a domain-adapted base PLM (i.e., after DAPT) is effective but inefficient, since the computationally expensive SEPT needs to be executed on top of a DAPT-ed PLM of each domain. As a solution, we propose AdaSent, which decouples SEPT from DAPT by training a SEPT adapter on the base PLM. The adapter can be inserted into DAPT-ed PLMs from any domain. We demonstrate AdaSent’s effectiveness in extensive experiments on 17 different few-shot sentence classification datasets. AdaSent matches or surpasses the performance of full SEPT on DAPT-ed PLM, while substantially reducing the training costs. The code for AdaSent is available.