Yash Mahajan
2025
LLMs as Meta-Reviewers’ Assistants: A Case Study
Eftekhar Hossain
|
Sanjeev Kumar Sinha
|
Naman Bansal
|
R. Alexander Knipper
|
Souvika Sarkar
|
John Salvador
|
Yash Mahajan
|
Sri Ram Pavan Kumar Guttikonda
|
Mousumi Akter
|
Md. Mahadi Hassan
|
Matthew Freestone
|
Matthew C. Williams Jr.
|
Dongji Feng
|
Santu Karmaker
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
One of the most important yet onerous tasks in the academic peer-reviewing process is composing meta-reviews, which involves assimilating diverse opinions from multiple expert peers, formulating one’s self-judgment as a senior expert, and then summarizing all these perspectives into a concise holistic overview to make an overall recommendation. This process is time-consuming and can be compromised by human factors like fatigue, inconsistency, missing tiny details, etc. Given the latest major developments in Large Language Models (LLMs), it is very compelling to rigorously study whether LLMs can help meta-reviewers perform this important task better. In this paper, we perform a case study with three popular LLMs, i.e., GPT-3.5, LLaMA2, and PaLM2, to assist meta-reviewers in better comprehending multiple experts’ perspectives by generating a controlled multi-perspective-summary (MPS) of their opinions. To achieve this, we prompt three LLMs with different types/levels of prompts based on the recently proposed TELeR taxonomy. Finally, we perform a detailed qualitative study of the MPSs generated by the LLMs and report our findings.
2024
ALIGN-SIM: A Task-Free Test Bed for Evaluating and Interpreting Sentence Embeddings through Semantic Similarity Alignment
Yash Mahajan
|
Naman Bansal
|
Eduardo Blanco
|
Santu Karmaker
Findings of the Association for Computational Linguistics: EMNLP 2024
Sentence embeddings play a pivotal role in a wide range of NLP tasks, yet evaluating and interpreting these real-valued vectors remains an open challenge to date, especially in a task-free setting. To address this challenge, we introduce a novel task-free test bed for evaluating and interpreting sentence embeddings. Our test bed consists of five semantic similarity alignment criteria, namely, *semantic distinction, synonym replacement, antonym replacement, paraphrasing without negation, and sentence jumbling*. Using these criteria, we examined five classical (e.g., Sentence-BERT, Universal Sentence Encoder (USE), etc.) and eight LLM-induced sentence embedding techniques (e.g., LLaMA2, GPT-3, OLMo, etc.) to test whether their semantic similarity spaces align with what a human mind would naturally expect. Our extensive experiments with 13 different sentence encoders revealed that none of the studied embeddings aligned with all the five semantic similarity alignment criteria. Yet, most encoders performed highly on the SentEval dataset, a popular task-specific benchmark. This finding demonstrates a significant limitation of the current practice in sentence embedding evaluation and associated popular benchmarks, a critical issue that needs careful attention and reassessment by the NLP community. Finally, we conclude the paper by highlighting the utility of the proposed alignment-based test bed for analyzing sentence embeddings in a novel way, especially in a task-free setting.