Yash Jain


2025

pdf bib
Local Prompt Optimization
Yash Jain | Vishal Chowdhary
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

In recent years, the use of prompts to guide the output of Large Language Models have increased dramatically. However, even the best of experts struggle to choose the correct words to stitch up a prompt for the desired task. To solve this, LLM driven prompt optimization emerged as an important problem. Existing prompt optimization methods optimize a prompt globally, where in all the prompt tokens have to be optimized over a large vocabulary while solving a complex task. The large optimization space (tokens) leads to insufficient guidance for a better prompt. In this work, we introduce Local Prompt Optimization (LPO) that integrates with any general automatic prompt engineering method. We identify the optimization tokens in a prompt and nudge the LLM to focus only on those tokens in its optimization step. We observe remarkable performance improvements on Math Reasoning (GSM8k and MultiArith) and BIG-bench Hard benchmarks across various automatic prompt engineering methods. Further, we show that LPO converges to the optimal prompt faster than global methods.

2024

pdf bib
Multi-Stage Multi-Modal Pre-Training for Automatic Speech Recognition
Yash Jain | David M. Chan | Pranav Dheram | Aparna Khare | Olabanji Shonibare | Venkatesh Ravichandran | Shalini Ghosh
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recent advances in machine learning have demonstrated that multi-modal pre-training can improve automatic speech recognition (ASR) performance compared to randomly initialized models, even when models are fine-tuned on uni-modal tasks. Existing multi-modal pre-training methods for the ASR task have primarily focused on single-stage pre-training where a single unsupervised task is used for pre-training followed by fine-tuning on the downstream task. In this work, we introduce a novel method combining multi-modal and multi-task unsupervised pre-training with a translation-based supervised mid-training approach. We empirically demonstrate that such a multi-stage approach leads to relative word error rate (WER) improvements of up to 38.45% over baselines on both Librispeech and SUPERB. Additionally, we share several important findings for choosing pre-training methods and datasets.

2019

pdf bib
KARNA at COIN Shared Task 1: Bidirectional Encoder Representations from Transformers with relational knowledge for machine comprehension with common sense
Yash Jain | Chinmay Singh
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

This paper describes our model for COmmonsense INference in Natural Language Processing (COIN) shared task 1: Commonsense Inference in Everyday Narrations. This paper explores the use of Bidirectional Encoder Representations from Transformers(BERT) along with external relational knowledge from ConceptNet to tackle the problem of commonsense inference. The input passage, question, and answer are augmented with relational knowledge from ConceptNet. Using this technique we are able to achieve an accuracy of 73.3 % on the official test data.