Yan Zhong


2025

pdf bib
FunnelRAG: A Coarse-to-Fine Progressive Retrieval Paradigm for RAG
Xinping Zhao | Yan Zhong | Zetian Sun | Xinshuo Hu | Zhenyu Liu | Dongfang Li | Baotian Hu | Min Zhang
Findings of the Association for Computational Linguistics: NAACL 2025

Retrieval-Augmented Generation (RAG) prevails in Large Language Models. It mainly consists of retrieval and generation. The retrieval modules (a.k.a. retrievers) aim to find useful information used to facilitate the generation modules (a.k.a. generators). As such, generators’ performance largely depends on the effectiveness and efficiency of retrievers. However, the widely used retrieval paradigm remains flat. It treats retrieval procedures as a one-off deal with constant granularity. Despite effectiveness, we argue that they suffer from two limitations: (1) flat retrieval exerts a significant burden on one retriever; (2) constant granularity limits the ceiling of retrieval performance. In this work, we propose a progressive retrieval paradigm with coarse-to-fine granularity for RAG, termed FunnelRAG, so as to balance effectiveness and efficiency. Specifically, FunnelRAG establishes a progressive retrieval pipeline by collaborating coarse-to-fine granularity, large-to-small quantity, and low-to-high capacity, which can relieve the burden on one retriever and also promote the ceiling of retrieval performance. Extensive experiments manifest that FunnelRAG achieves comparable retrieval performance while the time overhead is reduced by nearly 40 percent.

2024

pdf bib
SEER: Self-Aligned Evidence Extraction for Retrieval-Augmented Generation
Xinping Zhao | Dongfang Li | Yan Zhong | Boren Hu | Yibin Chen | Baotian Hu | Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent studies in Retrieval-Augmented Generation (RAG) have investigated extracting evidence from retrieved passages to reduce computational costs and enhance the final RAG performance, yet it remains challenging. Existing methods heavily rely on heuristic-based augmentation, encountering several issues: (1) Poor generalization due to hand-crafted context filtering; (2) Semantics deficiency due to rule-based context chunking; (3) Skewed length due to sentence-wise filter learning. To address these issues, we propose a model-based evidence extraction learning framework, SEER, optimizing a vanilla model as an evidence extractor with desired properties through self-aligned learning. Extensive experiments show that our method largely improves the final RAG performance, enhances the faithfulness, helpfulness, and conciseness of the extracted evidence, and reduces the evidence length by 9.25 times. The code will be available at https://github.com/HITsz-TMG/SEER.