Xudong Shen


2025

pdf bib
SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models
Margaret Mitchell | Giuseppe Attanasio | Ioana Baldini | Miruna Clinciu | Jordan Clive | Pieter Delobelle | Manan Dey | Sil Hamilton | Timm Dill | Jad Doughman | Ritam Dutt | Avijit Ghosh | Jessica Zosa Forde | Carolin Holtermann | Lucie-Aimée Kaffee | Tanmay Laud | Anne Lauscher | Roberto L Lopez-Davila | Maraim Masoud | Nikita Nangia | Anaelia Ovalle | Giada Pistilli | Dragomir Radev | Beatrice Savoldi | Vipul Raheja | Jeremy Qin | Esther Ploeger | Arjun Subramonian | Kaustubh Dhole | Kaiser Sun | Amirbek Djanibekov | Jonibek Mansurov | Kayo Yin | Emilio Villa Cueva | Sagnik Mukherjee | Jerry Huang | Xudong Shen | Jay Gala | Hamdan Al-Ali | Tair Djanibekov | Nurdaulet Mukhituly | Shangrui Nie | Shanya Sharma | Karolina Stanczak | Eliza Szczechla | Tiago Timponi Torrent | Deepak Tunuguntla | Marcelo Viridiano | Oskar Van Der Wal | Adina Yakefu | Aurélie Névéol | Mike Zhang | Sydney Zink | Zeerak Talat
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.

2023

pdf bib
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9

Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.

2022

pdf bib
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
Yizhong Wang | Swaroop Mishra | Pegah Alipoormolabashi | Yeganeh Kordi | Amirreza Mirzaei | Atharva Naik | Arjun Ashok | Arut Selvan Dhanasekaran | Anjana Arunkumar | David Stap | Eshaan Pathak | Giannis Karamanolakis | Haizhi Lai | Ishan Purohit | Ishani Mondal | Jacob Anderson | Kirby Kuznia | Krima Doshi | Kuntal Kumar Pal | Maitreya Patel | Mehrad Moradshahi | Mihir Parmar | Mirali Purohit | Neeraj Varshney | Phani Rohitha Kaza | Pulkit Verma | Ravsehaj Singh Puri | Rushang Karia | Savan Doshi | Shailaja Keyur Sampat | Siddhartha Mishra | Sujan Reddy A | Sumanta Patro | Tanay Dixit | Xudong Shen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions—training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones.Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.
Search
Co-authors
Fix data