Xinlu Zhang


2025

pdf bib
CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy
Mian Zhang | Xianjun Yang | Xinlu Zhang | Travis Labrum | Jamie C. Chiu | Shaun M. Eack | Fei Fang | William Yang Wang | Zhiyu Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

There is a significant gap between patient needs and available mental health support today. In this paper, we aim to thoroughly examine the potential of using Large Language Models (LLMs) to assist professional psychotherapy. To this end, we propose a new benchmark, CBT-Bench, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance. We include three levels of tasks in CBT-Bench: **I: Basic CBT knowledge acquisition**, with the task of multiple-choice questions; **II: Cognitive model understanding**, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; **III: Therapeutic response generation**, with the task of generating responses to patient speech in CBT therapy sessions.These tasks encompass key aspects of CBT that could potentially be enhanced through AI assistance, while also outlining a hierarchy of capability requirements, ranging from basic knowledge recitation to engaging in real therapeutic conversations. We evaluated representative LLMs on our benchmark. Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios requiring deep analysis of patients’ cognitive structures and generating effective responses, suggesting potential future work.

2022

pdf bib
PcMSP: A Dataset for Scientific Action Graphs Extraction from Polycrystalline Materials Synthesis Procedure Text
Xianjun Yang | Ya Zhuo | Julia Zuo | Xinlu Zhang | Stephen Wilson | Linda Petzold
Findings of the Association for Computational Linguistics: EMNLP 2022

Scientific action graphs extraction from materials synthesis procedures is important for reproducible research, machine automation, and material prediction. But the lack of annotated data has hindered progress in this field. We demonstrate an effort to annotate Polycrystalline Materials Synthesis Procedures PcMSP from 305 open access scientific articles for the construction of synthesis action graphs. This is a new dataset for material science information extraction that simultaneously contains the synthesis sentences extracted from the experimental paragraphs, as well as the entity mentions and intra-sentence relations. A two-step human annotation and inter-annotator agreement study guarantee the high quality of the PcMSP corpus. We introduce four natural language processing tasks: sentence classification, named entity recognition, relation classification, and joint extraction of entities and relations. Comprehensive experiments validate the effectiveness of several state-of-the-art models for these challenges while leaving large space for improvement. We also perform the error analysis and point out some unique challenges that require further investigation. We will release our annotation scheme, the corpus, and codes to the research community to alleviate the scarcity of labeled data in this domain.