Xinke Jiang
2025
GRAIT: Gradient-Driven Refusal-Aware Instruction Tuning for Effective Hallucination Mitigation
Runchuan Zhu
|
Xinke Jiang
|
Jiang Wu
|
Zhipeng Ma
|
Jiahe Song
|
Fengshuo Bai
|
Dahua Lin
|
Lijun Wu
|
Conghui He
Findings of the Association for Computational Linguistics: NAACL 2025
Refusal-Aware Instruction Tuning (RAIT) aims to enhance Large Language Models (LLMs) by improving their ability to refuse responses to questions beyond their knowledge, thereby reducing hallucinations and improving reliability. Effective RAIT must address two key challenges: firstly, effectively reject unknown questions to minimize hallucinations; secondly, avoid over-refusal to ensure questions that can be correctly answered are not rejected, thereby maintain the helpfulness of LLM outputs. In this paper, we address the two challenges by deriving insightful observations from the gradient-based perspective, and proposing the Gradient-driven Refusal Aware Instruction Tuning Framework GRAIT: (1) employs gradient-driven sample selection to effectively minimize hallucinations and (2) introduces an adaptive weighting mechanism during fine-tuning to reduce the risk of over-refusal, achieving the balance between accurate refusals and maintaining useful responses. Experimental evaluations on open-ended and multiple-choice question answering tasks demonstrate that GRAIT significantly outperforms existing RAIT methods in the overall performance. The source code and data will be available at https://github.com/opendatalab/GRAIT .
2024
FaiMA: Feature-aware In-context Learning for Multi-domain Aspect-based Sentiment Analysis
Songhua Yang
|
Xinke Jiang
|
Hanjie Zhao
|
Wenxuan Zeng
|
Hongde Liu
|
Yuxiang Jia
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Multi-domain aspect-based sentiment analysis (ABSA) seeks to capture fine-grained sentiment across diverse domains. While existing research narrowly focuses on single-domain applications constrained by methodological limitations and data scarcity, the reality is that sentiment naturally traverses multiple domains. Although large language models (LLMs) offer a promising solution for ABSA, it is difficult to integrate effectively with established techniques, including graph-based models and linguistics, because modifying their internal architecture is not easy. To alleviate this problem, we propose a novel framework, Feature-aware In-context Learning for Multi-domain ABSA (FaiMA). The core insight of FaiMA is to utilize in-context learning (ICL) as a feature-aware mechanism that facilitates adaptive learning in multi-domain ABSA tasks. Specifically, we employ a multi-head graph attention network as a text encoder optimized by heuristic rules for linguistic, domain, and sentiment features. Through contrastive learning, we optimize sentence representations by focusing on these diverse features. Additionally, we construct an efficient indexing mechanism, allowing FaiMA to stably retrieve highly relevant examples across multiple dimensions for any given input. To evaluate the efficacy of FaiMA, we build the first multi-domain ABSA benchmark dataset. Extensive experimental results demonstrate that FaiMA achieves significant performance improvements in multiple domains compared to baselines, increasing F1 by 2.07% on average. Source code and data sets are available at https://github.com/SupritYoung/FaiMA.
Search
Fix data
Co-authors
- Fengshuo Bai 1
- Conghui He 1
- Yuxiang Jia (贾玉祥) 1
- Dahua Lin 1
- Hongde Liu 1
- show all...