Xinchen Yu
2025
Echoes of Discord: Forecasting Hater Reactions to Counterspeech
Xiaoying Song
|
Sharon Lisseth Perez
|
Xinchen Yu
|
Eduardo Blanco
|
Lingzi Hong
Findings of the Association for Computational Linguistics: NAACL 2025
Hate speech (HS) erodes the inclusiveness of online users and propagates negativity and division. Counterspeech has been recognized as a way to mitigate the harmful consequences. While some research has investigated the impact of user-generated counterspeech on social media platforms, few have examined and modeled haters’ reactions toward counterspeech, despite the immediate alteration of haters’ attitudes being an important aspect of counterspeech. This study fills the gap by analyzing the impact of counterspeech from the hater’s perspective, focusing on whether the counterspeech leads the hater to reenter the conversation and if the reentry is hateful. We compile the Reddit Echoes of Hate dataset (ReEco), which consists of triple-turn conversations featuring haters’ reactions, to assess the impact of counterspeech. To predict haters’ behaviors, we employ two strategies: a two-stage reaction predictor and a three-way classifier. The linguistic analysis sheds insights on the language of counterspeech to hate eliciting different haters’ reactions. Experimental results demonstrate that the 3-way classification model outperforms the two-stage reaction predictor, which first predicts reentry and then determines the reentry type. We conclude the study with an assessment showing the most common errors identified by the best-performing model.
2023
A Fine-Grained Taxonomy of Replies to Hate Speech
Xinchen Yu
|
Ashley Zhao
|
Eduardo Blanco
|
Lingzi Hong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Countering rather than censoring hate speech has emerged as a promising strategy to address hatred. There are many types of counterspeech in user-generated content: addressing the hateful content or its author, generic requests, well-reasoned counter arguments, insults, etc. The effectiveness of counterspeech, which we define as subsequent incivility, depends on these types. In this paper, we present a theoretically grounded taxonomy of replies to hate speech and a new corpus. We work with real, user-generated hate speech and all the replies it elicits rather than replies generated by a third party. Our analyses provide insights into the content real users reply with as well as which replies are empirically most effective. We also experiment with models to characterize the replies to hate speech, thereby opening the door to estimating whether a reply to hate speech will result in further incivility.
2022
Hate Speech and Counter Speech Detection: Conversational Context Does Matter
Xinchen Yu
|
Eduardo Blanco
|
Lingzi Hong
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Hate speech is plaguing the cyberspace along with user-generated content. Adding counter speech has become an effective way to combat hate speech online. Existing datasets and models target either (a) hate speech or (b) hate and counter speech but disregard the context. This paper investigates the role of context in the annotation and detection of online hate and counter speech, where context is defined as the preceding comment in a conversation thread. We created a context-aware dataset for a 3-way classification task on Reddit comments: hate speech, counter speech, or neutral. Our analyses indicate that context is critical to identify hate and counter speech: human judgments change for most comments depending on whether we show annotators the context. A linguistic analysis draws insights into the language people use to express hate and counter speech. Experimental results show that neural networks obtain significantly better results if context is taken into account. We also present qualitative error analyses shedding light into (a) when and why context is beneficial and (b) the remaining errors made by our best model when context is taken into account.