2025
pdf
bib
abs
Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
Dingjie Song
|
Wenjun Wang
|
Shunian Chen
|
Xidong Wang
|
Michael X. Guan
|
Benyou Wang
Proceedings of the 31st International Conference on Computational Linguistics
The rapid advancement of Multimodal Large Language Models (MLLMs) has led to remarkable performances across various domains. However, this progress is accompanied by a substantial surge in the resource consumption of these models. We address this pressing issue by introducing a new approach, Token Reduction using CLIP Metric (TRIM), aimed at improving the efficiency of MLLMs without sacrificing their performance. Inspired by human attention patterns in Visual Question Answering (VQA) tasks, TRIM presents a fresh perspective on the selection and reduction of image tokens. The TRIM method has been extensively tested across 12 datasets, and the results demonstrate a significant reduction in computational overhead while maintaining a consistent level of performance. This research marks a critical stride in efficient MLLM development, promoting greater accessibility and sustainability of high-performing models.
pdf
bib
abs
Huatuo-26M, a Large-scale Chinese Medical QA Dataset
Xidong Wang
|
Jianquan Li
|
Shunian Chen
|
Yuxuan Zhu
|
Xiangbo Wu
|
Zhiyi Zhang
|
Xiaolong Xu
|
Junying Chen
|
Jie Fu
|
Xiang Wan
|
Anningzhe Gao
|
Benyou Wang
Findings of the Association for Computational Linguistics: NAACL 2025
Large Language Models infuse newfound vigor into the advancement of the medical domain, yet the scarcity of data poses a significant bottleneck hindering community progress. In this paper, we release the largest ever medical Question Answering (QA) dataset with 26 Million QA pairs named Huatuo-26M. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. We also experimentally show the benefit of the proposed dataset in many aspects: (i) it serves as a fine-tuning data for training medical Large Language Models (LLMs); (ii) it works as an external knowledge source for retrieval-augmented generation (RAG); (iii) it demonstrates transferability by enhancing zero-shot performance on other QA datasets; and (iv) it aids in training biomedical model as a pre-training corpus. Our empirical findings substantiate the dataset’s utility in these domains, thereby confirming its significance as a resource in the medical QA landscape.
pdf
bib
abs
MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
Wentao Ge
|
Shunian Chen
|
Hardy Chen
|
Nuo Chen
|
Junying Chen
|
Zhihong Chen
|
Wenya Xie
|
Shuo Yan
|
Chenghao Zhu
|
Ziyue Lin
|
Dingjie Song
|
Xidong Wang
|
Anningzhe Gao
|
Zhang Zhiyi
|
Jianquan Li
|
Xiang Wan
|
Benyou Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating objective queries without considering real-world user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 26 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria.
2024
pdf
bib
abs
Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale
Junying Chen
|
Chi Gui
|
Ruyi Ouyang
|
Anningzhe Gao
|
Shunian Chen
|
Guiming Hardy Chen
|
Xidong Wang
|
Zhenyang Cai
|
Ke Ji
|
Xiang Wan
|
Benyou Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed’s large-scale, de-identified medical image-text pairs to address these limitations, they often fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an ‘unblinded’ capacity to denoise and reformat the data, resulting in the creation of the **PubMedVision** dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM **HuatuoGPT-Vision**, which shows superior performance in medical multimodal scenarios among open-source MLLMs. Our code and data are available at https://github.com/FreedomIntelligence/HuatuoGPT-Vision.
pdf
bib
abs
CMB: A Comprehensive Medical Benchmark in Chinese
Xidong Wang
|
Guiming Chen
|
Song Dingjie
|
Zhang Zhiyi
|
Zhihong Chen
|
Qingying Xiao
|
Junying Chen
|
Feng Jiang
|
Jianquan Li
|
Xiang Wan
|
Benyou Wang
|
Haizhou Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in contextual incongruities to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. We hope this benchmark provide first-hand experience in existing LLMs for medicine and also facilitate the widespread adoption and enhancement of medical LLMs within China. Our data and code are publicly available at https://github.com/FreedomIntelligence/CMB.