Wenyu Zhang


2025

pdf bib
AudioBench: A Universal Benchmark for Audio Large Language Models
Bin Wang | Xunlong Zou | Geyu Lin | Shuo Sun | Zhuohan Liu | Wenyu Zhang | Zhengyuan Liu | AiTi Aw | Nancy F. Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We introduce AudioBench, a universal benchmark designed to evaluate Audio Large Language Models (AudioLLMs). It encompasses 8 distinct tasks and 26 datasets, among which, 7 are newly proposed datasets. The evaluation targets three main aspects: speech understanding, audio scene understanding, and voice understanding (paralinguistic). Despite recent advancements, there lacks a comprehensive benchmark for AudioLLMs on instruction following capabilities conditioned on audio signals. AudioBench addresses this gap by setting up datasets as well as desired evaluation metrics. Besides, we also evaluated the capabilities of five popular models and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-sourced evaluation toolkit, data, and leaderboard will offer a robust testbed for future model developments.

2024

pdf bib
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Holy Lovenia | Rahmad Mahendra | Salsabil Maulana Akbar | Lester James V. Miranda | Jennifer Santoso | Elyanah Aco | Akhdan Fadhilah | Jonibek Mansurov | Joseph Marvin Imperial | Onno P. Kampman | Joel Ruben Antony Moniz | Muhammad Ravi Shulthan Habibi | Frederikus Hudi | Railey Montalan | Ryan Ignatius | Joanito Agili Lopo | William Nixon | Börje F. Karlsson | James Jaya | Ryandito Diandaru | Yuze Gao | Patrick Amadeus | Bin Wang | Jan Christian Blaise Cruz | Chenxi Whitehouse | Ivan Halim Parmonangan | Maria Khelli | Wenyu Zhang | Lucky Susanto | Reynard Adha Ryanda | Sonny Lazuardi Hermawan | Dan John Velasco | Muhammad Dehan Al Kautsar | Willy Fitra Hendria | Yasmin Moslem | Noah Flynn | Muhammad Farid Adilazuarda | Haochen Li | Johanes Lee | R. Damanhuri | Shuo Sun | Muhammad Reza Qorib | Amirbek Djanibekov | Wei Qi Leong | Quyet V. Do | Niklas Muennighoff | Tanrada Pansuwan | Ilham Firdausi Putra | Yan Xu | Tai Ngee Chia | Ayu Purwarianti | Sebastian Ruder | William Tjhi | Peerat Limkonchotiwat | Alham Fikri Aji | Sedrick Keh | Genta Indra Winata | Ruochen Zhang | Fajri Koto | Zheng-Xin Yong | Samuel Cahyawijaya
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.