Weizhe Xu


2025

pdf bib
Bigger But Not Better: Small Neural Language Models Outperform LLMs in Detection of Thought Disorder
Changye Li | Weizhe Xu | Serguei Pakhomov | Ellen Bradley | Dror Ben-Zeev | Trevor Cohen
Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)

Disorganized thinking is a key diagnostic indicator of schizophrenia-spectrum disorders. Recently, clinical estimates of the severity of disorganized thinking have been shown to correlate with measures of how difficult speech transcripts would be for large language models (LLMs) to predict. However, LLMs’ deployment challenges – including privacy concerns, computational and financial costs, and lack of transparency of training data – limit their clinical utility. We investigate whether smaller neural language models can serve as effective alternatives for detecting positive formal thought disorder, using the same sliding window based perplexity measurements that proved effective with larger models. Surprisingly, our results show that smaller models are more sensitive to linguistic differences associated with formal thought disorder than their larger counterparts. Detection capability declines beyond a certain model size and context length, challenging the common assumption of “bigger is better” for LLM-based applications. Our findings generalize across audio diaries and clinical interview speech samples from individuals with psychotic symptoms, suggesting a promising direction for developing efficient, cost-effective, and privacy-preserving screening tools that can be deployed in both clinical and naturalistic settings.

2022

pdf bib
GPT-D: Inducing Dementia-related Linguistic Anomalies by Deliberate Degradation of Artificial Neural Language Models
Changye Li | David Knopman | Weizhe Xu | Trevor Cohen | Serguei Pakhomov
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Deep learning (DL) techniques involving fine-tuning large numbers of model parameters have delivered impressive performance on the task of discriminating between language produced by cognitively healthy individuals, and those with Alzheimer’s disease (AD). However, questions remain about their ability to generalize beyond the small reference sets that are publicly available for research. As an alternative to fitting model parameters directly, we propose a novel method by which a Transformer DL model (GPT-2) pre-trained on general English text is paired with an artificially degraded version of itself (GPT-D), to compute the ratio between these two models’ perplexities on language from cognitively healthy and impaired individuals. This technique approaches state-of-the-art performance on text data from a widely used “Cookie Theft” picture description task, and unlike established alternatives also generalizes well to spontaneous conversations. Furthermore, GPT-D generates text with characteristics known to be associated with AD, demonstrating the induction of dementia-related linguistic anomalies. Our study is a step toward better understanding of the relationships between the inner workings of generative neural language models, the language that they produce, and the deleterious effects of dementia on human speech and language characteristics.