Weiyi Wu


2025

pdf bib
Temporal Working Memory: Query-Guided Segment Refinement for Enhanced Multimodal Understanding
Xingjian Diao | Chunhui Zhang | Weiyi Wu | Zhongyu Ouyang | Peijun Qing | Ming Cheng | Soroush Vosoughi | Jiang Gui
Findings of the Association for Computational Linguistics: NAACL 2025

Multimodal foundation models (MFMs) have demonstrated significant success in tasks such as visual captioning, question answering, and image-text retrieval. However, these models face inherent limitations due to their finite internal capacity, which restricts their ability to process extended temporal sequences—an essential requirement for comprehensive video and audio analysis. To overcome these challenges, we introduce a specialized cognitive module, temporal working memory (TWM), which aims to enhance the temporal modeling capabilities of MFMs. It selectively retains task-relevant information across temporal dimensions, ensuring that critical details are preserved throughout the processing of video and audio content. The TWM uses a query-guided attention approach to focus on the most informative multimodal segments within temporal sequences. By retaining only the most relevant content, TWM optimizes the use of the model’s limited capacity, enhancing its temporal modeling ability. This plug-and-play module can be easily integrated into existing MFMs. With our TWM, nine state-of-the-art models exhibit significant performance improvements across tasks such as video captioning, question answering, and video-text retrieval. By enhancing temporal modeling, TWM extends the capability of MFMs to handle complex, time-sensitive data effectively. Our code is available at https://github.com/xid32/NAACL_2025_TWM.

2024

pdf bib
Learning Musical Representations for Music Performance Question Answering
Xingjian Diao | Chunhui Zhang | Tingxuan Wu | Ming Cheng | Zhongyu Ouyang | Weiyi Wu | Jiang Gui
Findings of the Association for Computational Linguistics: EMNLP 2024

Music performances are representative scenarios for audio-visual modeling. Unlike common scenarios with sparse audio, music performances continuously involve dense audio signals throughout. While existing multimodal learning methods on the audio-video QA demonstrate impressive capabilities on general scenarios, they are incapable of dealing with fundamental problems within the music performances: they underexplore the interaction between the multimodal signals in performance, and fail to consider the distinctive characteristics of instruments and music. Therefore, existing methods tend to inaccurately answer questions regarding musical performances. To bridge the above research gaps, first, given the intricate multimodal interconnectivity inherent to music data, our primary backbone is designed to incorporate multimodal interactions within the context of music; second, to enable the model to learn music characteristics, we annotate and release rhythmic and music sources in the current music datasets; third, for time-aware audio-visual modelling, we align the model’s music predictions with the temporal dimension. Our experiments show state-of-the-art effects on the Music AVQA datasets. Our code is available at: https://github.com/xid32/Amuse.