Weikang Zhou
2025
Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation
Sirui Xia
|
Xintao Wang
|
Jiaqing Liang
|
Yifei Zhang
|
Weikang Zhou
|
Jiaji Deng
|
Fei Yu
|
Yanghua Xiao
Findings of the Association for Computational Linguistics: NAACL 2025
Retrieval-Augmented Generation (RAG) has been widely adopted to enhance Large Language Models (LLMs) in knowledge-intensive tasks. To enhance credibility and verifiability in RAG systems, Attributed Text Generation (ATG) is proposed, which provides citations to retrieval knowledge in LLM-generated responses. Prior methods mainly adopt coarse-grained attributions, with passage-level or paragraph-level references or citations, which fall short in verifiability. This paper proposes ReClaim(Refer & Claim), a fine-grained ATG method that alternates the generation of references and answers step by step. Different from previous coarse-grained attribution, ReClaim provides sentence-level citations in long-form question-answering tasks. With extensive experiments, we verify the effectiveness of ReClaim in extensive settings, achieving a citation accuracy rate of 90%.
2023
Farewell to Aimless Large-scale Pretraining: Influential Subset Selection for Language Model
Xiao Wang
|
Weikang Zhou
|
Qi Zhang
|
Jie Zhou
|
SongYang Gao
|
Junzhe Wang
|
Menghan Zhang
|
Xiang Gao
|
Yun Wen Chen
|
Tao Gui
Findings of the Association for Computational Linguistics: ACL 2023
Pretrained language models have achieved remarkable success in various natural language processing tasks. However, pretraining has recently shifted toward larger models and larger data, which has resulted in significant computational and energy costs. In this paper, we propose Influence Subset Selection (ISS) for language model, which explicitly utilizes end-task knowledge to select a tiny subset of the pretraining corpus. Specifically, the ISS selects the samples that will provide the most positive influence on the performance of the end task. Furthermore, we design a gradient matching-based influence estimation method, which can drastically reduce the computation time of influence. With only 0.45% of the data and a three-orders-of-magnitude lower computational cost, ISS outperformed pretrained models (e.g., RoBERTa) on eight datasets covering four domains.
Search
Fix data
Co-authors
- Yun Wen Chen 1
- Jiaji Deng 1
- Songyang Gao 1
- Xiang Gao 1
- Tao Gui 1
- show all...