Vishal Rs
2025
KEC_AI_ZEROWATTS@DravidianLangTech 2025: Multimodal Hate Speech Detection in Dravidian languages
Kogilavani Shanmugavadivel
|
Malliga Subramanian
|
Naveenram C E
|
Vishal Rs
|
Srinesh S
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
Hate speech detection in code-mixed Dravidian languages presents significant challenges due to the multilingual and unstructured nature of the data. In this work, we participated in the shared task to detect hate speech in Tamil, Malayalam, and Telugu using both text and audio data. We explored various machine learning models, including Logistic Regression, Ridge Classifier, Random Forest, and Convolutional Neural Networks (CNN). For Tamil text data, Logistic Regression achieved the highest macro-F1 score of 0.97, while Ridge Classifier performed best for audio with 0.75. In Malayalam, Random Forest excelled for text with 0.97, and CNN for audio with 0.69. For Telugu, Ridge Classifier achieved 0.89 for text and CNN 0.87 for audio.These results demonstrate the efficacy of our multimodal approach in addressing the complexity of hate speech detection across the Dravidian languages.Tamil:11th rank, Malayalam :6th rank,Telugu:8th rank among 145 teams