Vishal Chowdhary


2025

pdf bib
Local Prompt Optimization
Yash Jain | Vishal Chowdhary
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

In recent years, the use of prompts to guide the output of Large Language Models have increased dramatically. However, even the best of experts struggle to choose the correct words to stitch up a prompt for the desired task. To solve this, LLM driven prompt optimization emerged as an important problem. Existing prompt optimization methods optimize a prompt globally, where in all the prompt tokens have to be optimized over a large vocabulary while solving a complex task. The large optimization space (tokens) leads to insufficient guidance for a better prompt. In this work, we introduce Local Prompt Optimization (LPO) that integrates with any general automatic prompt engineering method. We identify the optimization tokens in a prompt and nudge the LLM to focus only on those tokens in its optimization step. We observe remarkable performance improvements on Math Reasoning (GSM8k and MultiArith) and BIG-bench Hard benchmarks across various automatic prompt engineering methods. Further, we show that LPO converges to the optimal prompt faster than global methods.

2024

pdf bib
GATE X-E : A Challenge Set for Gender-Fair Translations from Weakly-Gendered Languages
Spencer Rarrick | Ranjita Naik | Sundar Poudel | Vishal Chowdhary
Findings of the Association for Computational Linguistics: ACL 2024

Neural Machine Translation (NMT) continues to improve in quality and adoption, yet the in advertent perpetuation of gender bias remains a significant concern. Despite numerous studies on gender bias in translations into English from weakly gendered-languages, there are no benchmarks for evaluating this phenomenon or for assessing mitigation strategies. To address this gap, we introduce GATE X-E, an extension to the GATE (Rarrick et al., 2023) corpus, that consists of human translations from Turkish, Hungarian, Finnish, and Persian into English. Each translation is accompanied by feminine, masculine, and neutral variants. The dataset, which contains between 1250 and 1850 instances for each of the four language pairs, features natural sentences with a wide range of sentence lengths and domains, challenging translation rewriters on various linguistic phenomena. Additionally, we present a translation gender rewriting solution built with GPT-4 and use GATE X-E to evaluate it. We open source our contributions to encourage further research on gender debiasing.

2013

pdf bib
Evaluating (and Improving) Sentence Alignment under Noisy Conditions
Omar Zaidan | Vishal Chowdhary
Proceedings of the Eighth Workshop on Statistical Machine Translation