One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and lower quality examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART Filtering on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether we are using SMART Filtering to make new benchmarks more challenging, or to revitalize older, human generated datasets, while still preserving the relative model rankings.
Claim: This work is not advocating the use of LLMs for paper (meta-)reviewing. Instead, wepresent a comparative analysis to identify and distinguish LLM activities from human activities. Two research goals: i) Enable better recognition of instances when someone implicitly uses LLMs for reviewing activities; ii) Increase community awareness that LLMs, and AI in general, are currently inadequate for performing tasks that require a high level of expertise and nuanced judgment.This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload?This study focuses on the topic of LLMs as NLP Researchers, particularly examining the effectiveness of LLMs in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with “deficiency” labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) “LLMs as Reviewers”, how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) “LLMs as Metareviewers”, how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
We audit how hallucination in large language models (LLMs) is characterized in peer-reviewed literature, using a critical examination of 103 publications across NLP research. Through the examination of the literature, we identify a lack of agreement with the term ‘hallucination’ in the field of NLP. Additionally, to compliment our audit, we conduct a survey with 171 practitioners from the field of NLP and AI to capture varying perspectives on hallucination. Our analysis calls for the necessity of explicit definitions and frameworks outlining hallucination within NLP, highlighting potential challenges, and our survey inputs provide a thematic understanding of the influence and ramifications of hallucination in society.
Sociodemographic bias in language models (LMs) has the potential for harm when deployed in real-world settings. This paper presents a comprehensive survey of the past decade of research on sociodemographic bias in LMs, organized into a typology that facilitates examining the different aims: types of bias, quantifying bias, and debiasing techniques. We track the evolution of the latter two questions, then identify current trends and their limitations, as well as emerging techniques. To guide future research towards more effective and reliable solutions, and to help authors situate their work within this broad landscape, we conclude with a checklist of open questions.
We conduct an inquiry into the sociotechnical aspects of sentiment analysis (SA) by critically examining 189 peer-reviewed papers on their applications, models, and datasets. Our investigation stems from the recognition that SA has become an integral component of diverse sociotechnical systems, exerting influence on both social and technical users. By delving into sociological and technological literature on sentiment, we unveil distinct conceptualizations of this term in domains such as finance, government, and medicine. Our study exposes a lack of explicit definitions and frameworks for characterizing sentiment, resulting in potential challenges and biases. To tackle this issue, we propose an ethics sheet encompassing critical inquiries to guide practitioners in ensuring equitable utilization of SA. Our findings underscore the significance of adopting an interdisciplinary approach to defining sentiment in SA and offer a pragmatic solution for its implementation.