This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Few shot in-context learning (ICL) typically assumes access to large annotated training sets. However, in many real world scenarios, such as domain adaptation, there is only a limited budget to annotate a small number of samples, with the goal of maximizing downstream performance. We study various methods for selecting samples to annotate within a predefined budget, focusing on token classification tasks, which are expensive to annotate and are relatively less studied in ICL setups. Across various tasks, models, and datasets, we observe that no method significantly outperforms the others, with most yielding similar results, including random sample selection for annotation. Moreover, we demonstrate that a relatively small annotated sample pool can achieve performance comparable to using the entire training set. We hope that future work adopts our realistic paradigm which takes annotation budget into account.
Do speakers of different languages talk differently about what they see? Behavioural and cognitive studies report cultural effects on perception; however, these are mostly limited in scope and hard to replicate. In this work, we conduct the first large-scale empirical study of cross-lingual variation in image descriptions. Using a multimodal dataset with 31 languages and images from diverse locations, we develop a method to accurately identify entities mentioned in captions and present in the images, then measure how they vary across languages. Our analysis reveals that pairs of languages that are geographically or genetically closer tend to mention the same entities more frequently. We also identify entity categories whose saliency is universally high (such as animate beings), low (clothing accessories) or displaying high variance across languages (landscape). In a case study, we measure the differences in a specific language pair (e.g., Japanese mentions clothing far more frequently than English). Furthermore, our method corroborates previous small-scale studies, including 1) Rosch et al. (1976)’s theory of basic-level categories, demonstrating a preference for entities that are neither too generic nor too specific, and 2) Miyamoto et al. (2006)’s hypothesis that environments afford patterns of perception, such as entity counts. Overall, our work reveals the presence of both universal and culture-specific patterns in entity mentions.
We present a large, multilingual study into how vision constrains linguistic choice, covering four languages and five linguistic properties, such as verb transitivity or use of numerals. We propose a novel method that leverages existing corpora of images with captions written by native speakers, and apply it to nine corpora, comprising 600k images and 3M captions. We study the relation between visual input and linguistic choices by training classifiers to predict the probability of expressing a property from raw images, and find evidence supporting the claim that linguistic properties are constrained by visual context across languages. We complement this investigation with a corpus study, taking the test case of numerals. Specifically, we use existing annotations (number or type of objects) to investigate the effect of different visual conditions on the use of numeral expressions in captions, and show that similar patterns emerge across languages. Our methods and findings both confirm and extend existing research in the cognitive literature. We additionally discuss possible applications for language generation.
Recent advances in self-supervised modeling of text and images open new opportunities for computational models of child language acquisition, which is believed to rely heavily on cross-modal signals. However, prior studies has been limited by their reliance on vision models trained on large image datasets annotated with a pre-defined set of depicted object categories. This is (a) not faithful to the information children receive and (b) prohibits the evaluation of such models with respect to category learning tasks, due to the pre-imposed category structure. We address this gap, and present a cognitively-inspired, multimodal acquisition model, trained from image-caption pairs on naturalistic data using cross-modal self-supervision. We show that the model learns word categories and object recognition abilities, and presents trends reminiscent of ones reported in the developmental literature.