Toma Suzuki


2025

pdf bib
IRR: Image Review Ranking Framework for Evaluating Vision-Language Models
Kazuki Hayashi | Kazuma Onishi | Toma Suzuki | Yusuke Ide | Seiji Gobara | Shigeki Saito | Yusuke Sakai | Hidetaka Kamigaito | Katsuhiko Hayashi | Taro Watanabe
Proceedings of the 31st International Conference on Computational Linguistics

Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.

pdf bib
Reliability of Distribution Predictions by LLMs: Insights from Counterintuitive Pseudo-Distributions
Toma Suzuki | Ayuki Katayama | Seiji Gobara | Ryo Tsujimoto | Hibiki Nakatani | Kazuki Hayashi | Yusuke Sakai | Hidetaka Kamigaito | Taro Watanabe
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

The proportion of responses to a question and its options, known as the response distribution, enables detailed analysis of human society. Recent studies highlight the use of Large Language Models (LLMs) for predicting response distributions as a cost-effective survey method. However, the reliability of these predictions remains unclear. LLMs often generate answers by blindly following instructions rather than applying rational reasoning based on pretraining-acquired knowledge. This study investigates whether LLMs can rationally estimate distributions when presented with explanations of “artificially generated distributions” that are against commonsense. Specifically, we assess whether LLMs recognize counterintuitive explanations and adjust their predictions or simply follow these inconsistent explanations. Results indicate that smaller or less human-optimized LLMs tend to follow explanations uncritically, while larger or more optimized models are better at resisting counterintuitive explanations by leveraging their pretraining-acquired knowledge. These findings shed light on factors influencing distribution prediction performance in LLMs and are crucial for developing reliable distribution predictions using language models.