Tiep Le


2025

pdf bib
LVLM-Compress-Bench: Benchmarking the Broader Impact of Large Vision-Language Model Compression
Souvik Kundu | Anahita Bhiwandiwalla | Sungduk Yu | Phillip Howard | Tiep Le | Sharath Nittur Sridhar | David Cobbley | Hao Kang | Vasudev Lal
Findings of the Association for Computational Linguistics: NAACL 2025

Despite recent efforts in understanding the compression impact on Large Language Models (LLMs) in terms of their downstream task performance and trustworthiness on relatively simpler uni-modal benchmarks (e.g. question answering, common sense reasoning), their detailed study on multi-modal Large Vision Language Models (LVLMs) is yet to be unveiled. Towards mitigating this gap, we present LVLM-Compress-Bench, a framework to first thorough study on the broad impact of compression on the generative performance of LVLMs on multi-modal input driven tasks. In specific, we consider two major classes of compression for autoregressive models, namely KV cache and weight compression, for the dynamically growing intermediate cache and static weights, respectively. We use four LVLM variants of the popular LLaVA framework to present our analysis to integrate various state-of-the-art KV and weight compression methods including uniform, outlier-reduced, and group quantization. With this framework we demonstrate on ten different multi-modal datasets with varied capabilities including recognition, knowledge, language generation, spatial awareness, visual reasoning, hallucination and visual illusion identification, toxicity, stereotypes and bias. In specific, our framework demonstrates the compression impact on both general and ethically critical metrics leveraging a combination of real world and synthetic datasets to encompass diverse societal intersectional attributes. Extensive experimental evaluations yield diverse and intriguing observations on the behavior of LVLMs at different quantization budget of KV and weights, in both maintaining and losing performance as compared to the baseline model with FP16 data format. We believe LVLM-Compress-Bench would help the community to have a deeper insight on the parting impact of compression and the societal impact the compressed models may pose. Code will be released soon.

2024

pdf bib
Semi-Structured Chain-of-Thought: Integrating Multiple Sources of Knowledge for Improved Language Model Reasoning
Xin Su | Tiep Le | Steven Bethard | Phillip Howard
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

An important open question in the use of large language models for knowledge-intensive tasks is how to effectively integrate knowledge from three sources: the model’s parametric memory, external structured knowledge, and external unstructured knowledge. Most existing prompting methods either rely on one or two of these sources, or require repeatedly invoking large language models to generate similar or identical content. In this work, we overcome these limitations by introducing a novel semi-structured prompting approach that seamlessly integrates the model’s parametric memory with unstructured knowledge from text documents and structured knowledge from knowledge graphs. Experimental results on open-domain multi-hop question answering datasets demonstrate that our prompting method significantly surpasses existing techniques, even exceeding those that require fine-tuning.