Tao Tang
2025
Automatic Annotation Augmentation Boosts Translation between Molecules and Natural Language
Zhiqiang Zhong
|
Simon Sataa-Yu Larsen
|
Haoyu Guo
|
Tao Tang
|
Kuangyu Zhou
|
Davide Mottin
Findings of the Association for Computational Linguistics: NAACL 2025
Recent advancements in AI for biological research focus on integrating molecular data with natural language to accelerate drug discovery. However, the scarcity of high-quality annotations limits progress in this area. This paper introduces LA3, a Language-based Automatic Annotation Augmentation framework that leverages large language models to augment existing datasets, thereby improving AI training. We demonstrate the effectiveness of LA3 by creating an enhanced dataset, LaChEBI-20, where we systematically rewrite the annotations of molecules from an established dataset. These rewritten annotations preserve essential molecular information while providing more varied sentence structures and vocabulary. Using LaChEBI-20, we train LaMolT5 based on a benchmark architecture to learn the mapping between molecular representations and augmented annotations.Experimental results on text-based *de novo* molecule generation and molecule captioning demonstrate that LaMolT5 outperforms state-of-the-art models. Notably, incorporating LA3 leads to improvements of up to 301% over the benchmark architecture. Furthermore, we validate the effectiveness of LA3 notable applications in *image*, *text* and *graph* tasks, affirming its versatility and utility.