This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Few shot in-context learning (ICL) typically assumes access to large annotated training sets. However, in many real world scenarios, such as domain adaptation, there is only a limited budget to annotate a small number of samples, with the goal of maximizing downstream performance. We study various methods for selecting samples to annotate within a predefined budget, focusing on token classification tasks, which are expensive to annotate and are relatively less studied in ICL setups. Across various tasks, models, and datasets, we observe that no method significantly outperforms the others, with most yielding similar results, including random sample selection for annotation. Moreover, we demonstrate that a relatively small annotated sample pool can achieve performance comparable to using the entire training set. We hope that future work adopts our realistic paradigm which takes annotation budget into account.
Recent work in the field of automatic summarization and headline generation focuses on maximizing ROUGE scores for various news datasets. We present an alternative, extrinsic, evaluation metric for this task, Answering Performance for Evaluation of Summaries. APES utilizes recent progress in the field of reading-comprehension to quantify the ability of a summary to answer a set of manually created questions regarding central entities in the source article. We first analyze the strength of this metric by comparing it to known manual evaluation metrics. We then present an end-to-end neural abstractive model that maximizes APES, while increasing ROUGE scores to competitive results.