Takehiro Takayanagi
2025
Can GPT-4 Sway Experts’ Investment Decisions?
Takehiro Takayanagi
|
Hiroya Takamura
|
Kiyoshi Izumi
|
Chung-Chi Chen
Findings of the Association for Computational Linguistics: NAACL 2025
In the post-Turing era, evaluating large language models (LLMs) involves assessing generated text based on readers’ decisions rather than merely its indistinguishability from human-produced content. This paper explores how LLM-generated text impacts readers’ decisions, focusing on both amateur and expert audiences. Our findings indicate that GPT-4 can generate persuasive analyses affecting the decisions of both amateurs and professionals. Furthermore, we evaluate the generated text from the aspects of grammar, convincingness, logical coherence, and usefulness. The results highlight a high correlation between real-world evaluation through audience decisions and the current multi-dimensional evaluators commonly used for generative models. Overall, this paper shows the potential and risk of using generated text to sway human decisions and also points out a new direction for evaluating generated text, i.e., leveraging the decisions of readers. We release our dataset to assist future research.
2024
Frogs into princes: A generative model to understand the success of product descriptions
Takehiro Takayanagi
|
Bruno Charron
|
Marco Visentini-Scarzanella
Proceedings of the Seventh Workshop on e-Commerce and NLP @ LREC-COLING 2024
In the dynamic marketplace, vendors continuously seek innovative ideas for new products and ways to improve existing ones. These ideas can be uncovered by analyzing text data, such as product descriptions and customer reviews. However, the ever-increasing volume of text data poses a challenge in extracting meaningful insights. Therefore, this study addresses the challenge of extracting actionable insights from the growing volume of text data, with a specific focus on product descriptions. To this end, we investigate two primary research questions: the predictive power of product descriptions for product success, and the capability of style transfer to highlight the successful factors of these descriptions. In response to the first question, our findings validate that product descriptions are indeed reliable indicators of product success. Addressing our second question, we propose a Successful Style Transfer Variational Autoencoder (SST-VAE), a VAE-based language model designed for effective successful style transfer. Qualitative analysis indicates that the SST-VAE effectively enables successful style transfer conditional on a given label. In addition, case studies suggest that the proposed approach could be useful in gaining insights about product success, by highlighting key factors that may contribute to their success. On the other hand, our approach confronts issues such as hallucinations and the need for factual accuracy. These challenges underscore the necessity for continued research in the field of e-commerce natural language processing.