Susmit Agrawal


2025

pdf bib
Analyzing Memorization in Large Language Models through the Lens of Model Attribution
Tarun Ram Menta | Susmit Agrawal | Chirag Agarwal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) are prevalent in modern applications but often memorize training data, leading to privacy breaches and copyright issues. Existing research has mainly focused on post-hoc analyses—such as extracting memorized content or developing memorization metrics—without exploring the underlying architectural factors that contribute to memorization. In this work, we investigate memorization from an architectural lens by analyzing how attention modules at different layers impact its memorization and generalization performance. Using attribution techniques, we systematically intervene in the LLM’s architecture by bypassing attention modules at specific blocks while keeping other components like layer normalization and MLP transformations intact. We provide theorems analyzing our intervention mechanism from a mathematical view, bounding the difference in layer outputs with and without our attributions. Our theoretical and empirical analyses reveal that attention modules in deeper transformer blocks are primarily responsible for memorization, whereas earlier blocks are crucial for the model’s generalization and reasoning capabilities. We validate our findings through comprehensive experiments on different LLM families (Pythia and GPT-Neo) and five benchmark datasets. Our insights offer a practical approach to mitigate memorization in LLMs while preserving their performance, contributing to safer and more ethical deployment in real-world applications.

2023

pdf bib
ISLTranslate: Dataset for Translating Indian Sign Language
Abhinav Joshi | Susmit Agrawal | Ashutosh Modi
Findings of the Association for Computational Linguistics: ACL 2023

Sign languages are the primary means of communication for many hard-of-hearing people worldwide. Recently, to bridge the communication gap between the hard-of-hearing community and the rest of the population, several sign language translation datasets have been proposed to enable the development of statistical sign language translation systems. However, there is a dearth of sign language resources for the Indian sign language. This resource paper introduces ISLTranslate, a translation dataset for continuous Indian Sign Language (ISL) consisting of 31k ISL-English sentence/phrase pairs. To the best of our knowledge, it is the largest translation dataset for continuous Indian Sign Language. We provide a detailed analysis of the dataset. To validate the performance of existing end-to-end Sign language to spoken language translation systems, we benchmark the created dataset with a transformer-based model for ISL translation.