Sizhe Wang


2025

pdf bib
FinEval: A Chinese Financial Domain Knowledge Evaluation Benchmark for Large Language Models
Xin Guo | Haotian Xia | Zhaowei Liu | Hanyang Cao | Zhi Yang | Zhiqiang Liu | Sizhe Wang | Jinyi Niu | Chuqi Wang | Yanhui Wang | Xiaolong Liang | Xiaoming Huang | Bing Zhu | Zhongyu Wei | Yun Chen | Weining Shen | Liwen Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models have demonstrated outstanding performance in various natural language processing tasks, but their security capabilities in the financial domain have not been explored, and their performance on complex tasks like financial agent remains unknown. This paper presents FinEval, a benchmark designed to evaluate LLMs’ financial domain knowledge and practical abilities. The dataset contains 8,351 questions categorized into four different key areas: Financial Academic Knowledge, Financial Industry Knowledge, Financial Security Knowledge, and Financial Agent. Financial Academic Knowledge comprises 4,661 multiple-choice questions spanning 34 subjects such as finance and economics. Financial Industry Knowledge contains 1,434 questions covering practical scenarios like investment research. Financial Security Knowledge assesses models through 1,640 questions on topics like application security and cryptography. Financial Agent evaluates tool usage and complex reasoning with 616 questions. FinEval has multiple evaluation settings, including zero-shot, five-shot with chain-of-thought, and assesses model performance using objective and subjective criteria. Our results show that Claude 3.5-Sonnet achieves the highest weighted average score of 72.9 across all financial domain categories under zero-shot setting. Our work provides a comprehensive benchmark closely aligned with Chinese financial domain. The data and the code are available at https://github.com/SUFE-AIFLMLab/FinEval.

pdf bib
BPO: Towards Balanced Preference Optimization between Knowledge Breadth and Depth in Alignment
Sizhe Wang | Yongqi Tong | Hengyuan Zhang | Dawei Li | Xin Zhang | Tianlong Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Reinforcement Learning with Human Feedback (RLHF) is the key to the success of large language models (LLMs) in recent years. In this work, we first introduce the concepts of knowledge breadth and knowledge depth, which measure the comprehensiveness and depth of an LLM or knowledge source respectively. We reveal that the imbalance in the number of prompts and responses can lead to a potential disparity in breadth and depth learning within alignment tuning datasets by showing that even a simple uniform method for balancing the number of instructions and responses can lead to significant improvements. Building on this, we further propose Balanced Preference Optimization (BPO), designed to dynamically augment the knowledge depth of each sample. BPO is motivated by the observation that the usefulness of knowledge varies across samples, necessitating tailored learning of knowledge depth. To achieve this, we introduce gradient-based clustering, estimating the knowledge informativeness and usefulness of each augmented sample based on the model’s optimization direction. Our experimental results across various benchmarks demonstrate that BPO outperforms other baseline methods in alignment tuning while maintaining training efficiency. Furthermore, we conduct a detailed analysis of each component of BPO, providing guidelines for future research in preference data optimization.

2024

pdf bib
Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to Boost for Reasoning
Yongqi Tong | Dawei Li | Sizhe Wang | Yujia Wang | Fei Teng | Jingbo Shang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated striking reasoning capability. Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning?This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs’ errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet.