Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.
The proportion of responses to a question and its options, known as the response distribution, enables detailed analysis of human society. Recent studies highlight the use of Large Language Models (LLMs) for predicting response distributions as a cost-effective survey method. However, the reliability of these predictions remains unclear. LLMs often generate answers by blindly following instructions rather than applying rational reasoning based on pretraining-acquired knowledge. This study investigates whether LLMs can rationally estimate distributions when presented with explanations of “artificially generated distributions” that are against commonsense. Specifically, we assess whether LLMs recognize counterintuitive explanations and adjust their predictions or simply follow these inconsistent explanations. Results indicate that smaller or less human-optimized LLMs tend to follow explanations uncritically, while larger or more optimized models are better at resisting counterintuitive explanations by leveraging their pretraining-acquired knowledge. These findings shed light on factors influencing distribution prediction performance in LLMs and are crucial for developing reliable distribution predictions using language models.
Speaker identification in narrative analysis is a challenging task due to complex dialogues, diverse utterance patterns, and ambiguous character references. Cosly and time-intensive manual annotation limits the scalability of high-quality dataset creation.This study demonstrates a cost-efficient approach of constructing speaker identification datasets by combining small-scale manual annotation with LLM-based labeling. A subset of data is manually annotated and is used to guide LLM predictions with a few-shot approach followed by refinement through minimal human corrections. Our results show that LLMs achieve approximately 90% accuracy on challenging narratives, such as the “Three Kingdoms” dataset, underscoring the importance of targeted human corrections. This approach proves effective for constructing scalable and cost-efficient datasets for Japanese and complex narratives.