The automatic generation of counter-speech (CS) is a critical strategy for addressing hate speech by providing constructive and informed responses. However, existing methods often fail to generate high-quality, impactful, and scalable CS, particularly across diverse lin- guistic contexts. In this paper, we propose a novel methodology to enhance CS generation by aligning Large Language Models (LLMs) using Supervised Fine-Tuning (SFT) and Di- rect Preference Optimization (DPO). Our ap- proach leverages DPO to align LLM outputs with human preferences, ensuring contextu- ally appropriate and linguistically adaptable responses. Additionally, we incorporate knowl- edge grounding to enhance the factual accuracy and relevance of generated CS. Experimental results demonstrate that DPO-aligned models significantly outperform SFT baselines on CS benchmarks while scaling effectively to mul- tiple languages. These findings highlight the potential of preference-based alignment tech- niques to advance CS generation across var- ied linguistic settings. The model supervision and alignment is done in English and the same model is used for reporting metrics across other languages like Basque, Italian, and Spanish.
The rapid growth of Large Language Models (LLMs) presents significant privacy, security, and ethical concerns. While much research has proposed methods for defending LLM systems against misuse by malicious actors, researchers have recently complemented these efforts with an offensive approach that involves red teaming, i.e., proactively attacking LLMs with the purpose of identifying their vulnerabilities. This paper provides a concise and practical overview of the LLM red teaming literature, structured so as to describe a multi-component system end-to-end. To motivate red teaming we survey the initial safety needs of some high-profile LLMs, and then dive into the different components of a red teaming system as well as software packages for implementing them. We cover various attack methods, strategies for attack-success evaluation, metrics for assessing experiment outcomes, as well as a host of other considerations. Our survey will be useful for any reader who wants to rapidly obtain a grasp of the major red teaming concepts for their own use in practical applications.
We propose an entity linking (EL) model that jointly learns mention detection (MD) and entity disambiguation (ED). Our model applies task-specific heads on top of shared BERT contextualized embeddings. We achieve state-of-the-art results across a standard EL dataset using our model; we also study our model’s performance under the setting when hand-crafted entity candidate sets are not available and find that the model performs well under such a setting too.