Russell Scheinberg


2025

pdf bib
Who Relies More on World Knowledge and Bias for Syntactic Ambiguity Resolution: Humans or LLMs?
So Young Lee | Russell Scheinberg | Amber Shore | Ameeta Agrawal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

This study explores how recent large language models (LLMs) navigate relative clause attachment ambiguity and use world knowledge biases for disambiguation in six typologically diverse languages: English, Chinese, Japanese, Korean, Russian, and Spanish. We describe the process of creating a novel dataset – MultiWho – for fine-grained evaluation of relative clause attachment preferences in ambiguous and unambiguous contexts. Our experiments with three LLMs indicate that, contrary to humans, LLMs consistently exhibit a preference for local attachment, displaying limited responsiveness to syntactic variations or language-specific attachment patterns.Although LLMs performed well in unambiguous cases, they rigidly prioritized world knowledge biases, lacking the flexibility of human language processing. These findings highlight the need for more diverse, pragmatically nuanced multilingual training to improve LLMs’ handling of complex structures and human-like comprehension.

2024

pdf bib
Evaluating Multilingual Long-Context Models for Retrieval and Reasoning
Ameeta Agrawal | Andy Dang | Sina Bagheri Nezhad | Rhitabrat Pokharel | Russell Scheinberg
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)

Recent large language models (LLMs) demonstrate impressive capabilities in handling long contexts, some exhibiting near-perfect recall on synthetic retrieval tasks. However, these evaluations have mainly focused on English text and involved a single target sentence within lengthy contexts. Our work investigates how LLM performance generalizes to multilingual settings with multiple hidden target sentences. We create a new dataset – mLongRR – to comprehensively evaluate several multilingual long-context LLMs on retrieval and reasoning tasks across five languages: English, Vietnamese, Indonesian, Swahili, and Somali. These languages share the Latin script but belong to distinct language families and resource levels. Our analysis reveals a significant performance gap between languages. The best-performing models such as Gemini-1.5 and GPT-4o, achieve around 96% accuracy in English to around 36% in Somali with a single target sentence. However, this accuracy drops to 40% in English and 0% in Somali when dealing with three target sentences. Our findings highlight the challenges long-context LLMs face when processing longer contexts, an increase in the number of target sentences, or languages of lower resource levels.

pdf bib
Multilingual Relative Clause Attachment Ambiguity Resolution in Large Language Models
So Young Lee | Russell Scheinberg | Amber Shore | Ameeta Agrawal
Proceedings of the 38th Pacific Asia Conference on Language, Information and Computation