Romain Storaï
2025
HARP: Hesitation-Aware Reframing in Transformer Inference Pass
Romain Storaï
|
Seung-won Hwang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
This paper aims to improve the performance of large language models by addressing the variable computational demands in inference steps, where some tokens require more computational resources than others. We present HARP, a simple modification to “off-the-shelf” Transformer forward pass. Drawing from hesitation and the framing effect in decision-making, HARP selectively applies additional computation when the model encounters uncertainty during token generation. Our method mimics human cognitive processes by pausing at difficult decision points and reframing inputs for a different perspective. Unlike other approaches, HARP is model-agnostic, training-free, and easy to implement. We evaluate our method across various downstream tasks and model sizes, demonstrating performance improvements up to +5.16%. Notably, HARP achieves these gains while maintaining inference times twice faster than beam search. Simple and yet with significant gains, HARP provides insights into the potential of adaptive computation for enhancing the performance of Transformer-based language models.
2024
Intended Target Identification for Anomia Patients with Gradient-based Selective Augmentation
Jongho Kim
|
Romain Storaï
|
Seung-won Hwang
Findings of the Association for Computational Linguistics: EMNLP 2024
In this study, we investigate the potential of language models (LMs) in aiding patients experiencing anomia, a difficulty identifying the names of items. Identifying the intended target item from patient’s circumlocution involves the two challenges of term failure and error. (1) The terms relevant to identifying the item remain unseen. (2) What makes the challenge unique is inherent perturbed terms by semantic paraphasia, which are not exactly related to the target item, hindering the identification process. To address each, we propose robustifying the model from semantically paraphasic errors and enhancing the model with unseen terms with gradient-based selective augmentation (GradSelect). Specifically, the gradient value controls augmented data quality amid semantic errors, while the gradient variance guides the inclusion of unseen but relevant terms. Due to limited domain-specific datasets, we evaluate the model on the Tip of the Tongue dataset as an intermediary task and then apply our findings to real patient data from AphasiaBank. Our results demonstrate strong performance against baselines, aiding anomia patients by addressing the outlined challenges.