Ritwik Sinha


2025

pdf bib
Diversify-verify-adapt: Efficient and Robust Retrieval-Augmented Ambiguous Question Answering
Yeonjun In | Sungchul Kim | Ryan A. Rossi | Mehrab Tanjim | Tong Yu | Ritwik Sinha | Chanyoung Park
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The retrieval augmented generation (RAG) framework addresses an ambiguity in user queries in QA systems by retrieving passages that cover all plausible interpretations and generating comprehensive responses based on the passages. However, our preliminary studies reveal that a single retrieval process often suffers from low-quality results, as the retrieved passages frequently fail to capture all plausible interpretations. Although the iterative RAG approach has been proposed to address this problem, it comes at the cost of significantly reduced efficiency. To address these issues, we propose the diversify-verify-adapt (DIVA) framework. DIVA first diversifies the retrieved passages to encompass diverse interpretations. Subsequently, DIVA verifies the quality of the passages and adapts the most suitable approach tailored to their quality. This approach improves the QA systems’ accuracy and robustness by handling low quality retrieval issue in ambiguous questions, while enhancing efficiency.