Ramani Duraiswami
2025
ProSE: Diffusion Priors for Speech Enhancement
Sonal Kumar
|
Sreyan Ghosh
|
Utkarsh Tyagi
|
Anton Jeran Ratnarajah
|
Chandra Kiran Reddy Evuru
|
Ramani Duraiswami
|
Dinesh Manocha
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Speech enhancement (SE) is the fundamental task of enhancing the clarity and quality of speech in the presence of non-stationary additive noise. While deterministic deep learning models have been commonly employed for SE, recent research indicates that generative models, such as denoising diffusion probabilistic models (DDPMs), have shown promise. However, different from speech generation, SE has a strong constraint to generate results in accordance with the underlying ground-truth signal. Additionally, for a wide variety of applications, SE systems need to be employed in real-time, and traditional diffusion models (DMs) requiring many iterations of a large model during inference are inefficient. To address these issues, we propose ProSE (diffusion-based Priors for SE), a novel methodology based on an alternative framework for applying diffusion models to SE. Specifically, we first apply DDPMs to generate priors in a latent space due to their powerful distribution mapping capabilities. The priors are then integrated into a transformer-based regression model for SE. The priors guide the regression model in the enhancement process. Since the diffusion process is applied to a compact latent space, the diffusion model takes fewer iterations than the traditional DM to obtain accurate estimations. Additionally, using a regression model for SE avoids the distortion issue caused by misaligned details generated by DMs. Comprehensive experiments show that ProSE achieves state-of-the-art performance on synthetic and real-world datasets using various metrics while consuming less computational costs.
2024
GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities
Sreyan Ghosh
|
Sonal Kumar
|
Ashish Seth
|
Chandra Kiran Reddy Evuru
|
Utkarsh Tyagi
|
S Sakshi
|
Oriol Nieto
|
Ramani Duraiswami
|
Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84% and demonstrates state-of-the-art performance on deductive reasoning and hallucination evaluation benchmarks. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning capabilities.
Search
Fix data
Co-authors
- Chandra Kiran Reddy Evuru 2
- Sreyan Ghosh 2
- Sonal Kumar 2
- Dinesh Manocha 2
- Utkarsh Tyagi 2
- show all...