Qianyi Hu
2025
Time-aware ReAct Agent for Temporal Knowledge Graph Question Answering
Qianyi Hu
|
Xinhui Tu
|
Cong Guo
|
Shunping Zhang
Findings of the Association for Computational Linguistics: NAACL 2025
Temporal knowledge graph question answering (TKGQA) addresses time-sensitive queries using knowledge bases. Although large language models (LLMs) and LLM-based agents such as ReAct have shown potential for TKGQA, they often lack sufficient temporal constraints in the retrieval process. To tackle this challenge, we propose TempAgent, a novel autonomous agent framework built on LLMs that enhances their ability to conduct temporal reasoning and comprehension. By integrating temporal constraints into information retrieval, TempAgent effectively discards irrelevant material and concentrates on extracting pertinent temporal and factual information. We evaluate our framework on the MultiTQ dataset, a real-world multi-granularity TKGQA benchmark, using a fully automated setup. Our experimental results reveal the remarkable effectiveness of our approach: TempAgent achieves a 41.3% improvement over the baseline model and a 32.2% gain compared to the Abstract Reasoning Induction (ARI) method. Moreover, our method attains an accuracy of 70.2% on the @hit1 metric, underscoring its substantial advantage in addressing time-aware TKGQA tasks.