Qi Guo


2025

pdf bib
DiffZOO: A Purely Query-Based Black-Box Attack for Red-teaming Text-to-Image Generative Model via Zeroth Order Optimization
Pucheng Dang | Xing Hu | Dong Li | Rui Zhang | Qi Guo | Kaidi Xu
Findings of the Association for Computational Linguistics: NAACL 2025

Current text-to-image (T2I) synthesis diffusion models raise misuse concerns, particularly in creating prohibited or not-safe-for-work (NSFW) images. To address this, various safety mechanisms and red teaming attack methods are proposed to enhance or expose the T2I model’s capability to generate unsuitable content. However, many red teaming attack methods assume knowledge of the text encoders, limiting their practical usage. In this work, we rethink the case of purely black-box attacks without prior knowledge of the T2l model. To overcome the unavailability of gradients and the inability to optimize attacks within a discrete prompt space, we propose DiffZOO which applies Zeroth Order Optimization to procure gradient approximations and harnesses both C-PRV and D-PRV to enhance attack prompts within the discrete prompt domain. We evaluated our method across multiple safety mechanisms of the T2I diffusion model and online servers. Experiments on multiple state-of-the-art safety mechanisms show that DiffZOO attains an 8.5% higher average attack success rate than previous works, hence its promise as a practical red teaming tool for T2l models.

2024

pdf bib
What Makes a Good Order of Examples in In-Context Learning
Qi Guo | Leiyu Wang | Yidong Wang | Wei Ye | Shikun Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Although large language models (LLMs) have demonstrated impressive few-shot learning capabilities via in-context learning (ICL), ICL performance is known to be highly sensitive to the order of examples provided. To identify appropriate orders, recent studies propose heuristic methods to evaluate order performance using a set of unlabeled data. However, the requirement of in-domain data limits their utility in real-world scenarios where additional annotated data is challenging to acquire. Additionally, these dataset-based approaches are prone to being sub-optimal for a lack of consideration for individual differences. To address the problems, we first analyze the properties of performant example orders at both corpus level and instance level. Based on the analysis we propose **DEmO** to adaptively identify performant example order for each instance without extra data. DEmO works by filtering out a subset of orders featuring label fairness, then selecting the most influential order for each test instance. The employment of a content-free metric makes DEmO independent of in-domain data. Extensive experiments indicate the superiority of DEmO over a wide range of strong baselines. Further analysis validates the generalizability across various settings.

2023

pdf bib
Debias NLU Datasets via Training-free Perturbations
Qi Guo | Yuanhang Tang | Yawen Ouyang | Zhen Wu | Xinyu Dai
Findings of the Association for Computational Linguistics: EMNLP 2023

Several recent studies have shown that advanced models for natural language understanding (NLU) are prone to capture biased features that are independent of the task but spuriously correlated to labels. Such models often perform well on in-distribution (ID) datasets but fail to generalize to out-of-distribution (OOD) datasets. Existing solutions can be separated into two orthogonal approaches: model-centric methods and data-centric methods. Model-centric methods improve OOD performance at the expense of ID performance. Data-centric strategies usually boost both of them via data-level manipulations such as generative data augmentation. However, the high cost of fine-tuning a generator to produce valid samples limits the potential of such approaches. To address this issue, we propose PDD, a framework that conducts training-free Perturbations on samples containing biased features to Debias NLU Datasets. PDD works by iteratively conducting perturbations via pre-trained mask language models (MLM). PDD exhibits the advantage of low cost by adopting a training-free perturbation strategy and further improves the label consistency by utilizing label information during perturbations. Extensive experiments demonstrate that PDD shows competitive performance with previous state-of-the-art debiasing strategies. When combined with the model-centric debiasing methods, PDD establishes a new state-of-the-art.