Parham Abed Azad


2025

pdf bib
Multi-BERT: Leveraging Adapters for Low-Resource Multi-Domain Adaptation
Parham Abed Azad | Hamid Beigy
Proceedings of the Tenth Workshop on Noisy and User-generated Text

Multi-domain text analysis presents significant challenges, particularly in Persian name entity recognition (NER). Using a single model for multiple domains often fails to capture the specific features of different domains. That is why many scientists have focused on prompting chatbots for this issue. However, studies show that these models do not achieve remarkable results in NER tasks without proper fine-tuning while training and storing a chatbot is extremely costly. This paper presents a new approach using one core model with various sets of domain-specific parameters. By using techniques like LoRAs and pre-fix tuning, along with extra layers, we train each set of trainable parameters for a specific domain. This allows the model to perform as well as individual models for each domain. Tests on various formal and informal datasets show that by using these added parameters, the proposed model performs much better than existing practical models. The model needs only one instance for storage but achieves excellent results across all domains. This paper also examines each adaptation strategy, outlining its strengths, weaknesses, and the best settings and hyperparameters for Persian NER. Lastly, this study introduces a new document-based domain detection system for situations where text domains are unknown. This novel pipeline enhances the adaptability and practicality of the proposed approach for real-world applications.