Pankaj Wasnik
2025
Faster Machine Translation Ensembling with Reinforcement Learning and Competitive Correction
Kritarth Prasad
|
Mohammadi Zaki
|
Pratik Rakesh Singh
|
Pankaj Wasnik
Findings of the Association for Computational Linguistics: NAACL 2025
Ensembling neural machine translation (NMT) models to produce higher-quality translations than the L individual models has been extensively studied. Recent methods typically employ a candidate selection block (CSB) and an encoder-decoder fusion block (FB), requiring inference across all candidate models, leading to significant computational overhead, generally 𝛺(L). This paper introduces SmartGen, a reinforcement learning (RL)-based strategy that improves the CSB by selecting a small, fixed number of candidates and identifying optimal groups to pass to the fusion block for each input sentence. Furthermore, previously, the CSB and FB were trained independently, leading to suboptimal NMT performance. Our DQN-based SmartGen addresses this by using feedback from the FB block as a reward during training. We also resolve a key issue in earlier methods, where candidates were passed to the FB without modification, by introducing a Competitive Correction Block (CCB). Finally, we validate our approach with extensive experiments on English-Hindi translation tasks in both directions as well as English to Chinese and English to German.
2024
Isometric Neural Machine Translation using Phoneme Count Ratio Reward-based Reinforcement Learning
Shivam Mhaskar
|
Nirmesh Shah
|
Mohammadi Zaki
|
Ashishkumar Gudmalwar
|
Pankaj Wasnik
|
Rajiv Shah
Findings of the Association for Computational Linguistics: NAACL 2024
Traditional Automatic Video Dubbing (AVD) pipeline consists of three key modules, namely, Automatic Speech Recognition (ASR), Neural Machine Translation (NMT), and Text-to-Speech (TTS). Within AVD pipelines, isometric-NMT algorithms are employed to regulate the length of the synthesized output text. This is done to guarantee synchronization with respect to the alignment of video and audio subsequent to the dubbing process. Previous approaches have focused on aligning the number of characters and words in the source and target language texts of Machine Translation models. However, our approach aims to align the number of phonemes instead, as they are closely associated with speech duration. In this paper, we present the development of an isometric NMT system using Reinforcement Learning (RL), with a focus on optimizing the alignment of phoneme counts in the source and target language sentence pairs. To evaluate our models, we propose the Phoneme Count Compliance (PCC) score, which is a measure of length compliance. Our approach demonstrates a substantial improvement of approximately 36% in the PCC score compared to the state-of-the-art models when applied to English-Hindi language pairs. Moreover, we propose a student-teacher architecture within the framework of our RL approach to maintain a trade-off between the phoneme count and translation quality.
Search
Fix data
Co-authors
- Mohammadi Zaki 2
- Ashishkumar Gudmalwar 1
- Shivam Mhaskar 1
- Kritarth Prasad 1
- Nirmesh Shah 1
- show all...