Omar Mahmoud


2025

pdf bib
ALPACA AGAINST VICUNA: Using LLMs to Uncover Memorization of LLMs
Aly M. Kassem | Omar Mahmoud | Niloofar Mireshghallah | Hyunwoo Kim | Yulia Tsvetkov | Yejin Choi | Sherif Saad | Santu Rana
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In this paper, we investigate the overlooked impact of instruction-tuning on memorization in large language models (LLMs), which has largely been studied in base, pre-trained models. We propose a black-box prompt optimization method where an attacker LLM agent uncovers higher levels of memorization in a victim agent, surpassing traditional approaches that prompt the model directly with training data. Using an iterative rejection-sampling process, we design instruction-based prompts that minimize overlap with training data to avoid providing direct solutions while maximizing overlap between the victim’s output and the training data to induce memorization. Our method shows 23.7% more overlap with training data compared to state-of-the-art baselines. We explore two attack settings: an analytical approach that determines the empirical upper bound of the attack, both with and without access to responses for prompt initialization, and a practical classifier-based method for assessing memorization without access to memorized data. Our findings reveal that instruction-tuned models can expose pre-training data as much as, or more than, base models; contexts beyond the original training data can lead to leakage; and instructions generated by other LLMs open new avenues for automated attacks, which we believe require further exploration.

2023

pdf bib
Preserving Privacy Through Dememorization: An Unlearning Technique For Mitigating Memorization Risks In Language Models
Aly Kassem | Omar Mahmoud | Sherif Saad
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language models (LLMs) are trained on vast amounts of data, including sensitive information that poses a risk to personal privacy if exposed. LLMs have shown the ability to memorize and reproduce portions of their training data when prompted by adversaries. Prior research has focused on addressing this memorization issue and preventing verbatim replication through techniques like knowledge unlearning and data pre-processing. However, these methods have limitations regarding the number of protected samples, limited privacy types, and potentially lower-quality generative models. To tackle this challenge more effectively, we propose “DeMem,” a novel unlearning approach that utilizes an efficient reinforcement learning feedback loop via proximal policy optimization. By fine-tuning the language model with a negative similarity score as a reward signal, we incentivize the LLMs to learn a paraphrasing policy to unlearn the pre-training data. Our experiments demonstrate that DeMem surpasses strong baselines and state-of-the-art methods in terms of its ability to generalize and strike a balance between maintaining privacy and LLM performance.