Nenghai Yu


2025

pdf bib
MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG
Pingyu Wu | Daiheng Gao | Jing Tang | Huimin Chen | Wenbo Zhou | Weiming Zhang | Nenghai Yu
Findings of the Association for Computational Linguistics: NAACL 2025

Retrieval-Augmented Generation (RAG) improves Large Language Models (LLMs) by using external knowledge, but it struggles with precise entity information retrieval. Our proposed **MES-RAG** framework enhances entity-specific query handling and provides accurate, secure, and consistent responses. MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access. Additionally, the system supports real-time multi-modal outputs, including text, images, audio, and video, seamlessly integrating into existing RAG architectures. Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering, increasing accuracy to **0.83 (+0.25)** on targeted task. Our code and data are available at https://github.com/wpydcr/MES-RAG.

pdf bib
On the Vulnerability of Text Sanitization
Meng Tong | Kejiang Chen | Xiaojian Yuan | Jiayang Liu | Weiming Zhang | Nenghai Yu | Jie Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Text sanitization, which employs differential privacy to replace sensitive tokens with new ones, represents a significant technique for privacy protection. Typically, its performance in preserving privacy is evaluated by measuring the attack success rate (ASR) of reconstruction attacks, where attackers attempt to recover the original tokens from the sanitized ones. However, current reconstruction attacks on text sanitization are developed empirically, making it challenging to accurately assess the effectiveness of sanitization. In this paper, we aim to provide a more accurate evaluation of sanitization effectiveness. Inspired by the works of Palamidessi et al., we implement theoretically optimal reconstruction attacks targeting text sanitization. We derive their bounds on ASR as benchmarks for evaluating sanitization performance. For real-world applications, we propose two practical reconstruction attacks based on these theoretical findings. Our experimental results underscore the necessity of reassessing these overlooked risks. Notably, one of our attacks achieves a 46.4% improvement in ASR over the state-of-the-art baseline, with a privacy budget of 𝜖=4.0 on the SST-2 dataset. Our code is available at: https://github.com/mengtong0110/On-the-Vulnerability-of-Text-Sanitization.

2024

pdf bib
ScalingFilter: Assessing Data Quality through Inverse Utilization of Scaling Laws
Ruihang Li | Yixuan Wei | Miaosen Zhang | Nenghai Yu | Han Hu | Houwen Peng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

High-quality data is crucial for the pre-training performance of large language models. Unfortunately, existing quality filtering methods rely on a known high-quality dataset as reference, which can introduce potential bias and compromise diversity. In this paper, we propose ScalingFilter, a novel approach that evaluates text quality based on the perplexity difference between two language models trained on the same data, thereby eliminating the influence of the reference dataset in the filtering process. An theoretical analysis shows that ScalingFilter is equivalent to an inverse utilization of scaling laws. Through training models with 1.3B parameters on the same data source processed by various quality filters, we find ScalingFilter can improve zero-shot performance of pre-trained models in downstream tasks. To assess the bias introduced by quality filtering, we introduce semantic diversity, a metric of utilizing text embedding models for semantic representations. Extensive experiments reveal that semantic diversity is a reliable indicator of dataset diversity, and ScalingFilter achieves an optimal balance between downstream performance and semantic diversity.

pdf bib
Text Fluoroscopy: Detecting LLM-Generated Text through Intrinsic Features
Xiao Yu | Kejiang Chen | Qi Yang | Weiming Zhang | Nenghai Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have revolutionized the domain of natural language processing because of their excellent performance on various tasks. Despite their impressive capabilities, LLMs also have the potential to generate texts that pose risks of misuse. Consequently, detecting LLM-generated text has become increasingly important.Previous LLM-generated text detection methods use semantic features, which are stored in the last layer. This leads to methods that overfit the training set domain and exhibit shortcomings in generalization. Therefore, We argue that utilizing intrinsic features rather than semantic features for detection results in better performance.In this work, we design Text Fluoroscopy, a black-box method with better generalizability for detecting LLM-generated text by mining the intrinsic features of the text to be detected. Our method captures the text’s intrinsic features by identifying the layer with the largest distribution difference from the last and first layers when projected to the vocabulary space.Our method achieves 7.36% and 2.84% average improvement in detection performance compared to the baselines in detecting texts from different domains generated by GPT-4 and Claude3, respectively.

pdf bib
Llama SLayer 8B: Shallow Layers Hold the Key to Knowledge Injection
Tianxiang Chen | Zhentao Tan | Tao Gong | Yue Wu | Qi Chu | Bin Liu | Jieping Ye | Nenghai Yu
Findings of the Association for Computational Linguistics: EMNLP 2024

As a manner to augment pretrained large language models (LLM), knowledge injection is critical to develop vertical domain large models and has been widely studied. While most current approaches, including parameter-efficient fine-tuning (PEFT) and block expansion methods, uniformly apply knowledge across all LLM layers, it raises the question: are all layers equally crucial for knowledge injection? We embark upon evaluating the importance of each layer to locate the optimal layer range for knowledge injection. Intuitively, more important layers should play more critical roles in knowledge injection and deserve denser injection. We observe performance dips in question-answering benchmarks after the removal or expansion of the shallow layers, and the degradation shrinks as the layer gets deeper, indicating that the shallow layers hold the key to knowledge injection. This insight leads us to propose the S strategy, a post-pretraining strategy of selectively enhancing shallow layers while pruning the less effective deep ones. Based on this strategy, we introduce Llama Slayer 8B. We experimented on the corpus of code & math and demonstrated the effectiveness of our strategy. Further experiments across different LLM, Mistral-7B, and a legal corpus confirmed the approach’s general applicability, underscoring its wide-ranging efficacy.

2013

pdf bib
Word Alignment Modeling with Context Dependent Deep Neural Network
Nan Yang | Shujie Liu | Mu Li | Ming Zhou | Nenghai Yu
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2012

pdf bib
A Ranking-based Approach to Word Reordering for Statistical Machine Translation
Nan Yang | Mu Li | Dongdong Zhang | Nenghai Yu
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)