Nazik Dinctopal Deniz
2025
When Men Bite Dogs: Testing Good-Enough Parsing in Turkish with Humans and Large Language Models
Onur Keleş
|
Nazik Dinctopal Deniz
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
This paper investigates good-enough parsing in Turkish by comparing human self-paced reading performance to the surprisal and attention patterns of three Turkish Large Language Models (LLMs), GPT-2-Base, GPT-2-Large, and LLaMA-3. The results show that Turkish speakers rely on good-enough parsing for implausible but grammatically permissible sentences (e.g., interpreting sentences such as ‘the man bit the dog’ as ‘the dog bit the man’). Although the smaller LLMs (e.g., GPT-2) were better predictors of human RTs, they seem to have relied more heavily on semantic plausibility than humans. Comparably, larger LLMs (e.g., LLaMA-3) tended to make more probabilistic parsing based on word order, exhibiting less good-enough parsing behavior. Therefore, we conclude that LLMs take syntactic and semantic constraints into account when processing thematic roles, but not to the same extent as human parsers.