Muhammad Ibrahim Khan


2025

pdf bib
KCRL@DravidianLangTech 2025: Multi-Pooling Feature Fusion with XLM-RoBERTa for Malayalam Fake News Detection and Classification
Fariha Haq | Md. Tanvir Ahammed Shawon | Md Ayon Mia | Golam Sarwar Md. Mursalin | Muhammad Ibrahim Khan
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

The rapid spread of misinformation on social media platforms necessitates robust detection mechanisms, particularly for languages with limited computational resources. This paper presents our system for the DravidianLangTech 2025 shared task on Fake News Detection in Malayalam YouTube comments, addressing both binary and multiclass classification challenges. We propose a Multi-Pooling Feature Fusion (MPFF) architecture that leverages [CLS] + Mean + Max pooling strategy with transformer models. Our system demonstrates strong performance across both tasks, achieving a macro-averaged F1 score of 0.874, ranking 6th in binary classification, and 0.628, securing 1st position in multiclass classification. Experimental results show that our MPFF approach with XLM-RoBERTa significantly outperforms traditional machine learning and deep learning baselines, particularly excelling in the more challenging multiclass scenario. These findings highlight the effectiveness of our methodology in capturing nuanced linguistic features for fake news detection in Malayalam, contributing to the advancement of automated verification systems for Dravidian languages.

pdf bib
KCRL@DravidianLangTech 2025: Multi-View Feature Fusion with XLM-R for Tamil Political Sentiment Analysis
Md Ayon Mia | Fariha Haq | Md. Tanvir Ahammed Shawon | Golam Sarwar Md. Mursalin | Muhammad Ibrahim Khan
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Political discourse on social media platforms significantly influences public opinion, necessitating accurate sentiment analysis for understanding societal perspectives. This paper presents a system developed for the shared task of Political Multiclass Sentiment Analysis in Tamil tweets. The task aims to classify tweets into seven distinct sentiment categories: Substantiated, Sarcastic, Opinionated, Positive, Negative, Neutral, and None of the above. We propose a Multi-View Feature Fusion (MVFF) architecture that leverages XLM-R with a CLS-Attention-Mean mechanism for sentiment classification. Our experimental results demonstrate the effectiveness of our approach, achieving a macro-average F1-score of 0.37 on the test set and securing the 2nd position in the shared task. Through comprehensive error analysis, we identify specific classification challenges and demonstrate how our model effectively navigates the linguistic complexities of Tamil political discourse while maintaining robust classification performance across multiple sentiment categories.