This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Language identification is used as the first step in many data collection and crawling efforts because it allows us to sort online text into language-specific buckets. However, many modern languages, such as Konkani, Kashmiri, Punjabi etc., are synchronically written in several scripts. Moreover, languages with different writing systems do not share significant lexical, semantic, and syntactic properties in neural representation spaces, which is a disadvantage for closely related languages and low-resource languages, especially those from the Indian Subcontinent. To counter this, we propose learning script-agnostic representations using several different experimental strategies (upscaling, flattening, and script mixing) focusing on four major Dravidian languages (Tamil, Telugu, Kannada, and Malayalam). We find that word-level script randomization and exposure to a language written in multiple scripts is extremely valuable for downstream script-agnostic language identification, while also maintaining competitive performance on naturally occurring text.
Modern natural language processing (NLP) techniques increasingly require substantial amounts of data to train robust algorithms. Building such technologies for low-resource languages requires focusing on data creation efforts and data-efficient algorithms. For a large number of low-resource languages, especially Indigenous languages of the Americas, this data exists in image-based non-machine-readable documents. This includes scanned copies of comprehensive dictionaries, linguistic field notes, children’s stories, and other textual material. To digitize these resources, Optical Character Recognition (OCR) has played a major role but it comes with certain challenges in low-resource settings. In this paper, we share the first survey of OCR techniques specific to low-resource data creation settings and outline several open challenges, with a special focus on Indigenous Languages of the Americas. Based on experiences and results from previous research, we conclude with recommendations on utilizing and improving OCR for the benefit of computational researchers, linguists, and language communities.
Knowing the language of an input text/audio is a necessary first step for using almost every NLP tool such as taggers, parsers, or translation systems. Language identification is a well-studied problem, sometimes even considered solved; in reality, due to lack of data and computational challenges, current systems cannot accurately identify most of the world’s 7000 languages. To tackle this bottleneck, we first compile a corpus, MCS-350, of 50K multilingual and parallel children’s stories in 350+ languages. MCS-350 can serve as a benchmark for language identification of short texts and for 1400+ new translation directions in low-resource Indian and African languages. Second, we propose a novel misprediction-resolution hierarchical model, LIMIT, for language identification that reduces error by 55% (from 0.71 to 0.32) on our compiled children’s stories dataset and by 40% (from 0.23 to 0.14) on the FLORES-200 benchmark. Our method can expand language identification coverage into low-resource languages by relying solely on systemic misprediction patterns, bypassing the need to retrain large models from scratch.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Grapheme-to-phoneme conversion is an important component in many speech technologies, but until recently there were no multilingual benchmarks for this task. The third iteration of the SIGMORPHON shared task on multilingual grapheme-to-phoneme conversion features many improvements from the previous year’s task (Ashby et al., 2021), including additional languages, three subtasks varying the amount of available resources, extensive quality assurance procedures, and automated error analyses. Three teams submitted a total of fifteen systems, at best achieving relative reductions of word error rate of 14% in the crosslingual subtask and 14% in the very-low resource subtask. The generally consistent result is that cross-lingual transfer substantially helps grapheme-to-phoneme modeling, but not to the same degree as in-language examples.
The Perso-Arabic scripts are a family of scripts that are widely adopted and used by various linguistic communities around the globe. Identifying various languages using such scripts is crucial to language technologies and challenging in low-resource setups. As such, this paper sheds light on the challenges of detecting languages using Perso-Arabic scripts, especially in bilingual communities where “unconventional” writing is practiced. To address this, we use a set of supervised techniques to classify sentences into their languages. Building on these, we also propose a hierarchical model that targets clusters of languages that are more often confused by the classifiers. Our experiment results indicate the effectiveness of our solutions.
We release a dataset of over 2,100 COVID19 related Frequently asked Question-Answer pairs scraped from over 40 trusted websites. We include an additional 24, 000 questions pulled from online sources that have been aligned by experts with existing answered questions from our dataset. This paper describes our efforts in collecting the dataset and summarizes the resulting data. Our dataset is automatically updated daily and available at https://github.com/JHU-COVID-QA/ scraping-qas. So far, this data has been used to develop a chatbot providing users information about COVID-19. We encourage others to build analytics and tools upon this dataset as well.